Applications of Duality to the Pure-injective Envelope

Ivo Herzog

Received: 1 October 2001/ Accepted: 1 February 2005 / Published online: 19 December 2006 © Springer Science + Business Media B.V. 2006

Abstract Given an *R*-*T*-bimodule $_RK_T$ and an *R*-*S*-bimodule $_RM_S$, we study how properties of $_RK_T$ affect the *K*-double dual $M^{**} = \text{Hom}_T[\text{Hom}_R(M, K), K]$, considered as a right *S*-module. If $_RK$ is a cogenerator, then for every *R*-*S*-bimodule, the natural morphism $\Phi_M : M \to M^{**}$ is a pure-monomorphism of right *S*-modules. If $_RK$ is the minimal (injective) cogenerator and K_T is quasi-injective, then M^{**} is a pure-injective right *S*-module. If $_RK$ is the minimal (injective) cogenerator, and $T = \text{End}_RK$, it is shown that K_T is quasi-injective if and only if the *K*-topology on *R* is linearly compact. If the $_RK$ -topology on *R* is of finite type, then the natural morphism $\Phi_R : R \to R^{**}$ is the pure-injective envelope of R_R as a right module over itself.

Key words bicommutator \cdot *M*-topology \cdot minimal injective cogenerator \cdot pure-injective envelope \cdot quasi-injective

Mathematics Subject Classifications (2000) 16D50 · 16D90 · 16S90

Let *R* and *T* be associative rings with identity, and $_RK_T$ an *R*-*T*-bimodule. The bimodule $_RK_T$ induces an additive endofunctor $(-)^{**}$: **R-Mod** \rightarrow **R-Mod**, the *K*-double dual, of the category of left *R*-modules. It is defined by

$$M^{**} = \operatorname{Hom}_{R}[\operatorname{Hom}_{T}(_{R}M, _{R}K_{T}), _{R}K_{T}].$$

There is a natural transformation $\Phi : 1_{\mathbf{R}-\mathbf{Mod}} \to (-)^{**}$ from the identity functor to the *K*-double dual, given by the evaluation morphism $\Phi_M : M \to M^{**}$, $\Phi_M(m) : \xi \mapsto \xi(m)$. The functorial nature of $(-)^{**}$ implies that if *M* has an *R*-*S*-bimodule

Presented by Ken Goodearl.

The author is partially supported by NSF Grant DMS-02-00698.

I. Herzog (⊠) The Ohio State University at Lima, Lima, OH 45804, USA e-mail: herzog.23@osu.edu structure, then so does M^{**} . Furthermore, the naturality of Φ implies that $\Phi_M : M \to M^{**}$ is an *R-S*-morphism.

Warfield [18] noticed that if M is a right S-module, viewed as a \mathbb{Z} -S-bimodule, and K is the multiplicative group of complex numbers of Modulus 1, viewed as a \mathbb{Z} - \mathbb{Z} -bimodule (thus $R = T = \mathbb{Z}$), then the right S-module M_S^{**} is pure-injective, and the evaluation map $\Phi_M : M_S \to M_S^{**}$ is a pure-monomorphism of right S-modules. This argument may then be applied to prove the existence [6, 18, 21] of pure-injective envelopes in the category **Mod-S** of right S-modules.

This article is devoted to the study of how conditions on $_RK_T$ affect the nature of the evaluation morphism $\Phi_M: M_S \to M_S^{**}$. For example, we prove the following.

Theorem A Let $_RK$ be a left R-module, and $T = End_RK$.

- (1) (Proposition 1) The left R-module $_RK$ is a cogenerator if and only if for every R-S-bimodule M, the morphism $\Phi_M : M_S \to M_S^{**}$ is a pure-monomorphism as a morphism of right S-modules.
- (2) (Theorem 1) If $_{R}K$ is the minimal (injective) cogenerator and K_{T} is quasiinjective, then for every R-S-bimodule M which is finitely generated as an Rmodule, the K-double dual M_{S}^{**} is pure-injective as a right S-module.
- (3) (Corollary 3) Suppose that $_{R}K$ is the minimal (injective) cogenerator, K_{T} is quasi-injective and that the $_{R}K$ -topology on $_{R}R$ is of finite type. If $_{R}M_{S}$ is an R-Sbimodule which is finitely presented as a left R-module, and $M \otimes_{S} M^{*} \in \sigma[_{R}K]$, then the evaluation morphism $\Phi_{M} : M_{S} \to M_{S}^{**}$ is the pure-injective envelope of the right S-module M_{S} .

For example, if R is a right Noetherian left FBN ring, a left one-dimensional domain, a left Noetherian V-ring or an almost maximal uniserial commutative domain, then the minimal (injective) cogenerator $_RK$ has the property that K_T is quasi-injective and the $_RK$ -topology on R is of finite type. While it may seem standard to prove such results only when $_RK$ is the minimal injective cogenerator, we follow Menini and Orsatti [9] by noting that a parallel theory may be developed under the weaker assumption that $_RK$ is the minimal cogenerator.

Theorem B (Theorem 5, Proposition 8) Let $_RK_T$ be an *R*-*T*-bimodule and $_RK$ the minimal (injective) cogenerator. The right *T*-module K_T is quasi-injective if and only if the $_RK$ -topology on *R* is linearly compact, that is, for every open left ideal I of *R*, the quotient module *R*/*I* is linearly compact. In that case, K_T is strongly quasi-injective.

Recall that a basis of open left ideals of the $_RK$ -topology on $_RR$ is given by the annihilators of finite subsets of K. The $_RK$ -topology is said to be of finite type if it may be given by a basis of finitely generated left ideals. If $_RK$ is the minimal cogenerator, then the injective envelope E(K) is the minimal injective cogenerator. As every open left ideal I in the K-topology is also open in the E(K)-topology, Theorem B indicates the advantage of working with the minimal cogenerator.

Müller [12] clarified the relationship between linearly compact modules and duality, while Sandomierski [16] realized the connection between duality and quasiinjective modules. In this paper, we apply results of Menini and Orsatti [9] and Zelmanowitz [20] developed further in this direction to study the bicommutator $B = R^{**}$ of the module $_RK$, when $_RK$ is a minimal (injective) cogenerator and K_T is quasi-injective. The bicommutator may also be viewed as the *K*-adic completion [1] of the ring *R*. Now clearly $R \otimes_R R^* = R \otimes_R K = K \in \sigma[_RK]$, so if the $_RK$ -topology on $_RR$ is of finite type, then Theorem A.3 implies that B_R is the pure-injective envelope of R_R .

A left *R*-module *M* is called *K*-generated if there is an *R*-epimorphism $f : K^{(\alpha)} \rightarrow M$ from a direct sum of copies of $_RK$. Recall (cf. [19, Section 15]) that $\sigma[_RK]$ denotes the full subcategory of **R-Mod** of submodules of *K*-generated modules. As $_RK$ is a cogenerator [19, 15.8], restriction of scalars along the ring morphism $\Phi_R : R \rightarrow B$ induces an equivalence of categories res $_R^B : \sigma[_BK] \rightarrow \sigma[_RK]$. Most of our results are consequences of the following.

Theorem C (Theorem 13) Let $_RK$ be the minimal (injective) cogenerator and $T = End_RK$. If K_T is quasi-injective and the K-topology on $_RR$ is of finite type, then the inverse equivalence of res_R^B is given by $B \otimes_R - : \sigma[_RK] \to \sigma[_BK]$.

For example, it follows (cf. Lemma 18) that $B = \text{End}_R B_R$. As B_R is pure-injective as a right *R*-module the ring *B* is the endomorphism ring of a pure-injective module. Thus B/J(B) is von Neumann regular, where J(B) denotes the Jacobson radical of *B*. The next result is a decomposition theorem which indicates that B/J(B) is essential over its socle.

Theorem D (Corollary 19) (cf. [21, Thm. 6.1]) Let $_RK$ be the minimal (injective) cogenerator and suppose that K_T is quasi-injective. If the $_RK$ -topology on $_RR$ is of finite type, then B_R is the pure-injective envelope (as a right *R*-module) of a direct sum of pure-injective indecomposable right *R*-modules B_i :

$$B_R = \operatorname{PE}(R_R) = \operatorname{PE}(\oplus_i B_i).$$

If B_R is a flat R-module, then so are the B_i .

In all of the examples of rings cited above, the pure injective envelope of R_R is a flat right *R*-module. Theorem D may thus be used to find examples of pure-injective indecomposable flat right *R*-modules.

1 Purity

Let *R* and *T* be associative rings with identity. The category of left *R*-modules is denoted by **R-Mod**; the category of right *T*-modules by **Mod-T**. Throughout the article, we fix an *R*-*T*-bimodule $_{R}K_{T}$, and denote the contravariant functor

$$\operatorname{Hom}_R(-, {}_RK_T) : \mathbf{R}\operatorname{-Mod} \to \mathbf{Mod}\operatorname{-}\mathbf{T}$$

by $M \mapsto M^*$. When there is no danger of confusion, we use the same notation to denote the functor $\operatorname{Hom}_T(-, {}_RK_T) : \operatorname{Mod-T} \to \operatorname{R-Mod}$. The association $M \mapsto M^{**}$ is the composition of two contravariant functors, and is therefore a covariant functor

$$(-)^{**}$$
: **R-Mod** \rightarrow **R-Mod**.

There is a natural transformation $\Phi : 1_{\mathbf{R}-\mathbf{Mod}} \to (-)^{**}$ from the identity functor, where given a left *R*-module $_RM$, the *R*-morphism $\Phi_M : M \to M^{**}$ is given by the *evaluation map*

$$[\Phi_M(m)](\xi) = \xi(m).$$

Since $(-)^{**}$ is a functor, an *R*-*S*-bimodule structure ${}_{R}M_{S}$ yields an *R*-*S*-bimodule structure on M^{**} . The naturality of Φ implies that $\Phi_{M} : M \to M^{**}$ is an *R*-*S*-bimodule homomorphism.

The module $_R K$ is a *cogenerator* if for every left R-module M and nonzero $m \in M$, there is a $\xi \in M^*$ such that $\xi(m) \neq 0$. In other words, $_R K$ is a cogenerator if and only if the evaluation map Φ_M is a monomorphism for every left R-module M. A left Rmodule $_R M$ is K-reflexive if the embedding $\Phi_M : M \to M^{**}$ is an isomorphism. We say the same for a right T-module V_T if $\Phi_V : V \to V^{**}$ is an isomorphism.

In this paper, we will be interested in two cases:

- (1) The module $_{R}K$ is the minimal cogenerator $\bigoplus_{X \in \Omega} E(X)$, where Ω denotes the set of isomorphism classes of simple left *R*-modules.
- (2) The module $_{R}K$ is the minimal injective cogenerator, the injective envelope of Item (1).

In both cases, we will take $T = \text{End}_R K$. If $_R K$ is the minimal cogenerator and n a natural number, then every element $a \in K^n$ is contained in an injective direct summand of $_R K^n$. It follows that if $a \in K^m$, $b \in K^n$ are such that $\text{ann}_R(a) \subseteq \text{ann}_R(b)$, then there is an R-morphism $f : _R K^m \to _R K^n$ such that f(a) = b. This property of $_R K$ will be invoked without comment.

From several equivalent definitions of purity, we choose the following: a morphism of right S-modules $m: M_S \to N_S$ is a *pure monomorphism* if for every left S-module $_SX$, the morphism of Abelian groups $m \otimes 1_N : M \otimes_S X \to N \otimes_S X$ is a monomorphism. A right S-module M_S is called *pure-injective* if every pure-monomorphism of right S-modules $m: M_S \to N_S$ has a retraction.

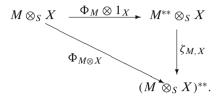
Proposition 1 Let $_RK$ be a cogenerator. If $_RM_S$ is an R-S-bimodule, then the evaluation morphism $\Phi_M : M \to M^{**}$ is a pure monomorphism of right S-modules.

Proof Let $_{S}X$ be a left S-module. We may define a morphism of left R-modules

$$\zeta_{M,X}: M^{**} \otimes_S X \to (M \otimes_S X)^{**}$$

as follows: Let $\xi \otimes x$ be an elementary tensor in $M^{**} \otimes_S X$. If $g \in (M \otimes_S X)^*$, then $g : M \otimes X \to {}_R K$, so that $g(- \otimes x) : {}_R M \to {}_R K$ belongs to M^* . Thus $\xi[g(- \otimes x)]$ makes sense and belongs to K. Define $\zeta_{M,X}(\xi \otimes x) : g \mapsto \xi[g(- \otimes x)]$. It is straightforward to check that $\zeta_{M,X}$ is well-defined and S-bilinear. It therefore extends $\widehat{\Phi}$ Springer

uniquely to the tensor product $M^{**} \otimes_S X$. It is a morphism of left *R*-modules and fits into a commutative diagram as follows:



Since the morphism $\Phi_{M\otimes X} : M \otimes_S X \to (M \otimes X)^{**}$ is a monomorphism, the commutativity of the diagram implies that $\Phi_M \otimes 1_X : M \otimes_S X \to M^{**} \otimes_S X$ is also a monomorphism.

A right *T*-module *U* is *K*-generated if there is a *T*-epimorphism $g: K^{(\alpha)} \to U_T$ from a direct sum of copies of *K*. Denote by $\sigma[K_T]$ the full subcategory of **Mod-T** of submodules of *K*-generated modules. The category $\sigma[K_T]$ (cf. [19, Section 15]) is a Grothendieck category and so admits injective envelopes. The module K_T is *quasi-injective* if it is injective as an object of $\sigma[K_T]$. In this case, the functor $(-)^*$: **Mod-T** \to **R-Mod** is exact when restricted to $\sigma[K_T]$.

Theorem 2 Suppose that $_RK$ is a cogenerator and that K_T is quasi-injective. If $_RM_S$ is finitely generated as a left *R*-module, then M^{**} is pure-injective as a right *S*-module.

Proof As $_RM$ is finitely generated, there is an epimorphism $f : _RR^n \to _RM$. Applying the left exact functor $(-)^*$ gives a monomorphism $f^* : M^* \to (R^n)^* = (R^*)^n = (K)^n$ of right *T*-modules. As $\sigma[K_T]$ is closed under direct sums and submodules, $M^* \in \sigma[K_T]$.

If N_S is a right S-module, then the tensor product $N \otimes_S M_T^*$ belongs to $\sigma[K_T]$. To see this, consider an epimorphism $g: S^{(\alpha)} \to N_S$ from a free right S-module to N_S . The tensor functor $- \otimes_S M_T^*$ preserves epimorphisms, so that we obtain an epimorphism of right T-modules

$$g \otimes 1_{M^*} : (M^*)^{(\alpha)} \to N \otimes_S M^*.$$

Now $(M^*)^{(\alpha)} \in \sigma[K_T]$, since $\sigma[K_T]$ is closed under direct sums, and $N \otimes_S M^* \in \sigma[K_T]$ because $\sigma[K_T]$ is closed under factor modules.

Consider a pure-monomorphism $f: M^{**} \to N_S$. The morphism $f \otimes 1_{M^*}: M^{**} \otimes_S M^* \to N \otimes_S M^*$ is a monomorphism of right *T*-modules. Both *T*-modules belong to $\sigma[K_T]$, and, because K_T is injective in $\sigma[K_T]$, we obtain an epimorphism

$$(f \otimes 1, K)$$
: Hom_T $(N \otimes_S M^*, K_T) \to$ Hom_T $(M^{**} \otimes_S M^*, K_T)$.

The domain is naturally isomorphic to $\text{Hom}_S(N_S, \text{Hom}_T(M_T^*, K_T)) \cong \text{Hom}_S(N_S, M^{**})$; the codomain to $\text{Hom}_T(M^{**}, M^{**}) = \text{End}_T(M^{**})$. Any preimage of the identity in $\text{End}_T(M^{**})$ along these isomorphisms is a retraction of f.

2 The K-topology

Notation: Unless otherwise specified, $_RK$ will from now on denote the minimal cogenerator or the minimal injective cogenerator in R-Mod and $T = \text{End}_R K$. The *K*-topology on *R* is the left linear topology whose basic open left ideals $_RI$ are those for which the quotient R/I admits an embedding into a direct sum K^n of finitely many copies of the module $_RK$. Equivalently, *I* is the annihilator of finitely many elements of *K*. The collection of such ideals is closed under finite intersections, and a left ideal $_RI$ is open in the *K*-topology provided it contains a basic open left ideal. The collection of open neighborhoods of 0 for a left linear topology on *R*.

There is a bijective correspondence [17, Prop. VI.4.2] between left linear topologies on the ring R and hereditary pretorsion classes of **R-Mod**. Associated to the K-topology on R is $\sigma[_RK]$, which is also the smallest hereditary pretorsion class of **R-Mod** containing K. By Theorem IV.5.1 of [17], the K-topology on R is a left Gabriel topology if and only if the category $\sigma[_RK]$ is closed under extensions.

If $_RK$ is the minimal cogenerator, then a left ideal $I \subseteq R$ is a basic open left ideal if and only if it is *cofinite*, that is, the module R/I is finitely cogenerated. Evidently, every basic open left ideal in the K-topology is a basic open left ideal in the E(K)-topology. The topologies are the same if every cyclic submodule of E(K) is finitely cogenerated. This occurs, for example, when the ring R is left Noetherian or if there are only finitely many simple left R-modules up to isomorphism.

Lemma 3 If the left ideal $I \subseteq R$ is a basic open left ideal in the K-topology, then

$$(R/I)^* \cong ann_K(I)$$

is a finitely generated T-submodule of K_T . In that case, the left R-module R/I is K-reflexive.

Proof First note that the isomorphism is given by the rule $\zeta \mapsto \zeta(1+I)$. If $I \subseteq R$ is a basic open left ideal, then R/I admits an embedding into a finite direct sum of copies of $_RK$, say $f: R/I \to _RK^n$, for some n. Write $(1+I)f = a = \sum_{i=1}^n a_i$, where a_i belongs to the *i*th copy of K. If $v \in \operatorname{ann}_K(I)$, then there is an R-morphism $g: K^n \to K$ such that

$$v = (a)g = \sum_{i=1}^{n} (a_i)g = \sum_{i=1}^{n} (a_i)g_i,$$

where g_i is the restriction of g to the *i*th copy of K. Thus $g_i \in T$ and $\operatorname{ann}_K(I) = \Sigma_i a_i T$. $\underline{\textcircled{O}}$ Springer Recall that a left *R*-module *M* is called *K*-dense (cf. [19, p. 430]) if given $\xi \in M^{**}$ and finitely many $f_1, \ldots, f_n \in M^*$, there is an $m \in M$ such that for every $i, 1 \le i \le n$, $\xi(f_i) = \Phi_M(m)(f_i) = (m) f_i$. Since $_RK$ is a cogenerator, [19, 47.6(4)] implies that every left *R*-module is *K*-dense. So if $_RM$ is such that M_T^* is finitely generated, then $\Phi_M : M \to M^{**}$ is onto and the left *R*-module *M* is *K*-reflexive. If $I \subseteq R$ is a basic open left ideal of *R*, then the dual module $(R/I)^*$ is a finitely generated right *T*module. Thus R/I is *K*-reflexive.

Lemma 4 Every finitely generated T-submodule V_T of K_T is of the form

$$V_T = ann_K(I) = (R/I)^*$$

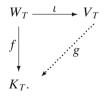
for some basic open left ideal $I \subseteq R$ in the K-topology. In that case, $ann_R(V) = I$.

Proof Let $V_T = \sum_{i=1}^n a_i T$ be a finitely generated submodule of K_T . Then $I = ann_R(V) = \bigcap_{i=1}^n ann_R(a_i)$ is a basic open left ideal of R and $V \subseteq ann_K(I)$. Consider the element $a = \sum_{i=1}^n a_i \in K^n$, where a_i belongs to the *i*th copy of K. Then $I = ann_R(a)$, so if $b \in ann_K(I)$, then there is a morphism $f : K^n \to K$ such that (a) f = b. But then $b = \sum_{i=1}^n (a_i) f = \sum_{i=1}^n (a_i) f_i$, where f_i is the restriction of f to the *i*th copy of K. It follows that $b \in \sum_i a_i T = V$.

The two lemmas imply that the rule $I \mapsto \operatorname{ann}_K(I)$ is an inclusion-reversing correspondence between the basic open left ideals I and the finitely generated submodules V_T of K_T ; the inverse is given by $V_T \mapsto \operatorname{ann}_R(V)$.

3 Quasi-injectivity

Recall that the module K_T is *V-injective* (cf. [19, Section 16], [11, Section I.2]) if given any submodule $W_T \subseteq V_T$, every *T*-morphism $f: W_T \to K_T$ may be extended to a morphism $g: V_T \to K_T$;



By [19, 16.3] or [11, Prop. 1.4], K_T is quasi-injective if and only if it is V_T -injective for every finitely generated submodule $V_T \subseteq K_T$.

A left *R*-module $_RM$ is *linearly compact* if every family $\{a_i + N\}_{i \in I}$ of cosets of submodules that satisfies the *finite intersection property* has a non-empty intersection:

$$\bigcap_{i\in I} a_i + N \neq \emptyset.$$

🖄 Springer

The *K*-topology on *R* is said to be *linearly compact* if for every open left ideal $I \subseteq R$, the quotient module R/I is linearly compact.

Theorem 5 The module K_T is quasi-injective if and only if the K-topology on R is linearly compact.

Proof Suppose that K_T is quasi-injective. If $I \subseteq R$ is a basic left ideal, then by Lemma 3, R/I is K-reflexive and $(R/I)^*$ is a finitely generated submodule of K_T . As K_T is $(R/I)^*$ -injective, [19, 47.8(2)] implies that R/I is linearly compact. By [19, 29.8(2)], any factor module of a linearly compact module is itself linearly compact. It follows that R/I is linearly compact for any open left ideal I of R.

Conversely, assume that the *K*-topology on *R* is linearly compact. In particular, R/I is linearly compact for every basic open left ideal *I* of *R*. By [19, 47.8(1.ii)], K_T is $(R/I)^*$ -injective. By Lemma 4, every finitely generated submodule of K_T is of the form $(R/I)^*$ for some basic open left ideal $I \subseteq R$. Thus K_T is quasi-injective. \Box

If a short exact sequence of left *R*-modules is given

 $0 \longrightarrow N \longrightarrow M \longrightarrow M/N \longrightarrow 0,$

then by [19, 29.8(2)], the module $_RM$ is linearly compact if and only if N and M/N are linearly compact. So if the K-topology on R is linearly compact, then every cyclic submodule of $_RK$ is linearly compact, and therefore, every finitely generated submodule of $_RK$ is linearly compact. A module $_RM$ is termed *locally linearly compact*, if every finitely generated submodule is linearly compact. We conclude that the K-topology is linearly compact if and only if every module in the category $\sigma[_RK]$ is locally linearly compact.

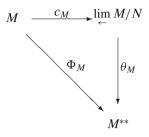
Given a left *R*-module $_RM$, the *K*-topology on *M* is defined to be the linear topology given by the fundamental system of open neighborhoods of zero that consists of those $_RN \subseteq _RM$ for which M/N admits an embedding into a direct sum K^n of finitely many copies of $_RK$.

Proposition 6 Suppose that K_T is quasi-injective and let $_RM$ be finitely generated. Given a submodule $_RN \subseteq _RM$, the quotient module M/N belongs to $\sigma[_RK]$ if and only if it admits an embedding into some direct sum K^n of finitely many copies of $_RK$.

Proof Only one direction requires proof, so assume that $M/N \in \sigma[_RK]$. As M/N is a finitely generated left *R*-module, the foregoing comments imply that M/N is linearly compact. It is therefore essential over a socle of finite length and thus admits an embedding into some K^n .

If *M* is a left *R*-module, then the *K*-adic completion of *M* with respect to the *K*-topology is the inverse limit $\lim_{\leftarrow} M/N$ indexed by the basic submodules of *M* in the *K*-topology. The universal property of the inverse limit ensures the existence of the obvious *R*-morphism $c_M : M \to \lim_{\leftarrow} M/N$. Since every left *R*-module is *K*-dense, Proposition 2.1 and Corollary 2.7 of [1] and Proposition 6 imply that if $_RM$ is $\underline{\bigotimes}$ Springer

finitely generated, then there is a natural isomorphism $\theta_M : \lim_{\leftarrow} M/N \to M^{**}$ of left *R*-modules such that the diagram



commutes.

Let us consider some examples of rings R for which the minimal (injective) cogenerator $_{R}K$ is quasi-injective when considered as a module K_{T} over its endomorphism ring $T = \text{End}_{R}K$. In all of the examples, save perhaps Example (3), every cyclic submodule of the minimal injective cogenerator is finitely cogenerated, so that the K-topologies are the same, whether K is the minimal cogenerator or the minimal injective cogenerator.

Examples

- (1) If *R* is a right Noetherian left FBN ring (cf. [4, Ch. 8]) and R/I is a cyclic module essential over its socle, then Theorem 8.11 of [4] implies that R/I is Artinian. Whether $_RK$ is the minimal cogenerator or the minimal injective cogenerator, the open left ideals *I* of the *K*-topology are those for which the quotient R/I is of finite length. This example includes all commutative Noetherian rings *A*; in that case, a basis of open ideals may be given by finite products of maximal ideals (cf. [18]).
- (2) Let *R* be a *left one-dimensional domain* (cf. [2]). This means that *R* is a domain with the property that for every nonzero left ideal *I* of *R*, the quotient module R/I is Artinian. There are Noetherian examples of one-dimensional domains that do not belong to the class described in Example (1). For example, the first Weyl algebra $A_1(k)$ over an algebraically closed field *k* of characteristic zero is a Noetherian one-dimensional domain that is not FBN.
- (3) A ring *R* is called a left *V*-ring if every simple left *R*-module is injective. If $_RK$ is the minimal cogenerator and $I \subseteq R$ a basic left ideal in the *K*-topology, then R/I is semisimple of finite length. If $_RM$ is a finitely generated left *R*-module, the foregoing discussion shows that $_RM^{**}$ is isomorphic to the projective limit of an inverse system of semisimple modules of finite length, with all the structural morphisms epimorphisms.
- (4) A uniserial commutative domain D is called *almost maximal* [3, p. 78] if every collection {r_i + I_i}_i of cosets of ideals I_i of R, that satisfies the finite intersection property and ∩_i I_i ≠ 0, has nonempty intersection. Such a domain D is a local ring, with maximal ideal P, and the minimal (injective) cogenerator is the injective envelope _RK = E(D/P) of the unique simple module over D. If

 $I \subseteq D$ is a basic open ideal, then D/I is a uniform module, and therefore may be embedded into K. It follows that D/I has a simple submodule, and since D is a domain, $I \neq 0$. By the almost maximal property of D, the quotient module D/I is linearly compact.

(5) Let *R* be a local ring with maximal ideal *J* with $J^2 = 0$ (cf. [22]). Suppose further that $_RJ$ is infinitely generated, while J_R is simple. As in the case of the uniserial domain, the minimal (injective) cogenerator is the injective envelope $_RK = E(R/J)$ of the unique simple left *R*-module. If *I* is an open left ideal, then *R/I* embeds into a finite direct sum K^n , so that *R/I* is essential over a socle of finite length. It follows that *R/I* must be of finite length. Let us note that the *K*-topology on *R* is not a Gabriel topology or, equivalently, that the category $\sigma_{[RK]}$ is not closed under extensions. Indeed, $_RJ$ and R/J both belong to $\sigma_{[RK]}$, but $_RR$ does not (since it is not linearly compact).

All the examples above, save perhaps the almost maximal uniserial domain, have the property that the *K*-topology is *Artinian*, that is, for every basic left ideal $I \subseteq {}_{R}R$ the quotient module R/I is Artinian. This case was considered by Menini and Orsatti [10]. Recall that a module is said to be *locally Noetherian* if every finitely generated submodule is Noetherian.

Theorem 7 The K-topology on R is Artinian if and only if the module K_T is locally Noetherian.

Proof If the *K*-topology is Artinian, then K_T is locally Noetherian by [10, Prop. 2.3.a]. Suppose now that K_T is locally Noetherian, and let $I \subseteq R$ be a basic open left ideal in the *K*-topology. The *T*-module $V_T = \operatorname{ann}_K(I)$ is finitely generated, and therefore Noetherian. If

$$R = I_0 \supseteq I_1 \supseteq I_2 \supseteq \cdots \supseteq I$$

were a properly descending chain of left ideals containing I, then, as $_{R}K$ is a cogenerator, the corresponding chain of annihilators would be a proper *ascending* chain

$$0 = \operatorname{ann}_K(I_0) \subseteq \operatorname{ann}_K(I_1) \subseteq \operatorname{ann}_K(I_2) \subseteq \cdots \subseteq \operatorname{ann}_K(I) = V_T,$$

contradicting the assumption that V_T is Noetherian.

Under the conditions of Theorem 7, every module in $\sigma[_R K]$ is locally Artinian and every module in $\sigma[K_T]$ is locally Noetherian.

A quasi-injective right *T*-module V_T is called *strongly quasi-injective* if it is a self cogenerator, that is, if it is a cogenerator in the category $\sigma[V_T]$.

Proposition 8 If K_T is quasi-injective, then K_T is strongly quasi-injective.

Proof Since K_T is an injective object of $\sigma[K_T]$, it suffices to verify that every simple module $X_T \in \sigma[K_T]$ may be embedded into K_T . There is a finitely generated $V_T \subseteq K_T$ for which there is a nonzero morphism $\eta: V_T \to X_T$. By Lemma 4, there is a basic open left ideal $I \subseteq R$ for which $V = \operatorname{ann}_K(I)$. Consider the kernel $W_T = \operatorname{Ker} \eta$ and express it as the directed sum $W_T = \Sigma_i W_i$ of its finitely generated submodules. For each W_i , the left ideal $I_i = \operatorname{ann}_R(W_i) \subseteq R$ is a basic open left ideal and $I_i \supseteq I$. As all of these inclusion are proper, each of the quotient maps $p_i : R/I \to R/I_i$ has \bigotimes Springer

nonzero kernel. Because R/I is linearly compact, it is finitely cogenerated, so the intersection of the kernels is nonzero. Thus the inclusion $I' = \bigcap_i I_i \supseteq I$ is proper. Let $r \in I' \setminus I$ and consider the morphism $\lambda_r : V \to K_T$ defined by the action of r on K_T from the left. Since $r \notin I$, the morphism λ_r is nonzero. As $r \in I'$, the kernel of λ_r contains all the W_i , hence W_T . The image of the morphism is therefore isomorphic to the simple module $V/W \cong X_T$.

4 The Bicommutator

Assumption: From now on, suppose that K_T is quasi-injective. The *K*-double dual, or, equivalently, the *K*-adic completion, of the module $_RR$ will be denoted $B := R^{**} = \text{End}_T(K_T)$. Since *T* is the endomorphism ring of $_RK$, the ring *B* is the *bicommutator* of the left *R*-module $_RK$. The action of *B* gives *K* the structure of a left *B*-module. As the *K*-double dual of *R*, the bicommutator comes equipped with the structure of an *R*-ring induced by the evaluation morphism $\Phi_R : R \to B$, which is also a morphism of rings.

The *B*-*T*-bimodule ${}_{B}K_{T}$ is *balanced* in the sense that $\operatorname{End}_{B}({}_{B}K) = T$ and $\operatorname{End}_{T}(K_{T}) = B$. As in the case of the *R*-*T*-bimodule ${}_{R}K_{T}$, two contravariant functors $\operatorname{Hom}_{B}(-, {}_{B}K) : \mathbf{B}\operatorname{-Mod} \to \mathbf{Mod}\operatorname{-T}$ and $\operatorname{Hom}_{T}(-, {}_{B}K_{T}) : \mathbf{Mod}\operatorname{-T} \to \mathbf{B}\operatorname{-Mod}$ are induced. We denote both functors by $(-)^{\dagger}$ and a left *B*-module *M* is ${}_{B}K_{T}$ -reflexive if the natural transformation Ψ (given by the evaluation map) from the identity functor on **B-Mod** to the functor $(-)^{\dagger\dagger}$ is a *B*-isomorphism at ${}_{B}M$.

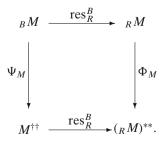
The *restriction of scalars* functor $\operatorname{res}_{R}^{B}$: **B-Mod** \rightarrow **R-Mod** along the ring morphism $\Phi_{R}: R \rightarrow B$, associates to every left *B*-module $_{B}M$ a left *R*-module structure denoted $_{R}M$. To the *B*-module $_{B}K$ is associated the *R*-module $_{R}K$, so this functor induces a functor from $\sigma[_{B}K]$ to $\sigma[_{R}K]$.

Proposition 9 (cf. [1]) The restriction of scalars functor along the ring morphism $\Phi_R : R \to B$. induces an equivalence of categories,

$$\operatorname{res}_{R}^{B}: \sigma[_{B}K] \subseteq \sigma[_{R}K].$$

Proof Since $_RK$ is a cogenerator, $\Phi_R(R) \subseteq B$ is dense [19, 47.6(4)]. By [19, 15.8], the functor res^B_R is an equivalence of categories.

The theorem implies that for ${}_{B}M \in \sigma[{}_{B}K]$ the restriction functor res ${}_{R}^{B}$ commutes with the *K*-double dual. For, consider the diagram



Springer

We claim that it is commutative. First note that $\operatorname{res}_R^B(M^{\dagger\dagger}) = M^{\dagger*}$. Then, as both ${}_BM$ and ${}_BK$ belong to $\sigma[{}_BK]$, the equivalence given by the theorem implies that $M_T^{\dagger} \cong M_T^*$. One consequence is that a left *B*-module *M* in $\sigma[{}_BK]$ is ${}_BK$ -reflexive if and only if ${}_RM = \operatorname{res}_R^B(M)$ is ${}_RK$ -reflexive.

In view of the fact that the bimodule ${}_{B}K_{T}$ is balanced, greater effort (cf. [9, 20]) has been devoted to the study of the K-duality induced between the categories **Mod-T** and **B-Mod**. If ${}_{R}K$ is the minimal injective cogenerator, then because it is locally linearly compact, the pair (T, K_{T}) is an example of what Menini [8] calls an *l-couple* for R. As K_{T} is strongly quasi-injective, the ${}_{B}K_{T}$ -reflexive right T-modules have been characterized by Zelmanowitz [20, Thm. 3.3] as the modules copresented by K_{T} . For the class of submodules of K_{T} this characterization yields the following.

Theorem 10 (cf. [9],[20]) There is an inclusion-reversing bijective correspondence between the submodules $V_T \subseteq K_T$ and left ideals ${}_BX \subseteq B$ which are closed in the ${}_BK$ -topology on ${}_BB$. The correspondence is given by the rules

 $V_T \mapsto \operatorname{ann}_B(V) \text{ and } _BX \mapsto \operatorname{ann}_K(X),$

which are mutual inverses. The left ideal $_BX \subseteq B$ is open in the $_BK$ -topology if and only if it is the anihilator of a finitely generated submodule $V_T \subseteq K_T$.

Proof Everything in the first sentence follows from [9, Thm. 4.7] and [20, Thm. 3.3], except for the assertion that $\operatorname{ann}_B(V)$ is closed in the $_BK$ -topology. But that is immediate from the second statement and the observation that $\operatorname{ann}_B(V) = \bigcap_{V'} \operatorname{ann}_B(V')$, where the intersection is indexed by the finitely generated submodules of V_T . The second statement is proved in the same manner as were Lemmas 3 and 4; one appeals to the consequence of Proposition 9 that $_BK$ is the minimal (injective) cogenerator of $\sigma_{[B}K]$.

Let us give some examples of left ideals of B that are closed in the $_{B}K$ -topology:

- (1) Let $I \subseteq R$ be a left ideal and $V_T = \operatorname{ann}_K(I)$, and denote by $\operatorname{cl}(I)$ the closure of I in B. Then $\operatorname{cl}(I) = \operatorname{ann}_B(V)$. If $I \subseteq R$ is a two-sided ideal, then $\operatorname{cl}(I)$ is a two-sided ideal of B. This is because $V_T = \operatorname{ann}_T(I)$ is an R-T-subbimodule of $_RK_T$ and is therefore, by Proposition 9 a B-T-subbimodule.
- (2) Suppose that $Y_B \subseteq B$ is a right ideal of *B*. Because *B* is the bicommutator of $_RK$, the left annihilator of *Y* in *B* is $\operatorname{ann}_B(YK_T)$ and is therefore a closed left ideal. In particular, if $e \in B$ is idempotent, then the summand $Be = \operatorname{ann}_B$ [(1 e)K] is closed.
- (3) By Lemma 4 and the fact that $_RK$ is a cogenerator, the simple submodules of K_T are of the form $\operatorname{ann}_K(I)$, where *I* is a maximal left ideal of *R*. It follows that $\operatorname{soc}_R(K) = \operatorname{soc}_T(K)$ is a *B*-*T*-bimodule of $_BK_T$. Since K_T is an injective object of $\sigma[K_T]$ and is essential over its socle, the Jacobson radical J(B) of the endomorphism ring $B = \operatorname{End}_T(K_T)$ is given [19, 22.1(1)] by

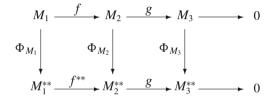
$$J(B) = \operatorname{ann}_B[\operatorname{soc}(K)].$$

If *R* is a left Noetherian *V*-ring, then K = soc(K), so that J(B) = 0. Since *B* is the endomorphism ring of an injective object of $\sigma[_R K]$, [19, 22.1(1)] implies that B = B/J(B) is von Neumann regular.

5 Topologies of Finite Type

All of the examples given in Section 3, except the last, have the property that the K-topology on R may be given by a fundamental system of open neighborhoods of 0 which are finitely generated left ideals. Such a linear topology is said to be of *finite type*. Examples of linear topologies of finite type are the finite matrix topologies considered in [5]; Gabriel topologies of finite type are treated in [17, Section XIII.1].

Consider the following commutative diagram.



If the top row is exact and consists of finitely generated left *R*-modules, then, as in the proof of Theorem 2, the right *T*-modules M_i^* will all belong to $\sigma[_RK]$. As K_T is quasi-injective, the functor $(-)^*$ is exact on $\sigma[_RK]$. So if the *K*-double dual functor is restricted to the finitely generated left *R*-modules, it is the composition of a contravariant left exact functor with a contravariant exact functor. Thus it is a right exact functor on the finitely generated modules. We infer that the bottom row is an exact sequence of left *R*-modules (resp., *B*-modules). In particular, if M_1 and M_2 are *K*-reflexive, then so is M_3 .

Proposition 11 The K-topology on R is of finite type if and only if every module $M \in \sigma[_RK]$ is a direct limit $M = \lim_{\to} M_i$ of finitely presented K-reflexive modules M_i that belong to $\sigma[_RK]$.

Proof If the *K*-topology on *R* is of finite type, then the finitely presented modules of the form R/I, where *I* is a basic finitely generated open left ideal of *R*, form a generating set for the category $\sigma[_RK]$. Such a module R/I is finitely presented and *K*-reflexive. Every module *M* in $\sigma[_RK]$ may therefore be presented by coproducts of such modules

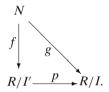
$$\oplus_{a \in A} R/I_a \xrightarrow{f} \oplus_{b \in B} R/I_b \longrightarrow_R M \longrightarrow 0.$$

An argument as in [7, Appendice] shows that M is the direct limit of finitely presented modules M_i each of which is given by a finite subpresentation of the Springer above. More precisely, for each *i*, there are finite subsets $A_i \subseteq A$, $B_i \subseteq B$ such that a presentation of M_i is given by

$$\oplus_{a \in A_i} R/I_a \xrightarrow{f_i} \oplus_{b \in B_i} R/I_b \xrightarrow{} RM_i \xrightarrow{} 0,$$

where f_i is the restriction of f to $\bigoplus_{a \in A_i} R/I_a$. Both direct sums are finite hence *K*-reflexive. The foregoing observations indicate that each M_i is also *K*-reflexive.

Conversely, suppose that every $M \in \sigma[_RK]$ is the direct limit of finitely presented modules in $\sigma[_RK]$. If $I \subseteq R$ is an open left ideal, the hypothesis implies that there is an epimorphism $g: _RN \to R/I$, where $_RN$ is a finitely presented module belonging to $\sigma[_RK]$. Now $R/I = \lim_{\to \to} R/I'$, where the direct limit is indexed by the finitely generated left ideals $I' \subseteq I$. As $_RN$ is finitely presented, the functor $\operatorname{Hom}_R(N, -)$ commutes with direct limits [17, Prop. V.3.4]. The morphism $g: N \to R/I$ thus factors through one of the quotient maps $p: R/I' \to R/I$, where $I' \subseteq I$ is finitely generated,



Let $J_0 \subseteq R$ be a finitely generated left ideal with the property that $(J_0 + I')/I'$ is the image of f. As g is an epimorphism, $J_0 + I = R$. Thus there is a finitely generated left ideal $I_0 \subseteq I$ such that $J_0 + I_0 = R$. Now replace I' with $I' + I_0$. The diagram remains commutative, with the added feature that f is now an epimorphism. Thus $R/I' \in \sigma_{R}K$ and hence $I' \subseteq I$ is a left ideal of R, which is finitely generated and open in the K-topology.

Recall the morphism $\zeta_{R,M} : {}_{R}B \otimes_{R}M \to {}_{R}M^{**}$ used in the proof of Proposition 1. It is natural in ${}_{R}M$, which means that

$$\zeta_{R,-}: {}_RB \otimes_R - \to (-)^{**}$$

is a natural transformation of endofunctors of **R-Mod**. The naturality implies that if *M* is an *R*-*S*-bimodule, then $\zeta_{R,M}$ is an *R*-*S*-morphism. The following proposition implies that if $_RM_S$ is an *R*-*S*-bimodule such that $_RM$ is finitely presented, then the right *S*-module $B \otimes_R M_S$ is pure-injective.

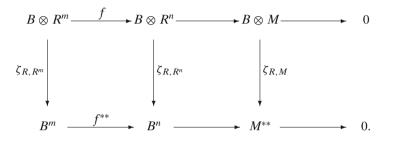
Proposition 12 Restricted to the category **R-mod** of finitely presented left *R*-modules, the natural transformation $\zeta_{R,-}:_R B \otimes_R - \to (-)^{**}$ is a natural isomorphism.

Proof We need to prove that for every finitely presented left *R*-module *M*, the *R*-morphism $\zeta_{R,M} : {}_{R}B \otimes_{R}M \to M^{**}$ is an *R*-isomorphism. The functors $B \otimes_{R} -$ and $(-)^{**}$ agree on the value at *R*, $B \otimes_{R} R = B = R^{**}$. Thus they agree on every \bigotimes Springer

finitely generated free left *R*-module. The functor $(-)^{**}$ is right exact when restricted to finitely generated left *R*-modules, so if we apply the two functors to a free presentation

 $R^m \xrightarrow{f} R^n \longrightarrow M \longrightarrow 0$

of the finitely presented left *R*-module $_RM$ (cf. the argument in [17, Proposition IV.10.1]), then the naturality of the morphism ζ ensures that $\zeta_{R,M} : B \otimes_R M \to M^{**}$ is an *R*-isomorphism,



Theorem 13 If the K-topology on $_RR$ is of finite type, then the functor $B \otimes_R - : \sigma[_RK] \rightarrow \sigma[_BK]$ is the equivalence inverse of res_R^B .

Proof We need to prove that $_{R}B \otimes_{R} - : \sigma[_{R}K] \to \sigma[_{R}K]$ is naturally isomorphic to the identity functor on $\sigma[_{R}K]$, and that $B \otimes_{R} \operatorname{res}_{R}^{B}(-) : \sigma[_{B}K] \to \sigma[_{B}K]$ is naturally isomorphic to the identity functor on $\sigma[_{B}K]$.

Proposition 12 implies that $\zeta_{R,M} : {}_{R}B \otimes_{R}M \to M^{**}$ is a natural isomorphism on the category of finitely presented left *R*-modules. As $M \mapsto M^{**}$ is a natural isomorphism on the category of *K*-reflexive module, we see that the identity functor and the functor ${}_{R}B \otimes_{R} -$ are naturally isomorphic on the category of *K*-reflexive finitely presented modules. Now both the identity functor and ${}_{R}B \otimes_{R} -$ commute with direct limits, and Proposition 11 implies that every object of $\sigma[{}_{R}K]$ is a direct limit of *K*-reflexive finitely presented modules in $\sigma[{}_{R}K]$. The natural isomorphism from ${}_{R}B \otimes_{R} -$ to the identity functor therefore extends to all of $\sigma[{}_{R}K]$ via the direct limit.

To show that the endofunctor $B \otimes_R \operatorname{res}_R^B(-)$ of $\sigma[_BK]$ is isomorphic to the identity functor, we proceed similarly, by first showing that the two are naturally isomorphic on the subcategory of $\sigma[_BK]$ of $_BK$ -reflexive modules $_BM$ for which $_RM$ is finitely presented. Theorem 9, the comments that follow the theorem, and Proposition 11 imply that every module in $\sigma[_BK]$ is a direct limit of modules in this subcategory. As both functors commute with direct limits, the isomorphism will extend to all of $\sigma[_BK]$.

Notice first that the definition of $\zeta_{R,-}$ may be used to define a natural transformation

$$\zeta_{R,-}': {}_{B}B \otimes_{R} - \to (-)^{*^{\dagger}},$$

🖉 Springer

of functors from **R-Mod** to **B-Mod**. If $_BM$ is *K*-reflexive and $_RM$ is finitely presented, then we get natural isomorphisms

$${}_{B}B \otimes_{R} \operatorname{res}_{R}^{B}(M) = {}_{B}B \otimes_{R}M$$
$$\cong ({}_{R}M)^{*\dagger} \cong ({}_{B}M)^{\dagger\dagger} \cong {}_{B}M.$$

The first natural isomorphism follows from Proposition 12; the second from the consequence $(_RM)^* \cong (_BM)^\dagger$ of Theorem 9; and the third from the assumption on $_BM$ that it is $_BK$ -reflexive.

The main point of the theorem is that for a left *R*-module *M* in $\sigma[_RK]$ the tensor product $_BB \otimes_R M$ is a *B*-module in $\sigma[_BK]$ whose restriction to *R* is naturally isomorphic to *M*.

6 Applications

Assumption: Unless otherwise specified, we assume from now on that the *K*-topology on $_RR$ is of finite type. Let us describe some of the consequences of Theorem 13. In the following, the embedding $R_R \subseteq B_R$ is understood to be given by Φ_R .

Corollary 14 For every left *R*-module $M \in \sigma[_RK]$, $B/R \otimes_R M = 0$.

Proof Apply the functor $- \otimes_R M$ to the pure-exact sequence of right *R*-modules

 $0 \longrightarrow R_R \xrightarrow{\Phi_R} B_R \longrightarrow B/R \longrightarrow 0$

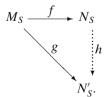
to obtain the exact sequence of left *R*-modules

 $0 \longrightarrow_{R} M \xrightarrow{\Phi_{R} \otimes 1_{M}} B \otimes_{R} M \xrightarrow{B/R \otimes_{R} M} 0.$

By Theorem 13, the morphism $\Phi_R \otimes 1_M$ is an isomorphism of left *R*-modules. \Box

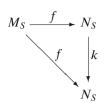
The pure-injective envelope of a right S-module M_S is a pure-monomorphism $f: M_S \rightarrow N_S$ with N_S pure-injective such that:

(1) Any S-morphism $g: M_S \to N'_S$ with N'_S pure-injective factors through f,



🖄 Springer

(2) Any endomorphism $k : N_S \to N_S$ for which the diagram



commutes is an automorphism.

The second condition ensures that the pure-injective envelope of a right S-module M_S is unique up to isomorphism over M_S . It will be denoted by $PE_S(M)$.

Corollary 15 The morphism $\Phi_R : R \to B$ of right *R*-modules is the pure-injective envelope of R_R .

Proof Since $\Phi_R : R_R \to B_R$ is a pure-monomorphism, any pure-monomorphism $f : R_R \to N_R$, with N_R pure-injective, factors through Φ_R . We will prove that any endomorphism $h : B_R \to B_R$ that fixes R pointwise is the identity $1_B : B_R \to B_R$ by showing that $\operatorname{Hom}_R(B/R, B) = 0$. Then, if $h : B_R \to B_R$ fixed R pointwise, the induced morphism $1_B - h : B/R \to B$ would be zero, $h = 1_B$. Corollary 13 implies $B/R \otimes_R K = 0$, so that

$$\operatorname{Hom}_{R}(B/R, B) = \operatorname{Hom}_{R}(B/R, \operatorname{Hom}_{T}(_{R}K_{T}, K_{T}))$$
$$\cong \operatorname{Hom}_{T}(B/R \otimes_{R} K_{T}, K_{T}) = 0.$$

Example (5) of Section 3 shows that when the K-topology is not of finite type, the bicommutator of $_RK$ need not be the pure-injective envelope of R_R . Indeed, the ring R is pure-injective as a right module over itself. It is therefore its own pure-injective envelope, while the bicommutator B_R of the minimal (injective) cogenerator $_RK$ is a proper extension of R_R .

Theorem 2 showed that if ${}_{R}M_{S}$ is finitely generated as a left *R*-module, then the evaluation morphism $\Phi_{M}: M_{S} \to M_{S}^{**}$ is a pure monomorphism into a pureinjective right *S*-module. The following result provides a sufficient condition for the *S*-morphism Φ_{M} to be the pure-injective envelope.

Corollary 16 If the R-S-bimodule $_RM_S$ is finitely presented as an R-module and $_RM \otimes_S M^* \in \sigma[_RK]$, then the pure-injective envelope of M_S is given by $\Phi_M : M_S \to M_S^{**}$.

Proof As in the previous proof, we will show that $\operatorname{Hom}_{S}(M^{**}/M, M^{**}) = 0$. An argument as in the proof of Corollary 14 together with the isomorphism $M^{**} \cong B \otimes_{R} M$ of Proposition 12 shows that M^{**}/M is isomorphic to $B/R \otimes_{R} M_{S}$. Now if \mathfrak{D} Springer

 $M \otimes_S M^* \in \sigma[{}_RK]$, then Corollary 14 implies that $B/R \otimes_R M \otimes_S M^* = 0$. It follows that

$$\operatorname{Hom}_{S}(M^{**}/M, M^{**}) \cong \operatorname{Hom}_{S}(B/R \otimes_{R} M, M^{**})$$
$$= \operatorname{Hom}_{S}(B/R \otimes_{R} M_{S}, \operatorname{Hom}_{T}({}_{S}M^{*}_{T}, K_{T}))$$
$$\cong \operatorname{Hom}_{T}(B/R \otimes_{R} M \otimes_{S} M^{*}_{T}, K_{T})) = 0.$$

Let S be a ring whose center R = C(S) is a Noetherian ring and which is finitely generated as an R-module. If M_S is finitely generated, then it is also finitely generated over the center R. We can consider M as an R-S-bimodule that is finitely presented as a left R-module. As K is a faithful R-module and R is commutative, there is an obvious embedding $R \subseteq T$. As $_RM$ is finitely generated, the dual module $M_T^* \in \sigma[K_T]$ (cf. proof of Theorem 2). Thus M^* considered as an R-module belongs to $\sigma[_RK]$ and therefore $M \otimes_S M^*$ considered as an R-module belongs to $\sigma[_RK]$ (*ibid*). The corollary implies that the pure-injective envelope of M_S is given by the evaluation morphism $\Phi_M : M_S \to M_S^{**}$.

The pure-injective envelope $M_S \subseteq \operatorname{PE}_S(M)$ of a right *S*-module is an elementary extension (cf. [13, Thm. 4.21], [16]). If the ring *R* is left coherent, then the class of flat right *R*-modules is elementary (cf. [13, Thm. 14.18], [15]), so that the pure-injective envelope of R_R is flat. For example, suppose that *R* is left Noetherian. Then the *K*-topology on $_RR$ is of finite type, so the bicommutator B_R of $_RK$ is flat. If B_R is flat, Proposition 12 implies that *K*-adic completion is an exact functor when restricted to the finitely presented left *R*-modules.

Corollary 17 Let R be a left one-dimensional domain. The bicommutator B_R of $_RK$ is flat.

Proof A left one-dimensional domain is a left Ore domain, so its left field of fractions Q is flat when considered as a right R-module. We will prove that the right R-module B/R is a vector space over Q and is therefore itself flat. Considering the short exact sequence

$$0 \longrightarrow R_R \xrightarrow{\Phi_R} B_R \longrightarrow B/R \longrightarrow 0$$

immediately yields the result.

Let $r \in R$ be nonzero. Then R/Rr is Artinian and so belongs to $\sigma[_RK]$. By Corollary 14,

$$(B/R) \otimes_R R/Rr \cong (B/R)/(B/R)r = 0,$$

so that B/R is a divisible right *R*-module. To see that it is torsion-free, suppose there is an element $b \in B$ such that $br \in R$. As R_R is pure in B_R , there is a $b' \in R$ such that br = b'r. Thus (b - b')r = 0. But R_R is torsion-free and B_R is an elementary extension, so that B_R is also torsion-free, which implies that $b = b' \in R$. It follows that B/R is a torsion-free divisible right *R*-module.

Deringer

Let $e \in B$ be an idempotent element, $e^2 = e$. By Theorem 13,

$$eB \otimes_B K = e(B \otimes_B K) = e(B \otimes_R K) = eB \otimes_R K.$$

Lemma 18 If $e \in B$ is idempotent, then $\operatorname{End}_R(eB_R) = \operatorname{End}_B(eB) = eBe$.

Proof Since
$$eB \cong \operatorname{Hom}_T(K, eK)$$
, we get that
 $\operatorname{Hom}_B(eB, eB) \cong \operatorname{Hom}_B(eB, \operatorname{Hom}_T(_BK_T, eK_T))$
 $\cong \operatorname{Hom}_T(eB \otimes_B K_T, eK_T)$
 $\cong \operatorname{Hom}_T(eB \otimes_R K_T, eK_T)$
 $\cong \operatorname{Hom}_R(eB, \operatorname{Hom}_T(_RK_T, eK_T)) \cong \operatorname{End}_R(eB).$

For example, if $e \in B$ is an irreducible idempotent, then eB is indecomposable as a right *B*-module. By the lemma, it is also indecomposable as a right *R*-module. Since eB_R is a direct summand of the pure-injective right *R*-module B_R , it is itself pure-injective, which implies that eBe is a local ring [23, Thm. 9]. If e = 1, the lemma yields the equation $\operatorname{End}_R(B_R) = \operatorname{End}_B(B_B)$, which indicates that every *R*-endomorphism of B_R is of the form $\lambda_b : x \mapsto bx$ for some element $b \in B$.

Corollary 19 (cf. [21, Thm. 6.1]) There exists a collection $\{e_a\}_{a\in\Theta}$ of mutually orthogonal irreducible idempotents in the bicommutator B_R such that B_R is the pure-injective envelope of a direct sum of pure-injective indecomposable *R*-modules

$$B_R = \operatorname{PE}_R(R_R) = \operatorname{PE}_R\left(\bigoplus_{a\in\Theta} e_aB\right).$$

Proof First, we will show that K_T is essential over its socle. It is clear that if $J \subseteq R$ is a maximal left ideal, then $\operatorname{ann}_K(J)$ is a simple *T*-module. But we know that every finitely generated *T*-submodule of K_T is of the form $V_T = \operatorname{ann}_K(I)$ for some basic open left ideal $I \subseteq R$. So take a maximal left ideal $J \supseteq I$; then $\operatorname{ann}_K(J) \subseteq V$ is contained in the socle of K_T .

Write $\operatorname{soc}(K_T) = \bigoplus_{a \in \Theta} W_a$ as a direct sum of simple *T*-modules. Let $E_{\sigma}(W_a)$ denote the injective envelope of W_a in the category $\sigma[K_T]$. Then

$$K_T = E_{\sigma}(\oplus_a E_{\sigma}(W_i)).$$

Let $\{e_a\}_{a\in\Theta}$ be the family of mutually orthogonal irreducible idempotents in *B* corresponding to this decomposition. By the comments following Lemma 18, each direct summand $e_a B$ is a pure-injective indecomposable right *R*-module.

Consider the pure-injective envelope of the direct sum $PE_R(\bigoplus_{a\in\Theta} e_a B)$. Since the direct sum is a pure submodule of B_R , and B_R is pure-injective, the pure-injective

envelope is a direct summand P_R of B_R . Write $B_R = P_R \oplus P'_R$ and let $e \in \text{End}_R(B_R)$ be the idempotent that projects onto P_R with respect to this decomposition. Thus $P_R = eB_R$. By the comments following Lemma 18, $e \in \text{End}_B(B_B) = B$. Now $e_a B \subseteq eB$ for every $a \in \Theta$, so the right *B*-module eB is a direct summand of B_B that contains all the e_a , $a \in A$. The idempotent 1 - e therefore annihilates the socle of *K*, and therefore $1 - e \in J(B)$. But that forces 1 - e = 0, and the pure-injective envelope of the right *R*-module $\oplus_{a \in \Theta} e_a B$ is B_R as claimed.

Suppose that *R* is a left Noetherian *V*-ring. We noted earlier that the ring *B* is von Neumann regular. The socle of *B* is generated as a right or left *B*-module by the irreducible idempotents. As the collection $\{e_a\}_{a\in\Theta}$ is a maximal set of mutually orthogonal irreducible idempotents, we have that

$$\operatorname{soc}(B) = \bigoplus_{a \in \Theta} e_a B = \bigoplus_{a \in \Theta} B e_a.$$

The corollary implies that, considered as a right *R*-module, the pure-injective envelope of soc(B) is the right *R*-module B_R (cf. [14, Example 5.2]).

By contrast, let us show that if soc(B) is considered as a left *R*-module, then it is a direct summand of _{*R*}*B*. It suffices to prove that _{*B*} $soc(B) \in \sigma[_BK]$. For then, Proposition 9 implies that _{*R*}soc(B) is semisimple, hence injective. Consider an irreducible idempotent $e \in B$, and pick $k \in K$ such that $ek \neq 0$. There is a morphism from $\eta : Be \to K$ determined by $\eta : e \mapsto ek$; it is a nonzero morphism. As *Be* is simple, the morphism η is an embedding of *Be* into _{*B*}*K*. Thus $Be \in \sigma[_BK]$, and hence $_{B}soc(B) \in \sigma[_{B}K]$.

Acknowledgements I am grateful to Vic Camillo who provoked my interest in this topic, and to the referee for helping bring the paper to its final form.

References

- Albu, T., Wisbauer, R.: *M*-density, *M*-adic completion and *M*-subgeneration. Rend. Sem. Mat. Univ. Padova. 98, 141–159 (1997)
- Camillo, V., Krause, G.: Problem 12. In: Gordon, R. (ed.) Ring Theory, Proceedings of a Conference on Ring Theory, Park City, Utah, p. 377. Academic Press, New York (1972)
- Fuchs, L., Salce, L.: Modules over non-Noetherian domains. In: Mathematical Surveys and Monographs, vol. 84. American Mathematical Society, Providence, Rhode Island (2001)
- 4. Goodearl, K., Warfield, R.: An Introduction to Noncommutative Noetherian Rings. London Mathematical Society Student Texts 16, Cambridge University Press, UK (1989)
- 5. Herzog, I.: Finite matrix topologies. J. Algebra 282, 157-171 (2004)
- 6. Kiełpinski, R.: On Γ-pure-injective modules. Bull. Acad. Pol. Sci. 15, 127–131 (1967)
- 7. Lazard: Autour de la platitude. Bull. Soc. Math. France 97, 81–128 (1969)
- 8. Menini, C.: A Characterization of linearly compact modules. Math. Ann. 271, 1-11 (1985)
- 9. Menini, C., Orsatti, A.: Good dualities and strongly quasi-injective modules. Ann. Mat. Pura Appl. **CXXVII**(IV), 187–230 (1981)
- 10. Menini, C., Orsatti, A.: Topologically left Artinian rings. J. Algebra 93(2), 475-508 (1985)
- Mohamed, S.H., Müller, B.: Continuous and discrete modules. In: London Mathematical Society Lecture Note Series, vol. 147. Cambridge University Press, UK (1990)
- 12. Müller, B.: Linear compactness and Morita duality. J. Algebra 16, 60-66 (1970)
- Prest, M.: Model theory and modules. In: London Mathematical Society Lecture Note Series, vol. 130. Cambridge University Press, UK (1988)
- Prest, M., Puninski, G.: Some model theory over hereditary Noetherian domains. J. Algebra 211, 268–297 (1999)

🖉 Springer

- Sabbagh, G., Eklof, P.: Definability problems for modules and rings. J. Symbolic Logic 36, 623– 649 (1971)
- Sandomierski, F.L.: Linearly compact modules and local Morita duality. In: Gordon, R. (ed.) Ring Theory, Proceedings of a Conference on Ring Theory, Park City, Utah, pp. 333–346. Academic Press, New York (1972)
- 17. Stenström, B.: Rings of Quotients. Springer, Berlin Heidelberg New York (1975)
- 18. Warfield, R.: Purity and algebraic compactness for modules. Pacific J. Math. 28, 699-719 (1969)
- Wisbauer, R.: Foundations of module and ring theory. In: Algebra Logic and Application, vol. 3. Gordon and Breach, New York (1991)
- Zelmanowitz, J.M.: Duality theory for quasi-injective modules. In: Methods in Ring Theory, Antwerp, Belgium 1984, pp. 551–566. Reidel, Dordrecht (1984)
- 21. Ziegler, M.: Model theory of modules. Ann. Pure Appl. Logic 26, 149–213 (1984)
- Zimmermann, W.: (Σ-)algebraic compactness of rings. J. Pure Appl. Algebra 23(3), 319–328 (1982)
- Zimmermann-Huisgen, B., Zimmermann, W.: Algebraically compact rings and modules. Math. Z. 161, 81–93 (1978)