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Abstract—Change Management, a core process of the Informa-
tion Technology Infrastructure Library (ITIL), is concerned with
the management of changes to networks and services to satisfy
business goals and to minimize costly disruptions on the business.
As part of Change Management, IT changes are planned for
and scheduled for execution. With several uncoordinated IT
operators and different (semi-)automated tools participating in
the generation of IT change plans conflicts among them are likely
to occur. Furthermore, state of the art IT change planners fail
to prevent conflicts among plans. Conflicting IT changes, which
render each other infeasible, ultimately lead to failed IT change
plans and threaten the continuity of a business due to unsatisfied
business goals. To tackle this problem we propose an algorithm
for the automated detection of conflicting IT change plans. The
algorithm is applied to several IT changes from the network
and service management domain. Using simulation we identify
and discuss characteristics of IT changes and plans that make
deciding conflict freeness among plans more difficult. We find
that our algorithm is able to decide the absence of conflicts
among synthetically generated IT change plans (1-200 CRs per
plan, up to 2000 CRs in total) in the context of large CMDBs
(50,000 CIs) and modestly skewed IT changes. The advantage of
our solution lies within the tight integration of object-oriented
models, frequently used to describe CMDBs in research and
commercial systems. Furthermore, existing IT change planners
and schedulers remain unchanged while our solution prevents
inter-plan conflicts.

I. INTRODUCTION

Change Management [1], a core process of the Information

Technology Infrastructure Library (ITIL) [2] ensures that

changes to hardware and software are managed and conducted

in a way that costs are met, risks are reduced, and that the

business needs and goals of a company are satisfied with

the highest degree of confidence and optimization. To ensure

this, ITIL proposes a Change Management process comprising

the evaluation, authorization, planning, test, scheduling, imple-

mentation, documentation, and review of IT changes [1].

IT Change Planning, an important step of the Change Man-

agement process, has been subject to intensive research [3],

[4], [5], [6], [7], [8]. This let to IT change planners which can

generate a single sound plan that, when executed, achieves a

Request for Change. However, all approaches fail to prevent

conflicts among IT changes from different plans, that can ren-

der IT change plans infeasible. There are several reasons why

these conflicts occur: (1) The planners that have been proposed

so far are unaware of changes conducted manually outside

their visibility, e.g., by an operator. Thus, manually planned

changes can render automatically planned changes infeasible

and vice versa. (2) Previous research on IT change planning

neglects the effects that scheduled, but not yet executed IT

changes have on the feasibility of IT change plans currently

being planned for. Often several weeks pass in practice until

scheduled IT changes are executed [9]. Until then, their effects

are unseen by the current planners facilitating the generation

of infeasible IT change plans due to false assumptions. (3) In

a practical Change Management environment changes are less

automated and uncoordinated operators and tools, e.g., from

different management domains, can generate plans rendering

each other infeasible.

Aware of the threats infeasible IT change plans have on the

continuity of an IT business and the satisfaction of business

goals, ITIL [1] proposes the implementation of a single point

for changes to minimize the likelihood of conflicting changes.

However, it remains open how conflicting IT change plans

can be automatically detected except by elaborate human

inspection.

To aid in the detection of conflicting IT changes, we intro-

duce the theoretical foundations and an algorithm to detect

them over object-oriented (OO) Configuration Management

Databases (CMDB). A conflict detection layer using the

proposed algorithm is added in between legacy planners and

schedulers only admitting conflict-free IT change plans from

uncoordinated sources, such as IT operators and automated

planners, to the scheduling engine. Thus, as long as the sched-

uler respects the precedence constraints of each plan, plans

are guaranteed to not render each other infeasible. To show

the applicability of our approach to Change Management,

the algorithm is applied to conflicting IT changes from the

network and services management domain. Using simulation

we identify and discuss unfavorable characteristics of IT

changes and plans that make them costly to be checked for

conflict freeness. Among others, we find that a workload of

plans comprising CRs that are skewed over the CIs of a CMDB

or that address many CIs are costly to verify. Furthermore, we

find that the proposed solution is able to decide the absence

of conflicts among synthetically generated IT change plans (1-

200 CRs per plan, up to 2000 CRs in total) in the context of



large CMDBs (50,000 CIs) and modestly skewed IT changes

within reasonable time.

The advantage of our approach lies within the tight inte-

gration of object-oriented (OO) Configuration Management

Databases (CMDBs), frequently used by commercial CMDB

systems [10] and suggested by the Common Information

Model (CIM) [11] to model the current state of software

and hardware in a data center. In addition to that, previously

proposed work on IT change planning [3], [4], [5], [6], [7], [8]

and scheduling [12], [13] remains unchanged while inter-plan

conflicts are prevented.

The remainder of this work is organized as follows: In Section

II we discuss related work and its shortcomings with respect to

the occurrence of conflicting IT changes. Section III introduces

the architecture and theory to detect conflicting IT changes,

followed by our Algorithm in Section IV. We evaluate our

solution in Section V using simulation experiments. Finally,

Section VI concludes the work.

II. RELATED WORK

Different aspects of IT Change Management, such as plan-

ning, scheduling, rollback, and risk assessment, have been ad-

dressed in the last recent years. However, despite the negative

influence of conflicting IT changes regarding the feasibility

of IT change plans - to the best of our knowledge - nobody

has yet proposed an approach to detect them. Early work

on IT change planning [3], [14], [15] comprises approaches

that do not apply logically sound reasoning to IT changes.

The plans generated by these approaches are not guaranteed

to be executable from a logical point of view. For example,

Keller et al. [3] proposed CHAMPS which formalizes planning

and scheduling as an optimization problem which achieves a

high degree of parallelism. While CHAMPS can reason about

dependencies to achieve actions, it does not apply logically

reasoning and cannot detect conflicting IT changes among

different plans. Cordeiro et al. [14], [15] propose an approach

focusing on the reuse of knowledge in IT change design. The

authors propose an algorithm to refine abstract IT changes

without giving logical guarantees about the feasibility of the

generated plans. More recent works, such as [4], [5], [7],

including our own research [6], [8], propose approaches for

IT change planning that reason about the precondition and

effects of IT changes within a single plan. For example, the

works by Cordeiro et al. [5] and Trastour et al. [7] focus on

the refinement of IT changes, while our hybrid approach [6]

addresses refinement and state-based reasoning at the same

time. Common to all recent works on IT change planning is,

that they are capable of generating a single, logically sound

plan as long as the datacenter does not change in between plan

generation and execution. However, after a plan is generated,

neither of the approaches takes the effects that the plan’s

scheduled, but not yet executed, IT changes have on the

feasibility of later planned IT changes into account. Thus,

current approaches cannot prevent that automatically planned

IT changes render scheduled and not yet executed changes

infeasible and vice versa. In addition to that, they cannot cope
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Fig. 1. Intermediate Conflict Detection layer in between IT change planners
and schedulers to avoid inter-plan conflicts in a multi-operator environment.

with conflicts induced by multi-operator change environments.

To cope with already occurred conflicts, we proposed in an

earlier work [9] an approach to render infeasible IT change

plans feasible again. Compared to that work, the algorithm

proposed herein proactively detects conflicts that render IT

change plans infeasible.

Regarding the scheduling of IT changes Rebougas et al. [12],

among others, propose an approach to schedule IT changes

into change windows to minimize the costs imposed by

violated Service Level Agreements. Zia et al. [13] discuss

mixed-integer programming for change scheduling. Common

to all these works and others on scheduling is that changes are

scheduled into change windows taking precedence constraints

within a plan into account. However, previously introduced

works on planning do not take into account the effect schedul-

ing decisions have on the feasibility of subsequent plans.

Besides planning and scheduling, Machado et al. [16], [17]

propose a rollback solution to deal with failures during change

implementation in a reactive way by undoing partially ex-

ecuted change plans. Compared to this work, our approach

proactively detects conflicting IT changes and prevents their

admission to the change scheduler and execution engine.

Wickboldt et al. [18], [19] propose a solution for the auto-

mated risk assessment of IT change plans to proactively treat

risks during deployment. Similar to this work, our approach

proactively avoids failed change plans as well. However,

we avoid failed change plans by logically sound reasoning

whether changes conflict with each other whereas Wickbold

et al. apply risk analysis. Recently, Lunardi et al. [20] discussed

the alignment of IT change plans to business objectives and

strategies to assign human resources to IT changes [21]. Our

work complements these works because it guarantees the

feasibility of IT change plans in multi-operator environments

and for automated planners - a prerequisite to successfully

align IT changes with business objectives or to optimize their

assignment to operators.

III. DETECTION OF CONFLICTING IT CHANGES

A. General Architecture

Figure 1 depicts the conceptual change planning and

scheduling architecture our solution integrates in. Our archi-

tecture is build-upon object-oriented modeling techniques. A

CMDB is an object-relational model describing the current

state of the data center, i.e., all its physical and virtual

resources together with its hosted software. The CMDB is

implemented as in main memory objects of Groovy [22] a



dynamic object-oriented language based on Java. We chose

the object-oriented representation because according to Keller

et al. [10] today’s CMDBs follow an object-oriented approach,

sometimes derived from the Common Information Model

(CIM) [11]. In addition to that, object-oriented models have

been used in previous research by Eilam et al. [23] to describe

the state of a data center. IT Change plans are generated

by different uncoordinated IT operators or by automated IT

change planners [3], [6], [8], [4], [5], [7] based on the current

state of the OO CMDB (Step 1). Generated plans are stored

in a conflicting plan database (C-plan DB), i.e., a database of

unscheduled, but not yet verified to be conflict-free, plans in

Step 2. The Conflict Detection layer removes a plan pl from

the C-plan DB (Step 3) and checks whether the database of

conflict-free plans (CF-plan DB) remains conflict-free if pl is

added to it. In case it does not remain conflict-free, the plan

is returned to the operator or the planner for adaptation/re-

planning, e.g., using our solution previously introduced in [9]

(Step 4a). In case the CF-plan DB remains conflict-free, pl
is added to it in Step 4b. The scheduler schedules not yet

scheduled plans in the CF-plan DB (Step 5). Scheduled, but

not yet executed plans, remain in the CF-plan DB. Once the

plan is executed by the Execution Engine in Step 6, the effects

of the IT changes are propagated to the OO CMDB and the

executed plan pl is marked for deletion in the CF-Plan DB.

However, pl remains in the CF-plan DB as long as the C-plan

DB contains plans that were planned before pl was executed,

because these plans were not planned taking the effects of IT

changes in pl into account. Plan pl still has to be taken into

account when admitting these plans to the CF-plan DB.

B. Definitions:

The object-oriented CMDB is described by a set M =
{o1, ..., on} of Java objects. Each object oi has properties

prop(oi) = {oi.p1, ..., oi.pn} denoted by their full qualified

path consisting of an object and the name of the prop-

erty. An IT change plan pl is a 2-tuple pl = (CRpl, <pl)
such that CRpl = {cr1, ..., crn} are the CRs of pl and

<pl⊆ CRpl × CRpl a partial precedence order among CRpl

describing Finish to Start constraints regarding valid execution

sequences of pl. In the context of this work a change request

(CR) cr is the description of an IT change, in particular its’

precondition and effects. More formally, a change request cr
is a tuple cr = (dcr, precr, effcr) where dcr is the textual

description of cr and precr a precondition. A precondition is

implemented as a boolean expression evaluated over reads of

object properties from the CMDB. precr needs to account in

order to execute cr, i.e., to apply its effects effcr. Effects are

implemented as dynamically executable code which reads and

writes the properties of objects, i.e., CIs, in the CMDB. For

x ∈ {precr, effcr}, we denote by R(x) ⊆
⋃

o∈M prop(o) or

W (x) ⊆
⋃

o∈M prop(o) the set of all properties of objects

read or written by the precondition or the effects of cr. Note,

that W (precr) = ∅ accounts because only effcr changes CIs

in the CMDB. Based on the read and writes of IT changes to

properties of CIs / objects in the CMDB, a conflict is defined
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Fig. 2. Conflicting IT changes around the creation of a virtual machine

as follows:

Definition 3.1: Effects-Precondition (EP) - conflict

Two CRs cr1, cr2, cr1 6= cr2 are in an ordered EP-conflict

(cr1 <EP cr2) regarding object o ∈ M , iff ∃p ∈ prop(o) :

o.p ∈ W (effcr1) ∩R(precr2). We denote by <EP⊆ CRs×
CRs a relation describing the EP-conflicts among all CRs of

all plans. Thus, (cr1, cr2) ∈<EP iff cr1 writes a property of an

object that is also read by cr2. This means that the execution of

cr1 can, but must not necessarily, render cr2 infeasible. Note,

that <EP is not reflexive and can be symmetric, transitive, or

cyclic.

To capture which CRs cannot be verified independently of

each other due to chains of EP-Conflicts or several conflicts

on the same CI, the notion of a Conflict Group is introduced:

Definition 3.2: Conflict Group

For a set of plans {pl1, ..., pln} let G = (CRs,<EP ) be a

directed graph such that CRs =
⋃

i∈{1,...,n}CRpli are the

nodes and <EP=
⋃

i∈{1,...,n} <pli the edges of G. A conflict

group is a connected component in graph G′ emerging from G
when the direction of edges is neglected. More formally, G′ =
(CRs,<′

EP ) where (cri, crj) ∈<′
EP iff (cri, crj) ∈<EP or

(crj , cri) ∈<EP . Thus a CG cg is a set of CRs {cr1, ..., crk},

k ∈ N with two important criteria: (C1) Each cr ∈ cg is only

part of one conflict group. (C2) ∀cri ∈ cg : ¬∃cr /∈ cg :
(cr, cri) ∈<EP ∨ (cri, cr) ∈<EP , i.e, the conflict group is

closed with respect to Effect-Precondition conflicts in both

directions.

A CG defines the smallest set of CRs which participate in

conflicts that cannot be independently verified of each other.

The following subsection provides an example.

C. Example

Consider plans pl1 and pl2 (grey boxes) in Fig. 2. Plan pl1
consists of cr1 (decrease vcpu) and cr2 (create vm). The prece-

dence constraints <pli of plan pli are denoted by non-dashed

arrows in between CRs. In the given example (cr1, cr2) ∈<pl1 .

The underlying OO CMDB consists of 4 CIs / objects: A

hypervisor (hyp) which runs on a physical machine (pm) and

manages two virtual machines ({vm1,vm2}). Arrows among

CRs and objects describe the read and writes to properties

of objects conducted by preconditions and effects. For ex-

ample, cr1 decreases the number of virtual cpus allocated



to virtual machine vm1. Thus, cr1 reads and writes property

hyp.cpu av which describes the number of not yet allocated

cpu resources by the hypervisor. cr2 (create vm) reads this

property in its precondition from the hypervisor object in the

CMDB to check whether enough cpu resources are available

to create a new VM. Thus, the increase of hyp.cpu av has

the potential to influence the creation of a new VM on the

same host. This is captured by EP-conflict ep1 = (cr1, cr2)
(red) in Figure 2. In fact, because cr1 is ordered before cr2 we

expect cr1 to be even necessary to successfully create the VM.

Otherwise, (cr1, cr2) ∈<pl1 would be obsolete. Note, that

(cr2, cr1) ∈<EP accounts as well (also due to an EP-conflict

regarding hyp.cpu av). However, because cr2 is ordered after

cr1, cr2 does not have the chance to render cr1 infeasible,

because every valid execution sequence of pl1 will have cr1
ordered before cr2. More precisely, EP-conflicts ordered in

the opposite direction of the transitive closure of precedence

constraints of a plan (<pli) do not need to be taken into

account to decide the feasibility of a CR. There are also EP-

conflicts between cr3 (increase vmem) in pl2 and cr2 (create

vm) in pl1 in both directions because the increase of the

RAM of vm2 can make the creation of a VM on the same

host infeasible due to insufficient RAM and vice versa. Thus,

ep2 = (cr3, cr2) ∈<EP (green) and ep3 = (cr2, cr3) ∈<EP

(blue) due to reads and writes to hyp.mem av (see Fig. 2).

IV. THE ALGORITHM

Algorithm 1 Check new plan for absence of conflicts

1: procedure CHECK PLAN(Plan pl)
2: verify top order(get top order(pl), true) /* see Algorithm 2 */

3: grps to verify = []
4: for all conf ∈ ConflictManager.EP Conflicts do

5: grp = create or merge(conf.from,conf.to)
6: grps to verify.add(grp)
7: end for

8: for all grp ∈ grps to verify do

9: if !verify cg(grp) then return false end if /* see Algorithm 3 */
10: end for

11: return true
12: end procedure

Algorithm 2 Verification of a topological order

1: procedure VERIFY TOP ORDER(TopOrder order, boolean log conflicts)
2: objects changed = []
3: for all cr ∈ order do
4: if cr.executable() then

5: cr.apply effects()
6: objects changed.addAll(cr.objects changed)
7: if log conflicts then ConflictManager.add conflicts(cr) end if

8: else

9: restore objects(objects changed)
10: return false
11: end if

12: end for

13: restore objects(objects changed)
14: return true
15: end procedure

For n plans in the CF-plan DB (see Fig. 1), previously

verified to be conflict-free, Alg. 1 returns true if the CF-Plan

Algorithm 3 Verification of a conflict group

1: procedure VERIFY CG(ConflictGroup cg)
2: top orders = all topological orders(cg)
3: for all top order ∈ top orders do
4: if !verify top order(top order, false) then return false end if

5: end for

6: return true
7: end procedure

DB remains conflict-free if pl is added. Consider plans 1-4

in Fig. 2. Note, that reads and writes of pl3 and pl4 are not

shown to keep matters simple. Please refer to Fig. 3 for reads

and writes of these CRs to the CMDB. Assume pl1 is the

first plan to be checked for absence of conflicts by Alg. 1.

Line 2 in Alg. 1 determines a topological order in linear time

O(|CRpl1 |+ | <pl1 |) and passes it to Alg. 2. In case of pl1,

Alg. 2 is called with topological order < cr1, cr2 >, the only

topological order of pl1. Algorithm 2 has two purposes: (1)

Check whether the execution sequence of a topological order

of CRs is valid in the sense that the execution of a CR does not

render a subsequent one in the topological order infeasible. (2)

Determine the EP Conflicts among the CRs in the topological

order if called with true in the second argument. Thus, Alg. 2

executes the chosen topological order of pl1 (Lines 3–12). The

precondition of each CR is checked (Line 4) and the following

happens if it accounts: (1) The effects of the change request

are applied to the model (Line 5) (2) all objects changed by

the effects of the CR are accumulated in a helper variable

(Line 6) and (3) the conflicts cr participates in are reported to

a Conflict Manager, later queried in Alg. 1, Line 4. Conflicts

are logged by intercepting reads and writes to properties and

storing them in an index structure. Thus, it can be decided in

respect to previous reads and writes whether an EP-conflict

occurs among CRs. If a CR in the topological order is not

executable or if all CRs were executed successfully all objects

altered in the CMDB need to be restored in Line 9 or 13 .

For example, the original values of properties vm1.vcpu and

hyp.cpu av need to be restored because they were changed

by the effects of CR decrease vcpu (see writes in Fig. 2).

This is achieved by restoring previously backed up values of

the properties of the affected objects. We found this solution

to be the fastest among others in [8]. Line 7 in Alg. 2 also

reports conflict ep1 logged among CRs decrease vcpu (cr1)

and create vm (cr2) respectively property hyp.cpu av to a

conflict manager. If all CRs could be successfully executed

true is returned in Line 14. Alg. 1 continues with processing

all logged conflicts that CRs of plan pl (pl1) participate in

Lines 4–7. The CRs ({cr1, cr2}) of the previously logged

conflict (ep1) are passed to the create or merge() method

behaving as follows: If the CRs inducing a conflict are not yet

part of a CG, a new dedicated CG is returned only containing

the CRs of the conflict. Otherwise, at most two distinctive

CGs need to be merged together in O(max(|cgi|, |cgj |)) to

keep the CGs closed as they are the connected components

in the undirected conflict graph (see Definition 3.2). In case

of ep1 a new CG (cg1, see Fig. 2) is created only comprising



cr1 and cr2 because none of them is yet part of another CG.

Algorithm 1 iterates through all newly created or modified

CGs (in our case only cg1) in Lines 8–10 and returns true

if all groups could be verified (Line 11) by Alg. 3. Otherwise,

false is returned in Line 9. Algorithm 3 verifies in factorial

time O(|cg| ∗ |cg|!) whether a conflict group cg is conflict-

free by calculating all topological orders in respect to the

temporal constraints of the CRs in a conflict group in Line 2.

For each topological order Alg. 2 is called to verify whether

this is a proper execution order in which no CR renders a

subsequent one infeasible. However, this time reads, writes,

and conflicts are not logged. For a conflict group cg and a

change request cr, cr ∈ cg, all other CRs from any plan

that might render cr infeasible or all other CRs that cr might

render infeasible are contained in the same CG by construction

(see Def. 3.2-(C2)). By checking each topological order of

CRs in a CG we can guarantee that none of the EP-conflicts

renders a CR infeasible in practice. All in all, for cg1 only

topological order < cr1, cr2 > needs to be checked. Assume

plan pl2 (Fig. 2), only consisting of CR increase vmem (cr3),

arrives next. The execution of the topological order of pl2
(Alg. 1, Line 2) yields EP-conflicts ep2 and ep3 over property

hyp.mem av (see reads and writes in Fig. 2). The previously

created group cg1 = {cr1, cr2} is not closed under <EP (see

Definition 3.2-(C2)) any more due to ep2 and ep3. Thus, Line 5

in Alg. 1 merges cr3 into cg1 forming cg2 comprising CRs 1,

2, and 3 (see Fig. 2) which is added to the set of CGs to verify

in Line 6. Note, that nothing needs to be done for ep3 in Line 5

because the CRs of ep3 are already part of the same CG (cg2).

To verify cg2, Alg. 2 calls Alg. 3 for each topological order

< cr1, cr2, cr3 >, < cr1, cr3, cr2 >, and < cr3, cr1, cr2 >
of cg2 in Line 4. When pl3 is to be checked no EP-conflicts

are logged. However, when applying the effects of cr4 a

write to property jdbc port of object db which sets the new

configuration of the port used by the database for incoming

JDBC connections is recorded in Alg. 2, Line 5. When pl4
arrives, a conflict between start web server (cr5) and cr4 is

detected regarding property db.jdbc port because it is also

read by cr5 in its precondition to check whether the JDBC port

it tries to connect to matches the port the database is listening

on (compare equivalent CR in Fig. 3). Thus, a new EP conflict

(ep4, brown) is detected in Alg. 2, Line 7. As a consequence

a dedicated CG for CRs 4 and 5 is created (cg3). To verify

whether cr4 renders cr5 infeasible, it suffices to verify cg3.

Note, that cg2 does not need to be verified again because it

was previously verified and did not change by the arrival of

pl3 and pl4. Conflict groups partition the set of all CRs of all

plans in disjunct connected components of CRs independently

verifiable. This makes the automated detection of conflicting

IT change plans computationally feasible because not all

possible interleaved execution sequences of all plans need

to be checked. Algorithm 1 is logically sound, i.e., no false-

positives or false-negatives occur. It detects without overlook

whether a plan conflicts with a previous plan and only reports

a plan as conflicting if it can render another CR infeasible for

a particular interleaved execution sequence.
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Fig. 3. Conflicting IT changes around a CR to start a web server

V. EVALUATION

A. Conflicting IT Change Examples

To show the applicability of the proposed solution to detect

conflicting IT changes, different IT changes were described by

preconditions and effects and were used with the algorithm.

Among these the problems to decide conflict freeness among

the IT changes and plans around a CR to create a VM

in Fig. 2. To verify whether plans pl1 and pl2 are conflict-

free, conflict group cg2 (see Fig. 2) needs to be verified. cg2
has three topological orders and its verification takes 23ms.

Figure 3 depicts another set of conflicting IT changes evolving

around cr1, a CR to start a web server. We briefly discuss

the conflicts modeled using our technique: (Conflict 1) cr2
installs an application on image im1, reducing the available

memory on the image to im1.mem av. When cr1 starts the

web server, precr1 reads the property to check for enough

swap space to start the web server. Thus, cr2 can render

cr1 infeasible (see ep1, blue). (Conflict 2) cr5 changes the IP

address of vm2, the VM the database runs on, by writing to

property vm2.ip. However, this property is read by precr1 to

check whether vm2.ip matches the IP address the web servers

delegates its JDBC queries to (ws.db − ip). If they do not

match, the web server cannot be started (see ep2, brown).

(Conflict 3) cr3 stops the database the web server relies on.

Thus, cr1 cannot start the web server. This is modeled by an

EP-conflict regarding the state property of db (see ep3, green).

(Conflict 4) cr4 reconfigures the JDBC port the database

listens to for incoming JDBC connections by writing property

db.jdbc port. The property is read by precr1 to check whether

the JDBC port used by the web server (ws.jdbc port) matches

the port of the database’s JDBC daemon. If the ports do not

match, cr1 cannot be executed (see ep4, red, Fig. 3).

Whether two plans conflict can usually be decided faster than

the absence of conflicts because Alg. 1, Line 9 returns false as

soon as a non-executable topological order of a CG is found.

For example, verifying CRs 1, 2, 4, and 5 (Fig. 3) for absence

of conflicts (cr4 and cr5 change the port / ip address to the

same value) takes 40ms, while a conflict can be found between

4 to 25ms, depending on whether which topological order fails.

Conflict detection in cg1 containing all CRs in Fig. 3 takes

between 4.3ms and 43ms.
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Fig. 4. PDF of Beta distributions for α = β ≥ 1

B. Simulation Experiments

To analyze the characteristics of IT changes that make

IT change plans costly to verify, simulation experiments are

conducted. All measurements presented in this work are done

on a Core2 Duo 2.8Ghz machine with 6MB Cache and 4GB

of RAM. We take into account, that some CIs in the CMDB

might be subject to more IT changes, i.e., writes and reads

of CRs, than others. For example, some CIs might have a

higher maintenance effort or are subject to IT changes by

different IT practitioners, e.g., network and hypervisors. We

use Beta distributions to describe several kinds of skew that

might be inherent to IT change plans. Beta distributions are a

family of continuous probability distributions defined on the

open interval (0,1) and parameterized by two positive shape

parameters α and β. In the special case of α = β = 1 the

Beta distribution equals the continuous uniform distribution

over (0,1) (see Fig. 4). For α = β > 1 the PDF becomes bell

shaped (comparable to the normal distribution), modeling hot-

spots around its expected value E(x) = α
α+β

= 1

2
(see Fig. 4).

Note, that Beta distributions have a finite domain (0,1) while

normal distributions have an infinite domain preventing their

discretization to CIs in the CMDB. In the remainder of this

work we use Beta distributions with α = β = sp and refer to

sp as their distinct shape parameter. A Beta distribution (see

Fig. 4), discretized over all CIs in the CMDB, i.e., over interval

[0, |CMDB|−1], with shape parameter spci is used to model

the likelihood that a CI is addressed by a read / write of a CR.

For the example CRs it can be observed that most of them do

not read and write (RaW) more than 1-2 properties at the same

time. Thus, another Beta distribution with shape parameter

sprw, shifted to the left by 0.5 on the x-axis, and discretized

to values in [1...maxrw] is used to account for the number

of attributes read and written at the same time by a CR (see

Fig. 4). A few CRs, such as start WS (see cr1 in Fig. 3), rely

on additional reads of properties (issued by the precondition

to several additional CIs) that are not written by the same

CR. We use the same Beta distribution as for simultaneous

reads and writes (sprw) to model the number of additional

reads. However, discretized to a different interval ([1,maxr]).

A uniform distribution U(1, pllength), where pllength is the

maximum length of a plan, describes the lengths of plans.
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Note, that the purpose of the simulation is to generate a large

number of CRs and plans engaging in thousands of conflicts

to determine the characteristics of plans and CRs costly to

verify. To achieve realistic times to evaluate a precondition

and to apply the effects of a CR, a uniformly chosen CR

from the example CRs is checked / applied as well with

every CR of the simulation to a second CMDB. However, the

additional preconditions and effects are not taken into account

regarding EP-conflicts. Thus, CRs are simulated with realistic

complexity in respect to the precondition and effects evaluation

but with the proper characteristics for the experiment.

C. Influence of plan features on verification time

1) Temporal constraints among CRs in a plan: The more

temporally ordered CRs of a plan are, the more likely an

intra-plan conflict appears among ordered CRs. For example,

consider cr1 and cr2 of plan pl being in conflict to each

other and thus in the same conflict group cg. If cr1 <pl cr2
or cr2 <pl cr1, the number of topological orders of cg is

reduced by the factor of 2 compared to the parallel case. Thus,

highly temporally ordered plans have the potential to reduce

the number of topological orders of a conflict group. To notice

this effect, plans need to be sufficiently long and conflicts need

to be likely. For example, Fig. 5 depicts the times to verify

a sequence of 20 plans whose length is uniformly distributed

between 1 and 200 CRs for two different types of ordering

constraints: (1) All CRs within a plan are parallel and (2) the

CRs of each plan are sequentially ordered. It can be observed

that the difference between ordered and unordered plans has a

stronger impact on the plans towards the end of the sequence

when conflict groups become larger and conflicts more likely.

We conclude that the more ordered the CRs of a plan are, the

less effort is necessary to verify it compared to the same plan

comprising less ordering constraints.

2) Length of plan: Assuming that n plans have already

been successfully checked for conflict freeness, the (n+1)-st

plan will take the longer the more CRs it comprises (assuming

equal likelihood of conflicts). A longer plan can engage in

more conflicts with previous CRs leading to more and even-

tually larger CGs to verify. However, this does not necessarily
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account for long plans occurring early in a sequence of plans

to verify because the likelihood of conflicts can be small at

the beginning. The later a long plan appears in a sequence

of plans to verify, the bigger its disadvantage in length will

be. The shorter plans are, the less conflicts they engage in

(assuming equal likelihood of conflicts between CRs) which

can lead to decent verification times even if many plans were

processed before (see Paragraph V-C5)

3) Read / write skew of CRs over CIs: The more skewed

reads and writes of CRs are over the CIs of the CMDB, the

more likely EP-conflicts become. This results in larger conflict

groups, whose size factorially influences the runtime of the

proposed solution. Figure 6 depicts the worst case runtime

for the upper 70-100% of plans depending on the skew the

CRs have over the CMDB. Skew is modeled using a Beta

distribution with shape parameters spci ∈ {1, 2, 3, 4, 5}. For

no more than 70% of all plans verification times are quite

close and are thus not shown. From Fig. 6 it can be observed:

(1) The larger the skew (spci) the higher the verfication time

for a small quantile of plans (upper 15%). (2) The larger the

skew, the larger the difference between uniformly distributed

changes (spci = 1) and heavily skewed IT changes (spci = 5)

tends to grow for a small percentage of plans. (3) However, in

Fig. 6 one measurment for spci = 5 performs better than the

one for spci = 4 from the 97% quantile of all plans onwards

although spci = 5 means a higher skew. Thus, larger skew of

reads / writes on CIs in the CMDB can only be an indicator of

higher verification times. We conclude that (1) the higher the

skew, the more likely plans take longer to verify, especially if

several plans have been processed before as conflicts are more

likely to occur. (2) Verification times also depend on the actual

CIs addressed as evidenced by the two different measurements

for sp = 5 yielding different runtimes when reads and writes

address different CIs while preserving the skew.

4) Number of CIs read and written by a CR: The more

reads and writes change requests conduct on CIs in the CMDB,

the more likely conflicts with other CRs become. CRs that

address many CIs have the potential to form large CGs by

merging previously independent CGs into a new large one.
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The unfavorable influence of many reads and writes becomes

the stronger the more skewed CRs are over CIs in the CMDB

(see Paragraph V-C3) because this emphasizes the likelihood

of conflicts. However, an increased number of reads and writes

over a set of plans does not necessarily come at higher costs.

The CRs might still have their reads and writes distributed in

such a way over the CMDB that conflict groups remain small

and isolated. We conclude that the more reads and writes CRs

conduct, the more likely we are to observe longer verification

times due to increased conflict group sizes.

5) Total number of CRs / plans processed before: Fig. 7

depicts key figures regarding the sizes of CGs as they develop

when verifying several sequences of simulated plans and CRs.

The following can be observed: (1) The later a plan appears,

the larger the size of the biggest CG to verify tends to be

(black boxes). (2) The later a plan appears, the more CGs

need to be taken into account when verifying a plan compared

to previous plans of the same length (white boxes). However,

there are exceptions to the rule, for example plan 70 which

is very short and thus engages only in a few conflicts. It can

be verified in 10ms despite its tail position in the sequence.

Due to (1) and (2) we conclude that, the more plans we have

processed before the arrival of a new plan the more expensive

it is to verify the new plan for conflict freeness.

6) Size of the CMDB: Larger CMDBs can be beneficial

for the performance of the proposed algorithm. If IT changes

are equally distributed, e.g., because IT change plans deploy

VMs on randomly chosen physical machines, we expect a

better performance for the same workload of plans over a large

CMDB due to decreased conflict likelihoods. If IT changes

exhibit skew over a subset of CIs in the CMDB, e.g., IT

changes over the network, we would also expect to see a

better performance on a larger CMDB where the number of

CRs remains the same. However, if the workload of plans

contains IT changes that target exactly the same CI, e.g., due to

repeating maintenance changes to a particular CI, the proposed

solution does not benefit from larger CMDBs.

D. Performance Measurements

Based on the complexity of the example CRs used in this

paper, our implementation is capable of processing 2400 CRs



per second when processing the CRs in a topological order

(Alg. 2, Lines 4–11). For a CG containing n CRs, n! ∗ n CRs

need to be checked in the worst case if no temporal constraints

exist among the CRs. This leads to the following approximated

worst case verification times of CGs of different sizes: 1.8s for

a CG of size 6, 14.7s for a CG of size 7, 134.4s for a CG

of size 8. Unordered CGs beyond the size of 8 CRs are not

solvable within a few minutes any more. However, it can be

expected that conflicting CRs within the same plan are ordered

due to causal dependencies among them reducing the number

of topological orders to check. Assuming a combination of IT

change plans were each IT change depicted in Fig. 3 is part of

a distinct plan without additional conflicts involving the given

example CRs a CG of size 5 which can be quickly checked.

VI. CONCLUSIONS AND FUTURE WORK

We identified a research gap when it comes to detect

conflicts among IT change plans in multi-operator Change

Management environments and by IT change planning so-

lutions [3], [4], [5], [6], [7], [8]. To prevent the occurrence

of conflicting IT changes, threatening to render IT change

plans infeasible, we proposed an approach for the automated

detection of conflicting IT changes. We showed the feasibility

of our solution by applying it to several changes from the

network and service management domain. Using simulation

we discussed the effect that different characteristics of IT

changes have on the time needed to decide conflict freeness.

Among other criteria we conclude that plans comprising highly

skewed CRs and read / write intensive CRs are expensive to

verify.

The results presented herein are promising regarding the

verification of conflict freeness among practical IT changes

within a few minutes as long as no more than 8 CRs are

transitively conflicting with each other. It remains to be

examined whether change plans in a real environment satisfy

this constraint. Furthermore, conflicts destroying the effects of

CRs or the assertions of currently running applications have

not been addressed in this work. In addition to that, we plan

to investigate how semantic knowledge about the effects and

preconditions of IT changes can be used to more efficiently

reason about conflict absence among IT changes.
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