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Abstract

In this paper, an uncertain discrete-time stochastic system is employed to represent the model for gene regulatory

networks from time series data. A robust variance-constrained filtering problem is investigated for a gene expression

model with stochastic disturbances and norm-bounded parameter uncertainties, where the stochastic perturbation is in

the form of a scalar Gaussian white noise with constant variance and the parameter uncertainties enter both the system

matrix and the output matrix. The purpose of the addressed robust filtering problem is to design a linear filter such

that, for the admissible bounded uncertainties, the filtering error system is Schur stable and the individual error variance

is less than the prespecified upper bound. By using the linear matrix inequality (LMI) technique, sufficient conditions

are first derived for ensuring the desired filtering performance for the gene expression model. Then, the filter gain is

characterized in terms of the solution to a set of LMIs, which can be easily solved by using available software packages.

A simulation example is exploited for a gene expression model in order to demonstrate the effectiveness of the proposed

design procedures.
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I. Introduction

DNA microarray technology [16] has made it possible to measure gene expression levels on a genomic scale,

and has therefore been extensively applied to gene transcription analysis. Data thus collected promise to

enhance fundamental understanding of life on the molecular level, from regulation of gene expression and

gene function to cellular mechanisms, and may prove useful in medical diagnosis, treatment, and drug design.

Simultaneously, the large scale of the data stimulates the development of mathematical analysis tools that

are adaptable to reducing the complexity of the data to make it comprehensible. Substantial effort is being

made to build models to analyze microarray data.

Clustering analysis of the gene expression data has recently drawn considerable research interest. Almost

every clustering algorithm has been examined on gene expression data, such as hierarchical clustering [11]

and self-organizing map [19]. However, a fundamental shortcoming of such clustering schemes is that they are

based on the assumptions that there exists the correlation similarity between genes. It is also important to

note that models based on clustering analysis are static and thus can not describe the dynamic evolution of
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gene expression. Recently, there has been much interest to reconstruct models for gene regulatory networks

from time series data [8,18], such as boolean network model [1,12], linear differential equation model [5,7,10],

Bayesian model [13, 14], state space model [3, 17, 24] and stochastic model [6, 20], and a lot of algorithms

have been applied to identify the system parameters such as principal component analysis (PCA) method

and expectation-maximization (EM) algorithm. Examining real gene expression data, it seems clear that

genes spend a lot of their time at intermediate values: gene expression levels tend to be continuous rather

than binary [9]. Therefore, in recent years, linear dynamical systems described by differential equations (also

called connectionist model, linear transcription model, additive regulation model, etc.) have frequently been

exploited to model gene networks, where the main idea is to use an update rule based on a weighted sum of

inputs.

One implicit assumption in continuous-valued models is that fluctuations in the range of single molecules

can be ignored. However, molecules present at only a few copies per cell do play an important role in some

biological phenomena. In that case, it may be impossible to model the behaviour of the system exactly

with a purely deterministic model [2]. Analysis of mRNA and protein decay rates and abundances may

allow us to identify those genes for which stochastic modelling may prove necessary [9]. Additional sources

of unpredictability can include external noise, or errors on measured data, which could also be regarded as

stochastic disturbances. Unfortunately, in the aforementioned linear modelling techniques, the stochastic

effects have not been taken into account, mainly due to the mathematical difficulties. In this paper, one of

our purposes is to model the gene expression as a linear stochastic model in order to reflect the reality in a

more reasonable way.

On the other hand, it is well known that, the modelling error is unavoidable in practice. A mathematical

model can by no means exactly represent the real gene network. Specifically, it is very likely that, the param-

eters of the model identified from the experimental data will vary from time to time, and such variations may

be bounded but unknown. In other words, there should exist ‘parameter uncertainties’ in those models that

are constructed from the real-time data. This leads to a new issue: given a mathematical model that contains

parameter uncertainties and stochastic noises, how to estimate the variable values such that the mean square

estimation error could be minimized in terms of some given criteria? This is actually a robust data analysis

problem or, more precisely, a robust filtering problem. That is, the developed algorithm for estimating the

real variable values should be robust enough to ‘tolerate’ the unknown modelling error within some acceptable

accuracy. A robust filter should then be designed to ‘remove’ some unwanted errors and noises, and predict

the real variable values by means of certain criteria. However, to the authors’ best acknowledge, the modelling

error issue has never been considered in modelling gene expression, not to mention the research on robust

filtering problem. Therefore, in this paper, we will address and investigate the challenging ‘robust filtering’

problem in expressing gene networks in the presence of parameter uncertainties and stochastic disturbances.

In the context of robust filtering, we like to employ the idea from the constrained-variance filtering (CVF)

theory, whose purpose is to design a filter such that the individual steady-state estimation error variance is not

more than the prespecified upper bound. The CVF theory was first proposed in [25], and was then extended to

the nonlinear case [15,26]. Comparing to the traditional Kalman filtering approach, the CVF theory provides

a more straightforward technique to meet the prespecified estimation error variance constraints. In [22, 23],

the problem of the H∞-norm and variance-constrained filter design has been studied for uncertain linear

discrete-time observable stochastic systems, and the problem of robust filtering has been addressed in [21] for

linear perturbed stochastic systems with bounded uncertainties. In the papers mentioned above, the Riccati-
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equation approach has been intensively used where some parameters need to be tuned in the algorithms. In

this paper, a less conservative linear matrix inequality (LMI) method will be developed and no parameter

tuning is needed.

This paper is concerned with the robust variance-constrained filtering problem for a discrete-time state-

space gene expression model with stochastic disturbances and norm-bounded uncertainties. The stochastic

perturbation is described by a scalar Gaussian white noise with constant variance. We are interested in

designing a linear filter such that, for the admissible norm-bounded uncertainties and stochastic noise distur-

bance, the filtering error system is Schur stable and the individual error variance is less than the prespecified

upper bound. By using the LMI technique, sufficient conditions are first derived to ensure the desired filtering

performance for the gene expression model. Then, the filter gain is characterized in terms of the solution

to a set of LMIs, which can be easily solved by using available software packages. A simulation example, in

which the main model parameters are borrowed from [24], is exploited to demonstrate the effectiveness of the

proposed design procedures.

Notation In this paper, R
n and R

n×m denote, respectively, the n dimensional Euclidean space and the

set of all n × m real matrices. I denotes the identity matrix of compatible dimension. The notation X ≥

Y (respectively, X > Y ) where X and Y are symmetric matrices, means that X − Y is positive semi-

definite (respectively, positive definite). MT represents the transpose of M . (Ω,F , {Fk}k∈N,P) is a complete

probability space with a filtration {Fk}k∈N satisfying the usual conditions (i.e., the filtration contains all

P -null sets and is right continuous). E{x} stands for the expectation of stochastic variable x. The shorthand

diag{M1, ...,Mn} denotes a block diagonal matrix with diagonal blocks being the matrices M1, ...,Mn. In

symmetric block matrices, the symbol ∗ is used as an ellipsis for terms induced by symmetry. Matrices, if not

explicitly stated, are assumed to have compatible dimensions .

II. Problem Formulation

Consider the following discrete-time state-space description of a gene expression model with norm-bounded

parameter uncertainties and stochastic disturbances:

(Σ) : x(k + 1) = (A + ∆A(k))x(k) + Bω(k) (1)

y(k) = (C + ∆C(k))x(k) + Dω(k), (2)

where y(k) = [y1(k), ..., yn(k)]T ∈ R
n consists of the observation variables of the system and yi(k) (i = 1, ..., n)

represents the expression level of ith gene at time k, where n is the number of genes in the model. The vector

x(k) = [x1(k), ..., xp(k)]T consists of the internal state variables of the system and xi(k) (i = 1, ..., p) represents

the expression value of ith internal element at time k which directly regulates the gene expression, and p is

the number of the internal state variables. The matrix A = [aij ]p×p ∈ R
p×p is the time translation matrix of

the internal state variables or the state transition matrix, which provides key information on the influences of

the internal variables on each other. The matrix C = [cki]n×p ∈ R
n×p is the transformation matrix between

the observation variables and the internal state variables. ω(k) is assumed to be a scalar Gaussian white noise

with constant variance α2 > 0. B and D are constant matrices quantifying the intensity of the noise. ∆(A)(k)

and ∆(C)(k) are time-variant uncertain norm-bounded matrices which represent parameter perturbations and

are of the form
[

∆A(k)

∆C(k)

]

=

[

M1

M2

]

F (k)N, (3)
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where F (k) is an uncertain time-varying matrix bounded by

F (k)F T (k) ≤ I, (4)

and M1, M2 and N are known constant matrices of appropriate dimensions which specify how the elements

of the nominal matrices A and C are affected by the uncertain perturbed parameters in F (k). ∆A and ∆C

are said to be admissible if both (3) and (4) hold.

Remark 1: In the state-space model (1)-(2), without loss of generality, the internal state variables and

observation variables are assumed to be perturbed by the same scalar Gaussian white noise through different

weighted matrices. Such kind of models have been studied by many researchers, see e.g. [21–23]. We like to

point out that the main results of this paper can be easily extended to the case where the state and output

noises are different. Compared with the gene expression model identified in [24], there are additive noises

appearing in (1)-(2), which reflects the fact that stochasticity is an inherent feature of the gene expression

time series, as discussed in the introduction.

The main aim of this paper is to estimate the internal variables through noisy measurement data in the

presence of modelling errors. In this paper, the state estimation vector, x̂(k), satisfies the following linear

filter of the form:

Σe : x̂(k + 1) = Ax̂(k) + Ky(k), (5)

where the matrices K is filter gain to be determined.

The steady-state estimation error covariance is defined as

P = lim
k→∞

P (k) := lim
k→∞

E
{

e(k)eT (k)
}

, (6)

where e(k) := x(k) − x̂(k) denotes the error state. Then, the filtering error system is obtained as follows:

Σe : e(k + 1) = Ae(k) + (∆A(k) − K(C + ∆C(k))x(k) + (B − KD)ω(k). (7)

Augmenting (Σ) and (Σe), we have

Σa : ξ(k + 1) = (Ā + ∆Ā(k))ξ(k) + B̄ω(k), (8)

where ξ(k) = [xT (k) eT (k)]T , and

Ā =

[

A 0

−KC A

]

, B̄ =

[

B

B − KD

]

, ∆Ā = M̄F (k)N̄ , (9)

M̄ =

[

M1

M1 − KM2

]

, N̄ = [N 0]. (10)

Remark 2: A matrix is said to be Schur stable if all its eigenvalues lie within the unit circle in the complex

plane. In the filter (5), the Schur stability of the matrix A is a prerequisite for the filtering error system to

be mean-square stable. Since the filter (5) can’t affect the state of the original system and x(k) is one part of

ξ(k), the mean-square stability of x(k) is a necessary condition of the mean-square stability of ξ(k).

It is well known that, if the matrix Ā+∆Ā(k) is Schur stable for all admissible uncertainties, the steady-state

covariance of system (Σa) defined by:

X := lim
k→∞

X(k) := lim
k→∞

E[ξ(k)ξT (k)] :=

[

Xxx Xxe

XT

xe
P

]

(11)
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exists and satisfies the following discrete-time Lyapunov equation

X = (Ā + ∆Ā)X(Ā + ∆Ā)T + B̄B̄T . (12)

The purpose of this paper is to study the robust variance-constrained filtering problem for the gene ex-

pression model (Σ) presented with parameter uncertainties and stochastic disturbances. That is, design the

filter gain K, such that for all admissible uncertainties ∆A(k), ∆C(k) and stochastic disturbances w(k), the

following two requirements are simultaneously satisfied:

(I): The state matrix Ā + ∆Ā(k) is Schur stable.

(II): The steady-state error covariance P satisfies

[P ]ii ≤ σ2

i
, i = 1, 2, ..., n, (13)

where [P ]ii means the ith diagonal element of P , i.e., the steady-state variance of the ith state. σ2

i
(i =

1, 2, ..., n) denote the prespecified steady-state estimation error variance constraint on the ith state which can

be determined by the practical requirements but should not be less than the minimal variance value obtained

from the traditional H2 estimation theory.

III. Main Results

First, let us give the following lemmas which will be used in the proof of our main results.

Lemma 1: (Schur Complement) Given the constant matrices Σ1,Σ2,Σ3 where Σ1 = ΣT

1
and 0 < Σ2 = ΣT

2
.

Then Σ1 + ΣT

3
Σ−1

2
Σ3 < 0 if and only if

[

Σ1 ΣT

3

Σ3 −Σ2

]

< 0,

or equivalently,
[

−Σ2 Σ3

ΣT

3
Σ1

]

< 0.

Lemma 2: Let X, Y , F be real matrices of appropriate dimensions with F T F ≤ I. Then for any scalar

δ > 0, we have

XFY + Y T F T XT
≤ δXXT + δ−1Y T Y.

Before designing the desired robust variance-constrained filter, we present the following lemma.

Lemma 3: Consider the augmented system (8). If there exists a positive definite matrix Q > 0 such that

the following matrix inequality

(Ā + ∆Ā)Q(Ā + ∆Ā)T + B̄B̄T
− Q < 0 (14)

holds, then we have the following conclusions: (1) the filtering matrix Ā + ∆Ā remains Schur stable; (2)

the steady-state error covariance P exists and satisfies P < Q2 where Q2 := [Q]22 and [Q]22 ∈ R
n×n is the

22-subblock of Q.

Proof: The proof of this lemma is similar to that for the results in [21–23], and is thus omitted here.

In the following theorem, a robust variance-constrained filter is designed to estimate the internal state

variables of gene expression model (1)-(2), and a sufficient condition is derived to guarantee the solvability of

the problem.
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Theorem 1: Consider the system (8) and let σi > 0 (i = 1, ..., n) be given scalars. If there exist two positive

definite matrices X > 0 and Q2 > 0, a matrix K and a scalar ǫ > 0 such that the following linear matrix

inequalities



























−X 0 XB XA 0 XM1 0

∗ −Q2 B − KD −KC AQ2 M1 − KM2 0

∗ ∗ −I 0 0 0 0

∗ ∗ ∗ −X 0 0 ǫNT

∗ ∗ ∗ ∗ −Q2 0 0

∗ ∗ ∗ ∗ ∗ −ǫI 0

∗ ∗ ∗ ∗ ∗ ∗ −ǫI



























< 0, (15)

[Q2]ii < σ2

i , (i = 1, ..., n), (16)

hold, then with the obtained filter parameter K, the system (8) is Schur stable and the steady-state error

covariance P satisfies [P ]ii ≤ σ2

i
(i = 1, 2, ..., n).

Proof: We first discuss the Schur stability of the system (8). From Lemma 3, it suffices to show that

(14) is true.

Set X = Q−1

1
. Pre- and post-multiplying (15) by diag(Q1, I, I,Q1, I, I, ǫ−1) and its transpose, we know

that (15) is equivalent to



























−Q1 0 B AQ1 0 M1 0

∗ −Q2 B − KD −KCQ1 AQ2 M1 − KM2 0

∗ ∗ −I 0 0 0 0

∗ ∗ ∗ −Q1 0 0 Q1N
T

∗ ∗ ∗ ∗ −Q2 0 0

∗ ∗ ∗ ∗ ∗ −ǫI 0

∗ ∗ ∗ ∗ ∗ ∗ −ǫ−1I



























< 0. (17)

Letting Q = (Q1, Q2) and noticing the definitions of Ā, B̄, M̄ and N̄ in (9), we can rewrite (17) as follows:

















−Q B̄ ĀQ M̄ 0

∗ −I 0 0 0

∗ ∗ −Q 0 QN̄T

∗ ∗ ∗ −ǫI 0

∗ ∗ ∗ ∗ −ǫ−1I

















< 0. (18)

By Lemma 1 (Schur Complement Lemma), (18) holds if and only if the following holds:







−Q + ǫ−1M̄M̄T B̄ ĀQ

∗ −I 0

∗ ∗ −Q + ǫQN̄T N̄Q






< 0, (19)

which is, through being pre- and post-multiplied by diag(I, I,Q−1), equivalent to

Φ :=







−Q + ǫ−1M̄M̄T B̄ Ā

∗ −I 0

∗ ∗ −Q−1 + ǫN̄T N̄






< 0. (20)
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So far, we have proved that Φ < 0. By Lemma 2 and the definition of ∆Ā, we know that

Φ :=







−Q B̄ Ā

∗ −I 0

∗ ∗ −Q−1






+ ǫ−1







M̄

0

0






[M̄T 0 0] + ǫ







0

0

N̄T






[0 0 N̄ ]

≥







−Q B̄ Ā

∗ −I 0

∗ ∗ −Q−1






+







M̄

0

0






F (k)[0 0 N̄ ] +







0

0

N̄T






F (k)[M̄T 0 0]

=







−Q B̄ Ā + ∆Ā

∗ −I 0

∗ ∗ −Q−1






:= Ω. (21)

Obviously, we have Ω < 0, and it follows again from Lemma 1 that Ω < 0 if and only if

−Q +
[

B̄ Ā + ∆Ā

]

[

I 0

0 Q

][

B̄T

(Ā + ∆Ā)T

]

< 0, (22)

which is exactly (14). To this end, we can conclude that (14) is true and, from Lemma 3, the system (8)

is guaranteed to be Schur stable. The second conclusion [P ]ii ≤ σ2

i
follows from (16) and the fact P < Q

immediately. This completes the proof of this theorem.

Remark 3: The robust variance-constrained filter design problem is solved in Theorem 1 for the addressed

linear uncertain discrete-time stochastic system. An LMI-based sufficient condition is derived for the existence

of the desired filters, which ensures the asymptotic stability of the resulting filtering process and also guarantee

the error precision (variance) to an acceptable degree. The feasibility of the filter design problem can be readily

checked by the solvability of a set of LMIs, which can be done by resorting to the Matlab LMI toolbox. It

should be mentioned that, in the past decade, LMIs have gained much attention for their computational

tractability and usefulness in many areas because the so-called interior point method (see [4]) has been proven

to be numerically very efficient for solving the LMIs. In next section, an illustrative example will be provided

to show the application potential of the proposed techniques in gene expression time series.

IV. Illustrative Examples

In [24], a linear state-space system has been used to model the real-time gene expression time series data

obtained from the publicly available microarray dataset CDC15. The system matrix A has been identified

by the EM algorithm, and the matrix C can be easily obtained by the formula (4) of [24]. As discussed in

the introduction, we believe it is necessary to include modelling errors and external stochastic noises in the

system model so as to reflect the reality in a more proper way.

In this section, to illustrate the usefulness of the theory developed in previous sections, we present a

simulation example for the gene expression model (1)-(2), where the main parameters (A and C) are identified

in [24] and the uncertainties as well as noise intensity satisfy appropriate assumptions here. For the biological

significance of the system states (internal variables), we refer the readers to [24], where a thorough discussion

can be found. Here, our attention is focused on the design of a robust variance-constrained filter for the model

with stochastic disturbance and admissible bounded uncertainties.

The identified and assumed model data of (1)-(2) are as follows: the noise variance is α2 = 0.25 and the

upper bounds for the error variances are, respectively, σ2

1
= 1.2, σ2

2
= 1.17, σ2

3
= 1.23, σ2

4
= 1.29, σ2

5
= 1.18.
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Furthermore, the main model parameters are

A =

















0.4378 −1.0077 0.5009 0.1851 −0.1189

0.6649 0.5244 0.2475 0.1511 −0.1356

−0.0702 0.1734 0.6794 −0.3092 −0.5279

−0.0699 −0.0103 0.1786 0.6163 −0.5190

0.0161 0.0316 −0.07 0.1358 0.6662

















, B =

















0.01

0.02

0.03

0.01

0

















,

M1 = [0.04 0.05 0.05 0.06 0.04]T , N = [0.01 0 0 0.08 0.06],

C =















































































































0.1105 0.2463 0.6724 0.2766 0.6370

0.6094 0.3535 0.8414 0.9701 0.5600

0.5019 0.1967 0.7177 1.3966 0.4555

0.2538 0.5801 0.0968 1.2166 0.1986

0.1397 0.0011 −0.8519 −0.1041 −0.4839

0.2109 0.5382 0.0654 1.1246 −0.1396

0.2039 −0.1590 −0.2573 0.3896 0.0716

0.5015 0.3796 0.8491 1.6404 1.0731

0.1969 −0.2090 −0.5357 −0.0418 −0.3750

0.1951 0.4183 0.3949 1.3279 0.0855

0.0145 0.0207 −0.0449 0.1616 −0.2743

0.1611 0.5136 0.2014 0.8432 0.6842

−0.0365 −0.0276 −0.5165 0.1408 −0.3739

−0.1269 0.6979 0.6747 0.6350 −1.1011

0.0731 −0.1794 −0.6344 −0.3917 −0.5290

−0.0353 −0.0344 −0.1350 0.1501 0.6090

−0.2156 −0.3857 −0.2954 −1.1740 −0.1992

−0.2784 −0.1646 0.4030 −0.5321 0.4313

−0.5334 −0.5649 −0.7397 −1.3212 −0.4794

−0.3875 −0.8582 −0.3311 −1.2706 −0.4117

−0.2807 −0.8651 −0.5047 −1.2452 −0.4893

−0.4073 −0.2150 0.4732 −0.8055 0.5869

−0.3765 0.0697 0.3790 −1.5309 0.5855

−0.2794 0.1961 0.3137 −1.5506 0.9656
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.

Using Matlab LMI control Toolbox to solve the LMIs (15) and (16), we obtain

X =

















6.3537 0.1728 1.3092 1.2738 2.7192

0.1728 8.6230 −3.6033 −2.3856 1.2590

1.3092 −3.6033 9.3660 −1.8143 −1.6960

1.2738 −2.3856 −1.8143 9.8159 2.1535

2.7192 1.2590 −1.6960 2.1535 16.5369
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




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

,
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Q2 =




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1.2520 0.1656 −0.1562 −0.1317 0.0453

0.1656 1.1988 0.0162 0.0457 0.0431

−0.1562 0.0162 1.2131 −0.0727 0.3322

−0.1317 0.0457 −0.0727 1.2567 0.1392

0.0453 0.0431 0.3322 0.1392 1.1029
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,
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0.1960 0.2339 0.2190 −0.0149 0.2109

−0.0888 −0.0886 −0.0587 0.0299 −0.1188

0.1474 0.1784 0.1706 −0.0078 0.1553

−0.1679 −0.1872 −0.1570 0.0302 −0.1982

0.0658 0.0925 0.1061 0.0136 0.0522

0.0175 0.0375 0.0584 0.0208 −0.0033

0.2128 0.2630 0.2588 −0.0041 0.2170

0.1467 0.1858 0.1889 0.0031 0.1436

0.0489 0.0719 0.0863 0.0144 0.0345

−0.2687 −0.3095 −0.2743 0.0352 −0.3040

0.0893 0.1133 0.1156 0.0023 0.0870

0.1598 0.2032 0.2077 0.0046 0.1552

0.1487 0.1860 0.1863 0.0002 0.1484

0.1832 0.2366 0.2467 0.0101 0.1731

0.0570 0.0823 0.0970 0.0147 0.0423

0.0291 0.0493 0.0665 0.0172 0.0119
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−0.1309 −0.1325 −0.0911 0.0414 −0.1723

0.0279 0.0467 0.0623 0.0157 0.0122

0.0455 0.0658 0.0776 0.0118 0.0336

0.0326 0.0393 0.0374 −0.0019 0.0345

−0.0428 −0.0378 −0.0168 0.0210 −0.0638
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T

.

Let the initial states xi(0) = 0.3 (i = 1, 2, · · · , 5) and F (k) = sin(k). The simulation results (trajectories

of the internal variables and the estimation errors) are displayed in Fig. 1-Fig. 10, which have confirmed

our theoretical results. It is shown that the state estimate traces its real value very well in the presence of

modelling errors and parameter uncertainties.

V. Conclusions

In this paper, a robust filtering problem has been investigated for a linear gene expression model with

stochastic disturbance and bounded uncertainties. The stochastic perturbation is in the form of a scalar

Gaussian white noise with constant variance. We have designed a robust filter such that, for the admissible

norm-bounded uncertainties, the filtering error system is Schur stable and the error variances are less than the

prespecified upper bounds. By using the LMI technique, sufficient conditions have been derived for ensuring

the desired performance of the gene expression model, and the filter gain can then be obtained directly by

solving a set of linear matrix inequalities (LMIs). A simulation example, in which the main model parameters
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Fig. 1. The trajectory and estimation of x1(k)
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Fig. 2. The estimation error e1(k)
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Fig. 3. The trajectory and estimation of x2(k)
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Fig. 4. The estimation error e2(k)
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Fig. 5. The trajectory and estimation of x3(k)
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Fig. 6. The estimation error e3(k)
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Fig. 7. The trajectory and estimation of x4(k)
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Fig. 8. The estimation error e4(k)
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Fig. 9. The trajectory and estimation of x5(k)
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Fig. 10. The estimation error e5(k)

are obtained from [24], has been exploited to demonstrate the effectiveness of the proposed design procedures.
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