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Abstract— The problem of sending a pair of correlated sources U Orm
through a broadcast channel with correlated side informatbn DEC1 SINK1
at the receivers is studied from a joint source-channel codig N
perspective. Sufficient and necessary conditions are prayéd for U N Y3
reliable transmission. The two conditions are identical ezept = X
i - « 4 p(u,v.u; ENC =P(,.% %)
for the left-hand side of one of three inequalities. For two pecial [~
cases the problem is solved completely: when one side infoation V" Yg
is a function of the sources, and when a certain Markov propety
is satisfied on the sources and side information. DEC2 [ SINK2
- ut2)v"

<1

I. INTRODUCTION

. A . . Fig. 1. Syst del.
Consider the system shown in Fig. 1, which consists of a 9 ysiem mode

discrete memoryless broadcast channel with transitiofo-pro

ability p(y1,y2|x), a pair of discrete memoryless correlateghe receivers. Our work in this paper is to extend the results
sources(U, V'), and a pair of side information random vari-o¢ [4] to a joint source-channel coding scenario.

ables (U,V). The sources and side information have the

joint distributionp(u, v, @, 7). There is further an encoder and IIl. MAIN RESULTS
decoderqf, g1, g2) such that Theorem 1 A sufficient condition for the reliable transmission
n n 1rn in the above system is
X" = fUnvn) (2) Y )
Um(1) = g1 (Y, U™) 2 LUWUV)<I(UW;:Y,U) (5)
(U™(2), V") = g2 (Y5, V™). 3) H(U,V) <I(U,W;Yl,U)+I(MX;1/2,V|U,W)( )
6

We seek the set of pail®(y1, y2|z), p(u,v,a,v)) for which ) ~
there exist(f1, g1, g2) such that for any > 0 we can make HU,V) <I{U,V, X;75,V) (7)

Pr((U™(1) U™ U(U™(2) £UMU V" £V") <€ (4) ]

for arbitrarily small e. We call this problem the broadcast H(U) <I(U, W;Yl’[{) - ®)
channel with degraded source random variables and receiver H(U,V) < I(U,W:;Y1,U) + I(V, X; Y2, VIU, W) (9)

side information. H(U, V) < I(U,V,X;Ys, f/) (10)
This problem has been studied in various settings in recent

years. In [1], Tuncel considered the problem of sending"%’it

single source to both receivers through a broadcast chanpel v, a, o, w, 2, 41, y2) = p(u, v, @, 0)p(w, z|u, V)p(y1, ya|z)

with different side information at the receivers. In [2]}[&he (11)

problem of sending two independent messages to two reseiver

through a broadcast channel with the undesired messageRgghark:

the side information at the receiver is investigated. TBis i 1) The sufficient condition and the necessary condition are

a channel coding problem because it begins with messages. identical except the left-hand side of the first inequality,

However, it indeed can be interpreted as a special case of which is I(U, W;U, V) in the sufficient condition and

Tuncel’s joint source-channel coding problem. An extensio HU)=1(U;U,V) < I(U,W;U,V) in the necessary

of this problem is given by Kramer and Shamai in [4], where condition.

degraded messages are sent through the broadcast chanr®l The auxiliary random variablél” represents a code

with parts of the messages provided as side information at to be decoded by both receivers. Supposedly, the only

and a necessary condition for the reliable transmission is



information that is decoded by both receiverdjisvith [1l. PROOF OFTHEOREM 1
entropy H(U) as in (8). However, to construct a code . . ) _ L
with the joint distribution in (11), we pay the price of Sufficient Condition: Consider a given joint distribution
increasing the amount of information decoded by botfyy, v, @, o, w, =, y1,y2) = p(u, v, @, )p(w, z|u, v)p(y1, y2|2)
receivers fromH (U) to I(U, W;U, V). (24)

3) Theorem 1 implies that the broadcast channel witjye will show that (5) and (6) are equivalent to the following
side information can be viewed as a parallel broadcast -
channel. That is, in addition to the broadcast channel HU,W;U,V)+ R<I(UW;Y1,U) (25)
p(y1,y2|x), there is a virtual broadcast channel with H(V|IUW) =R < I(V,X;Ys, VU W) (26)
input (U, V) and two outputd/ andV'. We note that the , ,
inputs of the two broadcast channels may be correlatéar someQ = R < H(V|U,W). Itis stra|ghtf0r.war(.:i that (25)

) ] o and (26) implies (5) and (6). Conversely, (6) implies tharén
In the following two special cases, the sufficient and negyistss > 0, such that
essary conditions meet. _ ~
HU,V)+0 <I({UW;1,U)+ I(V,X; Y, VIU W) (27)

Theorem 2 If U is a deterministic function df/, V'), then the Define R £ I(U,W;Y1,U) — I(U,W;U,V) — 5, where we
sufficient and necessary condition for reliable transnoisss assume thaf? > 0. Then (25) is valid. We note that

H(U,U) < I(U,U;U) + I(S; Y1) (12) R<I(UW:;Y1,U) - I({UW;U,V)
H(U,V) < I(U,U;0) + I(S; Y1) + I(V; V|U, U)+ <HU,V) - IUW:U,V)=HVIU,W)  (28)
+ I(X;Y5]S) (13) From (27), we have
H(U,V) <I(U,V;V) + 1(X; Y2) A4 B v)- U W;Y1,0)+6
with :H(U,V)—I(U,W;U,V)—R—ngé

p(uavaﬂaﬁasaxvylayQ) :p(u7U,ﬁ7ﬁ)p(8)p(x|s)p(y1,y2|x) 1) ~
(15) = H(V|U,W) = R+ 5 < I(V,X; 2, VIU, W) (29)

which complete the converse direction. Thus, in the sequal,
will show that (25), (26), (7) and (11) are sufficient conafiti
for the reliable transmission.

To achieve the proposed sufficient condition, we will con-
struct a superpostion code. The inner codé”, W™) is

Remark: In this case,(U, S) plays the role ofi¥ in the
general problem.

Remark: Suppose we choos& and V' to be independent
with entropy R; and Ry, respectively, and side informatidn

andV as functions ofV and U, respectively, with entropies . :
N Sy S according top(u, w) with rateI (U, W; U, V)+ R and decoded
H(U) = R, andV’ = F;. Then Theorem 2 simplifies to by both decoE:iers.) The outer(coc{é”, V",)X") is according
Ry <I(S;Y1) (16) to p(u,v,x|u,w) with rate H(V|U, W) — R and decoded by
Ri+ Ry < Ry + 1(S; Y1) + I(X; Y3|S) (17) decoder2. We note that part of the code is provided by the
sources(U™, V™). Thus, the task is to generated the rest of

< R! : L . !
Ryt By < By +1(X; V) (18)  the code joint typical with the sources.
with 1. Random Codebook Generatidndependently generafe
(s, z,y1,y2) = p(s)p(z|s)p(y1, y2|x) (19) sequences uniformly distributed in the strong typical &g,

L . . . as defined in [6, Definition 1.2.8], say/"(1),..., W™ (L),
which is equivalent to Theorer in [4]. This means that where L In T, >[ (U, V:W). For ]ev:}f// p(ai)r of sequ(erzces
Theorem 2 includes Kramer-Shamai's result as a special ca@el v")ne Un % Pn éef;neW(u" v as follows

= - T e {W™0),...,W™(L
Theorem 31f U — U — V, then the sufficient and W(u",v™) £ {w”: El;n vi wn()é']’n (L)} } (30)
necessary condition of the reliable transmission is T wvwi

If W(u™,v™) # 0, then uniformly select an ele-

H(U)<I(U;[{)+I(W;Yl) . (20) ment from W(u",v"™) and denote it asw™(u",v"),
HU,V) <I(U;U) + I(W:; Y1) + I(V; V|U)+ otherwise, let w"(u",v") be an arbitrary sequence in
+ I(X; Ya|W) (21) {Wn"(),...,W"(L)}. For ea(ch (u",vng € é/{" X
o . V" generate one sequence’(u”,v”,w") according to
H(U,V) < I(U,V; V) + I(X;Y) @2) 1 S, ) wherentn — ).
with 2. Encoding Define f(u™,v™) = 2™ (u™, v™, w™ (u™, v")).

- S 3. Decoding Define the set as
p(uv v,u,v,w,T, Y1, y2) = p(ua v, u, v)p(w)p(a?|w)p(y1 ) y2|I) g

(23) C2 Ty NU" x {(W"(1),...,W"(L)})  (31)



For any (yf,a") € VP x U, if (u",w") is the only _ .o >

sequence pair i€ such that(u™, w™, y},a") € T[ZWYIU]’ _(“"7“’")65m,wn#(un,wn)
then decoder; is defined asg; (v}, 4") = u™, otherwise, @nwree
I(et gl(i?,an) b~e g?(arbitra;ry ?equerce @ For .any X Pr({0™, W™, Y, U™) € T[Zwylgﬂ(un w™) sent N EY)
yy,0") € yng”, if (u",v™) Is the only sequence pair suc H(U. WIT.Y, 926
that (un V", w (u v ) T (u V", w (un’vn))’yg’f)n) c SLXGXp(n(H(U|W)—|—25)) % exp(n( ( ) | ) 1)+ ))
In o . (1 —¢€)exp(n(H(U,W) — 24))
UVXWY V)’ then decodey, 57, ") = (u",1"), otherwise, <L H(UIW) — I(U,W: T, Y1) + 76 42
let g>(y5, o) be an arbitrary pair of sequencesTf,. <L x exp(n(H(UW) — I(U,W;U, Y1) +79)) (42)
o Thus, Pr(E1\Ey) < e with sufficiently largen if
4. Probability of Error. Let (U™, V™, U™, V") be the -
"y (gn,ve, v, ve) R+ I(U,V,U,W) < I(U,W;U,Y1) (43)

sources and side informatiof}¥’™, X™) be the code, and
(Y7, Y5") be the channel outputs. The average probability errgihere R 2 LinL—1(UV;W).
P, < Pr(Ey UE, U Ey)
< Pr(Ey) + Pr(E;\Ey) + Pr(E2\Ep) (32) For the third term in (32), we have

where Pr(Ex\Ey) = Pr(E2 N Eg) = Pr((E21 U Ex2) N Ep)
n n yrn {/n n n n < Pr(Es1 N ES Pr(Es N ES 44
Eo & (U V0" VWX YY) € T8 o =PriEn R et 09
(33) where
_ - Eo = U
E £ U (AN TAR SR USRS 1wy, o (34) o W=, W)
(U, Wm)£U™,Wn) (U;n‘/:l#([;-n D)
By 2 U (U" v X YRV € T P
2 = 2 TN n n n n y/n n
TN [UVWXY5V] (U VAR 1TALND ¢ ’YQ’V)ETUVWXYV] (45)
(35) Eyp 2 U
WL W (U, V™) (36) o)
Xn é ,CC"(U", Vn, wn(Un7 Vn)) (37) amn, V")ET[UV]
Furthermore, we have o, vewn X", YoVt e T;VWXY \4 (46)
Pr(Ey) = Pr((U™, V™", W™) ¢ qng]H While the error ev_epEz can be decompqsed differently, the
A current decomposition yields the expressions most clofigeto
+Pr((UT VU VW XY YY) ¢ necessary condition. For the first term in (44), we have
Twvorwar U5V W) € Tgvwn) - (38) Pr(Es N Eg)
With LIn L > I(U,V; W) and sufficiently large: , we have — _ Z p(u™, ™) Z
Pr((U™, V", W") ¢ T(UVW)) < ¢ (39)  (wrwneThy, (o v aun )
(Un V")E’T"

and also because of the codebook generation, we have (v

Pr(@" V", W X" Y5 V") € T[vaxnff]'

Pr((U™, V", X" Y]",Yy') ¢ B
n n n n n n n n "™ sent N ES
Ty UV WU VW) € Ty < ¢ () R
(40) =( ; I}ll)aexT
wh UV (@n, wny=(u™,w™)
Thus, we have [6, Lemma 1.2.10] (O™ 2™ o)
n n yrn Y/n n n n @n, Vn)ET[UV]
Pr((U™ VU VW XM YY) ¢ T [UVUVWXY1Y2] Pr(O™, V", W™, X7, Y3, V™) 67—[n ~]|
< 9% 41 A 25 UVWXY2V
_ B (41) (u™,v™) sent N Ef)
For the second term in (32), we have <exp(n(H(V|U, W) + 26)) exp(n(H(W) + 6))
Pr(Ey\Ey) = Pr(Ey N ES) - (1 =€) exp(n(H(W|U, V) —28))L
=Y ety Y . SP((H (V. XU W, Ya, V) + 20))
(um,wm)eC (U",{Z/")i;t(u",w") (1 - E) eXp( ( (Uv MX) - 26)) B
@ wree <exp(n(H(V|U,W) — R — I(V, X; Y2, V|U, W) + 115))

Pr((U™, W™, Y, U") e Ty, ol (u", w") sent N EG) (47)



Thus, Pr(E21) N EG) < e with sufficiently largen if

HVIU,W) - R<I(V,X;Y2, VIU,W)  (48)

For the second term in (44), we have

Pr(EggﬂE(‘j)— E p(u™,v™) E Pr((U™, V™ W™,
( )e,zi[UV] (Un,Wn);é(u",w")
(O™, 7Y (u™,o™)

(U",V")ET[?]V]

XY vt e 1 ,o™) sent N EY)

[UVW XYV |(
§ Pr((U™, V™ W™,
UV (@n, W) (u™,w™)
(O™, V™)#(u™,v™)
(O™ VMET Gy

XY,V e Tn

< max
(um,om) ET

UVWXYs V]|( ,0™) sent N EY)

exp(n(H(U,V,X[Y2,V) + 20))
= oG Y) - D  ep(H U V. X) — 29))
<exp(n(H(U,V) —I(U,V,X; Y, V) + 68)) (49)
Thus, Pr(E2 N E§) < e with sufficiently largen if
H(U,V) < I(U,V,X;Y5,V) (50)

The average probability of error with sufficiently large

Pe S PT(EQ) + P’I’(El\Eo) + PT(EQl\E()) + P’I’(EQQ\E())

<2e+et+e+e=5e (51)

if the following condition is satisfied
I{UW;UV)+R< I(UW;Y,,0) (52)
HV|U,W)=R<I(V,X;Y,VIU,W)  (53)
HUV)<I(UV,X;Ys, V) (54)

Necessary Condition: From Fano’s inequality, we have
nH(U) < I({U™ Y], U™) + ne
=3 I(U™ Y1, Ui Yy~ U + ne
i=1
< U YT U Y, U) + ne
i=1

_ZI UYL U Yy, Vit Ya, Ui)—

(Y2(i+1)7 V;Jrl; Yii, Ui|y1171= Ul_lv U") + ne

1(U;, Zi; Y1i, Ui)—

. s
(= L1
~

i=1
— I(Y3{i40y, Vil as Y, il Y{ ™1 U7 U™) +me - (85)
< I(Us, Zi; Vi, Us) + ne (56)
i=1

where Z; £ (U1, U7, Y7 U Y34y, Vi) From

Fano’s inequality, we further have

nH(VI|U) < I(V™ Y, VU™ + ne

= IV X" Y ViU, Yl 0y, Vi) + e

N
Il
-

I(Vi, X3 Yai, VIU™, Y3t 1), Vity) + me

e

N
Il
-

I(Vi, X3, V{7 U Yo, Vil U™, Y40y, Vity) + e

-E%:

s
Il
-

1(Vi, Xt Yar ViU Y00, Vi Y, 07
(Yliilaﬁi_l;}/ﬂyf/i”]n; QyziJrl),f/ﬁrl)-i—nE

1(Vi, Xi; Yoi, iUy, Zi)+

i=1
+ 1Y U Yo, ViU, Yol ), Vi) +ne (B7)
Because of the following equality [6],
il( Sty Vit Vi, Ui YL 071 U™)
i=1
:il(yliilaﬁiq;y'?iaviwn 21%1+1)"71+1) (58)
i=1
(55) and (57) yields
Zn: I(U;, Zi; Y1, U+
-;I(V;,XZ,YQZ,V|U“Z)+2TL€ (59)

Finally, from Fano’s inequality, we have
nH(U, V) < I({U™, V", X", Y, V") + ne
=3 U™ V" X" Y, ViYL V) 4 e
1=1"
<> (Ui, Vi, Xi; Yai, Vi) + e
i=1n
Let @ be a random variable uniformly distributed on
{1,...,n}, and random variabl§Z, U, V,U,V, X, Y1, Y2, Q)

such that
Pr(~Z_z,U—uV_vU—u in)
) (61)

(60)

=0,X=2,Y1 =y1,Yo =1

( Z:ZU_uV-_vU—u
'—ZC }/lz_yh}/Ql_yQ

H
=

Also defineW = (Z Q) then from (56) we have

nH(U) < ZI(Uiazi;Yli;ﬁi) + ne
i=1
=nl(U, Z'Y1,0|Q)—|—ne
<I(U,Z,Q;Y1,U) + ne

= I(U,W;Y1,U) + ne (62)



and from (59) we have

I(U;, Zi; Y1i, U+

-

@
Il
=

H({U,V) <

+ I(V;, X3 Yo, Vi|Us, Z5) + 2ne
=nl(U,Z:Y1,U|Q) + nI(V, X: Y5, V|U, Z, Q) + 2ne
<nI(U,W;Y1,0) +nl(V,X;Yo2V|U W)+ 2ne (63)

and from (60) we have

nH(U,V) < Y I(U;, Vi, Xi: Ya:, Vi) + ne
i=1n
nI(U,V,X;Ys,V|Q) + ne
=nH(Ys, V|Q) — nH(Ya, V|U,V, X) + ne
nH(Ys, V) —nH (Y2, V|U,V,X) + ne
nI(U,V,X;Ys, V) + ne

IN

(64)

which completes the proof for the necessary condition.

IV. PROOF OFTHEOREM2

The sufficient condition part follows immediately from the
(U, S) and
the joint distribution satisfying (15). We prove the necags
condition part as follows. We define a different decoding

sufficient condition in the general case with =

function g} as
(0"(1),0m) =

We note that decodey; generates an erraff decoderg
generates an error. Thus,

Pr(U"(1) # U™) = Pr
By applying Fano’s inequality onPr((U”(l),U") #
(U™, U™)), we have

nH(U,U) < I(U", U Y, U) + ne
<IU™,U"0™) + LU, U™ Y U) + ne
<nl(U,U;0) + I(U™,U", V" Y") +ne (67)

gll(Ylnvljn) = (gl(Ylnvﬁn)vﬁn) (65)

(@™ (1), T™) # (U™, T™)  (66)

We also have
nH(V|U,U) < I(V", X" Y3, VU™, U™) + ne
= I(V", X" VMU, U™)+
+ (V™ X YR|U™, U™, V™) + ne
=nl(V;V|U,U) + I(X"; YU, U™, V") + ne  (68)
and
nH(U,V) < I{U", V", X" Y], V") + ne
=I(U™, V", X" VY +I({U™, V™, X" Y V™) + ne
<nI(U,V; V) + I(X™; Y9 + ne (69)

Then, we follow similar steps as in the proof of the necessar
condition of Theorem 1, and the necessary condition part

this Theorem can be proven.

V. PROOF OFTHEOREM 3

The sufficient part is straightfarward. For the necessary
condition part, we have

nH(U™) < I({U™ U™, Y{") + ne
= I{U™U™) + LU Y |U™) + ne

(a) .

< nl(U;U)+ I({U™ Y{") + ne
<nl(U;U)+ LU, V", Y]") +ne  (70)
where(a) is because

Zpu u, vyt

un

—Zpu u™

pn

—plan, zp )

= p(a”,u")p(yy'[u")
And we also have
nH(V|U) < I(V", X™ Y5, V"' |U™) + ne
= I(V", X", VU™ +
+ I(V, X" YU, V™) + ne
— nI(V;VIU) + I(V", X" Y3 U™, V™) + ne

p(a”,u", yi')
p(v"[u")p(yt'u”, 0")
pyrfu”, v")

(71)

(72)

Then, we follow the same steps as in the proof of Theorem
2, and this theorem can be proven.

VI. CONCLUSION

In this paper, we studied the problem of sending a pair of
correlated sources through a broadcast channel with eteckl
side information at the receivers from a joint source-clehnn
coding perspective. We provided a sufficient condition and a
necessary condition for the reliable transmission. These t
conditions are identical except for the left-hand side oé on
of three inequalities. We also studied two special cases of
this problem. In one special case, one side information is a
function of the sources, and in the other special case, adark
condition is assumed. We obtained the sufficient and negessa
conditions for the reliable transmission in both specialesa
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