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Abstract— The problem of sending a pair of correlated sources
through a broadcast channel with correlated side information
at the receivers is studied from a joint source-channel coding
perspective. Sufficient and necessary conditions are provided for
reliable transmission. The two conditions are identical except
for the left-hand side of one of three inequalities. For two special
cases the problem is solved completely: when one side information
is a function of the sources, and when a certain Markov property
is satisfied on the sources and side information.

I. I NTRODUCTION

Consider the system shown in Fig. 1, which consists of a
discrete memoryless broadcast channel with transition prob-
ability p(y1, y2|x), a pair of discrete memoryless correlated
sources(U, V ), and a pair of side information random vari-
ables (Ũ , Ṽ ). The sources and side information have the
joint distributionp(u, v, ũ, ṽ). There is further an encoder and
decoders(f, g1, g2) such that

Xn = f(Un, V n) (1)

Ûn(1) = g1(Y
n
1 , Ũn) (2)

(Ûn(2), V̂ n) = g2(Y
n
2 , Ṽ n). (3)

We seek the set of pairs(p(y1, y2|x), p(u, v, ũ, ṽ)) for which
there exist(f1, g1, g2) such that for anyǫ > 0 we can make

Pr((Ûn(1) 6= Un) ∪ (Ûn(2) 6= Un) ∪ (V̂ n 6= V n)) ≤ ǫ (4)

for arbitrarily small ǫ. We call this problem the broadcast
channel with degraded source random variables and receiver
side information.

This problem has been studied in various settings in recent
years. In [1], Tuncel considered the problem of sending a
single source to both receivers through a broadcast channel
with different side information at the receivers. In [2]–[5], the
problem of sending two independent messages to two receivers
through a broadcast channel with the undesired message as
the side information at the receiver is investigated. This is
a channel coding problem because it begins with messages.
However, it indeed can be interpreted as a special case of
Tuncel’s joint source-channel coding problem. An extension
of this problem is given by Kramer and Shamai in [4], where
degraded messages are sent through the broadcast channel
with parts of the messages provided as side information at
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Fig. 1. System model.

the receivers. Our work in this paper is to extend the results
of [4] to a joint source-channel coding scenario.

II. M AIN RESULTS

Theorem 1 A sufficient condition for the reliable transmission
in the above system is

I(U, W ; U, V ) < I(U, W ; Y1, Ũ) (5)

H(U, V ) < I(U, W ; Y1, Ũ) + I(V, X ; Y2, Ṽ |U, W )
(6)

H(U, V ) < I(U, V, X ; Y2, Ṽ ) (7)

and a necessary condition for the reliable transmission is

H(U) < I(U, W ; Y1, Ũ) (8)

H(U, V ) < I(U, W ; Y1, Ũ) + I(V, X ; Y2, Ṽ |U, W ) (9)

H(U, V ) < I(U, V, X ; Y2, Ṽ ) (10)

with

p(u, v, ũ, ṽ, w, x, y1, y2) = p(u, v, ũ, ṽ)p(w, x|u, v)p(y1, y2|x)
(11)

Remark:
1) The sufficient condition and the necessary condition are

identical except the left-hand side of the first inequality,
which is I(U, W ; U, V ) in the sufficient condition and
H(U) = I(U ; U, V ) ≤ I(U, W ; U, V ) in the necessary
condition.

2) The auxiliary random variableW represents a code
to be decoded by both receivers. Supposedly, the only



information that is decoded by both receivers isU with
entropyH(U) as in (8). However, to construct a code
with the joint distribution in (11), we pay the price of
increasing the amount of information decoded by both
receivers fromH(U) to I(U, W ; U, V ).

3) Theorem 1 implies that the broadcast channel with
side information can be viewed as a parallel broadcast
channel. That is, in addition to the broadcast channel
p(y1, y2|x), there is a virtual broadcast channel with
input (U, V ) and two outputs̃U andṼ . We note that the
inputs of the two broadcast channels may be correlated.

In the following two special cases, the sufficient and nec-
essary conditions meet.

Theorem 2 If Ũ is a deterministic function of(U, V ), then the
sufficient and necessary condition for reliable transmission is

H(U, Ũ) < I(U, Ũ ; Ũ) + I(S; Y1) (12)

H(U, V ) < I(U, Ũ ; Ũ) + I(S; Y1) + I(V ; Ṽ |U, Ũ)+

+ I(X ; Y2|S) (13)

H(U, V ) < I(U, V ; Ṽ ) + I(X ; Y2) (14)

with

p(u, v, ũ, ṽ, s, x, y1, y2) = p(u, v, ũ, ṽ)p(s)p(x|s)p(y1, y2|x)
(15)

Remark: In this case,(Ũ , S) plays the role ofW in the
general problem.
Remark: Suppose we chooseU and V to be independent
with entropyR1 andR2, respectively, and side informatioñU
and Ṽ as functions ofV and U , respectively, with entropies
H(Ũ) = R′

2 and Ṽ = R′
1. Then Theorem 2 simplifies to

R1 ≤ I(S; Y1) (16)

R1 + R2 ≤ R′
2 + I(S; Y1) + I(X ; Y2|S) (17)

R1 + R2 ≤ R′
1 + I(X ; Y2) (18)

with
p(s, x, y1, y2) = p(s)p(x|s)p(y1, y2|x) (19)

which is equivalent to Theorem3 in [4]. This means that
Theorem 2 includes Kramer-Shamai’s result as a special case.

Theorem 3 If Ũ −→ U −→ V , then the sufficient and
necessary condition of the reliable transmission is

H(U) < I(U ; Ũ) + I(W ; Y1) (20)

H(U, V ) < I(U ; Ũ) + I(W ; Y1) + I(V ; Ṽ |U)+

+ I(X ; Y2|W ) (21)

H(U, V ) < I(U, V ; Ṽ ) + I(X ; Y ) (22)

with

p(u, v, ũ, ṽ, w, x, y1, y2) = p(u, v, ũ, ṽ)p(w)p(x|w)p(y1 , y2|x)
(23)

III. PROOF OFTHEOREM 1

Sufficient Condition: Consider a given joint distribution

p(u, v, ũ, ṽ, w, x, y1, y2) = p(u, v, ũ, ṽ)p(w, x|u, v)p(y1, y2|x)
(24)

We will show that (5) and (6) are equivalent to the following

I(U, W ; U, V ) + R < I(U, W ; Y1, Ũ) (25)

H(V |U, W ) − R < I(V, X ; Y2, Ṽ |U, W ) (26)

for some0 ≤ R ≤ H(V |U, W ). It is straightforward that (25)
and (26) implies (5) and (6). Conversely, (6) implies that there
existsδ > 0, such that

H(U, V ) + δ ≤ I(U, W ; Y1, Ũ) + I(V, X ; Y2, Ṽ |U, W ) (27)

DefineR , I(U, W ; Y1, Ũ) − I(U, W ; U, V ) − δ
2 , where we

assume thatR ≥ 0. Then (25) is valid. We note that

R ≤ I(U, W ; Y1, Ũ) − I(U, W ; U, V )

≤ H(U, V ) − I(U, W ; U, V ) = H(V |U, W ) (28)

From (27), we have

H(U, V ) − I(U, W ; Y1, Ũ) + δ

= H(U, V ) − I(U, W ; U, V ) − R −
δ

2
+ δ

= H(V |U, W ) − R +
δ

2
≤ I(V, X ; Y2, Ṽ |U, W ) (29)

which complete the converse direction. Thus, in the sequal,we
will show that (25), (26), (7) and (11) are sufficient condition
for the reliable transmission.

To achieve the proposed sufficient condition, we will con-
struct a superpostion code. The inner code(Un, Wn) is
according top(u, w) with rateI(U, W ; U, V )+R and decoded
by both decoders. The outer code(Un, V n, Xn) is according
to p(u, v, x|u, w) with rateH(V |U, W ) − R and decoded by
decoder2. We note that part of the code is provided by the
sources(Un, V n). Thus, the task is to generated the rest of
the code joint typical with the sources.

1. Random Codebook Generation: Independently generateL
sequences uniformly distributed in the strong typical setT n

[W ]

as defined in [6, Definition 1.2.8], sayWn(1), . . . , Wn(L),
where 1

n
lnL > I(U, V ; W ). For every pair of sequences

(un, vn) ∈ Un × Vn, defineW(un, vn) as follows.

W(un, vn) ,

{

wn :
wn ∈ {Wn(0), . . . , Wn(L)}
(un, vn, wn) ∈ T n

[UV W ]

}

(30)

If W(un, vn) 6= ∅, then uniformly select an ele-
ment from W(un, vn) and denote it aswn(un, vn),
otherwise, let wn(un, vn) be an arbitrary sequence in
{Wn(1), . . . , Wn(L)}. For each (un, vn) ∈ Un ×
Vn generate one sequencexn(un, vn, wn) according to
∏n

i=1 p(xi|ui, vi, wi) wherewn = wn(un, vn).
2. Encoding: Definef(un, vn) = xn(un, vn, wn(un, vn)).
3. Decoding: Define the setC as

C , T n
[UW ] ∩ (Un × {Wn(1), . . . , Wn(L)}) (31)



For any (yn
1 , ũn) ∈ Yn

1 × Ũn, if (un, wn) is the only
sequence pair inC such that(un, wn, yn

1 , ũn) ∈ T n

[UWY1Ũ ]
,

then decoderg1 is defined asg1(y
n
1 , ũn) = un, otherwise,

let g1(y
n
1 , ũn) be an arbitrary sequence inT n

[U ]. For any

(yn
2 , ṽn) ∈ Yn

2 ×Ṽn, if (un, vn) is the only sequence pair such
that (un, vn, wn(un, vn), xn(un, vn, wn(un, vn)), yn

2 , ṽn) ∈
T n

[UV XWY2Ṽ ]
, then decoderg2(y

n
1 , ṽn) = (un, vn), otherwise,

let g2(y
n
2 , ṽn) be an arbitrary pair of sequences inT n

[UV ].

4. Probability of Error: Let (Un, V n, Ũn, Ṽ n) be the
sources and side information,(Wn, Xn) be the code, and
(Y n

1 , Y n
2 ) be the channel outputs. The average probability error

Pe ≤ Pr(E0 ∪ E1 ∪ E2)

≤ Pr(E0) + Pr(E1\E0) + Pr(E2\E0) (32)

where

E0 , (Un, V n, Ũn, Ṽ n, Wn, Xn, Y n
1 , Y n

2 ) /∈ T n

[UV ŨṼ WXY1Y2]

(33)

E1 ,
⋃

(Ūn,W̄ n) 6=(Un,W n)

(Ūn, W̄n, Y n
1 , Ũn) ∈ T n

[UWY1Ũ ]
(34)

E2 ,
⋃

(Ūn,V̄ n) 6=(Un,V n)

(Ūn, V̄ n, W̄n, X̄n, Y n
2 , Ṽ n) ∈ T n

[UV WXY2Ṽ ]

(35)

W̄n , wn(Ūn, V̄ n) (36)

X̄n , xn(Ūn, V̄ n, wn(Ūn, V̄ n)). (37)

Furthermore, we have

Pr(E0) = Pr((Un, V n, Wn) /∈ T n
[UV W ])+

+ Pr((Un, V n, Ũn, Ṽ n, Wn, Xn, Y n
1 , Y n

2 ) /∈

T n

[UV ŨṼ WXY1Y2]
|(Un, V n, Wn) ∈ T n

[UV W ]) (38)

With 1
n

lnL > I(U, V ; W ) and sufficiently largen , we have

Pr((Un, V n, Wn) /∈ Tδ(UV W )) ≤ ǫ (39)

and also because of the codebook generation, we have

Pr((Ũn, Ṽ n, Xn, Y n
1 , Y n

2 ) /∈

T n

[Ũ Ṽ XY1Y2]
(Un, V n, Wn)|(Un, V n, Wn) ∈ T n

[UV W ]) ≤ ǫ

(40)

Thus, we have [6, Lemma 1.2.10]

Pr((Un, V n, Ũn, Ṽ n, Wn, Xn, Y n
1 , Y n

2 ) /∈ T n

[UV ŨṼ WXY1Y2]

≤ 2ǫ (41)

For the second term in (32), we have

Pr(E1\E0) = Pr(E1 ∩ Ec
0)

=
∑

(un,wn)∈C

p(un, wn)
∑

(Ūn,W̄ n)6=(un,wn)

(Ūn,W̄n)∈C

Pr((Ūn, W̄n, Y n
1 , Ũn) ∈ T n

[UWY1Ũ ]
|(un, wn) sent ∩ Ec

0)

≤ max
(un,wn)∈C

∑

(Ūn,W̄ n)6=(un,wn)

(Ūn,W̄n)∈C

Pr((Ūn, W̄n, Y n
1 , Ũn) ∈ T n

[UWY1Ũ ]
|(un, wn) sent ∩ Ec

0)

≤L × exp(n(H(U |W ) + 2δ)) ×
exp(n(H(U, W |Ũ , Y1) + 2δ))

(1 − ǫ) exp(n(H(U, W ) − 2δ))

≤L × exp(n(H(U |W ) − I(U, W ; Ũ , Y1) + 7δ)) (42)

Thus,Pr(E1\E0) ≤ ǫ with sufficiently largen if

R + I(U, V ; U, W ) < I(U, W ; Ũ , Y1) (43)

whereR , 1
n

lnL − I(U, V ; W ).

For the third term in (32), we have

Pr(E2\E0) = Pr(E2 ∩ Ec
0) = Pr((E21 ∪ E22) ∩ Ec

0)

≤ Pr(E21 ∩ Ec
0) + Pr(E22 ∩ Ec

0) (44)

where

E21 ,
⋃

(Ūn,W̄n)=(Un,W n)

(Ūn,V̄ n)6=(Un,V n)

(Ūn,V̄ n)∈T n
[UV ]

(Ūn, V̄ n, W̄n, X̄n, Y n
2 , Ṽ n) ∈ T n

[UV WXY2Ṽ ]
(45)

E22 ,
⋃

(Ūn,W̄n)6=(Un,W n)

(Ūn,V̄ n)6=(Un,V n)

(Ūn,V̄ n)∈T n
[UV ]

(Ūn, V̄ n, W̄n, X̄n, Y n
2 , Ṽ n) ∈ T n

[UV WXY2Ṽ ]
(46)

While the error eventE2 can be decomposed differently, the
current decomposition yields the expressions most close tothe
necessary condition. For the first term in (44), we have

Pr(E21 ∩ Ec
0)

=
∑

(un,vn)∈T n
[UV ]

p(un, vn)
∑

(Ūn,W̄ n)=(un,wn)

(Ūn,V̄ n)6=(un,vn)

(Ūn,V̄ n)∈T n
[UV ]

Pr((Ūn, V̄ n, W̄n, X̄n, Y n
2 , Ṽ n) ∈ T n

[UV WXY2Ṽ ]
|

((un, vn) sent ∩ Ec
0)

= max
(un,vn)∈T n

[UV ]

∑

(Ūn,W̄n)=(un,wn)

(Ūn,V̄ n)6=(un,vn)

(Ūn,V̄ n)∈T n
[UV ]

Pr((Ūn, V̄ n, W̄n, X̄n, Y n
2 , Ṽ n) ∈ T n

[UV WXY2Ṽ ]
|

(un, vn) sent ∩ Ec
0)

≤
exp(n(H(V |U, W ) + 2δ)) exp(n(H(W ) + δ))

(1 − ǫ) exp(n(H(W |U, V ) − 2δ))L
×

×
exp(n(H(V, X |U, W, Y2, Ṽ ) + 2δ))

(1 − ǫ) exp(n(H(U, V, X) − 2δ))

≤ exp(n(H(V |U, W ) − R − I(V, X ; Y2, Ṽ |U, W ) + 11δ))
(47)



Thus,Pr(E(21) ∩ Ec
0) ≤ ǫ with sufficiently largen if

H(V |U, W ) − R < I(V, X ; Y2, Ṽ |U, W ) (48)

For the second term in (44), we have

Pr(E22 ∩ Ec
0) =

∑

(un,vn)∈T n
[UV ]

p(un, vn)
∑

(Ūn,W̄n)6=(un,wn)

(Ūn,V̄ n)6=(un,vn)

(Ūn,V̄ n)∈T n
[UV ]

Pr((Ūn, V̄ n, W̄n,

X̄n, Y n
2 , Ṽ n) ∈ T n

[UV WXY2Ṽ ]
|(un, vn) sent ∩ Ec

0)

≤ max
(un,vn)∈T n

[UV ]

∑

(Ūn,W̄ n)6=(un,wn)

(Ūn,V̄ n)6=(un,vn)

(Ūn,V̄ n)∈T n
[UV ]

Pr((Ūn, V̄ n, W̄n,

X̄n, Y n
2 , Ṽ n) ∈ T n

[UV WXY2Ṽ ]
|(un, vn) sent ∩ Ec

0)

≤ exp(n(H(U, V ) + ǫ))
exp(n(H(U, V, X |Y2, Ṽ ) + 2δ))

(1 − ǫ) exp(n(H(U, V, X) − 2δ))

≤ exp(n(H(U, V ) − I(U, V, X ; Y2, Ṽ ) + 6δ)) (49)

Thus,Pr(E22 ∩ Ec
0) ≤ ǫ with sufficiently largen if

H(U, V ) < I(U, V, X ; Y2, Ṽ ) (50)

The average probability of error with sufficiently largen

Pe ≤ Pr(E0) + Pr(E1\E0) + Pr(E21\E0) + Pr(E22\E0)

≤ 2ǫ + ǫ + ǫ + ǫ = 5ǫ (51)

if the following condition is satisfied

I(U, W ; U, V ) + R < I(U, W ; Y1, Ũ) (52)

H(V |U, W ) − R < I(V, X ; Y2, Ṽ |U, W ) (53)

H(U, V ) < I(U, V, X ; Y2, Ṽ ) (54)

Necessary Condition: From Fano’s inequality, we have

nH(U) ≤ I(Un; Y n
1 , Ũn) + nǫ

=

n
∑

i=1

I(Un; Y1i, Ũi|Y
i−1
1 , Ũ i−1) + nǫ

≤
n

∑

i=1

I(Un, Y i−1
1 , Ũ i−1; Y1i, Ũi) + nǫ

=

n
∑

i=1

I(Un, Y i−1
1 , Ũ i−1, Y n

2(i+1), Ṽ
n
i+1; Y1i, Ũi)−

− I(Y n
2(i+1), Ṽ

n
i+1; Y1i, Ũi|Y

i−1
1 , Ũ i−1, Un) + nǫ

=
n

∑

i=1

I(Ui, Zi; Y1i, Ũi)−

− I(Y n
2(i+1), Ṽ

n
i+1; Y1i, Ũi|Y

i−1
1 , Ũ i−1, Un) + nǫ (55)

≤
n

∑

i=1

I(Ui, Zi; Y1i, Ũi) + nǫ (56)

where Zi , (U i−1, Un
i+1, Y

i−1
1 , Ũ i−1, Y n

2(i+1), Ṽ
n
i+1). From

Fano’s inequality, we further have

nH(V |U) ≤ I(V n; Y n
2 , Ṽ n|Un) + nǫ

=

n
∑

i=1

I(V n, Xn; Y2i, Ṽi|U
n, Y n

2(i+1), Ṽ
n
i+1) + nǫ

=
n

∑

i=1

I(Vi, Xi; Y2i, Ṽi|U
n, Y n

2(i+1), Ṽ
n
i+1) + nǫ

≤
n

∑

i=1

I(Vi, Xi, Y
i−1
1 , Ũ i−1; Y2i, Ṽi|U

n, Y n
2(i+1), Ṽ

n
i+1) + nǫ

=

n
∑

i=1

I(Vi, Xi; Y2i, Ṽi|U
n, Y n

2(i+1), Ṽ
n
i+1, Y

i−1
1 , Ũ i−1)+

+ I(Y i−1
1 , Ũ i−1; Y2i, Ṽi|U

n, Y n
2(i+1), Ṽ

n
i+1) + nǫ

=

n
∑

i=1

I(Vi, Xi; Y2i, Ṽi|Ui, Zi)+

+ I(Y i−1
1 , Ũ i−1; Y2i, Ṽi|U

n, Y n
2(i+1), Ṽ

n
i+1) + nǫ (57)

Because of the following equality [6],
n

∑

i=1

I(Y n
2(i+1), Ṽ

n
i+1; Y1i, Ũi|Y

i−1
1 , Ũ i−1, Un)

=
n

∑

i=1

I(Y i−1
1 , Ũ i−1; Y2i, Ṽi|U

n, Y n
2(i+1), Ṽ

n
i+1) (58)

(55) and (57) yields

nH(U, V ) ≤
n

∑

i=1

I(Ui, Zi; Y1i, Ũi)+

+ I(Vi, Xi; Y2i, Ṽi|Ui, Zi) + 2nǫ (59)

Finally, from Fano’s inequality, we have

nH(U, V ) ≤ I(Un, V n, Xn; Y n
2 , Ṽ n) + nǫ

=
∑

i=1n

I(Un, V n, Xn; Y2i, Ṽi|Y
i−1
2 , Ṽ i−1) + nǫ

≤
∑

i=1n

I(Ui, Vi, Xi; Y2i, Ṽi) + nǫ (60)

Let Q be a random variable uniformly distributed on
{1, . . . , n}, and random variabls(Z, U, V, Ũ , Ṽ , X, Y1, Y2, Q)
such that

Pr

(

Z = z, U = u, V = v, Ũ = ũ

Ṽ = ṽ, X = x, Y1 = y1, Y2 = y2
Q = i

)

= Pr

(

Zi = z, Ui = u, Vi = v, Ũi = ũ

Ṽi = ṽ, Xi = x, Y1i = y1, Y2i = y2

)

(61)

Also defineW = (Z, Q), then from (56) we have

nH(U) ≤
n

∑

i=1

I(Ui, Zi; Y1i, Ũi) + nǫ

= nI(U, Z; Y1, Ũ |Q) + nǫ

≤ I(U, Z, Q; Y1, Ũ) + nǫ

= I(U, W ; Y1, Ũ) + nǫ (62)



and from (59) we have

nH(U, V ) ≤
n

∑

i=1

I(Ui, Zi; Y1i, Ũi)+

+ I(Vi, Xi; Y2i, Ṽi|Ui, Zi) + 2nǫ

= nI(U, Z; Y1, Ũ |Q) + nI(V, X ; Y2, Ṽ |U, Z, Q) + 2nǫ

≤ nI(U, W ; Y1, Ũ) + nI(V, X ; Y2Ṽ |U, W ) + 2nǫ (63)

and from (60) we have

nH(U, V ) ≤
∑

i=1n

I(Ui, Vi, Xi; Y2i, Ṽi) + nǫ

= nI(U, V, X ; Y2, Ṽ |Q) + nǫ

= nH(Y2, Ṽ |Q) − nH(Y2, Ṽ |U, V, X) + nǫ

≤ nH(Y2, Ṽ ) − nH(Y2, Ṽ |U, V, X) + nǫ

= nI(U, V, X ; Y2, Ṽ ) + nǫ (64)

which completes the proof for the necessary condition.

IV. PROOF OFTHEOREM 2

The sufficient condition part follows immediately from the
sufficient condition in the general case withW = (Ũ , S) and
the joint distribution satisfying (15). We prove the necessary
condition part as follows. We define a different decoding
function g′1 as

g′1(Y
n
1 , Ũn) = (Ûn(1), ˆ̃Un) = (g1(Y

n
1 , Ũn), Ũn) (65)

We note that decoderg′1 generates an erroriff decoderg
generates an error. Thus,

Pr(Ûn(1) 6= Un) = Pr((Ûn(1), ˆ̃Un) 6= (Un, Ũn)) (66)

By applying Fano’s inequality onPr((Ûn(1), ˆ̃Un) 6=
(Un, Ũn)), we have

nH(U, Ũ) ≤ I(Un, Ũn; Y n
1 , Ũn) + nǫ

≤ I(Un, Ũn; Ũn) + I(Un, Ũn; Y n
1 |Ũn) + nǫ

≤ nI(U, Ũ ; Ũ) + I(Un, Ũn, Ṽ n; Y n
1 ) + nǫ (67)

We also have

nH(V |U, Ũ) ≤ I(V n, Xn; Y n
2 , Ṽ n|Un, Ũn) + nǫ

= I(V n, Xn; Ṽ n|Un, Ũn)+

+ I(V n, Xn; Y n
2 |Un, Ũn, Ṽ n) + nǫ

= nI(V ; Ṽ |U, Ũ) + I(Xn; Y n
2 |Un, Ũn, Ṽ n) + nǫ (68)

and

nH(U, V ) ≤ I(Un, V n, Xn; Y n
2 , Ṽ n) + nǫ

= I(Un, V n, Xn; Ṽ n) + I(Un, V n, Xn; Y n
2 |Ṽ n) + nǫ

≤ nI(U, V ; Ṽ ) + I(Xn; Y n
2 ) + nǫ (69)

Then, we follow similar steps as in the proof of the necessary
condition of Theorem 1, and the necessary condition part of
this Theorem can be proven.

V. PROOF OFTHEOREM 3

The sufficient part is straightfarward. For the necessary
condition part, we have

nH(Un) ≤ I(Un; Ũn, Y n
1 ) + nǫ

= I(Un; Ũn) + I(Un; Y n
1 |Ũn) + nǫ

(a)

≤ nI(U ; Ũ) + I(Un; Y n
1 ) + nǫ

≤ nI(U ; Ũ) + I(Un, Ṽ n; Y n
1 ) + nǫ (70)

where(a) is because

p(ũn, un, yn
1 ) =

∑

vn

p(ũn, un, vn, yn
1 )

=
∑

vn

p(ũn, un)p(vn|un)p(yn
1 |u

n, vn)

= p(ũn, un)
∑

vn

p(vn|un)p(yn
1 |u

n, vn)

= p(ũn, un)p(yn
1 |u

n) (71)

And we also have

nH(V |U) ≤ I(V n, Xn; Y n
2 , Ṽ n|Un) + nǫ

= I(V n, Xn, ; Ṽ n|Un)+

+ I(V n, Xn; Y n
2 |Un, Ṽ n) + nǫ

= nI(V ; Ṽ |U) + I(V n, Xn; Y n
2 |Un, Ṽ n) + nǫ (72)

Then, we follow the same steps as in the proof of Theorem
2, and this theorem can be proven.

VI. CONCLUSION

In this paper, we studied the problem of sending a pair of
correlated sources through a broadcast channel with correlated
side information at the receivers from a joint source-channel
coding perspective. We provided a sufficient condition and a
necessary condition for the reliable transmission. These two
conditions are identical except for the left-hand side of one
of three inequalities. We also studied two special cases of
this problem. In one special case, one side information is a
function of the sources, and in the other special case, a Markov
condition is assumed. We obtained the sufficient and necessary
conditions for the reliable transmission in both special cases.
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