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a b s t r a c t

A version of immersed boundary-lattice Boltzmann method (IB-LBM) is proposed in this
work. It is based on the lattice Boltzmann equation with external forcing term proposed
by Guo et al. [Z. Guo, C. Zheng, B. Shi, Discrete lattice effects on the forcing term in the lat-
tice Boltzmann method, Phys. Rev. E 65 (2002) 046308], which can well consider the effect
of external force to the momentum and momentum flux as well as the discrete lattice
effect. In this model, the velocity is contributed by two parts. One is from the density dis-
tribution function and can be termed as intermediate velocity, and the other is from the
external force and can be considered as velocity correction. In the conventional IB-LBM,
the force density (external force) is explicitly computed in advance. As a result, we cannot
manipulate the velocity correction to enforce the non-slip boundary condition at the
boundary point. In the present work, the velocity corrections (force density) at all bound-
ary points are considered as unknowns which are computed in such a way that the non-slip
boundary condition at the boundary points is enforced. The solution procedure of present
IB-LBM is exactly the same as the conventional IB-LBM except that the non-slip boundary
condition can be satisfied in the present model while it is only approximately satisfied in
the conventional model. Numerical experiments for the flows around a circular cylinder
and an airfoil show that there is no any penetration of streamlines to the solid body in
the present results. This is not the case for the results obtained by the conventional IB-
LBM. Another advantage of the present method is its simple calculation of force on the
boundary. The force can be directly calculated from the relationship between the velocity
correction and the force density.

� 2008 Elsevier Inc. All rights reserved.

1. Introduction

Currently, most of flow problems can be simulated by finite difference, finite volume and finite element methods. When a
complex geometry is immersed in the flow domain, these approaches often involve the tedious grid generation and compli-
cated solution process arising from strong coupling between the discretization of governing equations and implementation
of boundary conditions. To simplify the solution process, it is desired to develop an approach which can decouple the solu-
tion of governing equations and the implementation of boundary conditions. The immersed boundary method (IBM) is such
an approach. It was initially proposed by Peskin [1] in 1970s for simulation of blood flows in the heart. This method uses a
fixed Eulerian mesh for the flow field, and a set of Lagrangian points to represent the boundary immersed in the fluid. The
basic idea of IBM is to treat the physical boundary as deformable with high stiffness. A small distortion of the boundary will
yield a force which tends to restore the boundary into its original shape. The balances of such forces are distributed into the
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Eulerian nodes and the Navier–Stokes (N–S) equations with a body force are solved on the whole domain including exterior
and interior of the body.

Based on the work of Peskin [1], various improvements have been made recently [2–5]. Among the remarkable works, Lai
and Peskin [2] proposed a so-called second-order accurate immersed boundary method which was used to simulate flows
over a circular cylinder. The interaction between the fluid and the immersed boundary is modeled using a well-chosen Dirac
delta function. As compared to their first-order model [2], numerical viscosity is reduced in this model. However, due to the
use of the first-order Dirac delta function interpolation, the model does not truly have the second-order accuracy. By
employing the feedback forcing to represent the solid body, Goldstein et al. [3] developed a model called the virtual bound-
ary method which was used to simulate laminar and turbulent flows. Different from the way in Peskin [1] where Hook’s law
is used to calculate the restoring force at the boundary, feedback forcing method directly computes the restoring force by
using fluid and boundary velocities. However, there are two user-specified parameters in this model, which may lead to
inconvenience for its application. Ye et al. [4] proposed a method named the Cartesian grid method which combines the
cell-merging technique with the finite volume method to simulate two-dimensional unsteady incompressible viscous flows.
Due to irregular shapes of cells cut by the boundary, complex interpolation is required to calculate the fluxes, which may
affect the computational efficiency. Lima E Silva et al. [5] proposed a version named physical virtual model to simulate an
internal channel flow and the flow around a circular cylinder. This model is very similar to the work of Peskin [1] except that
the restoring force is calculated by applying the momentum equations at the boundary points. The process involves tedious
derivative approximation and interpolation of velocity and pressure.

In the above IBM versions, the solution of flow field is obtained by solving incompressible Navier–Stokes (N–S) equations.
As an alternative computational technique to the N–S solvers, the lattice Boltzmann method (LBM) [6] has been proven to be
an efficient approach for simulation of flow field. LBM is a particle-based numerical technique, which studies the dynamics of
fictitious particles. The major advantage of LBM is its simplicity, easy implementation, algebraic operation and intrinsic par-
allel nature. Like the IBM, the standard LBM is usually applied on the Cartesian mesh. Due to this common feature, it is desir-
able to combine these two methods together. Many efforts have been made in this aspect. The first attempt was given by
Feng and Michaelides [7,8]. They successfully applied IB-LBM to simulate the rigid particle motion. Niu et al. [9] proposed
the momentum exchange-based IB-LBM for simulation of several incompressible flows. Peng et al. [10] developed the mul-
ti-block IB-LBM for simulation of flows around a circular cylinder and an airfoil. Both works adopt the multi-relaxation LBM
to get the flow field.

The key issue in the IBM is the computation of restoring force. The popular way is the penalty method [1,7]. This method
introduces a user-defined spring parameter which may have a significant effect on the computational efficiency and accu-
racy. Another way is the direct forcing method, which was first introduced by Fadlun et al. [11]. As direct forcing method
needs to solve N–S equations to compute the force at the boundary point, it may spoil the merits of LBM when IBM is com-
bined with it. Recently, a simple method for computing the restoring force was proposed by Niu et al [9], in which the
momentum exchange at the boundary is used to compute the force. As compared to the work of Ladd [12], the force com-
putation of Niu et al. [9] is simpler and more convenient since the force is computed at the boundary points and one does not
need to care the details of the boundary position and mesh points.

In the conventional IBM, the non-slip boundary condition is not enforced in its solution process. This is different from the
conventional body-fitted solvers, where the non-slip condition is imposed at the boundary. For example, in the LBM, the
non-slip condition is implemented by the bounce-back (BB) rule. Ladd [12] well applied BB-LBM to simulate solid–fluid sus-
pensions. Since then, many efforts have been made to develop high-order BB-LBM to simulate flows around complex geom-
etries and moving objects. Bouzidi et al. [13] presented quadratic interpolation to implement bounce-back boundary
condition on the boundary of moving objects. The implementation has the second-order accuracy, and the circular Couette
flow and steady flow over a periodic array of circular cylinders are accurately simulated. Chun and Ladd [14] proposed an
equilibrium interpolation LBM for simulation of flows in narrow gaps. Only the equilibrium part of distribution function
is interpolated on the boundary to achieve the second-order accuracy. With the help of multi-relaxation time model, this
method can accurately simulate highly viscous flows. As compared to the body-fitted solvers, the major drawback of IBM
is that the non-slip boundary condition is only approximately satisfied at the converged state. As a consequence, some
streamlines may penetrate the solid body. To remove this drawback, Kim et al. [15] introduced the mass source or sink into
the computation. Using this way, the non-slip condition can be well kept, but the complexity is introduced into the compu-
tation. Recently, Shu et al. [16] found that unsatisfying of non-slip boundary condition in IBM is in fact due to pre-calculated
restoring force. Using the fractional step technique, they concluded that, adding a body force in the momentum equations is
equivalent to make a correction in the velocity field. To enforce the non-slip boundary condition, the velocity correction (or
restoring force) should be considered as unknown, which is determined in such a way that the velocity at the boundary
interpolated from the corrected velocity field satisfies the non-slip boundary condition. In the work of Shu et al. [16], the
velocity correction is made at adjacent points to the boundary along the horizontal and vertical mesh lines. The approach
is very simple. However, it only has the first-order accuracy and the computed forces at the boundary have some oscillations.
The reason may be that the linear relationship is applied along the horizontal/vertical mesh lines and the smooth Dirac delta
function is not used.

In this work, we will follow the idea of Shu et al. [16] to propose a variant of IB-LBM. To effectively consider the body force
in the lattice Boltzmann equation (LBE), we adopt the model proposed by Guo et al. [17]. As shown in [17], the conventional
LBE with body force such as the one used in [7,8] cannot properly consider the discrete lattice effects to the density and
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momentum. To remove this drawback, Guo et al. [17] proposed a representation of forcing term in the LBE which is similar to
the form in the work of He et al. [18]. In this model, the velocity is naturally contributed by two parts. One is from the density
distribution function, while the other is from the body force. Similar to the work of Shu et al. [16], we can term the velocity
from the density distribution function as the intermediate velocity, and the velocity from the body force as the velocity cor-
rection. In the conventional IB-LBM, the velocity correction is pre-computed and cannot be manipulated to satisfy the non-
slip boundary condition. In this work, it is considered as unknown and is determined from enforcement of non-slip condi-
tion. Through the relationship between the force density and velocity correction, the drag and lift forces can be directly com-
puted from the obtained velocity correction. The solution process is exactly the same as the conventional IB-LBM except that
the body force is determined by enforcing the non-slip boundary condition in this work. The present method is validated by
its application to simulate the steady and unsteady flows past a circular cylinder and airfoil. The obtained results basically
agree well with available data in the literature. Since the boundary condition is accurately satisfied, the obtained numerical
results do not show any streamline penetration to the solid body.

2. Conventional immersed boundary-lattice Boltzmann method

For the viscous incompressible flows in a two-dimensional domain X containing an immersed boundary in the form of
closed curve C, as shown in Fig. 1, the governing equations of immersed boundary method can be written as

q
@u
@t
þ u � ru

� �
þrp ¼ lDuþ f; ð1Þ

r � u ¼ 0; ð2Þ

fðx; tÞ ¼
Z

C
Fðs; tÞdðx� Xðs; tÞÞds; ð3Þ

@Xðs; tÞ
@t

¼ uðXðs; tÞ; tÞ ¼
Z

X
uðx; tÞdðx� Xðs; tÞÞdx ð4Þ

Fðs; tÞ ¼ SðXðs; tÞ; tÞ: ð5Þ

Here x, u, p and f are the Eulerian coordinates, fluid velocity, fluid pressure and force density acting on the fluid phase,
respectively. X and F stand for the Lagrangian coordinates and boundary force density. d(x � X(s,t)) is the Dirac delta func-
tion. Eqs. (1) and (2) are the N–S equations of viscous and incompressible fluid flows. Eqs. (3) and (4) describe the interaction
between the immersed boundary and the fluid flow, by distributing the boundary force at the Lagrangian points to Eulerian
points and interpolating the velocity at the Eulerian points to Lagrangian points. Eq. (5) states that the boundary force on the
segment is determined by the boundary configuration at time t, where the function S satisfies a generalized Hooke’s law if
the boundary is elastic.

In order to represent Eqs. (1) and (2) in the lattice Boltzmann frame, an external forcing term should be added to the stan-
dard LBE. The modified LBE can be written as [7,8]

faðxþ eadt; t þ dtÞ � faðx; tÞ ¼ �
1
s
ðfaðx; tÞ � f eq

a ðx; tÞÞ þ
3
2

waf � eadt; ð6Þ

where fa is the distribution function; f eq
a is its corresponding equilibrium state; s is the single relaxation parameter; ea is the

particle velocity and f is the external force density added. wa are coefficients which depend on the selected lattice velocity
model. For the D2Q9 model [19], the velocity set is given by

Eulerian point

Lagrangian point

 

Fig. 1. Immersed boundary illustration. The solid points are used to represent the Lagrangian points and the Eulerian points are represented by the
intersection points of mesh lines.
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ea ¼
0 a ¼ 0
ðcos½ða� 1Þp=2�; sin½ða� 1Þp=2�Þc a ¼ 1;2;3;4ffiffiffi

2
p
ðcos½ða� 5Þp=2þ p=4�; sin½ða� 5Þp=2þ p=4�Þc a ¼ 5;6;7;8

8><
>: ð7Þ

where c = dx/dt, dx and dt are the lattice spacing and time step. For the case of dx = dt, c is taken as 1. The corresponding equi-
librium distribution function is

f eq
a ðx; tÞ ¼ qwa 1þ ea � u

c2
s
þ ðea � uÞ2 � ðcsjujÞ2

2c4
s

" #
; ð8Þ

with w0 = 4/9, w1 = w2 = w3 = w4 = 1/9 and w1 = w2 = w3 = w4 = 1/36. cs ¼ c=
ffiffiffi
3
p

is the sound speed of the model.
To model the interaction of fluid and rigid body, Feng and Michaelides used the penalty method [7] and direct forcing

method [8] to compute the boundary force density. For the penalty method, at time t, it can be assumed that the center
of mass of the rigid body is at X(t), and the instantaneous body rotational matrix is R(t). So the position of a reference point
Xr

j may be determined by

Xr
j ðtÞ ¼ XðtÞ þ RðtÞ½Xr

j ð0Þ � Xð0Þ�: ð9Þ

For the boundary point Xt
j which is correspondent to the reference point Xr

j , it is allowed to be slightly deformed by the
fluid. When the reference point and the boundary point are not at the same position, there occurs a displacement
nj ¼ Xt

j � Xr
j , and a restoration force Fj is generated that tends to restore the boundary point back to the reference point. It

can be modeled by a linear spring relation

Fj ¼ �knj ð10Þ

where k is the spring constant.
To avoid using the user-defined parameter k in the calculation, the direct forcing method was proposed in the work of

Feng and Michaelides [8]. It is assumed that Eq. (1) is also valid at the Lagrangian points which represent the boundary.
So the force density at the boundary points can be written as

f ¼ q
@u
@t
þ u � ru

� �
þrp� lDu: ð11Þ

If the velocity and pressure field at the time step t = tn are known, in order to satisfy the boundary condition at t = tn+1, the
velocity at the Lagrangian boundary points is equal to the velocity of the boundary Un+1 at the same point, so the force den-
sity at the Lagrangian points and t = tn+1 can be determined using an explicit scheme

fnþ1
i ¼ q

Unþ1
i � un

i

dt
þ un

i � run
i

 !
þrpn

i � lDun
i : ð12Þ

Apart from the penalty and the direct forcing methods, there is a simple scheme called momentum exchange to compute
the boundary force. This scheme was proposed by Niu et al [9]. By using the Lagrangian interpolated polynomials, the dis-
tribution functions on the boundary points at all lattice velocity directions are calculated. Hence, a new set of distribution
functions on the boundary points could be achieved through the bounce-back rules

fbðXB; tÞ ¼ faðXB; tÞ � 2waq
ea � UB

c2
s

; ð13Þ

where b denotes the opposite direction of a; UB(=U + X � (XB � X)) is the velocity of the boundary with U and X represent-
ing the translational and angular velocity of the rigid body, and X is the mass center of the body, XB is its boundary position;
wa are the coefficients in the equilibrium distribution function. Consequently, the boundary force density can be calculated
via the momentum exchange, that is,

FðXB; tÞ ¼
X

b

eb½fbðXB; tÞ � faðXB; tÞ�: ð14Þ

The basic solution process of IB-LBM can be illustrated as follows:

(1) Compute the force density at the boundary points using Eqs. (10) or (12) or (14) and then distribute it into the Eulerian
points using Eq. (3).

(2) Solve the lattice Boltzmann Eq. (6) with the force term f to update the velocity field.
(3) Interpolate the new (corrected) velocity field from the lattice (Eulerian points) to the boundary points using Eq. (4).
(4) Go back to (1) till the convergence criterion is satisfied.It should be noted that in the above process, although the wall

velocity Un+1 has been used in the direct forcing method (Eq. (12)), like the penalty method (Eq. (10)) and the momen-
tum exchange method (Eq. (14)), the force density is computed explicitly in step (1). With the known force density f,
the new (corrected) velocity field is also explicitly determined in step (2). However, there is no guarantee in step (3)
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that the velocity at the boundary point obtained from interpolation of corrected velocity field at Eulerian points equals
to the wall velocity. This means that the non-slip wall boundary condition may not be satisfied in step (3). This could
be the major reason to cause flow penetration to the solid body in the conventional IB-LBM results. As shown in the
following section, we will present a version of IB-LBM, in which the force density is considered as unknown in step (1),
and the non-slip wall condition is enforced in step (3).

3. Implicit velocity correction-based immersed boundary-lattice Boltzmann method

We start with the LBE. As shown in [17,20], the LBE with external force (Eq. (6)) cannot properly consider the discrete
lattice effects to the density and momentum. In order to correctly recover the viscous and incompressible N–S equations
involving the external force, the contribution of the force to both momentum qu and momentum flux quu should be con-
sidered. The first attempt to propose a better representation of forcing term in LBE was given by He et al. [18]. Later, Guo
et al. [17] proposed a similar formulation with higher-order terms in u. In this work, the form of LBE proposed by Guo
et al. [17] is adopted, which can be written as

faðxþ eadt; t þ dtÞ � faðx; tÞ ¼ �
1
s
ðfaðx; tÞ � f eq

a ðx; tÞÞ þ Fadt; ð15Þ

Fa ¼ 1� 1
2s

� �
wa

ea � u
c2

s
þ ea � u

c4
s
� ea

� �
� f; ð16Þ

qu ¼
X

a
eafa þ

1
2

fdt: ð17Þ

Here f is the force density at the Eulerian point, which is distributed from the Lagrangian boundary points; wa are the coef-
ficients in the equilibrium distribution function. It can be seen clearly from Eq. (17) that the fluid velocity consists of two
parts. One is contributed from the density distribution function (solution of Eq. (15)), and the other is contributed from
the force density f. If we define the intermediate velocity u* as

qu� ¼
X

a
eafa ð18Þ

and the velocity correction du as

qdu ¼ 1
2

fdt ð19Þ

then Eq. (17) can be written as

u ¼ u� þ du: ð20Þ

In the conventional IBM, f is computed in advance. From Eqs. (19) and (20), we can see clearly that the velocity correction
du and corrected velocity u are explicitly calculated. However, there is no guarantee that the velocity at the boundary point
interpolated from u satisfies the non-slip boundary condition. To overcome this drawback, we have to consider the force
density f as unknown, which is determined in such a way that the velocity at the boundary point interpolated from u sat-
isfies the non-slip boundary condition. As shown in Fig. 2, the velocity correction du at Eulerian points is distributed from the
velocity correction at the boundary (Lagrangian) points. In the IBM, the boundary of rigid body is represented by a set of
Lagrangian points XB(sl,t), l = 1, 2, � � �, m. Here, we can set an unknown velocity correction vector dul

B at every Lagrangian
point. The velocity correction du at the Eulerian point can be obtained by the following Dirac delta function interpolation

Boundary point

Fluid points
domain

 

Fig. 2. Configuration of boundary points and their surrounding fluid points. The domain enclosed by the blue dash dot line is the region where the fluid
phase is affected by one boundary point. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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duðx; tÞ ¼
Z

C
duBðXB; tÞdðx� XBðs; tÞÞds ð21Þ

In the actual implementation, d(x � XB(s,t)) is smoothly approximated by a continuous kernel distribution Dij, which was
proposed by Peskin [1,21]

dðrÞ ¼
1
4 ð1þ cosðpjrj=2ÞÞ jrj 6 2
0 jrj > 2

(
ð22Þ

Dijðxij � Xl
BÞ ¼ dðxij � Xl

BÞdðyij � Yl
BÞ ð23Þ

Using Eqs. (23), (21) can be approximated by

duðxij; tÞ ¼
X

l

dul
BðX

l
B; tÞDijðxij � Xl

BÞDsl ðl ¼ 1;2; � � � ;mÞ ð24Þ

where Dsl is the arc length of the boundary element. According to Eq. (20), the fluid velocity at Eulerian points can be cor-
rected as

uðxij; tÞ ¼ u�ðxij; tÞ þ duðxij; tÞ ð25Þ

where u*(xij,t) is the intermediate fluid velocity obtained from Eq. (18). Note that the unknowns in Eqs. (24) and (25) are the
velocity corrections at the boundary points, dul

B. To satisfy the non-slip boundary condition, the fluid velocities at the bound-

ary points obtained by interpolation using the smooth delta function must be equal to the wall velocities Ul
BðX

l
B; tÞ at the

same positions. Its mathematical expression is

Ul
BðX

l
B; tÞ ¼

X
i;j

uðxij; tÞDijðxij � Xl
BÞDxDy ð26Þ

Substituting Eq. (25) into Eq. (26), we can get the following equation system

Ul
BðX

l
B; tÞ ¼

X
i;j

u�ðxij; tÞDijðxij � Xl
BÞDxDyþ

X
i;j

X
l

dul
BðX

l
B; tÞDijðxij � Xl

BÞDslDijðxij � Xl
BÞDxDy ð27Þ

Equation system (27) can be further re-written as the following matrix form

AX ¼ B; ð28Þ

where X ¼ fdu1
B; du2

B; � � � ; dum
B g; B = {Du1,Du2, � � �, Dum}T with

Dul ¼ Ul
BðX

l
B; tÞ �

X
i;j

u�ðxij; tÞDijðxij � Xl
BÞDxDy ðl ¼ 1;2; � � � ;mÞ ð29Þ

and the elements of matrix A are only related to the Lagrangian boundary points and their neighboring Eulerian points (see
Fig. 2). By solving the above equation system (28), we can obtain the unknown velocity correction at all Lagrangian boundary
points. Note that the number of unknowns in (28) is the same as the number of boundary points and the velocity corrections
at all the boundary points are computed simultaneously by using a direct method or iterative method to solve (28). In this
work, the direct method is adopted. After obtaining the velocity correction at the boundary point, the velocity correction and
the corrected velocity at Eulerian points are then calculated by Eqs. (24) and (25).

Another advantage of present method is the simple calculation of force on the boundary point. From Eq. (19), we can eas-
ily compute the force density by

f ¼ 2qdu=dt: ð30Þ

In our simulation, the density and pressure are calculated by

q ¼
X

a
fa; P ¼ c2

s q: ð31Þ

The basic solution procedure of present approach can be outlined below,

(1) Set initial values, compute the elements of matrix A and get A�1.
(2) Use Eq. (15) to obtain the density distribution function at time t = tn (initially setting Fa = 0) and compute the macro-

scopic variables using Eqs. (18) and (31).
(3) Solve equation system (28) to get the velocity corrections at all boundary points and use Eq. (24) to get velocity cor-

rections at Eulerian points.
(4) Correct the fluid velocity at Eulerian points using Eq. (25) and obtain the force density using Eq. (30).
(5) Compute the equilibrium distribution function using Eq. (8).
(6) Repeat step 2 to step 5 until convergence is reached.
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Author's personal copy

It should be indicated that in the present approach, the force density f is determined by the non-slip boundary condition,
which is different from the conventional IB-LBM where f is given either by the penalty method or the direct forcing method
or the momentum exchange method. In this work, the velocity at the boundary point obtained from interpolation of cor-
rected velocity field at Eulerian points is enforced to the wall velocity. This idea has also been used in the work of Lowe
et al. [22], where the new fluid velocity with consideration of force and torque at the boundary point is set to the wall veloc-
ity of the colloidal particle.

4. Some numerical examples

4.1. Numerical test of overall accuracy

LBM is adopted in the present work to obtain the basic flow field. As we know, LBM has the second-order accuracy in
time and space. However, when LBM is combined with IBM, the Dirac delta function interpolation and the smoothing ker-
nel are used to get the velocity correction at Eulerian points and the velocity at boundary points. The interpolation only
has the first-order accuracy. Although it is only applied in the region nearby the boundary, it may have effect on the global
accuracy of solution in the whole domain. As the process is very complicated, it is impossible to do a theoretical analysis
for such an effect. In the following, we will take the decaying vortex problem as an example to access the overall accuracy
of present method. The test problem has been chosen by Chen et al. [23] to access the accuracy of their IBM results. The
problem is defined in a square domain of �1 6 x 6 1, �1 6 y 6 1, with periodic boundary conditions. Its exact solution is
expressed as

uðx; y; tÞ ¼ � cosðxpÞ sinðypÞe�ð2tp2=ReÞ; ð32Þ
vðx; y; tÞ ¼ sinðxpÞ cosðypÞe�ð2tp2=ReÞ; ð33Þ

qðx; y; tÞ ¼ q0 �
q0U2

4C2
s

½cosð2xpÞ þ sinð2ypÞ�e�ð4tp2=ReÞ: ð34Þ

Similar to the work of Chen et al. [23], for simplicity, the exact solution is fixed no matter what the solid body is immersed
in the computational domain. The exact solution is used to provide the initial condition at t = 0 and the boundary condition
on the boundary including the outer boundary and the surface of immersed body. It is also used to compute the numerical
error so that the overall accuracy of solution can be measured. As in Chen et al. [23], the simulation is carried out at Re = 10
and the single relaxation time of s = 0.65. A circular cylinder with radius of 0.5 is immersed in the computational domain.
Four different meshes of 21 � 21, 41 � 41, 81 � 81, and 161 � 161 are used in the simulation. The solutions at t = 1 are ob-
tained and the numerical error of u is quantified using L2 norm, which is defined as

L2 error ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
N
ðunumerical � uexactÞ2

N

vuut
:

Here unumerical and uexact represent the numerical velocity and the exact solution, respectively, N is the total number of
Eulerian points in the whole domain. The numerical error versus mesh spacing in the log scale is plotted in Fig. 3. As can
be seen in Fig. 3, the overall accuracy of numerical results is slightly less than the second-order as the slope of the line
is about 1.9. The reduction of overall accuracy is attributed to the use of the first-order smoothing kernel in
interpolation.

4.2. Flow over an array of circular cylinders placed at the middle of a straight channel

The second test example is the simulation of flow past an array of circular cylinders placed at the middle of a straight
channel. This problem has been investigated by Aidum and Lu [24] and Inamuro et al. [25] using the finite element method
and the lattice Boltzmann method. Similar to previous studies [24,25], this problem can be simplified to placing a fixed cyl-
inder at the middle of the domain and two walls of the channel moving tangentially with a constant velocity. The periodic
boundary condition is applied at the inlet and outlet of channel.

In the present simulation, a uniform mesh size of 128 � 128 is used and the Reynolds number based on the velocity of
wall Uw and diameter of the cylinder D is set as 1. Three sets of velocity and cylinder diameter are considered: (1)
D = 10.8Dx, Uw = 0.04; (2) D = 20.8Dx, Uw = 0.02; and (3) D = 60.8Dx, Uw = 0.01. Here, Dx is the mesh spacing. Since the mesh
size is fixed as 128 � 128 for the three cases, when D is increased, the cylinder will take more and more space in the whole
computational domain. Two-dimensionless forces are calculated for comparison. They are fw ¼ Fw=ðqLU2

wÞ, the force per unit

area of the channel wall, and fc ¼ Fc=ðqpDU2
wÞ, the force per unit area of the cylinder surface. Here, Fw and Fc are the total

forces acting on the channel wall and cylinder surface, respectively; L is the length of wall in the simulation. The comparison
of fc and fw with previous results for the three cases is shown in Table 1. Basically, the present results agree well with those of
Aidum and Lu [24] and Inamuro et al. [25] for all the three cases. In fact, the present result lies in-between the data of Aidum
and Lu [24] and that of Inamuro et al. [25].
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4.3. Flows over a circular cylinder

The flow over a circular cylinder is chosen to further validate the proposed method. This problem has been studied exten-
sively and there are many theoretical, experimental, and numerical results available. Depending on the Reynolds number,
different kind of flow behaviors can be characterized. The Reynolds number in this flow is defined as

Re ¼ U1D
t

; ð35Þ

where D is the diameter of the cylinder. As pointed out by Lai and Peskin [2], the drag force arises from two sources: the
shear stress and the pressure distribution along the body. In the present work, the force can be directly computed from
the velocity correction. The drag coefficient is defined as

Cd ¼
FD

ð1=2ÞqU2
1D

; ð36Þ

where FD is the drag force. Here, it can be calculated by

FD ¼ �
Z

X
fxdx; ð37Þ

where fx is the x component of force density f.

Table 1
Comparison of forces fc and fw for flow over an array of circular cylinders placed at the middle of a straight channel. Here, fc and fw are the dimensionless force
per unit area of the cylinder surface and the channel wall, respectively.

Cases References fc fw

D = 10.8Dx, Uw = 0.04 Aidum and Lu [24] FEM 0.966 0.137
Aidum and Lu [24] LBM 1.022 0.132
Inamuro et al. [25] 1.053 0.142
Present 1.044 0.139

D = 20.8Dx, Uw = 0.02 Aidum and Lu [24] FEM 1.158 0.316
Aidum and Lu [24] LBM 1.229 0.313
Inamuro et al. [25] 1.251 0.322
Present 1.246 0.318

D = 60.8Dx, Uw = 0.01 Aidum and Lu [24] FEM 2.067 1.543
Aidum and Lu [24] LBM 2.054 1.532
Inamuro et al. [25] 2.093 1.561
Present 2.065 1.541

h (mesh step)

L 2e
rr
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0.05 0.1 0.15 0.2
10-5

10-4

10-3

10-2

slope=1.9

Fig. 3. Convergence of numerical error versus mesh spacing for decaying vortex problem. The overall accuracy of proposed IB-LBM is about 1.9.
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When the body starts shedding a vortex, a lift force on the body is generated by the fluid. Similar to the drag coefficient,
the lift coefficient can be defined as

Cl ¼
FL

ð1=2ÞqU2
1D

; ð38Þ

where FL is the lift force, which can be calculated by

FL ¼ �
Z

X
fydx; ð39Þ

where fy is the y component of force density f. For the unsteady flow, the Strouhal number is defined as the dimensionless
frequency with which the vortices are shed from the body

St ¼ fqD
U1

; ð40Þ

where fq is the vortex shedding frequency.
In the present simulation, the fluid density is taken as q = 1.0 and the free stream velocity is U1 = 0.1. The cylinder

surface is represented by 120 Lagrangian points with uniform distribution. The computation starts with the given free
stream velocity. At the far field boundaries of the square domain X, the equilibrium distribution functions are used to
implement the boundary conditions. To obtain high resolution near the cylinder surface and in the meantime save the
computational effort, fine grid is used around the cylinder, and the coarse grid is put near the far field boundaries. To
accommodate the use of non-uniform mesh, the Taylor series expansion and least square-based LBM (TLLBM) [26] is em-
ployed in the present computation. The TLLBM is based on the standard LBM with introduction of Taylor series expansion
in the spatial direction and least-squares optimization. Its final form is an algebraic formulation, in which the coefficients
only depend on the coordinates of mesh points and lattice velocity, and are computed in advance. It essentially has no
limitation on the mesh structure and lattice model. The trade-off of TLLBM is that additional memory is needed to store
the coefficients.

For the simulations at Re = 20 and 40 (steady flow), the computational domain is 40D � 40D with the whole mesh size
of 401 � 401. The region around the circular cylinder is 1.2D � 1.2D with a uniform mesh size of 97 � 97. The cylinder is
located at (16D,20D). Figs. 4 and 5 show the streamlines when flows reach their steady state for the cases of Re = 20 and
40, respectively. Also included in these figures are the results using conventional IB-LBM proposed by Feng and Michae-
lides [8]. It can be seen clearly that the streamlines obtained by the present method do not penetrate the cylinder surface.
In fact, the streamlines inside the cylinder are enclosed by the boundary of cylinder. This means that there is no mass
exchange between the fluid inside the cylinder and the fluid outside the cylinder. In contrast, the penetration of stream-
lines to the cylinder surface by the conventional IB-LBM is very obvious. The main reason behind this is that the non-slip
boundary condition is accurately enforced in the present method while it is only approximately satisfied in the conven-
tional IB-LBM.

When the flows reach steady state, a pair of stationary recirculating eddies develop behind the cylinder. The length of
the recirculation region from the rearmost point of the cylinder to the end of the wake increases with the Reynolds

Fig. 4. Streamlines for the flow over a circular cylinder at Re = 20. Both the results of present IB-LBM and conventional IB-LBM are included. For the
conventional IB-LBM, the direct forcing scheme is used to compute the restoring force.
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number. The drag coefficient Cd and length of recirculation region L (scaled by D/2) are compared with the previous results
[27–29] in Table 2. From the table, it can be found that our numerical results basically agree well with those in the
literature.

In the present work, we need to solve equation system (27) to obtain the velocity correction at the boundary points.
The process involves inverting the element matrix A. For the flow around stationary objects, this needs to be done only
once as the elements of matrix A are constants. However, for the flow around moving objects, the inverse of the element
matrix A has to be done at every time step. This would increase the computational effort. On the other hand, we notice
that the number of boundary points is much less than the number of Eulerian points in the flow field, and the dimension
of matrix A is the same as the number of boundary points. The increment of computational effort due to inverse of matrix
A at every time step may not be very much. To study this issue, we simulate the same problem with two different ways.
One is the flow around the stationary cylinder with a free stream velocity, and the other is the cylinder moving with a
constant velocity in the stationary fluid. Note that when the flow around the stationary cylinder is simulated, the use
of non-uniform mesh and TLLBM can greatly improve the computational efficiency. However, when the flow around
the moving cylinder is simulated and non-uniform mesh is used, the mesh must be changed at every time step. This brings
complexity into the computation. To make a fair comparison and ease the computation for the moving cylinder case, the
uniform mesh and standard LBM are used in this study. The Reynolds number is taken as Re = 20, and the computational
domain is set by 32D � 32D with a mesh size of 1281 � 1281. The stationary cylinder is located at (8D,16D), while the
moving cylinder moves towards the left from the position of (30D,16D). Notice that the origin of the frame is at the lower
corner of the left boundary. It was found that numerical results obtained by two ways are the same. This can be seen
clearly in Figs. 6 and 7, where the vorticity distribution and pressure profile on the surface of cylinder are compared
for the two ways. The agreement of two results well demonstrates Galilean invariance of present approach. Fig. 8 com-
pares the CPU time required by the two ways when the steady state resolution is reached. The moving cylinder case needs
a little bit more CPU time than the stationary cylinder case. This reveals that the increment of CPU time due to inverse of
the element matrix A at every time step is very little.

Table 2
Comparison of drag coefficient Cd and recirculation length L for steady flow over a circular cylinder at Re = 20 and 40. Previous numerical results are also
included in this table for comparison.

Case References Cd L

Re = 20 Dennis and Chang [27] 2.045 1.88
Fornberg [28] 2.000 1.82
He and Doolen [29] 2.152 1.842
Present 2.091 1.86

Re = 40 Dennis and Chang [27] 1.522 4.69
Fornberg [28] 1.498 4.48
He and Doolen [29] 1.499 4.49
Present 1.565 4.62

Fig. 5. Streamlines for the flow over a circular cylinder at Re = 40.
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For the simulations at Re = 100 and 200 (unsteady flow), the computational domain is taken as 50D � 40D and the cor-
responding mesh size is 501 � 351. The region around the circular cylinder is 1.2D � 1.2D with a uniform mesh size of
97 � 97. The cylinder is located at (20D,20D). Table 3 shows our results of drag and lift coefficients together with those
of Lai and Peskin [2] at Re = 100. Table 4 provides our results of time-averaged drag coefficient and Strouhal number together
with previous experimental and numerical results [30–33].

From Table 2, we can see that the present drag coefficients have a better agreement with the second-order result of Lai
and Peskin [2] than their first-order counterpart. It is believed that the force calculation in the present work is more accurate
than the conventional IB-LBM. This is because when the penetration happens, the boundary points may serve as holes for
mass exchange between interior and exterior of the cylinder. The mass exchange would bring the momentum exchange,
which will contribute to the force. Table 4 compares the present results with the previous experimental and computational
results. The Strouhal numbers computed by our method are in agreement with the experimental data by Williamson, as re-
ported in [33]. On the other hand, we can see from Tables 3 and 4 that the drag coefficient obtained by IB-LBM is generally
higher than the experimental data and the result of body-fitted solver. This may imply that the force calculation by IB-LBM is
not very accurate. The instantaneous vorticity contours of vortex shedding and the streamlines at Re = 100 and Re = 200 are
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Fig. 6. Vorticity distribution on the surface of cylinder at Re = 20 for stationary and moving cylinder cases. The Galilean invariance of proposed method is
tested.
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Fig. 7. Pressure distribution on the surface of cylinder at Re = 20 for stationary and moving cylinder cases.
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plotted in Figs. 9 and 10, respectively. The Karman vortex street of the flow over a circular cylinder can be clearly seen in
these figures. Fig. 11 shows the time evolution of the drag and lift coefficients on the surface of cylinder at Re = 100 and
200. They both demonstrate clear periodicity.

4.4. Flow over a NACA-0012 airfoil

For the practical application of the implicit velocity correction-based immersed boundary-lattice Boltzmann method, the
flow over a NACA-0012 airfoil at Re = 500 and the zero angle of attack is selected for study. Similar to the flow around the
circular cylinder, the fluid density is taken as q = 1.0 and the free stream velocity is U1 = 0.1. The airfoil surface is repre-
sented by 120 Lagrangian points with uniform distribution. The computation starts with the given free stream velocity.
At the far field boundaries of the square domain X, the equilibrium distribution functions are used to implement the bound-
ary conditions. For this case, the pressure and drag coefficients are defined as
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Fig. 8. CPU time required for stationary and moving cylinder cases at Re = 20.

Table 3
Comparison of drag coefficient Cd and lift coefficient Cl for unsteady flow over a cylinder at Re = 100. Here, the value of Cd is time-averaged. The first-order and
second-order results of Lai and Peskin [2] are shown for comparison.

Method Cd Cl

1st order of Lai and Peskin [2] 1.4630 0.3290
2nd order of Lai and Peskin [2] 1.4473 0.3299
Present 1.364 0.344

Table 4
Comparison of time-averaged drag coefficient Cd and Strouhal number St for unsteady flow over a cylinder at Re = 100 and 200. Both experimental and
numerical results are included in this table for comparison.

Case References Cd St

Re = 100 Gresho et al. [30] 1.76 0.18
Saiki and Biringen [31] 1.26 0.171
Clift et al. [32] 1.24 —
Williamson reported in [33] — 0.166
Present 1.364 0.163

Re = 200 Gresho et al. [30] 1.76 0.21
Saiki and Biringen [31] 1.18 0.197
Clift et al. [32] 1.16 —
Williamson reported in [33] — 0.197
Present 1.349 0.193
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Cp ¼
pB � p0

ð1=2ÞqU2
1
; Cd ¼

FD

ð1=2ÞqU2
1l
; ð41Þ

where l is the length of chord. Similar to Eq. (26), the pressure at the boundary of airfoil can be obtained from

pl
BðX

l
BÞ ¼

X
i;j

pðxijÞDijðxij � Xl
BÞDxDy: ð42Þ

The pressure contours together with the streamlines and the distribution of pressure coefficient along the airfoil surface
are presented in Figs. 12 and 13, respectively. They compare well with the numerical results obtained by the N–S solver of
CFL3D [34]. For the drag coefficient, our result of Cd = 0.1759 is also in agreement with the value of 0.1762 reported by Loc-
kard et al. [35] using an N–S equations-based finite difference solver.

For the unsteady flow around the NACA-0012 airfoil, the simulation at Re = 1000 with the angle of attack of 10�is carried
out. The instantaneous vorticity contours and streamlines in one complete cycle are plotted in Fig. 14. These results compare
well with those of Johnson and Tezduyar [36] who solved N–S equations using the finite element method. For the unsteady
case, the Strouhal number is defined as

St ¼ fl
U1

: ð43Þ

In our simulation, the calculated Strouhal number is 0.858, while the value given by Johnson and Tezduyar [36] is 0.86 and
the value given by Mittal and Tezduya [37] is 0.862. Obviously, our result compares well with the data in the literature.

5. Conclusions

This paper presents a variant of immersed boundary-lattice Boltzmann method (IB-LBM). To well consider the effect of
external force to the momentum and momentum flux as well as the discrete lattice effect, the lattice Boltzmann equation

Fig. 9. Vorticity contours for flow over a cylinder at Re = 100 and 200. The dotted and solid lines denote the negative and positive levels of vorticity,
respectively.
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with external forcing term proposed by Guo et al. [17] is adopted. In this lattice Boltzmann model, both the density distri-
bution function and the external force contribute to the fluid velocity. As the non-slip boundary condition at solid surface is
usually for the velocity, the velocity contributed from the external force (force density in IB-LBM) is considered as velocity
correction.

Fig. 10. Streamlines for flow over a cylinder at Re = 100 and 200.
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Fig. 11. Evolution of drag and lift coefficients for flow over a cylinder at Re = 100 and 200. Here, the time is dimensionless.
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The conventional IB-LBM usually computes the force density explicitly. Thus, the velocity correction is fixed and cannot
be manipulated to ensure the velocity at the boundary interpolated from the flow field being equal to the wall velocity. As a
result, the non-slip boundary condition is not accurately satisfied. This leads to penetration of some streamlines to the solid
body. The penetration may also degrade the accuracy of force calculation on the boundary. To improve the conventional IB-
LBM, the velocity correction in the present model is considered as unknown, which is computed implicitly in such a way that
the non-slip boundary condition is enforced at the boundary points. With this constraint, a set of algebraic equations for
velocity corrections is obtained, which can be solved by the direct method to give velocity corrections at all boundary points
simultaneously. The present IB-LBM keeps advantages of conventional IB-LBM such as simplicity and smooth solution. In
fact, its solution procedure is exactly the same as the conventional IB-LBM except that the non-slip boundary condition is
enforced in the present model. Another advantage of present method is the simple calculation of the force on the boundary.
It is directly computed from the relationship between the velocity correction and the force density.

The present method is validated by its application to simulate steady and unsteady flows around a circular cylinder and
airfoil. The obtained numerical results are in agreement with the data in the literature. It is believed that the present method
has a great potential for practical application as it is simple and can accurately satisfy the non-slip boundary condition.

On the other hand, we have to indicate that although the streamline penetration is avoided in the present work, it still
uses Dirac delta function interpolation near the boundary, which only has the first-order of accuracy. In this sense, it may
not be as accurate as the body-fitted solver. To obtain accurate numerical results, one needs to use very fine mesh near
the boundary. This could be a challenging issue for the case with very high Reynolds number.

Fig. 12. Pressure contours and streamlines for flow over NACA-0012 airfoil at Re = 500 and AOA = 0.
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Fig. 13. Distribution of pressure coefficient Cp along the NACA-0012 airfoil at Re = 500 and AOA = 0. The result reported in [34] is included.
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