
IP Fast Rerouting for
Single-Link/Node Failure Recovery

Kang Xi and H. Jonathan Chao

April 2006

New York State
CENTER FOR

ADVANCED TECHNOLOGY
IN TELECOMMUNICATIONS

Supported by the New York State Office of
Science Technology and Academic Research

1

IP Fast Rerouting for Single-Link/Node Failure
Recovery

Kang Xi and H. Jonathan Chao
Polytechnic University, Brooklyn, New York 11201

{kang, chao}@poly.edu

Abstract— Failure recovery in IP networks is critical to high
quality service provisioning. The main challenge is how to achieve
fast recovery without introducing high complexity and resource
usage. The main approaches used by today’s networks are route
recalculation and lower layer protection. The disadvantages are:
route recalculation could take as long as seconds to complete;
while lower layer protection usually requires considerable band-
width redundancy.

We present two fast rerouting algorithms to achieve recovery
from single-link and single-node failures, respectively. The idea is
to calculated backup pathsin advance. When a failure is detected,
the affected packets are immediately forwarded through backup
paths to shorten the service disruption. The schemes react to
failures very fast because there are no calculations on the fly.
They are also cost efficient because no bandwidth reservation is
required. This paper answers the following questions: 1. How
to find backup paths? 2. How to coordinate routers during the
rerouting without explicit signaling? 3. How to realize distributed
implementation? Our schemes guarantee 100% failure recovery
without any assumptions on the primary paths. Simulations show
that our schemes yield comparable performance to shortest path
route recalculation. This work illuminates the possibility of using
pure IP layer solutions to build highly survivable yet cost-efficient
networks.

I. I NTRODUCTION

The Internet has evolved to a global information platform
that supports numerous applications ranging from online shop-
ping to worldwide business- and science-related activities.
For such a critical infrastructure, survivability is a stringent
requirement in that services interrupted by equipment failures
must be recovered as quickly as possible [1]. Typically, a re-
covery time of tens of milliseconds satisfies most requirements
(e.g., SDH/SONET automatic protection switching (APS) is
completed within 50 ms [2]). At the same time, it is expected
that failure recovery schemes have low complexity and do not
reserve redundant bandwidth.

Network failures can be caused by a variety of reasons
such as fiber cut, interface malfunctioning, software bugs, mis-
configuration and attacks. Despite continuous technological
advances, failures cannot be completely avoided even in well-
maintained networks [3]. For example, Figure 1 shows the
link failures in the Sprint backbone in 2002, where each dot
at (t, l) indicates a failure on linkl at time t [3]. Therefore,
developing fast failure recovery schemes has great practical
significance.

The fundamental issue of failure recovery is how to set up a
new path to replace a damaged one. The main approaches used
by today’s IP networks are route recalculation and lower layer

Fig. 1. Link failures in continental US (Apr. 1–Oct. 21, 2002) [3].

protection [4], [5]. All routing protocols (such as open shortest
path first (OSPF) [6] and intermediate system to intermediate
system intra-domain routing (IS-IS) [7]) are designed to per-
form failure advertising, route recalculation and routing table
update to recover from failures. Although these mechanisms
are able to deal with any type of failures, the process can easily
reach seconds [8], which leads to long service disruptions
unacceptable for critical applications such as stock trading
system. On the other hand, lower layer protection achieves fast
recovery by establishing backup connections in advance (e.g.,
a time slot channel) and use them to replace damaged connec-
tions. In this case, the IP layer can be protected from failures
without any modifications on the routing tables. However, this
approach reserves considerable redundant bandwidth for the
backup connections. More importantly, relying on lower layer
protection means the IP layer is not independent in term of
survivability. From this point of view, the original objective of
packet switching — to design a highly survivable network
where packet forwarding in each router is adaptive to the
network status — is still yet to be achieved after more than
forty years of technology evolution [9].

This paper focus on IP fast rerouting (IPFRR). Its frame-
work is described in a recent draft of Internet Engineering Task
Force (IETF) [8]. The basic idea is to let a router maintain
a backup port for each destination and use it to forward
packets when the primary port fails. Since the backup ports are
calculated in advance and do not occupy redundant bandwidth,
IPFRR achieves fast failure recovery with great cost-efficiency.

We study the most common scenarios: single-link and
single-node failures. For each scenario, we formulate the
problem as integer linear programming (ILP), develop low-

2

1

4

2

3 5

(a) topology

1

4

2

3 5

(b) ports

1

4

2

3 5

(c) recovery

Fig. 2. Example of IPFRR (solid/dashed arrows are primary/backup ports).

failure

service disruption

failure detection link state advertising, route
recalculation and update

t

service resumed

use updated
routing tables

IPFRR
triggered

Fig. 3. Procedure of failure recovery.

complexity algorithm to find backup paths and evaluate the
performance in various networks. We show that our schemes
are feasible to be implemented in practical networks. It is
worth noting that an important issue related to failure recovery
is failure detection [10]–[12], which, however, is beyond the
scope of this paper.

This paper is organized as follows. The next section gives
an overview of the issue and related works. Section III and IV
discusses single-link and single-node scenarios, respectively.
Section V presents an implementation scheme in practical
networks. Section VI presents the performance evaluation
results. Section VII concludes the work and identifies future
research.

II. OVERVIEW

A. IP Fast Rerouting

Each IP router maintains a primary forwarding port for a
destination(prefix). When a failure occurs, some of the primary
ports could point to the damaged link/node and become
unusable. The idea of IPFRR is to proactively calculate backup
ports that can be used to replace primary ports temporarily
until the subsequent route recalculation is completed. Figure 2
shows an example with node 1 as the destination. Figure 2(a) is
the topology, Figure 2(b) shows the primary and backup ports,
and Figure 2(c) shows the recovery where node 2 and 4 switch
to their backup ports. Figure 3 shows that IPFRR resumes
disrupted services immediately after a failure is detected while
route recalculation is performed in parallel. The key points of
IPFRR are:
• How to find backup ports? This is non-trivial because

inconsistency between backup ports may create routing
loops. In Figure 2, pointing the backup port of node 4 to
node 3 would create a loop. Traditional link-disjoint paths
for connection-oriented networks (such as the backup
tunnels in MPLS fast reroute [13]) cannot be applied
to IPFRR. For example, Figure 4 shows link-disjoint
primary/backup paths for 1→5 and 2→5. In this case,
node 3 forwards packets through different paths based
on their flow ID, which is not feasible in IP networks
that perform destination-based connectionless routing.

• How to perform failure recovery? The answer to this
question helps routers determine when to use pri-
mary/backup ports. In particular, it is required to make

6

1 2

8

9

3 4

1110

5

7

Fig. 4. Link-disjoint paths (solid/dashed lines are primary/backup paths.

the decision without waiting for failure advertisement to
shorten service disruption.

• How to realize distributed implementation? The imple-
mentation of IPFRR requires modifying existing routers.
Therefore, the complexity and the compatibility to exist-
ing routing protocols must be addressed.

B. Related Work

A simple scheme related to IPFRR is equal cost multi-paths
(ECMP), where a number of paths with the same cost are
calculated for each source/destination pair [14]. The failure
on a particular path can be handled by sending packets along
an alternate path. This approach has been implemented in
practical networks. However, an equal cost path may not exist
in certain situations (such as in a ring), thus ECMP cannot
guarantee 100% failure recovery [8].

A scheme to find loop-free alternate paths is presented in
[15]. Consider the routing fromS to D. If S has a neighbor
X that satisfiesd(X, D) < d(X,S) + d(S,D), whered(i, j)
is the cost fromi to j, it can send packets toX as an alternate
path. The condition ensures that packets do not loop back to
S. Similar to ECMP, this scheme does not guarantee 100%
failure recovery since a node may not have such a neighbor.

In [16], a scheme is proposed to set up a tunnel from node
S to nodeY that is multiple hops away. The alternate path to
a destinationD is from S to Y then toD. This guarantees
100% failure coverage. The extra cost is the maintenance of
many tunnels and potential fragmentation when the IP packet
after encapsulation is longer than the maximum transmission
unit (MTU) [17].

A scheme called failure insensitive routing (FIR) is pre-
sented in [18] for single-link failures. Given a primary path
S → D, FIR identifies a number of key links such that
removing any of these links forces the packets go back toS.
Therefore, the failure of any key links can be inferred byS at
a deflected packet. To provide an alternate path, FIR removes
the key links and runs shortest path routing fromS to D. FIR
is extended to cover single-node failures in [19]. Our schemes
and FIR share similar ideas. The difference is: we develop
different algorithms that do not have any assumptions on the
primary paths (E.g., the primary paths can be either shortest
or non-shortest).

An algorithm called multiple routing configuration (MRC)
is presented in [20]. The idea is to let each router maintain
multiple routing tables (configurations). After a failure is
detected, the routers search for a configuration that is able
to bypass the failure. After that, the index of the selected
configuration is inserted into packet headers to notify each
router which routing table to use. MRC achieves 100% failure

3

TABLE I

NOTATIONS

(V,E) A network with node setV and link setE.
ei,j Binary, ei,j = 1 means a link exists fromi to j.
N The number of nodes in the network:N = |V|.
pn The primary port of noden, the value ofpn is the index of

the node the port points to.
bn The backup port of noden, the value ofbn is the index of

the node the port points to.
αx,y

n Binary, αx,y
n = 0/1 means noden selects its pri-

mary/backup port when linkx–y fails.
px,y

n px,y
n = pn(1−αx,y

n)+ bnαx,y
n is the forwarding port used

by noden when link x–y fails.
tx,y
i,j (n) Binary, tx,y

i,j (n) = 1 means the route from noden to node
1 takes linki → j when link x–y fails.

coverage. The overhead of MRC is maintaining multiple
routing tables and adding an extra index to packet headers.

Recently, an inspiring work is done on path diver-
sity, which discusses how to find multiple paths between
source/destination pairs using routing deflection [21]. The
authors derive three neat conditions that achieve generic path
diversity. Although the scheme is not designed for a specific
application, it is shown to be promising for failure recovery. In
this stage, directly using the scheme cannot guarantee 100%
failure coverage.

C. Assumptions

Definition 1: Survivable Topology: A topology is said to be
survivable to a category of failures if it remains as a connected
graph after the failed links and/or nodes are removed.

We always assume the topology is survivable since it is
impractical to achieve failure recovery otherwise. Without loss
of generality, we select node 1 as the destination throughout
this paper unless explicitly specified. We assume that each link
is bidirectional, but the costs along the two directions could be
different. We do not introduce any restrictions on the primary
paths, which can be calculated using either shortest or non-
shortest path algorithms.

III. S INGLE-L INK FAILURE

A. Mathematical Formulation

In normal operation, the primary paths to node 1 form a
spanning tree of the topology. When a failure occurs, a subset
of the nodes switch to their backup ports for fast rerouting,
and the set of forwarding paths are changed accordingly. The
rerouting is correct if and only if the new set of forwarding
paths still form a spanning tree with node 1 as the root. Based
on this observation, the problem of IPFRR (with node node
1 as the destination) is formulated as the following integer
linear programming (ILP). The notations are defined in Table
I. Our goal is to minimize the change in the network, i.e., let
the fewest routers switch to the backup ports.
Given:

A network (V,E)and the primary port of each nodepn

(n = 2, . . . , N).
Minimize:

∑

x,y∈V

∑

n∈V

αx,y
n . (1)

Subject to:

∑

m∈V

tx,y
i,m(n)−

∑

l∈V

tx,y
l,i (n) =

1 if i = n
−1 if i = 1
0 otherwise

. (2)

tx,y
i,px,y

i
(n) =

∑

j∈V

tx,y
i,j (n). (3)

tx,y
i,j (1) = 0. (4)

ei,px,y
i

= 1. (5)

px,y
x 6= y, px,y

y 6= x. (6)

αx,y
n ≤ ex,y. (7)

tx,y
i,j (n), αx,y

n , ∈ {0, 1}. (8)

bn ∈ V. (9)

variables in (2)–(9): ∀x, y, i, j, n ∈ V; n 6= 1.

The formulation is explained below:

• In (1),
∑

x,y∈V αx,y
n is the total number of backup ports

being used when linkx–y fails. Therefore, the objective
function minimizes the overall change of the forwarding
paths under all possible link failures.

• Constraint (2) guarantees a continuous forwarding path
from each node to node 1.

• Constraint (3) ensures that nodei forwards all packets
through the same port:px,y

i . Together with (2), this
guarantees that each path is loop-free.

• Equation (4) means node 1 does not generate traffic to
itself.

• Constraints (5) and (6) guarantee that the forwarding port
of each node points to the next node through a healthy
link.

• Constraint (7) excludes those(x, y) pairs from the set
of failures if they do not respresent physical links in the
topology.

The ILP provides a generic description of the problem, and
has good flexibility in that it can be modified to achieve dif-
ferent optimization objectives with various contraints. Solving
the ILP yields two set of variables:

• Ports: the backup port of each node:bn;
• Configurations: the port selection of noden when link

x–y fails: αx,y
n .

We present a low-complexity algorithm to find the solution of
this ILP in the next section.

B. Algorithm Description

Our algorithm is based on sequential search in the primary
tree, which we call SSLINK. It contains the following steps.

1) Init: Set the backup port of each node to null, i.e.,bn = 0
(n = 2, . . . , N).

2) Explore the primary treeT(1) using depth-first search.
For each noden (n = 2, . . . , N), assume its primary port
pn fails (i.e., link n → pn fails) and do the following:

a) If bn 6= 0, the backup port of noden is already
found, go back to step 2 to process the next node;
otherwise, continue to the next step.

4

4

1

9

2

7

5

8

6

3

(a) primary ports

4

1

9

2

7

5

8

6

3

(b) failure 2–1

4

1

9

2

7

5

8

6

3

(c) failure 7–5

4

1

9

2

7

5

8

6

3

(d) failure 9–7

Fig. 5. Finding backup ports for single-link failures.

b) The failure disconnects a sub-treeT(n) from the
primary tree, wheren is the root of the sub-tree.
Dye the nodes inT(n) black and all the other
nodes in the topology white. The forwarding path
from each white node is not affected by the failure.

c) In T(n), use breadth-first search to find the first
nodei that has a direct link to a white nodej, set
its backup portbi = j. We call this porti → j an
exit of sub-treeT(n).

d) If i 6= n, find the path fromn to i in T(n). Suppose
the path isn → m1 → m2 . . . → mL → i. Set the
corresponding backup ports asbn = m1, bm1 =
m2, . . . , bmL

= i. Go back to step 2.

Figure 5 shows the procedure of using SSLINK on the
depth-first search path 2–5–7–9.

1) Failure 2–1 detaches sub-treeT(2) from the primary
tree. Using breadth-first search, an exit5 → 6 is found
and the rerouting path is 2→5→6. Thus, we setb2 = 5
andb5 = 6 (Figure 5(b)).

2) Failure 5–2 creates sub-treeT(5), the search is skipped
sinceb5 6= 0.

3) Failure 7–5 dyesT(7) black, and the search immediately
yields b7 = 4 (Figure 5(c)).

4) Failure 9–7 dyesT(9) black, the algorithm setsb7 = 4
(Figure 5(d)).

C. Algorithm Properties

Optimality
Theorem 1:SSLINK minimizes the number of switch-

overs in (1) if the primary tree is obtained using minimum
hop routing.
Proof:
When the primary port of nodek fails, the exit ofT(k) is
found using breadth first search. Therefore, the hop count from
node k to the exit is minimized (since the primary tree is
based on minimum hop routing). This minimizes the number
of switch-overs because choosing any other exit requires more
nodes to use backup ports. Since SSLINK minimizes the
number of switch-overs under any possible failure, it achieves
the optimality in (1). ¥

Complexity
The algorithm has low computation complexity. Although

it contains two nested searches in the tree, the CPU cycles
consumed by each step is very limited. In step 2a, a node is
immediately skipped if its backup port is already found. In step
2c, the algorithm only checks if a node has a white neighbor,
thus requires very little computation. In step 2d, the path from

4

1

2

6 7

5

3

(a) link

4

1

2

6 7

5

3

(b) node

Fig. 6. Link failure vs. node failure.

n to i is exactly the reverse of the primary path fromi to n,
which does not require complicated route calculation.

In particular, each router only runs a part of the algorithm
when SSLINK is implemented in a distributed manner. For
node n, it finds its backup portbn and stops immediately.
Denote the primary path from noden to node 1 asn → yL →
yL−1 → . . . → y1 → 1, the computation is simplified by
repeating step 2a to 2d fromy1, . . . , yL, x. Further complexity
reduction can be achieved by: first, do not record other
nodes’ backup ports; second, jump along the search path. For
example, when node 7 in Figure 5 calculates its backup port, it
only searches along 2–5–7. When node 2 finds an exit through
node 5, the search jumps to the next node on the search path,
which is node 7. Meanwhile, it is not necessary to record the
backup ports of node 2 and 5.

IV. SINGLE-NODE FAILURE

Single-node failures are different from single-link failures
in that the failure of a node disables all the links directly
connected to it. Consequently, several sub-trees could be
detached from the primary tree. Therefore, it is not possible
to apply single-link failure algorithms to handle this situation.
For example, in Figure 6(a), the backup ports of node 2,
4, and 6 (dashed arrows) are able to handle any single link
failure on 2–1, 4–2, or 6–2. However, this configuration cannot
recover from the failure of node 2. In contrast, Figure 6(b)
provides a solution to handle the node failure. Assuming that
the topology is survivable to any single-node failures, we
present an algorithm to find backup ports for IPFRR that
provide 100% coverage of single-node failures.

A. Mathematical Formulation

We use a set of notations similar to those in Table I except
that the superscriptx, y (for the failure of linkx–y) is replaced
with k, which stands for the failure of nodek (k 6= 1). The
formulation of the single-node failure recovery is similar to
that of the single-link failure scenario, as given below.
Given:

A network (V,E)and the primary port of each nodepn

(n = 2, . . . , N).
Minimize:

∑

k∈V,k 6=1

∑

n∈V,n 6=k

αk
n. (10)

5

Subject to:

∑

m∈V

tki,m(n)−
∑

l∈V

tkl,i(n) =

1 if i = n
−1 if i = 1
0 otherwise

. (11)

tki,pk
i
(n) =

∑

j∈V

tki,j(n). (12)

tki,j(1) = 0, tki,j(k) = 0. (13)

ei,pk
i

= 1. (14)

pk
i 6= k. (15)

tki,j(n), αk
n, ∈ {0, 1}. (16)

bn ∈ V. (17)

variables in (11)–(17): ∀k, i, j, n ∈ V; k 6= 1; n 6= 1.

The objective function of the formulation still minimizes
the total number of switch-overs under all possible node
failures, and the constraints are similar to those in the single-
link failure scenario, too. Some additional explanations are:
equation (13) means the root node and any failed node do not
generate traffic; (14) and (15) guarantee that forwarding ports
are always connected to healthy links. The following section
presents an efficient sequential search algorithm to find the
backup ports.

B. Algorithm Description

The algorithm is also based on sequential search, which we
call SSNODE. SSNODE takes the following steps to find
the backup port of each node.

1) Init: Set the backup port of each node to null, i.e.,bn = 0
(n = 2, . . . , N).

2) Explore the primary treeT(1) using depth-first search.
For each noden (n = 2, . . . , N), assume it fails and do
the following:

a) Dye all the nodes in sub-treeT(n) black and the
other nodes in the topology white. The forwarding
path from each white node is not affected by the
failure.

b) If noden hasmn children, denote the child nodes
asc1, . . . , cmn .

c) For each childi (i = c1, . . . , cmn), if its backup
port bi 6= 0, dye all the nodes inT(i) white.

d) Noden and all the black nodes form a tree, denote
it as T∗(n). Repeat the following steps to update
T∗(n) until it is reduced to contain only one node:
noden, and then go back to step 2.

i) In T∗(n), use breadth-first search to find the
first nodej that has a white neighborw, set
bj = w, which is an exit.

ii) Search the children of noden: {c1, . . . , cmn}
to find the noder whose sub-tree contains the
exit, i.e., j ∈ T(r).

iii) Following the links inT(r), find the path from
r to j, which is the recovery path. Set the
backup ports of the nodes on the recovery path
accordingly.

5

1

15

2

10

6

16

7

3

14131211

8

4

9

(a) primary tree

5

1

15

2

10

6

16

7

3

14131211

8

4

9

(b) cycle 1

5

1

15

2

10

6

16

7

3

14131211

8

4

9

(c) cycle 2

5

1

15

2

10

6

16

7

3

14131211

4

98

(d) cycle 3

Fig. 7. Example of SSNODE.

iv) Dye all the nodes inT(r) white, go back to
step 2d.

Figure 7 shows an example of the above algorithm, where
we assume node 2 fails and repeat steps 2(d)i–2(d)iv to find
the backup ports of node 4, 5 and 6.

Cycle 1(Figure 7(b)): The black sub-treeT∗(2) is the same
asT(2). Doing breadth-first search inT∗(2) finds link 10→7
as the exit. Therefore, we setb6 = 10, b10 = 7 and dye nodes
6, 10, 14, and 15 white.

Cycle 2 (Figure 7(c)):T∗(2) is updated by excludingT(6)
from T(2). Performing breadth-first search inT∗(2) gives
5→10 as the exit. Therefore, we setb5 = 10 and dyeT(5)
white.

Cycle 3 (Figure 7(d)): NowT∗(2) shrinks to include only
node 2 andT(4). Using the same method, we find 8→9 as
the exit and setb4 = 8 and b8 = 9. Now the backup ports of
node 4, 5 and 6 are found and the failure of node 2 can be
recovered.

C. Algorithm Properties

Optimality: Our algorithm guarantees 100% recovery of
node failures. This is can be explained as follows. Consider
any sub-tree that is created by the failure of its parent node,
since the topology is survivable, there must be at least one
link that connects this sub-tree to a node, from where the
destination can be reached. Therefore, each search in step 2(d)i
always ends up with an exit being found, which guarantees the
failure recovery.

However, the algorithm does not always minimize the
number of nodes that require switch-over. When a node failure
creates multiple black sub-trees, they may have to traverse one
another to reach a white node for the recovery. In this case,
there could be several combinations to form the recovery paths.
Our algorithm uses sequential search and does not explore
all the combinations, thus does not guarantee the optimality.
Figure 8 gives an example, where the result of our algorithm
requires switch-overs at node 5, 6, 7, 8 and 11 at the failure
of node 3. While pointing the backup port of node 6 to node
12 can avoid the switch-over at node 8.

6

5

1

2

10

6

7

3

12

11

4

98

Fig. 8. Optimality of SSNODE.

Complexity: Compared to SSLINK, this algorithm has
higher complexity as it may need to perform more than one
breadth-first search for each node failure. And the number of
search is determined by the number of children of that node.
Nevertheless, the algorithm does not consume a lot of CPU
cycles and memory since there is no complex computations in
each step and the search of a sub-tree explores only a part of
the topology. We have not derived a closed-form formula of
the complexity since it differs a lot in different topologies. In
Figure 7, the breadth-first search of SSNODE checks totally
18 nodes before finding all the backup ports, resulting in an
average 1.125 visits per node.

Sequence of Search:Although we use depth-first search in
step 2, breadth-first search works as well. This is because the
backup port of a node could be affected only by its parent
or indirect parent. Therefore, the only requirement for the
sequence of search is to find the backup ports from the top
to the bottom of a primary tree. This rule also applies to
SSLINK.

Dealing with Single-Link Failures: The backup ports
found in this algorithm also guarantees 100% recovery of
single-link failures. This is because a link failure is a subset
of the failure of the node that it is directly connected to. The
only exception is the links that are directly connected to the
root, e.g., link 2–1 in Figure 7. This is because we do not
consider the failure of node 1, thus there is no backup port
being configured for node 2. Nonetheless, the algorithm can
be extended to achieve 100% coverage of single-link failures
by running SSLINK for the nodes directly connected to the
root after the Init step. In Figure 7, this sets 2→3 and 3→2
as the backup ports of node 2 and 3, respectively.

V. D ISTRIBUTED IMPLEMENTATION

Our algorithms require that each router has the knowledge
of the overall topology, therefore, the implementation is design
for networks using link-state routing protocols, such as OSPF.
We first explain what triggers a router to use its backup
port, and then presents the details of the implementation
scheme, including how each router finds its backup ports while
keeping the results coordinated with other routers; and how
to store backup ports for efficient table look-up. The single-
link and single-node failure recovery schemes have identical
implementation except that the backup ports are calculated in
different ways.

A. When to Switch to a Backup Port

The example in Figure 5 shows that when a failure occurs,
only a subset of routers need to switch to their backup ports.

New packet, get primary&backup ports
according to destination IP address

Primary Port Fails?

Arrive from Primary Port? No

Yes
Yes

use backup port use primary port

No

Fig. 9. Packet forwarding policy.

prefix next hop port
(a) traditional routing table.

prefix next hop port bk next hop bk port
(b) routing table supporting IPFRR.

Fig. 10. Structure of routing tables.

Therefore, it is critical for a router to determine when to
forward packets to its backup port and when to use the primary
port. While this can be determined based on the location of the
failure, the failure advertising introduces additional recovery
delay. Therefore, we design a different approach that does
not require explicit failure notification. The packet forwarding
policy determines which port to use based on two factors:
destination address and incoming port. The policy is illustrated
in Figure 9, which is explained as follows.

• If a failure is detected on the primary port, the backup
port is certainly chosen for packet forwarding.

• If a packet comes in from the primary port, it implies
a failure on the primary forwarding path. Therefore, the
backup port is used to forward this packet.

• Otherwise, the primary port is used.

For example, when node 2 in Figure 7 fails, packets from
node 5 follow the path 5→10→6→10→7→3→1. Node 5 and
6 always use their backup ports because failures are detected
on their primary ports. Node 10 uses its primary port when
packets arrives from node 5 and selects the backup port when
packets are deflected back from node 6. All the other nodes
stick to their primary ports.

B. Routing Table Extension

Each IP router maintains a routing table where an entry has
the structure of Figure 10(a). To enable efficient distributed
processing, the routing information may be downloaded to
each line card to construct a forwarding table [22]. Upon
the arrival of an IP packet, the link card performs longest
prefix matching and table look-up to retrieve the appropriate
next hop and port, which identify the output port to send
the packet to. To support IPFRR, each entry is extended by
adding the backup port information:bk next hop andbk port,
as illustrated in Figure 10(b). The backup ports are stored in
different memory banks by the address are aligned with the
primary ports. Therefore, each read/write operation accesses
the primary and backup ports in parallel, thus achieving high
speed table look-up.

7

C. Backup Port Calculation

For simplicity, we only discuss how a router performs
backup port calculation and omit the details of mapping
such information to each specific prefix. Without loss of
generality, we pick router 1 as the destination and consider the
calculations in routerk. With link-state routing, each router is
able to obtain the overall topology of the autonomous system
(AS) and thus calculate the primary tree to router 1. Denote the
primary path from routerk to 1 ask → mL → . . . → m1 →
1. Only the failures along this path may trigger routerk to use
its backup port. Therefore, routerk finds its backup port by
searching along its primary path. In the step 2) of SSLINK
and SSNODE, the algorithms explore the whole primary tree.
In the distributed implementation in routerk, the only change
is to replace this step with the following:

• Single-link failure: Fromm1 to mL to k, sequentially
pick a router and assume a failure on its primary port,
run the subsequent steps of SSLINK until the backup
port of routerk is found.

• Single-node failure: Fromm1 to mL, sequentially pick
a router and assume it fails, run the subsequent steps of
SSNODE until the backup port of routerk is found.

For example, node9 in Figure 5 only needs to sequentially
check link failures 2–1, 5–2, 7–5 and 9–7. In Figure 7, node
10 needs to sequentially consider the failure of node 2 and
node 6 to find its backup port. After the first round (failure
of node 2), it finds its backup port, thus the calculation
terminates immediately. By scanning a subset of the topology,
the efficiency of the calculation is further improved.

D. Discussions

The above implementation has several advantages:

• The switch-over of each router is fast, adaptive and does
not require explicit failure notification.

• The additional memory requirement for the routing table
extension is bounded. Only two fields are added to each
entry, which can be achieved with minor cost increase.

• The speed of the routing table look-up is not affected
because a primary port and its backup port are accessed
in a single read operation.

• The complexity of the backup port calculation for each
destination is bounded by the number of nodes in the
network. The algorithms consume little computation re-
sources.

VI. PERFORMANCEEVALUATION

We use computer simulations to study the rerouting path
lengths and traffic distribution using our IPFRR schemes.
These are critical performance metrics of fast rerouting be-
cause they have significant impact on router-to-router delay,
congestion, and network efficiency. We compare our schemes
with shortest path route recalculation to see the difference
of the performance metrics. The topologies adopted in our
evaluation include several practical networks and randomly
generated ones. The results show that our schemes have
consistent performance in various networks. Due to space

1

2 3 4

5 6

7

8 9 10

11

Copenhagen

BerlinLondon
Amsterdam

Brussels Luxembourg

Prague

Vienna

Zurich

Milan

Paris

(a) COST239

75

4

6

2

1

3

9

8
10

11
12

13

14

(b) NSFNet

Fig. 11. Practical topologies.

limit, we only present the results of two practical networks:
COST239 (Figure 11(a)), NSFNet (Figure 11(b)) and random
topologies.

A. Rerouting Path Lengths

We study the distribution of path lengths to see the percent-
age of long and short path. For single-link and single-node
failure, we obtain three set of data:
• Normal: There is no failure in the network, all paths are

minimum hop paths.
• IPFRR: We explore all possible failures and use SSLINK

or SSNODE to find the forwarding paths.
• Recalculation: We explore all possible failures and recal-

culate the minimum hop paths.
The results in Figure 12 show comparable performance

between IPFRR and route recalculation under either single-
link or single-node failures. Compared to the shortest paths
obtained using route recalculation, our schemes create more
long paths, which is an expected price paid for the short
recovery interval. Nonetheless, the percentage of such long
paths are quite small. The results also show more long paths
in NSFNet than in COST239. This is caused by the intrinsic
characteristics of the topologies: the connections in NSFNet
are not as dense as those in COST239. Nonetheless, the results
have consistent tendency.

B. Link Load

We study the volume of traffic on each link to identify hot
spots in networks. Hot spots often have negative influence on
network performance since congestion tend to occur with high
probability on links with heavy load. We explore all possible
single-link and single-node failures and measure the average

8

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 1 2 3 4 5

Pe
rc

en
ta

ge

Path Length

Normal
IPFRR
Recalculation

(a) COST239: link failures

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 1 2 3 4 5

Pe
rc

en
ta

ge

Path Length

Normal
IPFRR
Recalculation

(b) COST239: node failures

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 1 2 3 4 5 6 7 8

Pe
rc

en
ta

ge

Path Length

Normal
IPFRR
Recalculation

(c) NSFNet: link failures

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 1 2 3 4 5 6 7 8

Pe
rc

en
ta

ge

Path Length

Normal
IPFRR
Recalculation

(d) NSFNet: node failures

Fig. 12. Distribution of path lengths under single-link/node failures.

 0

 2

 4

 6

 8

 10

 12

 0 10 20 30 40 50

L
oa

d
(M

b/
s)

Link Index

Normal
IPFRR Average

IPFRR Worst
Recalculation Average

Recalculation Worst

(a) COST239: link failures

 0

 2

 4

 6

 8

 10

 12

 0 10 20 30 40 50

L
oa

d
(M

b/
s)

Link Index

Normal
IPFRR Average

IPFRR Worst
Recalculation Average

Recalculation Worst

(b) COST239: node failures

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30 35 40

L
oa

d
(M

b/
s)

Link Index

Normal
IPFRR Average

IPFRR Worst
Recalculation Average

Recalculation Worst

(c) NSFNet: link failures

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30 35 40

L
oa

d
(M

b/
s)

Link Index

Normal
IPFRR Average

IPFRR Worst
Recalculation Average

Recalculation Worst

(d) NSFNet: node failures

Fig. 13. Traffic load on each directed link under single-link/node failures.

9

and worst traffic load on each directed link. The comparison
among normal, IPFRR and route recalculation is shown in
Figure 13. We assume the traffic demand between any two
nodes is 1 Mb/s. For clarity, the links are sorted based on
their normal load.

The results show that IPFRR and route recalculation gener-
ate similar average load on each link. However, the worst case
load generated by IPFRR is often heavier than that generated
by route recalculation. In other words, under certain failures,
IPFRR is more likely to cause a congested link than route
recalculation. There are two solutions to handle this issue in
practical networks. First, the capacity of each link can be
carefully dimensioned to accommodate such traffic increase
when a failure occurs. Second, packets can be prioritized so
that the delivery of critical traffic is guaranteed at the cost of
degraded service to best-effort traffic. Figure 13(b) shows that
some links have lighter load when a failure occurs. This is
because a failed node does not generate traffic, which reduces
the overall traffic demand.

The last two directed links in Figure 13(b) connect the
same node pair but have different IPFRR load. This shows
shows that the traffic load created by our schemes may not be
symmetric, i.e., the load oni → j may not equal to the load on
j → i. This can be explain using the failure rerouting between
node 4 and node 5 in Figure 5. When calculating the backup
path from node 4 to node 5, node 4 may choose either 4→2→5
or 4→7→5. Similarly, node 5 also has two valid choices. Our
algorithm does not specifically make the two paths symmetric.
While minor modifications can be introduced to guarantee the
symmetry, we are motivated to study a more interesting issue
in our future work: load balancing. That is, how to select the
backup paths to minimize the congestion.

C. Overall Traffic Volume

Denote the traffic load on linki → j as ui,j , the overall
traffic volume of the network is defined as

U =
∑

i,j

ui,j . (18)

Given a traffic demand,U is determined by the routing scheme
and reflects the efficiency of the network. The smaller the
overall traffic volume is, the higher efficiency the network has.
The comparison between our schemes and route recalculation
under each single failure is shown in Figure 14. For clarity,
the data are sorted by the recalculation volume measurements.
IPFRR ususally generates higher overall traffic volume than
route recalculation does since the rerouting paths are often
longer than the shortest paths. Nonetheless, the difference
is acceptable. The results also shows that COST239 is less
sensitive to the location of failures than NSFNet does in that
the overall traffic volume does not change much under various
link failures or node failures. This is because COST239 is
roughly symmetric while NSFNet is highly asymmetric. For
example, the failure of node 10 in NSFNet has more impact
than the failure of node 12.

We generate a number of random topologies using BRITE
[23] and Waxman model, where the node number is 50 and

 100

 120

 140

 160

 180

 200

 0 5 10 15 20 25

O
ve

ra
ll

T
ra

ff
ic

 V
ol

um
e

(M
b/

s)

Failure Index

IPFRR
Recalculation

(a) COST239: link failures

 100

 120

 140

 160

 180

 200

 0 2 4 6 8 10 12

O
ve

ra
ll

T
ra

ff
ic

 V
ol

um
e

(M
b/

s)

Failure Index

IPFRR
Recalculation

(b) COST239: node failures

 300

 350

 400

 450

 500

 0 5 10 15 20

O
ve

ra
ll

T
ra

ff
ic

 V
ol

um
e

(M
b/

s)

Failure Index

IPFRR
Recalculation

(c) NSFNet: link failures

 300

 350

 400

 450

 500

 0 2 4 6 8 10 12 14

O
ve

ra
ll

T
ra

ff
ic

 V
ol

um
e

(M
b/

s)

Failure Index

IPFRR
Recalculation

(d) NSFNet: node failures

Fig. 14. Overall traffic volume under each single-link/node failure.

the average degree (the number of links to a node) changes
from 4 to 14. In each topology, we assume the traffic demand
between any two nodes is 1 Mb/s. We create all possible
single-link/node failures and obtain the average traffic volume.
Figure 15 compare IPFRR with route recalculation. The results
show that our schemes provide almost the same efficiency as
route recalculation regardless of the node degree. In addition,
we test our schemes in ring topology and find that they
generate much higher overall traffic volume compared to route
recalculation. This is the penalty of the packet deflection
using in our schemes. Nonetheless, our scheme is designed

10

 4000

 4500

 5000

 5500

 6000

 6500

 7000

 7500

 8000

 8500

 2 4 6 8 10 12 14 16

O
ve

ra
ll

T
ra

ff
ic

 V
ol

um
e

(M
b/

s)

Average Node Degree

Normal
IPFRR
Recalculation

(a) link failures

 4000

 4500

 5000

 5500

 6000

 6500

 7000

 7500

 8000

 8500

 2 4 6 8 10 12 14 16

O
ve

ra
ll

T
ra

ff
ic

 V
ol

um
e

(M
b/

s)

Average Node Degree

Normal
IPFRR
Recalculation

(b) node failures

Fig. 15. Overall traffic volume in various random networks.

for general mesh topologies instead of rings, whose failure
recovery has been thoroughly investigated.

VII. C ONCLUSIONS ANDFUTURE WORK

We study IP fast rerouting (IPFRR) under single-link and
single-node failures. The first contribution of this work is that
the problems are formulated as integer linear programming
(ILP), which can be easily extended to support various design
objectives and constraints. Our second contribution includes
two IPFRR schemes that guarantee 100% recovery from
single-link and single-node failures, respectively. The schemes
have low complexity and can be easily applied to practical
networks to substantially shorten service disruption caused
by failures. We verify the performance of our schemes in a
variety of practical and random topologies and show that the
price paid for the survivability enhancement is minor. The path
lengths, link load and network overall traffic volume using
our schemes are comparable to those using shortest path route
recalculation.

IPFRR illuminates the possibility of building a highly
survivable Internet without employing complicated solutions.
Based on our work, there are several promising research
directions. First, it is interesting to study the extension of
our schemes to deal with multiple failures. Second, combining
IPFRR with load balancing could further improve the quality
of service during failure recovery. Third, it is interesting to
bring shared risk link group (SRLG) into the design of IPFRR,
where multiple links sharing the same fiber are vulnerable to
a single physical link failure [24], [25]. Finally, our scheme
is designed for link-state routing protocols, it is interesting to
study the extension of the schemes for path-vector routing so
as to enhance the survivability of inter-domain routing.

REFERENCES

[1] S. Rai, B. Mukherjee, and O. Deshpande, “IP resilience within an au-
tonomous system: current approaches, challenges, and future directions,”
IEEE Commun. Mag., vol. 43, no. 10, pp. 142–149, Oct. 2005.

[2] T.-H. Wu and R. C. Lau, “A class of self-healing ring architectures for
SONET network applications,”IEEE Trans. Commun., vol. 40, no. 11,
pp. 1746–1756, Nov. 1992.

[3] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C.-N. Chuah, and
C. Diot, “Characterization of failures in an IP backbone,” inIEEE
INFOCOM, Mar. 2004.

[4] G. Iannaccone, C. N. Chuah, S. Bhattacharyya, and C. Diot, “Feasibility
of IP restoration in a tier 1 backbone,”IEEE Network, vol. 18, no. 2,
pp. 13–19, Mar. 2004.

[5] S. Ramamurthy, L. Sahasrabuddhe, and B. Mukherjee, “Survivable
WDM mesh networks,”J. Lightwave Technol., vol. 21, no. 4, pp. 870–
883, Apr. 2003.

[6] J. Moy, “OSPF version 2,” RFC 2328 (Standard), Apr. 1998. [Online].
Available: http://www.ietf.org/rfc/rfc2328.txt

[7] ISO, “Information technology – Telecommunications and information
exchange between systems – Intermediate System to Intermediate Sys-
tem intra-domain routing information exchange protocol for use in
conjunction with the protocol for providing the connectionless-mode
network service,” 2002.

[8] M. Shand and S. Bryant, “IP fast reroute framework,” Internet-Draft,
Oct. 2005. [Online]. Available: http://www.ietf.org/internet-drafts/draft-
ietf-rtgwg-ipfrr-framework-04.txt

[9] P. Baran, “The beginnings of packet switching: some underlying con-
cepts,” IEEE Commun. Mag., vol. 40, no. 7, pp. 42–48, July 2002.

[10] S. Q. Zhuang, D. Geels, I. Stoica, and R. H. Katz, “On failure detection
algorithms in overlay networks,” inIEEE INFOCOM, vol. 3, Mar. 2005,
pp. 2112–2123.

[11] L. Fang, A. Atlas, F. Chiussi, K. Kompella, and G. Swallow, “LDP
failure detection and recovery,”IEEE Commun. Mag., vol. 42, no. 10,
pp. 117–123, Oct. 2004.

[12] M. Goyal, K. K. Ramakrishnan, and W.-C. Feng, “Achieveing faster
failure detection in OSPF networks,” inIEEE International Conf. on
Commun. (ICC)’03, vol. 40, May 2003, pp. 296–300.

[13] V. Sharma and F. Hellstrand, “Framework for Multi-Protocol Label
Switching (MPLS)-based Recovery,” RFC 3469 (Informational), Feb.
2003. [Online]. Available: http://www.ietf.org/rfc/rfc3469.txt

[14] A. Iselt, A. Kirstdter, A. Pardigon, and T. Schwabe, “Resilient routing
using ecmp and mpls,” inIEEE High Performance Switching and
Routing (HPSR), Apr. 2004.

[15] A. Atlas, “Basic specification for IP fast-reroute: loop-
free alternates,” Internet-Draft, Feb. 2005. [Online]. Avail-
able: http://www3.ietf.org/proceedings/05mar/IDs/draft-ietf-rtgwg-ipfrr-
spec-base-03.txt

[16] S. Bryant, M. Shand, and S. Previdi, “IP fast reroute
using not-via addresses,” Internet-Draft, Oct. 2005. [Online].
Available: http://www.ietf.org/internet-drafts/draft-bryant-shand-ipfrr-
notvia-addresses-01.txt

[17] C. Perkins, “IP encapsulation within IP,” RFC 2003 (Proposed Stan-
dard), Oct. 1996. [Online]. Available: http://www.ietf.org/rfc/rfc2003.txt

[18] S. Lee, Y. Yu, S. Nelakuditi, Z. Zhang, and C.-N. Chuah, “Proactive
vs reactive approaches to failure resilient routing,” inIEEE INFOCOM,
Mar. 2004.

[19] Z. Zhong, S. Nelakuditi, Y. Yu, S. Lee, J. Wang, and C.-N. Chuah,
“Failure inferencing based fast rerouting for handling transient link and
node failures,” inIEEE Global Internet, Mar. 2005.

[20] A. Kvalbein et al., “Fast ip network recovery using multiple routing
configurations,” inIEEE INFOCOM, Apr. 2006.

[21] X. Yang and D. Wetherall, “Source selectable path diversity via routing
delfections,” inACM Sigcomm, 2006.

[22] G. Suwala and G. Swallow, “SONET/SDH-like resilience for IP net-
works: a survey of traffic protection mechanisms,”IEEE Network,
vol. 18, no. 2, pp. 20–25, Mar. 2004.

[23] A. Medina, A. Lakhina, I. Matta, and J. Byers, “BRITE,”
http://www.cs.bu.edu/brite.

[24] L. Shen, X. Yang, and B. Ramamurthy, “Shared risk link group (SRLG)-
diverse path provisioning under hybrid service level agreements in
wavelength-routed optical mesh networks,”IEEE/ACM Trans. Network-
ing, vol. 13, no. 4, pp. 918–931, Aug. 2005.

[25] D. Xu, Y. Xiong, C. Qiao, and G. Li, “Failure protection in layered
networks with shared risk link groups,”IEEE Network, vol. 18, no. 3,
pp. 36–41, May 2004.

