
Chaotic analysis of seismic time series and short term
forecasting using neural networks.

V.P. Plagianakos and E. Tzanaki

Department of Mathematics,
University of Patras,

University of Patras Artificial Intelligence Research Center (UPAIRC).
GR-261.10 Patras, Greece.

e-mail:{vpp,helen}@math.upatras.gr

Abstract

In this study, a chaotic analysis approach was applied
to a time series composed of seismic events occurred in
Greece. The dynamics of the earthquakes belong to the
category of dissipative systems, which exhibit chaotic
behavior. After the chaotic analysis, short term
forecasting using an Artificial Neural Network has been
performed. Neural networks, under appropriate
conditions, are known to be universal function
approximators, thus they have been investigated as tools
for time series forecasting. Here, a neural network is
trained to make short term earthquake predictions. The
network architecture has been dictated by the
calculated characteristics of the time series itself.
Preliminary results indicate that this is a promising
approach.

1  Introduction

One of the central problems of science is forecasting.
Given the past, how can we predict the future. If we
have a system that doesn't change with time then it is
very easy to predict the next value. We take the last
observation as a forecast for the next one. If the system
changes periodically with time all we have to do is to
observe a full cycle. On the other it is very difficult to
make a prediction for random numbers. The systems
that we are interested in are something in between. They
are not periodic but they contain some kind of structure,
which can be exploited to obtain better predictions. If
the predictions are perfect, then the system is
completely deterministic. If the predictions are good,
but not perfect, then the system has a deterministic
component. If the predictions are terrible, then the
system is not deterministic at all [4].

Starting with a sequence of measurements, )( itx , which
formulate the time series, our purpose is to determine
what the data themselves can reveal about the dynamics.
In particular, we will discuss some tools from time
series analysis that can sometimes be used to suggest
what types of equations are appropriate, or to compare

the predictions made by mathematical models to
measurements made in the field. The ultimate goal for
time-series analysis might be to construct a computer
program that, without any knowledge of the physical
system from which the data come, can take the
measured data as input and provide as output a
mathematical model describing the data [5].

The rest of the paper is organized as follows: the next
Section, describes the fundamentals of chaotic time
series analysis theory. In Section 3 the proposed
methodology is introduced, while in Section 4, the
neural network architecture employed is highlighted.
Section 5 concludes the paper.

2  Chaotic Time Series Analysis

When dealing with data, we need to introduce two new
concepts: measurement and noise. In conducting an
experiment we can measure only a limited set of
quantities and we are able to make those measurements
with limited precision. Measurement noise refers to
fluctuations in measurements that arise from chance.
Dynamical noise is another important source of noise in
data. Real-world systems do not exist in isolation; they
are affected by outside influences [5].

Since there is neither dynamical nor measurement noise,
the model is completely deterministic. This means that,
in principle, if we have the initial condition we can
accurately calculate the future values. One the other
hand, if the model is chaotic there may be practical
limitations on our ability to predict it. Most techniques
for nonlinear data analysis involve two steps:
1. In the first step, the data are used to reconstruct the

dynamics of the system.
2. The second step involves characterization of the

reconstructed dynamics.

More generally (for the first step), the time series is
embedded in an m-dimensional space, by taking m
consecutive data points, )( itx  to define the reconstructed
time series:



))})1((),...,(),({)( ττ −++= mtxtxtxtR iiii .

This technique of representing a measured time series as
a sequence of points in an m-dimensional space is called
time lag embedding. There is an important theorem [10]
(Taken's embedding theorem), which states that the
reconstructed dynamics are geometrically similar to the
original for both continues-time and discrete-time
series. The sequence of points created by embedding a
time series is called the trajectory of the time series, m
is called the embedding dimension, and τ  is the
embedding lag or delay time [5]. Our purpose is to find
an optimal value for the embedding dimension, in order
to use this information in the neural network
architecture.

The second step is the characterization of the time
series. To this end, we have to evaluate some
fundamental quantities, such as the correlation integral
and dimension, and the maximum Lyapunov exponent.

When the trajectories of a dynamical system diverge
over the course of time and this separation is
exponentially fast, then chaos exists. The properly
averaged exponent of this increase is characteristic for
the system underlying the data and quantifies the
strength of chaos. It is called the maximum Lyapunov
exponent. More generally the Lyapunov exponents
shows us the sensitive dependence on initial
conditionq[4].

The correlation dimension is one of the most important
quantities in chaotic time series analysis. Dissipative
dynamical systems that exhibit chaotic behavior often
have an attractor in phase space, which is strange.
Strange attractors are typically characterized by a fractal
dimension, D0, which is very difficult to compute
(whenever D>2). But there is another measure of the
dynamical system; the so-called correlation dimension,
ν, which can be relatively easy to obtain from the time
series.

Let us define the correlation integral in some vector
space to be the fraction of all possible pairs of points
which are closer than a given distance r, in a particular
norm:
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where θ(x) is the Heaviside step function.

The most important attribute of correlation integral is
that behaves as a power of r:

C(r) ≈ rν.
The exponent ν is called correlation dimension and is
closely related to the fractal dimension [1].

3  The proposed methodology

Now that we have reviewed the theory, let us put it into
practice and consider a time series composed of seismic
events recorded in Greece. The dynamic of earthquakes
has attracted much attention as a difficult real-world
problem.

To apply the aforementioned theory, we have to
suppose that earthquake dynamics belong to the
category of dissipative systems, which can reveal
dynamics with strange attractor.

In the following we use the reconstructed time series:
))})1((),...,(),({)( ττ −++= mtxtxtxtR iiii ,

where τ is a delay time and m is the embedding
dimension. The embedding dimension has found to be
5. In order to estimate m, several trials were conducted,
using consecutive values for m, until the underlying
attractor has found to have structure. This is a difficult
trial-and-error process driven by experience.

The correlation dimension ν of the reconstructed time
series is given as:
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To estimate the maximum Lyapunov exponent, λ, which
is a measure to estimate the strength of chaos, the
following relation is used:
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where δn is the divergence of the trajectories over the
time [7].

In Figure 1, the seismic events (with magnitude greater
than 2 degrees of Richter scale) that occurred in Greece
the last twenty years are exhibited.

To better analyze the seismic data, we have separated
them in four sets, according to the geographical region
that the earthquake took place. Here, we present results
only from one highly seismic region; Zakynthos island
(Figure 2). The results are particularly interesting and
(combined with those of the other three regions) give us
a better insight to the earthquake dynamics.
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Figure 4: Correlation dimension plot

0 500 1000 1500 2000 2500 3000 3500 4000 4500
2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

Figure 3: Plot of the magnitude of
the earthquake vs. time

Figure 1: Plot of the seismic events
in Greece

Figure 2: Plot of the seismic events
at the Zakynthos island area

Figure 5: Real and one-step-ahead predicted earthquake magnitude



The time series for the above mentioned data are shown
in the Figure 3. In this Figure, the relation between the
magnitude of the earthquake and time is plotted.

Dealing with real data is a difficult task, because one
has to be very careful in the selection of the data points.
First of all, the data points must be taken in equal time.
In other words, for the prediction to have any value the
time series must consists of values which are spaced
uniformly in time.

Unfortunately, the time series of the earthquakes doesn't
meet the above assumption, since seismic activity is not
a periodical phenomenon. Therefore, the use of an
interpolation technique is necessary. We have
experimented with linear and cubic interpolation, and
splines. The new data after the linear interpolation tend
to be very close to the mean value, thus missing
earthquakes with large magnitude. Splines, on the other
hand, seem to perform worse than the cubic
interpolation, which was actually used in our
experiments. Additionally, a noise reduction algorithm
[9] has been used.

Then, the correlation dimension of the underlying
attractor is estimated, with the help of TISEAN software
package for the chaotic analysis of time series [2]. The
correlation dimension was estimated to be between 1
and 2.5, as it can be concluded from Figure 4. Finally,
using the method described in [3], the maximum
Lyapunov exponent was estimated to be 0.3747.

From the above it is evident that although the positive
Lyapunov exponent shows sensitive dependence on the
initial conditions of the supposed earthquake dynamics,
the dimension of the underlying attractor is low. Since
the underlying system is described by low dimensional
chaotic dynamics short term predictions are feasible,
and worth trying.

4  Prediction Using Neural Networks

Applying the above techniques, information about the
nature of the underlying system has been gathered and
aided the construction of the ANN. Firstly, the low
dimensional attractor indicated that predictions were
feasible, although, as it is well known, the dynamical
system has chaotic behavior.

After the characterization of the time series is
performed, the estimated embedding dimension (m=5)
has been used as the number of input nodes.

Specifically, a 5-30-1 feed-forward ANN using logistic
activation functions has been used.

The aim was to train the ANN to perform short term
forecasting. 10,000 consecutive 5-dimensional vectors
constitute the training set, while the generalization
capability of the network was tested using 1,000 test
vectors. The network was trained by a recently proposed
learning algorithm [7] to perform one-step-ahead
forecast. The magnitude of the earthquake is forecasted
one step at the time and the actual rather than the
forecasted magnitude is then used for the next
prediction in a forecasting horizon. As shown in Figure
1, the prediction results were satisfactory.

5 Conclusions

A chaotic analysis approach was applied to a time series
composed of seismic events occurred in Greece the last
twenty years. The first step was the reconstruction of the
time series in order to convert the observations into
space vectors. Then, the embedding dimension has been
estimated. Finally, the maximum Lyapunov exponent
and the correlation dimension have been calculated. The
reason that we estimate the correlation dimension is that
we want to ensure that there exists a low dimensional
strange attractor behind our data, while the Lyapunov
exponent is a measure of the sensitivity to the initial
conditions. For the computation of the above-mentioned
quantities, the TISEAN software package has been used
[2]. With these tools in hand, an ANN trained for one-
step-ahead forecast exhibits satisfactory results.

Regarding the seismic time series from all four regions,
the correlation dimension of the underlying attractor
was estimated to be between 2 and 3, while the
maximum Lyapunov exponent was found to be 0.71.
Thus, the underlying system is described by low
dimensional chaotic dynamics. In a future
correspondence we intend to present results taking into
consideration all four regions, as well as try accurate
predictions using already predicted values.
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