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Abstract Given an R-T-bimodule R KT and an R-S-bimodule R MS, we study how
properties of R KT affect the K-double dual M∗∗ = HomT [HomR(M, K), K], con-
sidered as a right S-module. If R K is a cogenerator, then for every R-S-bimodule,
the natural morphism �M : M → M∗∗ is a pure-monomorphism of right S-modules.
If R K is the minimal (injective) cogenerator and KT is quasi-injective, then M∗∗ is
a pure-injective right S-module. If R K is the minimal (injective) cogenerator, and
T = EndR K, it is shown that KT is quasi-injective if and only if the K-topology on
R is linearly compact. If the R K-topology on R is of finite type, then the natural
morphism �R : R → R∗∗ is the pure-injective envelope of RR as a right module over
itself.

Key words bicommutator · M-topology · minimal injective cogenerator ·
pure-injective envelope · quasi-injective

Mathematics Subject Classifications (2000) 16D50 · 16D90 · 16S90

Let R and T be associative rings with identity, and R KT an R-T-bimodule. The
bimodule R KT induces an additive endofunctor (−)∗∗ : R-Mod → R-Mod, the K-
double dual, of the category of left R-modules. It is defined by

M∗∗ = HomR[HomT(R M, R KT), R KT ].
There is a natural transformation � : 1R−Mod → (−)∗∗ from the identity functor to
the K-double dual, given by the evaluation morphism �M : M → M∗∗, �M(m) :
ξ �→ ξ(m). The functorial nature of (−)∗∗ implies that if M has an R-S-bimodule

Presented by Ken Goodearl.

The author is partially supported by NSF Grant DMS-02-00698.

I. Herzog (B)
The Ohio State University at Lima, Lima, OH 45804, USA
e-mail: herzog.23@osu.edu



136 Algebr Represent Theor (2007) 10:135–155

structure, then so does M∗∗. Furthermore, the naturality of � implies that �M : M →
M∗∗ is an R-S-morphism.

Warfield [18] noticed that if M is a right S-module, viewed as a Z-S-bimodule, and
K is the multiplicative group of complex numbers of Modulus 1, viewed as a Z-Z-
bimodule (thus R = T = Z), then the right S-module M∗∗

S is pure-injective, and the
evaluation map �M : MS → M∗∗

S is a pure-monomorphism of right S-modules. This
argument may then be applied to prove the existence [6, 18, 21] of pure-injective
envelopes in the category Mod-S of right S-modules.

This article is devoted to the study of how conditions on R KT affect the nature of
the evaluation morphism �M : MS → M∗∗

S . For example, we prove the following.

Theorem A Let R K be a left R-module, and T = EndR K.

(1) (Proposition 1) The left R-module R K is a cogenerator if and only if for every
R-S-bimodule M, the morphism �M : MS → M∗∗

S is a pure-monomorphism as
a morphism of right S-modules.

(2) (Theorem 1) If R K is the minimal (injective) cogenerator and KT is quasi-
injective, then for every R-S-bimodule M which is finitely generated as an R-
module, the K-double dual M∗∗

S is pure-injective as a right S-module.
(3) (Corollary 3) Suppose that R K is the minimal (injective) cogenerator, KT is

quasi-injective and that the R K-topology on R R is of finite type. If R MS is an R-S-
bimodule which is finitely presented as a left R-module, and M ⊗S M∗ ∈ σ [R K],
then the evaluation morphism �M : MS → M∗∗

S is the pure-injective envelope of
the right S-module MS.

For example, if R is a right Noetherian left FBN ring, a left one-dimensional
domain, a left Noetherian V-ring or an almost maximal uniserial commutative
domain, then the minimal (injective) cogenerator R K has the property that KT

is quasi-injective and the R K-topology on R is of finite type. While it may seem
standard to prove such results only when R K is the minimal injective cogenerator,
we follow Menini and Orsatti [9] by noting that a parallel theory may be developed
under the weaker assumption that R K is the minimal cogenerator.

Theorem B (Theorem 5, Proposition 8) Let R KT be an R-T-bimodule and R K the
minimal (injective) cogenerator. The right T-module KT is quasi-injective if and only
if the R K-topology on R is linearly compact, that is, for every open left ideal I of R, the
quotient module R/I is linearly compact. In that case, KT is strongly quasi-injective.

Recall that a basis of open left ideals of the R K-topology on R R is given by the
annihilators of finite subsets of K. The R K-topology is said to be of finite type if it may
be given by a basis of finitely generated left ideals. If R K is the minimal cogenerator,
then the injective envelope E(K) is the minimal injective cogenerator. As every open
left ideal I in the K-topology is also open in the E(K)-topology, Theorem B indicates
the advantage of working with the minimal cogenerator.
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Müller [12] clarified the relationship between linearly compact modules and
duality, while Sandomierski [16] realized the connection between duality and quasi-
injective modules. In this paper, we apply results of Menini and Orsatti [9] and
Zelmanowitz [20] developed further in this direction to study the bicommutator
B = R∗∗ of the module R K, when R K is a minimal (injective) cogenerator and KT is
quasi-injective. The bicommutator may also be viewed as the K-adic completion [1]
of the ring R. Now clearly R ⊗R R∗ = R ⊗R K = K ∈ σ [R K], so if the R K-topology
on R R is of finite type, then Theorem A.3 implies that BR is the pure-injective
envelope of RR.

A left R-module M is called K-generated if there is an R-epimorphism f : K(α) →
M from a direct sum of copies of R K. Recall (cf. [19, Section 15]) that σ [R K] denotes
the full subcategory of R-Mod of submodules of K-generated modules. As R K is a
cogenerator [19, 15.8], restriction of scalars along the ring morphism �R : R → B
induces an equivalence of categories resB

R : σ [B K] → σ [R K]. Most of our results are
consequences of the following.

Theorem C (Theorem 13) Let R K be the minimal (injective) cogenerator and T =
EndR K. If KT is quasi-injective and the K-topology on R R is of finite type, then the
inverse equivalence of resB

R is given by B ⊗R − : σ [R K] → σ [B K].

For example, it follows (cf. Lemma 18) that B = EndR BR. As BR is pure-injective
as a right R-module the ring B is the endomorphism ring of a pure-injective module.
Thus B/J(B) is von Neumann regular, where J(B) denotes the Jacobson radical
of B. The next result is a decomposition theorem which indicates that B/J(B) is
essential over its socle.

Theorem D (Corollary 19) (cf. [21, Thm. 6.1]) Let R K be the minimal (injective)
cogenerator and suppose that KT is quasi-injective. If the R K-topology on R R is of
finite type, then BR is the pure-injective envelope (as a right R-module) of a direct sum
of pure-injective indecomposable right R-modules Bi :

BR = PE(RR) = PE(⊕i Bi).

If BR is a flat R-module, then so are the Bi.

In all of the examples of rings cited above, the pure injective envelope of RR is a
flat right R-module. Theorem D may thus be used to find examples of pure-injective
indecomposable flat right R-modules.

1 Purity

Let R and T be associative rings with identity. The category of left R-modules is
denoted by R-Mod; the category of right T-modules by Mod-T. Throughout the
article, we fix an R-T-bimodule R KT , and denote the contravariant functor

HomR(−, R KT) : R-Mod → Mod-T
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by M �→ M∗. When there is no danger of confusion, we use the same notation to
denote the functor HomT(−, R KT) : Mod-T → R-Mod. The association M �→ M∗∗
is the composition of two contravariant functors, and is therefore a covariant functor

(−)∗∗ : R-Mod → R-Mod.

There is a natural transformation � : 1R-Mod → (−)∗∗ from the identity functor,
where given a left R-module R M, the R-morphism �M : M → M∗∗ is given by the
evaluation map

[�M(m)](ξ) = ξ(m).

Since (−)∗∗ is a functor, an R-S-bimodule structure R MS yields an R-S-bimodule
structure on M∗∗. The naturality of � implies that �M : M → M∗∗ is an R-S-
bimodule homomorphism.

The module R K is a cogenerator if for every left R-module M and nonzero m ∈ M,

there is a ξ ∈ M∗ such that ξ(m) �= 0. In other words, R K is a cogenerator if and only
if the evaluation map �M is a monomorphism for every left R-module M. A left R-
module R M is K-reflexive if the embedding �M : M → M∗∗ is an isomorphism. We
say the same for a right T-module VT if �V : V → V∗∗ is an isomorphism.

In this paper, we will be interested in two cases:

(1) The module R K is the minimal cogenerator ⊕X∈� E(X ), where � denotes
the set of isomorphism classes of simple left R-modules.

(2) The module R K is the minimal injective cogenerator, the injective envelope
of Item (1).

In both cases, we will take T = EndR K. If R K is the minimal cogenerator and n
a natural number, then every element a ∈ Kn is contained in an injective direct
summand of R Kn. It follows that if a ∈ Km, b ∈ Kn are such that annR(a) ⊆ annR(b),

then there is an R-morphism f : R Km → R Kn such that f (a) = b . This property of
R K will be invoked without comment.

From several equivalent definitions of purity, we choose the following: a mor-
phism of right S-modules m : MS → NS is a pure monomorphism if for every
left S-module S X, the morphism of Abelian groups m ⊗ 1N : M ⊗S X → N ⊗S X
is a monomorphism. A right S-module MS is called pure-injective if every pure-
monomorphism of right S-modules m : MS → NS has a retraction.

Proposition 1 Let R K be a cogenerator. If R MS is an R-S-bimodule, then the evalua-
tion morphism �M : M → M∗∗ is a pure monomorphism of right S-modules.

Proof Let S X be a left S-module. We may define a morphism of left R-modules

ζM,X : M∗∗ ⊗S X → (M ⊗S X )∗∗

as follows: Let ξ ⊗ x be an elementary tensor in M∗∗ ⊗S X. If g ∈ (M ⊗S X )∗, then
g : M ⊗ X → R K, so that g(− ⊗ x) : R M → R K belongs to M∗. Thus ξ [g(− ⊗ x)]
makes sense and belongs to K. Define ζM,X(ξ ⊗ x) : g �→ ξ [g(− ⊗ x)]. It is straight-
forward to check that ζM,X is well-defined and S-bilinear. It therefore extends
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uniquely to the tensor product M∗∗ ⊗S X. It is a morphism of left R-modules and
fits into a commutative diagram as follows:

M ⊗S X �M ⊗ 1X� M∗∗ ⊗S X
����������

�M⊗X
�

ζM,X

(M ⊗S X )∗∗.

Since the morphism �M⊗X : M ⊗S X → (M ⊗ X )∗∗ is a monomorphism, the com-
mutativity of the diagram implies that �M ⊗ 1X : M ⊗S X → M∗∗ ⊗S X is also a
monomorphism. 
�

A right T-module U is K-generated if there is a T-epimorphism g : K(α) → UT

from a direct sum of copies of K. Denote by σ [KT ] the full subcategory of Mod-T
of submodules of K-generated modules. The category σ [KT ] (cf. [19, Section 15])
is a Grothendieck category and so admits injective envelopes. The module KT is
quasi-injective if it is injective as an object of σ [KT ]. In this case, the functor (−)∗ :
Mod-T → R-Mod is exact when restricted to σ [KT ].

Theorem 2 Suppose that R K is a cogenerator and that KT is quasi-injective. If R MS is
finitely generated as a left R-module, then M∗∗ is pure-injective as a right S-module.

Proof As R M is finitely generated, there is an epimorphism f : R Rn → R M. Apply-
ing the left exact functor (−)∗ gives a monomorphism f ∗ : M∗ → (Rn)∗ = (R∗)n =
(K)n of right T-modules. As σ [KT ] is closed under direct sums and submodules,
M∗ ∈ σ [KT ].

If NS is a right S-module, then the tensor product N ⊗S M∗
T belongs to σ [KT ].

To see this, consider an epimorphism g : S(α) → NS from a free right S-module to
NS. The tensor functor − ⊗S M∗

T preserves epimorphisms, so that we obtain an
epimorphism of right T-modules

g ⊗ 1M∗ : (M∗)(α) → N ⊗S M∗.

Now (M∗)(α) ∈ σ [KT ], since σ [KT ] is closed under direct sums, and N ⊗S M∗ ∈
σ [KT ] because σ [KT ] is closed under factor modules.

Consider a pure-monomorphism f : M∗∗ → NS. The morphism f ⊗ 1M∗ : M∗∗ ⊗S

M∗ → N ⊗S M∗ is a monomorphism of right T-modules. Both T-modules belong to
σ [KT ], and, because KT is injective in σ [KT ], we obtain an epimorphism

( f ⊗ 1, K) : HomT(N ⊗S M∗, KT) → HomT(M∗∗ ⊗S M∗, KT).
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The domain is naturally isomorphic to HomS(NS, HomT(M∗
T , KT)) ∼= HomS(NS,

M∗∗); the codomain to HomT(M∗∗, M∗∗) = EndT(M∗∗). Any preimage of the iden-
tity in EndT(M∗∗) along these isomorphisms is a retraction of f. 
�

2 The K-topology

Notation: Unless otherwise specified, R K will from now on denote the minimal
cogenerator or the minimal injective cogenerator in R-Mod and T = EndR K. The
K-topology on R is the left linear topology whose basic open left ideals R I are those
for which the quotient R/I admits an embedding into a direct sum Kn of finitely
many copies of the module R K. Equivalently, I is the annihilator of finitely many
elements of K. The collection of such ideals is closed under finite intersections, and
a left ideal R I is open in the K-topology provided it contains a basic open left ideal.
The collection of open left ideals is a filter that satisfies the axioms [17, p.144] for a
fundamental system of open neighborhoods of 0 for a left linear topology on R.

There is a bijective correspondence [17, Prop. VI.4.2] between left linear topolo-
gies on the ring R and hereditary pretorsion classes of R-Mod. Associated to the
K-topology on R is σ [R K], which is also the smallest hereditary pretorsion class
of R-Mod containing K. By Theorem IV.5.1 of [17], the K-topology on R is a left
Gabriel topology if and only if the category σ [R K] is closed under extensions.

If R K is the minimal cogenerator, then a left ideal I ⊆ R is a basic open left ideal
if and only if it is cofinite, that is, the module R/I is finitely cogenerated. Evidently,
every basic open left ideal in the K-topology is a basic open left ideal in the E(K)-
topology. The topologies are the same if every cyclic submodule of E(K) is finitely
cogenerated. This occurs, for example, when the ring R is left Noetherian or if there
are only finitely many simple left R-modules up to isomorphism.

Lemma 3 If the left ideal I ⊆ R is a basic open left ideal in the K-topology, then

(R/I )∗ ∼= annK(I )

is a finitely generated T-submodule of KT . In that case, the left R-module R/I is
K-reflexive.

Proof First note that the isomorphism is given by the rule ζ �→ ζ(1 + I ). If I ⊆ R
is a basic open left ideal, then R/I admits an embedding into a finite direct sum of
copies of R K, say f : R/I → R Kn, for some n. Write (1 + I ) f = a = �n

i=1ai, where ai

belongs to the ith copy of K. If v ∈ annK(I ), then there is an R-morphism g : Kn →
K such that

v = (a)g = �n
i=1(ai)g = �n

i=1(ai)gi,

where gi is the restriction of g to the ith copy of K. Thus gi ∈ T and annK(I ) = �iaiT.
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Recall that a left R-module M is called K-dense (cf. [19, p. 430]) if given ξ ∈ M∗∗
and finitely many f1, . . . , fn ∈ M∗, there is an m ∈ M such that for every i, 1 ≤ i ≤ n,

ξ( fi) = �M(m)( fi) = (m) fi. Since R K is a cogenerator, [19, 47.6(4)] implies that
every left R-module is K-dense. So if R M is such that M∗

T is finitely generated, then
�M : M → M∗∗ is onto and the left R-module M is K-reflexive. If I ⊆ R is a basic
open left ideal of R, then the dual module (R/I )∗ is a finitely generated right T-
module. Thus R/I is K-reflexive. 
�

Lemma 4 Every finitely generated T-submodule VT of KT is of the form

VT = annK(I ) = (R/I )∗

for some basic open left ideal I ⊆ R in the K-topology. In that case, annR(V) = I.

Proof Let VT = �n
i=1aiT be a finitely generated submodule of KT . Then I =

annR(V) = ∩n
i=1 annR(ai) is a basic open left ideal of R and V ⊆ annK(I ). Consider

the element a = �n
i=1ai ∈ Kn, where ai belongs to the ith copy of K. Then I =

annR(a), so if b ∈ annK(I ), then there is a morphism f : Kn → K such that (a) f =b .

But then b = �n
i=1(ai) f = �n

i=1(ai) fi, where fi is the restriction of f to the ith copy
of K. It follows that b ∈ �iaiT = V. 
�

The two lemmas imply that the rule I �→ annK(I ) is an inclusion-reversing corre-
spondence between the basic open left ideals I and the finitely generated submodules
VT of KT; the inverse is given by VT �→ annR(V).

3 Quasi-injectivity

Recall that the module KT is V-injective (cf. [19, Section 16], [11, Section I.2]) if given
any submodule WT ⊆ VT , every T-morphism f : WT → KT may be extended to a
morphism g : VT → KT;

WT
ι � VT

f

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

g

KT .

By [19, 16.3] or [11, Prop. 1.4], KT is quasi-injective if and only if it is VT -injective for
every finitely generated submodule VT ⊆ KT .

A left R-module R M is linearly compact if every family {ai + N}i∈I of cosets of
submodules that satisfies the finite intersection property has a non-empty intersection:

⋂

i∈I

ai + N �= ∅.
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The K-topology on R is said to be linearly compact if for every open left ideal I ⊆ R,

the quotient module R/I is linearly compact.

Theorem 5 The module KT is quasi-injective if and only if the K-topology on R is
linearly compact.

Proof Suppose that KT is quasi-injective. If I ⊆ R is a basic left ideal, then by
Lemma 3, R/I is K-reflexive and (R/I )∗ is a finitely generated submodule of KT .

As KT is (R/I )∗-injective, [19, 47.8(2)] implies that R/I is linearly compact. By [19,
29.8(2)], any factor module of a linearly compact module is itself linearly compact. It
follows that R/I is linearly compact for any open left ideal I of R.

Conversely, assume that the K-topology on R is linearly compact. In particular,
R/I is linearly compact for every basic open left ideal I of R. By [19, 47.8(1.ii)], KT

is (R/I )∗-injective. By Lemma 4, every finitely generated submodule of KT is of the
form (R/I )∗ for some basic open left ideal I ⊆ R. Thus KT is quasi-injective. 
�

If a short exact sequence of left R-modules is given

0 � N � M �M/N � 0,

then by [19, 29.8(2)], the module R M is linearly compact if and only if N and M/N
are linearly compact. So if the K-topology on R is linearly compact, then every
cyclic submodule of R K is linearly compact, and therefore, every finitely generated
submodule of R K is linearly compact. A module R M is termed locally linearly
compact, if every finitely generated submodule is linearly compact. We conclude that
the K-topology is linearly compact if and only if every module in the category σ [R K]
is locally linearly compact.

Given a left R-module R M, the K-topology on M is defined to be the linear
topology given by the fundamental system of open neighborhoods of zero that
consists of those R N ⊆ R M for which M/N admits an embedding into a direct sum
Kn of finitely many copies of R K.

Proposition 6 Suppose that KT is quasi-injective and let R M be finitely generated.
Given a submodule R N ⊆ R M, the quotient module M/N belongs to σ [R K] if and
only if it admits an embedding into some direct sum Kn of finitely many copies of R K.

Proof Only one direction requires proof, so assume that M/N ∈ σ [R K]. As M/N
is a finitely generated left R-module, the foregoing comments imply that M/N is
linearly compact. It is therefore essential over a socle of finite length and thus admits
an embedding into some Kn. 
�

If M is a left R-module, then the K-adic completion of M with respect to the
K-topology is the inverse limit lim← M/N indexed by the basic submodules of M in

the K-topology. The universal property of the inverse limit ensures the existence of
the obvious R-morphism cM : M → lim← M/N. Since every left R-module is K-dense,

Proposition 2.1 and Corollary 2.7 of [1] and Proposition 6 imply that if R M is
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finitely generated, then there is a natural isomorphism θM : lim← M/N → M∗∗ of left

R-modules such that the diagram

M cM � lim← M/N

�
�

�
�

�
��

�M

�

θM

M∗∗

commutes.
Let us consider some examples of rings R for which the minimal (injective) cogen-

erator R K is quasi-injective when considered as a module KT over its endomorphism
ring T = EndR K. In all of the examples, save perhaps Example (3), every cyclic
submodule of the minimal injective cogenerator is finitely cogenerated, so that the
K-topologies are the same, whether K is the minimal cogenerator or the minimal
injective cogenerator.

Examples

(1) If R is a right Noetherian left FBN ring (cf. [4, Ch. 8]) and R/I is a cyclic module
essential over its socle, then Theorem 8.11 of [4] implies that R/I is Artinian.
Whether R K is the minimal cogenerator or the minimal injective cogenerator,
the open left ideals I of the K-topology are those for which the quotient R/I
is of finite length. This example includes all commutative Noetherian rings A;
in that case, a basis of open ideals may be given by finite products of maximal
ideals (cf. [18]).

(2) Let R be a left one-dimensional domain (cf. [2]). This means that R is a domain
with the property that for every nonzero left ideal I of R, the quotient module
R/I is Artinian. There are Noetherian examples of one-dimensional domains
that do not belong to the class described in Example (1). For example, the first
Weyl algebra A1(k) over an algebraically closed field k of characteristic zero is
a Noetherian one-dimensional domain that is not FBN.

(3) A ring R is called a left V-ring if every simple left R-module is injective. If R K
is the minimal cogenerator and I ⊆ R a basic left ideal in the K-topology, then
R/I is semisimple of finite length. If R M is a finitely generated left R-module,
the foregoing discussion shows that R M∗∗ is isomorphic to the projective limit of
an inverse system of semisimple modules of finite length, with all the structural
morphisms epimorphisms.

(4) A uniserial commutative domain D is called almost maximal [3, p. 78] if every
collection {ri + Ii}i of cosets of ideals Ii of R, that satisfies the finite intersection
property and ∩i Ii �= 0, has nonempty intersection. Such a domain D is a
local ring, with maximal ideal P, and the minimal (injective) cogenerator is
the injective envelope R K = E(D/P) of the unique simple module over D. If
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I ⊆ D is a basic open ideal, then D/I is a uniform module, and therefore may
be embedded into K. It follows that D/I has a simple submodule, and since D
is a domain, I �= 0. By the almost maximal property of D, the quotient module
D/I is linearly compact.

(5) Let R be a local ring with maximal ideal J with J 2 = 0 (cf. [22]). Suppose
further that R J is infinitely generated, while JR is simple. As in the case of the
uniserial domain, the minimal (injective) cogenerator is the injective envelope
R K = E(R/J) of the unique simple left R-module. If I is an open left ideal,
then R/I embeds into a finite direct sum Kn, so that R/I is essential over a
socle of finite length. It follows that R/I must be of finite length. Let us note
that the K-topology on R is not a Gabriel topology or, equivalently, that the
category σ [R K] is not closed under extensions. Indeed, R J and R/J both belong
to σ [R K], but R R does not (since it is not linearly compact).

All the examples above, save perhaps the almost maximal uniserial domain, have
the property that the K-topology is Artinian, that is, for every basic left ideal I ⊆
R R the quotient module R/I is Artinian. This case was considered by Menini and
Orsatti [10]. Recall that a module is said to be locally Noetherian if every finitely
generated submodule is Noetherian.

Theorem 7 The K-topology on R is Artinian if and only if the module KT is locally
Noetherian.

Proof If the K-topology is Artinian, then KT is locally Noetherian by [10, Prop.
2.3.a]. Suppose now that KT is locally Noetherian, and let I ⊆ R be a basic open
left ideal in the K-topology. The T-module VT = annK(I ) is finitely generated, and
therefore Noetherian. If

R = I0 ⊇ I1 ⊇ I2 ⊇ · · · ⊇ I

were a properly descending chain of left ideals containing I, then, as R K is a
cogenerator, the corresponding chain of annihilators would be a proper ascending
chain

0 = annK(I0) ⊆ annK(I1) ⊆ annK(I2) ⊆ · · · ⊆ annK(I ) = VT ,

contradicting the assumption that VT is Noetherian. 
�

Under the conditions of Theorem 7, every module in σ [R K] is locally Artinian
and every module in σ [KT ] is locally Noetherian.

A quasi-injective right T-module VT is called strongly quasi-injective if it is a self
cogenerator, that is, if it is a cogenerator in the category σ [VT ].

Proposition 8 If KT is quasi-injective, then KT is strongly quasi-injective.

Proof Since KT is an injective object of σ [KT ], it suffices to verify that every simple
module XT ∈ σ [KT ] may be embedded into KT . There is a finitely generated VT ⊆
KT for which there is a nonzero morphism η : VT → XT . By Lemma 4, there is a
basic open left ideal I ⊆ R for which V = annK(I ). Consider the kernel WT = Ker η

and express it as the directed sum WT = �i Wi of its finitely generated submodules.
For each Wi, the left ideal Ii = annR(Wi) ⊆ R is a basic open left ideal and Ii ⊇ I.
As all of these inclusion are proper, each of the quotient maps pi : R/I → R/Ii has
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nonzero kernel. Because R/I is linearly compact, it is finitely cogenerated, so the
intersection of the kernels is nonzero. Thus the inclusion I′ = ∩i Ii ⊇ I is proper. Let
r ∈ I′ \ I and consider the morphism λr : V → KT defined by the action of r on KT

from the left. Since r �∈ I, the morphism λr is nonzero. As r ∈ I′, the kernel of λr

contains all the Wi, hence WT . The image of the morphism is therefore isomorphic
to the simple module V/W ∼= XT . 
�

4 The Bicommutator

Assumption: From now on, suppose that KT is quasi-injective. The K-double dual,
or, equivalently, the K-adic completion, of the module R R will be denoted B :=
R∗∗ = EndT(KT). Since T is the endomorphism ring of R K, the ring B is the
bicommutator of the left R-module R K. The action of B gives K the structure of a
left B-module. As the K-double dual of R, the bicommutator comes equipped with
the structure of an R-ring induced by the evaluation morphism �R : R → B, which
is also a morphism of rings.

The B-T-bimodule B KT is balanced in the sense that EndB(B K)=T and
EndT(KT)= B. As in the case of the R-T-bimodule R KT , two contravariant func-
tors HomB(−, B K) : B-Mod→Mod-T and HomT(−, B KT) : Mod-T→B-Mod are
induced. We denote both functors by (−)† and a left B-module M is B KT-reflexive if
the natural transformation 
 (given by the evaluation map) from the identity functor
on B-Mod to the functor (−)†† is a B-isomorphism at B M.

The restriction of scalars functor resB
R : B-Mod → R-Mod along the ring morphism

�R : R → B, associates to every left B-module B M a left R-module structure
denoted R M. To the B-module B K is associated the R-module R K, so this functor
induces a functor from σ [B K] to σ [R K].

Proposition 9 (cf. [1]) The restriction of scalars functor along the ring morphism
�R : R → B. induces an equivalence of categories,

resB
R : σ [B K] ⊆ σ [R K].

Proof Since R K is a cogenerator, �R(R) ⊆ B is dense [19, 47.6(4)]. By [19, 15.8], the
functor resB

R is an equivalence of categories. 
�

The theorem implies that for B M ∈ σ [B K] the restriction functor resB
R commutes

with the K-double dual. For, consider the diagram

B M
resB

R � R M


M

� �

�M

M†† resB
R �(R M)∗∗.
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We claim that it is commutative. First note that resB
R(M††) = M†∗. Then, as both

B M and B K belong to σ [B K], the equivalence given by the theorem implies that
M†

T
∼= M∗

T . One consequence is that a left B-module M in σ [B K] is B K-reflexive if
and only if R M = resB

R(M) is R K-reflexive.
In view of the fact that the bimodule B KT is balanced, greater effort (cf. [9, 20]) has

been devoted to the study of the K-duality induced between the categories Mod-T
and B-Mod. If R K is the minimal injective cogenerator, then because it is locally
linearly compact, the pair (T, KT) is an example of what Menini [8] calls an l-couple
for R. As KT is strongly quasi-injective, the B KT -reflexive right T-modules have
been characterized by Zelmanowitz [20, Thm. 3.3] as the modules copresented by
KT . For the class of submodules of KT this characterization yields the following.

Theorem 10 (cf. [9],[20]) There is an inclusion-reversing bijective correspondence
between the submodules VT ⊆ KT and left ideals B X ⊆ B which are closed in the
B K-topology on B B. The correspondence is given by the rules

VT �→ annB(V) and B X �→ annK(X ),

which are mutual inverses. The left ideal B X ⊆ B is open in the B K-topology if and
only if it is the anihilator of a finitely generated submodule VT ⊆ KT .

Proof Everything in the first sentence follows from [9, Thm. 4.7] and [20, Thm. 3.3],
except for the assertion that annB(V) is closed in the B K-topology. But that is imme-
diate from the second statement and the observation that annB(V) = ∩V′ annB(V ′),
where the intersection is indexed by the finitely generated submodules of VT . The
second statement is proved in the same manner as were Lemmas 3 and 4; one appeals
to the consequence of Proposition 9 that B K is the minimal (injective) cogenerator
of σ [B K]. 
�

Let us give some examples of left ideals of B that are closed in the B K-topology:

(1) Let I ⊆ R be a left ideal and VT = annK(I ), and denote by cl(I ) the closure
of I in B. Then cl(I ) = annB(V). If I ⊆ R is a two-sided ideal, then cl(I ) is a
two-sided ideal of B. This is because VT = annT(I ) is an R-T-subbimodule
of R KT and is therefore, by Proposition 9 a B-T-subbimodule.

(2) Suppose that YB ⊆ B is a right ideal of B. Because B is the bicommutator
of R K, the left annihilator of Y in B is annB(Y KT) and is therefore a closed
left ideal. In particular, if e ∈ B is idempotent, then the summand Be = annB

[(1 − e)K] is closed.
(3) By Lemma 4 and the fact that R K is a cogenerator, the simple submodules of

KT are of the form annK(I ), where I is a maximal left ideal of R. It follows
that socR(K) = socT(K) is a B-T-bimodule of B KT . Since KT is an injective
object of σ [KT ] and is essential over its socle, the Jacobson radical J(B) of
the endomorphism ring B = EndT(KT) is given [19, 22.1(1)] by

J(B) = annB[soc(K)].
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If R is a left Noetherian V-ring, then K = soc(K), so that J(B) = 0. Since B
is the endomorphism ring of an injective object of σ [R K], [19, 22.1(1)] implies
that B = B/J(B) is von Neumann regular.

5 Topologies of Finite Type

All of the examples given in Section 3, except the last, have the property that the
K-topology on R may be given by a fundamental system of open neighborhoods
of 0 which are finitely generated left ideals. Such a linear topology is said to be of
finite type. Examples of linear topologies of finite type are the finite matrix topologies
considered in [5]; Gabriel topologies of finite type are treated in [17, Section XIII.1].

Consider the following commutative diagram.

M1
f � M2

g � M3 � 0

�M1

�

�M2

�

�M3

�
M∗∗

1
f ∗∗

� M∗∗
2

g � M∗∗
3 � 0

If the top row is exact and consists of finitely generated left R-modules, then, as
in the proof of Theorem 2, the right T-modules M∗

i will all belong to σ [R K]. As
KT is quasi-injective, the functor (−)∗ is exact on σ [R K]. So if the K-double dual
functor is restricted to the finitely generated left R-modules, it is the composition of
a contravariant left exact functor with a contravariant exact functor. Thus it is a right
exact functor on the finitely generated modules. We infer that the bottom row is an
exact sequence of left R-modules (resp., B-modules). In particular, if M1 and M2 are
K-reflexive, then so is M3.

Proposition 11 The K-topology on R is of finite type if and only if every module M ∈
σ [R K] is a direct limit M = lim→ Mi of finitely presented K-reflexive modules Mi that

belong to σ [R K].

Proof If the K-topology on R is of finite type, then the finitely presented modules
of the form R/I, where I is a basic finitely generated open left ideal of R, form a
generating set for the category σ [R K]. Such a module R/I is finitely presented and
K-reflexive. Every module M in σ [R K] may therefore be presented by coproducts of
such modules

⊕a∈A R/Ia
f �⊕b∈B R/Ib � R M � 0.

An argument as in [7, Appendice] shows that M is the direct limit of finitely
presented modules Mi each of which is given by a finite subpresentation of the
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above. More precisely, for each i, there are finite subsets Ai ⊆ A, Bi ⊆ B such that
a presentation of Mi is given by

⊕a∈Ai R/Ia
fi �⊕b∈Bi R/Ib � R Mi � 0,

where fi is the restriction of f to ⊕a∈Ai R/Ia. Both direct sums are finite hence K-
reflexive. The foregoing observations indicate that each Mi is also K-reflexive.

Conversely, suppose that every M ∈ σ [R K] is the direct limit of finitely presented
modules in σ [R K]. If I ⊆ R is an open left ideal, the hypothesis implies that there is
an epimorphism g : R N → R/I, where R N is a finitely presented module belonging
to σ [R K]. Now R/I = lim→ R/I′, where the direct limit is indexed by the finitely

generated left ideals I′ ⊆ I. As R N is finitely presented, the functor HomR(N,−)

commutes with direct limits [17, Prop. V.3.4]. The morphism g : N → R/I thus
factors through one of the quotient maps p : R/I′ → R/I, where I′ ⊆ I is finitely
generated,

N

f

�

�
�

�
��

g

R/I′ p �R/I.

Let J0 ⊆ R be a finitely generated left ideal with the property that (J0 + I′)/I′ is the
image of f. As g is an epimorphism, J0 + I = R. Thus there is a finitely generated
left ideal I0 ⊆ I such that J0 + I0 = R. Now replace I′ with I′ + I0. The diagram
remains commutative, with the added feature that f is now an epimorphism. Thus
R/I′ ∈ σ [R K] and hence I′ ⊆ I is a left ideal of R, which is finitely generated and
open in the K-topology. 
�

Recall the morphism ζR,M : R B⊗R M → R M∗∗ used in the proof of Proposition 1.
It is natural in R M, which means that

ζR,− : R B ⊗R − → (−)∗∗

is a natural transformation of endofunctors of R-Mod. The naturality implies that
if M is an R-S-bimodule, then ζR,M is an R-S-morphism. The following proposition
implies that if R MS is an R-S-bimodule such that R M is finitely presented, then the
right S-module B⊗R MS is pure-injective.

Proposition 12 Restricted to the category R-mod of finitely presented left
R-modules, the natural transformation ζR,−:R B ⊗R − → (−)∗∗ is a natural
isomorphism.

Proof We need to prove that for every finitely presented left R-module M, the
R-morphism ζR,M : R B⊗R M → M∗∗ is an R-isomorphism. The functors B ⊗R −
and (−)∗∗ agree on the value at R, B ⊗R R = B = R∗∗. Thus they agree on every
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finitely generated free left R-module. The functor (−)∗∗ is right exact when restricted
to finitely generated left R-modules, so if we apply the two functors to a free
presentation

Rm f � Rn � M � 0

of the finitely presented left R-module R M (cf. the argument in [17, Proposition
IV.10.1]), then the naturality of the morphism ζ ensures that ζR,M : B ⊗R M → M∗∗
is an R-isomorphism,

B ⊗ Rm f � B ⊗ Rn � B ⊗ M � 0

ζR,Rm

� �

ζR,Rn

�

ζR,M

Bm f ∗∗
� Bn � M∗∗ � 0.


�
Theorem 13 If the K-topology on R R is of finite type, then the functor B ⊗R − :
σ [R K] → σ [B K] is the equivalence inverse of resB

R.

Proof We need to prove that R B ⊗R − : σ [R K] → σ [R K] is naturally isomorphic to
the identity functor on σ [R K], and that B ⊗R resB

R(−) : σ [B K] → σ [B K] is naturally
isomorphic to the identity functor on σ [B K].

Proposition 12 implies that ζR,M : R B ⊗R M → M∗∗ is a natural isomorphism
on the category of finitely presented left R-modules. As M �→ M∗∗ is a natural
isomorphism on the category of K-reflexive module, we see that the identity functor
and the functor R B ⊗R − are naturally isomorphic on the category of K-reflexive
finitely presented modules. Now both the identity functor and R B ⊗R − commute
with direct limits, and Proposition 11 implies that every object of σ [R K] is a direct
limit of K-reflexive finitely presented modules in σ [R K]. The natural isomorphism
from R B ⊗R − to the identity functor therefore extends to all of σ [R K] via the direct
limit.

To show that the endofunctor B ⊗R resB
R(−) of σ [B K] is isomorphic to the identity

functor, we proceed similarly, by first showing that the two are naturally isomorphic
on the subcategory of σ [B K] of B K-reflexive modules B M for which R M is finitely
presented. Theorem 9, the comments that follow the theorem, and Proposition 11
imply that every module in σ [B K] is a direct limit of modules in this subcategory.
As both functors commute with direct limits, the isomorphism will extend to all of
σ [B K].

Notice first that the definition of ζR,− may be used to define a natural
transformation

ζ ′
R,− : B B ⊗R − → (−)∗†,
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of functors from R-Mod to B-Mod. If B M is K-reflexive and R M is finitely presented,
then we get natural isomorphisms

B B ⊗R resB
R(M) = B B⊗R M

∼= (R M)∗† ∼= (B M)†† ∼= B M.

The first natural isomorphism follows from Proposition 12; the second from the
consequence (R M)∗ ∼= (B M)† of Theorem 9; and the third from the assumption on
B M that it is B K-reflexive. 
�

The main point of the theorem is that for a left R-module M in σ [R K] the
tensor product B B ⊗R M is a B-module in σ [B K] whose restriction to R is naturally
isomorphic to M.

6 Applications

Assumption: Unless otherwise specified, we assume from now on that the K-
topology on R R is of finite type. Let us describe some of the consequences of
Theorem 13. In the following, the embedding RR ⊆ BR is understood to be given
by �R.

Corollary 14 For every left R-module M ∈ σ [R K], B/R ⊗R M = 0.

Proof Apply the functor − ⊗R M to the pure-exact sequence of right R-modules

0 � RR
�R� BR �B/R � 0

to obtain the exact sequence of left R-modules

0 � R M �R ⊗ 1M � B ⊗R M � B/R ⊗R M � 0.

By Theorem 13, the morphism �R ⊗ 1M is an isomorphism of left R-modules. 
�

The pure-injective envelope of a right S-module MS is a pure-monomorphism f :
MS → NS with NS pure-injective such that:

(1) Any S-morphism g : MS → N′
S with N′

S pure-injective factors through f,

MS
f � NS

�
�

�
��

g

�

�

�

�

�

�

�

�

�

�

�

�

��

h

N′
S.
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(2) Any endomorphism k : NS → NS for which the diagram

MS
f � NS

�
�

�
��

f

�

k

NS

commutes is an automorphism.

The second condition ensures that the pure-injective envelope of a right S-module
MS is unique up to isomorphism over MS. It will be denoted by PES(M).

Corollary 15 The morphism �R : R → B of right R-modules is the pure-injective
envelope of RR.

Proof Since �R : RR → BR is a pure-monomorphism, any pure-monomorphism
f : RR → NR, with NR pure-injective, factors through �R. We will prove that any
endomorphism h : BR → BR that fixes R pointwise is the identity 1B : BR → BR

by showing that HomR(B/R, B) = 0. Then, if h : BR → BR fixed R pointwise, the
induced morphism 1B − h : B/R → B would be zero, h = 1B. Corollary 13 implies
B/R ⊗R K = 0, so that

HomR(B/R, B) = HomR(B/R, HomT(R KT , KT))

∼= HomT(B/R ⊗R KT , KT) = 0.


�

Example (5) of Section 3 shows that when the K-topology is not of finite type, the
bicommutator of R K need not be the pure-injective envelope of RR. Indeed, the ring
R is pure-injective as a right module over itself. It is therefore its own pure-injective
envelope, while the bicommutator BR of the minimal (injective) cogenerator R K is
a proper extension of RR.

Theorem 2 showed that if R MS is finitely generated as a left R-module, then
the evaluation morphism �M : MS → M∗∗

S is a pure monomorphism into a pure-
injective right S-module. The following result provides a sufficient condition for the
S-morphism �M to be the pure-injective envelope.

Corollary 16 If the R-S-bimodule R MS is finitely presented as an R-module and
R M ⊗S M∗ ∈ σ [R K], then the pure-injective envelope of MS is given by �M :
MS → M∗∗

S .

Proof As in the previous proof, we will show that HomS(M∗∗/M, M∗∗) = 0. An
argument as in the proof of Corollary 14 together with the isomorphism M∗∗ ∼=
B ⊗R M of Proposition 12 shows that M∗∗/M is isomorphic to B/R ⊗R MS. Now if
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M ⊗S M∗ ∈ σ [R K], then Corollary 14 implies that B/R ⊗R M ⊗S M∗ = 0. It follows
that

HomS(M∗∗/M, M∗∗) ∼= HomS(B/R ⊗R M, M∗∗)

= HomS(B/R ⊗R MS, HomT(S M∗
T , KT))

∼= HomT(B/R ⊗R M ⊗S M∗
T , KT)) = 0. 
�

Let S be a ring whose center R = C(S) is a Noetherian ring and which is finitely
generated as an R-module. If MS is finitely generated, then it is also finitely generated
over the center R. We can consider M as an R-S-bimodule that is finitely presented
as a left R-module. As K is a faithful R-module and R is commutative, there
is an obvious embedding R ⊆ T. As R M is finitely generated, the dual module
M∗

T ∈ σ [KT ] (cf. proof of Theorem 2). Thus M∗ considered as an R-module belongs
to σ [R K] and therefore M ⊗S M∗ considered as an R-module belongs to σ [R K]
(ibid). The corollary implies that the pure-injective envelope of MS is given by the
evaluation morphism �M : MS → M∗∗

S .

The pure-injective envelope MS ⊆ PES(M) of a right S-module is an elementary
extension (cf. [13, Thm. 4.21], [16]). If the ring R is left coherent, then the class of flat
right R-modules is elementary (cf. [13, Thm. 14.18],[15]), so that the pure-injective
envelope of RR is flat. For example, suppose that R is left Noetherian. Then the K-
topology on R R is of finite type, so the bicommutator BR of R K is flat. If BR is flat,
Proposition 12 implies that K-adic completion is an exact functor when restricted to
the finitely presented left R-modules.

Corollary 17 Let R be a left one-dimensional domain. The bicommutator BR of R K
is flat.

Proof A left one-dimensional domain is a left Ore domain, so its left field of fractions
Q is flat when considered as a right R-module. We will prove that the right R-module
B/R is a vector space over Q and is therefore itself flat. Considering the short exact
sequence

0 � RR
�R� BR �B/R � 0

immediately yields the result.
Let r ∈ R be nonzero. Then R/Rr is Artinian and so belongs to σ [R K]. By

Corollary 14,

(B/R) ⊗R R/Rr ∼= (B/R)/(B/R)r = 0,

so that B/R is a divisible right R-module. To see that it is torsion-free, suppose there
is an element b ∈ B such that br ∈ R. As RR is pure in BR, there is a b ′ ∈ R such
that br = b ′r. Thus (b − b ′)r = 0. But RR is torsion-free and BR is an elementary
extension, so that BR is also torsion-free, which implies that b = b ′ ∈ R. It follows
that B/R is a torsion-free divisible right R-module. 
�
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Let e ∈ B be an idempotent element, e2 = e. By Theorem 13,

eB ⊗B K = e(B ⊗B K) = e(B ⊗R K) = eB ⊗R K.

Lemma 18 If e ∈ B is idempotent, then EndR(eBR) = EndB(eB) = eBe.

Proof Since eB ∼= HomT(K, eK), we get that

HomB(eB, eB) ∼= HomB(eB, HomT(B KT , eKT))

∼= HomT(eB ⊗B KT , eKT)

∼= HomT(eB ⊗R KT , eKT)

∼= HomR(eB, HomT(R KT , eKT)) ∼= EndR(eB).


�

For example, if e ∈ B is an irreducible idempotent, then eB is indecomposable as a
right B-module. By the lemma, it is also indecomposable as a right R-module. Since
eBR is a direct summand of the pure-injective right R-module BR, it is itself pure-
injective, which implies that eBe is a local ring [23, Thm. 9]. If e = 1, the lemma yields
the equation EndR(BR) = EndB(BB), which indicates that every R-endomorphism
of BR is of the form λb : x �→ b x for some element b ∈ B.

Corollary 19 (cf. [21, Thm. 6.1]) There exists a collection {ea}a∈� of mutually or-
thogonal irreducible idempotents in the bicommutator BR such that BR is the pure-
injective envelope of a direct sum of pure-injective indecomposable R-modules

BR = PER(RR) = PER

(
⊕

a∈�

ea B

)
.

Proof First, we will show that KT is essential over its socle. It is clear that if J ⊆ R
is a maximal left ideal, then annK(J) is a simple T-module. But we know that every
finitely generated T-submodule of KT is of the form VT = annK(I ) for some basic
open left ideal I ⊆ R. So take a maximal left ideal J ⊇ I; then annK(J) ⊆ V is
contained in the socle of KT .

Write soc(KT) = ⊕a∈� Wa as a direct sum of simple T-modules. Let Eσ (Wa)

denote the injective envelope of Wa in the category σ [KT ]. Then

KT = Eσ (⊕a Eσ (Wi)).

Let {ea}a∈� be the family of mutually orthogonal irreducible idempotents in B
corresponding to this decomposition. By the comments following Lemma 18, each
direct summand ea B is a pure-injective indecomposable right R-module.

Consider the pure-injective envelope of the direct sum PER(⊕a∈� ea B). Since the
direct sum is a pure submodule of BR, and BR is pure-injective, the pure-injective
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envelope is a direct summand PR of BR. Write BR = PR ⊕ P′
R and let e ∈ EndR(BR)

be the idempotent that projects onto PR with respect to this decomposition. Thus
PR = eBR. By the comments following Lemma 18, e ∈ EndB(BB) = B. Now ea B ⊆
eB for every a ∈ �, so the right B-module eB is a direct summand of BB that contains
all the ea, a ∈ A. The idempotent 1 − e therefore annihilates the socle of K, and
therefore 1 − e ∈ J(B). But that forces 1 − e = 0, and the pure-injective envelope of
the right R-module ⊕a∈� ea B is BR as claimed. 
�

Suppose that R is a left Noetherian V-ring. We noted earlier that the ring B is
von Neumann regular. The socle of B is generated as a right or left B-module by
the irreducible idempotents. As the collection {ea}a∈� is a maximal set of mutually
orthogonal irreducible idempotents, we have that

soc(B) = ⊕a∈� ea B = ⊕a∈� Bea.

The corollary implies that, considered as a right R-module, the pure-injective enve-
lope of soc(B) is the right R-module BR (cf. [14, Example 5.2]).

By contrast, let us show that if soc(B) is considered as a left R-module, then it
is a direct summand of R B. It suffices to prove that Bsoc(B) ∈ σ [B K]. For then,
Proposition 9 implies that Rsoc(B) is semisimple, hence injective. Consider an
irreducible idempotent e ∈ B, and pick k ∈ K such that ek �= 0. There is a morphism
from η : Be → K determined by η : e �→ ek; it is a nonzero morphism. As Be is
simple, the morphism η is an embedding of Be into B K. Thus Be ∈ σ [B K], and hence
Bsoc(B) ∈ σ [B K].
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