
Context Tree Estimation for

Not Necessarily Finite Memory Processes,

via BIC and MDL

Imre Csiszár
Alfréd Rényi Institute of Mathematics,

Hungarian Academy of Sciences,
POB 127, H-1364 Budapest, Hungary

(e-mail: csiszar@renyi.hu, web: http://www.renyi.hu/˜csiszar).

Zsolt Talata
Stochastics Research Group,

Hungarian Academy of Sciences,
POB 127, H-1364 Budapest, Hungary

(e-mail: zstalata@renyi.hu, web: http://www.renyi.hu/˜zstalata).

Appeared in IEEE Transactions on Information Theory,
Vol.52, No.3, Mar 2006.

Abstract

The concept of context tree, usually defined for finite memory pro-
cesses, is extended to arbitrary stationary ergodic processes (with finite
alphabet). These context trees are not necessarily complete, and may
be of infinite depth. The familiar BIC and MDL principles are shown
to provide strongly consistent estimators of the context tree, via op-
timization of a criterion for hypothetical context trees of finite depth,
allowed to grow with the sample size n as o(logn). Algorithms are
provided to compute these estimators in O(n) time, and to compute
them on-line for all i ≤ n in o(n logn) time.

Keywords: Bayesian Information Criterion (BIC), consistent estimation, context
tree, Context Tree Maximization (CTM), infinite memory, Minimum Description Length
(MDL), model selection.

Manuscript received September 3, 2004; revised July 15, 2005.
This work was supported by the Hungarian National Foundation for Scientific Re-

search under Grants T26041, T32323, TS40719, T046376.
The material in this paper was presented at the IEEE International Symposium on

Information Theory, Adelaide, Australia, September 2005.

1

I. Csiszár and Zs. Talata, Context Tree Estimation via BIC and MDL 2

1 Introduction

In this paper, process always means a stationary ergodic stochastic process
with finite alphabet. Processes are often described by the collection of the
conditional probabilities of the possible symbols given the infinite pasts.
When these probabilities depend on at most k previous symbols, the process
is a Markov chain of order k.

The number of parameters of a general Markov chain grows exponen-
tially with the order. A more efficient description is possible if the strings
determining the conditional probabilities—referred to as contexts—are of
variable length, sometimes substantially shorter than the order k. Models
of this kind and the term context tree date back to Rissanen [10]. These
models are also called finite memory sources or tree sources [13], [14], [16]
or variable length Markov chains [3]. We note that the terms context and
context tree appear in the literature in various senses. Here, the context
tree of a finite memory process means, in effect, the minimal tree admitting
a tree source representation of the process; the exact definition will be given
in Section 2.

As indicated above, the context tree model is typically used to more ef-
ficiently describe certain Markov chains (of finite order k) and, accordingly,
the context tree has finite depth k. In this paper, we drop the finite depth re-
quirement, admitting also non-Markov processes. The term “infinite-depth
context tree” appears in [18] in a different sense, as a tree assigned to an
observed sequence, with an “indeterminate symbol” ε such that infinitely
many ε’s may precede a finite number of symbols of the true alphabet. A
concept of generalized context tree, see [8] and references there, admits edges
labeled by strings rather than single symbols. That concept is not used here,
but similarly to [8] we drop the completeness requirement, often made in
the literature, that each non-leaf node of the context tree has as many chil-
dren as the alphabet size. If some strings have zero probability for the given
process, these can not be contexts, and then the context tree need not be
complete.

We address the problem of statistical estimation of the context tree in
the indicated generality, based on an observed finite realization of the pro-
cess, of length n → ∞. This task, for finite depth context trees, has been
considered, among others, in the references above. Variants of Rissanen’s
[10] “context” algorithm are popular. In particular, Bühlmann and Wyner
[3] proved the consistency of such an algorithm not assuming a known prior
bound on the depth of the context tree, but using a bound allowed to grow
with n. They asserted that standard statistical methods as the Bayesian
information criterion (BIC) of Schwarz [12] and the minimum description
length (MDL) principle of Rissanen [11], [2] were inappropriate for context
tree estimation, due to computational infeasibility of comparing a very large
number of hypothetical models. Still, Willems, Shtarkov, and Tjalkens [15],

I. Csiszár and Zs. Talata, Context Tree Estimation via BIC and MDL 3

[17] showed that time-consuming comparisons can be avoided by clever use of
tree techniques. Their context tree maximizing (CTM) algorithm computes
in linear time the context tree estimator obtained by the version of MDL
that uses the Krichevsky–Trofimov (KT) code length [7], and this estimator
is consistent, as they proved assuming a known upper bound on the depth
of the context tree. Similar results were obtained also by Nohre [9]. Recent
results on consistent context tree estimation in linear time, assuming finite
depth but no known upper bound on it, appear in [1], [8]. These references
use tools as the Burrows–Wheeler transform or generalized context trees.

We are not aware of prior results on context tree estimation via BIC.
While BIC is commonly regarded as an approximate version of MDL, this
is justified only when a finite number of model classes is considered, see [4].
We note that much of the literature of context tree models is motivated
by universal source coding. In particular, CTM is a modification of the
celebrated Context Tree Weighting data compression algorithm of Willems,
Shtarkov, and Tjalkens [16].

In this paper, we prove that both MDL with KT code length and BIC
provide strongly consistent estimators of the context tree if the set of candi-
date context trees is suitably chosen; finiteness or completeness of the true
context tree is not required. Moreover, these estimators can be implemented
in linear time. The set of candidate context trees is specified by a bound
on the length of the hypothetical contexts, allowed to grow as o(logn), and
in one case by an additional condition on their occurrences in the observed
sample. Strong consistency means in the finite depth case that the estimated
context tree is equal to the true one, eventually almost surely as n → ∞,
while otherwise, that the estimated context tree truncated at any fixed level
is equal to the true one truncated at the same level, eventually almost surely
as n→∞.

For order estimation of Markov chains, it is well known that BIC and
MDL, both with the KT and the normalized maximum likelihood (NML)
code length, are strongly consistent when the number of candidate model
classes is finite, that is, when there is a known upper bound on the order
[6]. The consistency of the BIC order estimator without such prior bound
has been proved by Csiszár and Shields [4]. That paper also contains a
counterexample to the consistency of the KT and NML versions of MDL
without any bound on the order, or with a bound depending on the sample
size n, equal to a sufficiently large constant times logn. The consistency of
the latter order estimators with bound o(logn), resp., O(logn), on the order
was proved by Csiszár [5].

Linear time implementation of our context tree estimators is achieved
via the CTM method [15], [17]. This has been developed for the KT version
of MDL, it appears a new observation that also the BIC estimator admits
a CTM-like implementation. The same does not seem to hold for the NML
version of MDL, this is why the latter is not considered in this paper.

I. Csiszár and Zs. Talata, Context Tree Estimation via BIC and MDL 4

By our consistency result, if the context tree of a process has finite depth,
it can be exactly recovered, with probability 1, when the sample size is large
enough; the sample size actually needed remains, however, unknown. A
heuristic rule might be to stop when the estimated context tree “stabilizes”,
that is, it remains unchanged when the sample size n runs over a large
interval. The last result in this paper shows that (slightly modified versions
of) our estimators can be calculated on-line in such a way that o(n logn)
time suffices to calculate them for all sample sizes i ≤ n. This implies that
the above stopping rule can be implemented with only a small increment in
the order of required computations.

The structure of the paper is the following. In Section 2, we introduce
the notation and definitions, and formulate the results for the BIC estimator
and KT estimator about strong consistency and computational complexity.
In Section 3, we prove the consistency theorems. In Section 4, we introduce
the algorithms for calculating the estimators, and establish their claimed
computational complexity both for off-line and on-line calculations. Section
5 contains some remarks on the results.

2 Notation and Statement of the Main Results

For a finite setA we denote its cardinality by |A|. A string s = amam+1 . . . an
(with ai ∈ A, m ≤ i ≤ n) is denoted also by anm; its length is l(s) = n−m+1.
The empty string is denoted by ∅, its length is l(∅) = 0. The concatenation
of the strings u and v is denoted by uv. We say that a string v is a postfix of
a string s, denoted by s � v, when there exists a string u such that s = uv.
For a proper postfix, that is, when s 6= v, we write s � v. A postfix of a
semi-infinite sequence a−1

−∞ = . . . a−k . . . a−1 is defined similarly. Note that
in the literature � more often denotes the prefix relation. Also, often the
term suffix is used instead of postfix.

A set T of strings, and perhaps also of semi-infinite sequences, is called
a tree if no s1 ∈ T is a postfix of any other s2 ∈ T .

Each string s = ak1 ∈ T is visualized as a path from a leaf to the root
(drawn with the root at the top), consisting of k edges labeled by the symbols
a1 . . . ak. A semi-infinite sequence a−1

−∞ ∈ T is visualized as an infinite path
to the root, see Fig. 1. The strings s ∈ T are identified also with the leaves of
the tree T , leaf s is the leaf connected with the root by the path visualizing
s as above. Similarly, the nodes of the tree T are identified with the finite
postfixes of all (finite or infinite) s ∈ T , the root being identified with the
empty string ∅. The children of a node s are those strings as, a ∈ A, that
are themselves nodes, that is, postfixes of some s′ ∈ T .

The tree T is complete if each node except the leaves has exactly |A|
children. A weaker property we shall need is irreducibility, which means
that no s ∈ T can be replaced by a proper postfix without violating the tree

I. Csiszár and Zs. Talata, Context Tree Estimation via BIC and MDL 5

property. The family of irreducible trees will be denoted by I.
Denote d(T) the depth of the tree T : d(T) = max{ l(s), s ∈ T }. Let

T ∣∣
K

denote the tree T truncated at level K:

(1) T ∣∣
K

= { s′ : s′ ∈ T with l(s′) ≤ K
or s′ is a bKc-length postfix of some s ∈ T }.

Let us be given a stationary ergodic stochastic process {Xi,−∞ < i <
+∞} with finite alphabet A. Write

Q(anm) = Prob{Xn
m = anm }

and, if s ∈ Ak has Q(s) > 0, write

Q(a| s) = Prob{X0 = a | X−1
−k = s }.

A process as above will be referred to as process Q.

Definition 2.1. A string s ∈ Ak is a context for a process Q if Q(s) > 0
and

Prob{X0 = a | X−1
−∞ = x−1

−∞ } = Q(a| s), for all a ∈ A
whenever s is a postfix of the semi-infinite sequence x−1

−∞, and no proper
postfix of s has this property. An infinite context is a semi-infinite sequence
x−1
−∞ whose postfixes x−1

−k, k = 1, 2, . . . are of positive probability but none of
them is a context.

Clearly, the set of all contexts is a tree. It will be called the context tree
of the process Q, denoted by T0.

Remark 2.2. The context tree T0 has to be complete if Q(s) > 0 for all
strings s. In general, for each node s of T0 which is not a leaf, exactly those
as, a ∈ A, are the children of s for which Q(as) > 0. Moreover, Definition
2.1 implies that the context tree is always irreducible, T0 ∈ I.

When the context tree has depth d(T0) = k0 < ∞, the process Q is a
Markov chain of order k0. In this case the context tree leads to a parsimo-
nious description of the process, because a collection of (|A|−1)|T0| transition
probabilities suffices to describe the process, instead of (|A| − 1)|A|k0 ones.
Note that the context tree of an independent and identically distributed
(i.i.d.) process consists of the root ∅ only, thus, |T0| = 1.

Example 2.3. (Renewal Process). Let A = {0, 1} and suppose that the dis-
tances between the occurrences of 1’s are i.i.d. Denote pj the probability that
this distance is j, that is, pj = Q(10j−11)/Q(1), and let qk =

∑∞
j=k pj , k ≥ 1.

Then for k ≥ 1 we have

Q(1|10k−1) = pk/qk , Qk

I. Csiszár and Zs. Talata, Context Tree Estimation via BIC and MDL 6

(undefined if qk = 0). Setting Q0 = Q(1), denote by k0 the smallest integer
such that Qk is constant or undefined for k ≥ k0, or k =∞ if no such integer
exists. Then the contexts are the strings 10i−1, i ≤ k0, and the string 0k0

(if k0 <∞) or the semi-infinite sequence 0∞ (if k0 =∞), see Fig. 1.

�
�
�
��

@
@@

@
@@

@
@@u u
u

e e
e

100

10

1

�
��e

000

�
�
�
��

@
@@

@
@@

@
@@u u
u

e e
e

100

10

1
��

��

��

0∞

(a) (b)

Figure 1: Context tree of a renewal process. (a) k0 = 3. (b) k0 =∞.

In this paper, we are concerned with the statistical estimation of the
context tree T0 from the sample xn1 , a realization of Xn

1 . We demand strongly
consistent estimation. We mean by this in the case d(T0) < ∞ that the
estimated context tree equals T0 eventually almost surely as n → ∞, while
otherwise that the estimated context tree truncated at any fixed level K
equals T0

∣∣
K

eventually almost surely as n → ∞, see (1). Here and in the
sequel, “eventually almost surely” means that with probability 1 there exists
a threshold n0 (depending on the infinite realization x∞1) such that the claim
holds for all n ≥ n0.

Let Nn(s, a) denote the number of occurrences of the string s ∈ Al(s)

followed by the letter a ∈ A in the sample xn1 , where s is supposed to be of
length at most D(n), specified later, and—for technical reasons—only the
letters in positions i > D(n) are considered

Nn(s, a) =
∣∣∣
{
i : D(n) < i ≤ n, xi−1

i−l(s) = s, xi = a
}∣∣∣ .

The number of such occurrences of s is denoted by Nn(s)

Nn(s) =
∣∣∣
{
i : D(n) < i ≤ n, xi−1

i−l(s) = s
}∣∣∣ .

Given a sample xn1 , a feasible tree is any tree T of depth d(T) ≤ D(n)
such that Nn(s) ≥ 1 for all s ∈ T , and each string s′ with Nn(s′) ≥ 1 is either
a postfix of some s ∈ T or has a postfix s ∈ T . A feasible tree T is called
r-frequent if Nn(s) ≥ r for all s ∈ T . The family of all feasible, respectively,
r-frequent trees is denoted by F1(xn1 , D(n)), respectively, Fr(xn1 , D(n)).

Clearly,
∑

a∈A
Nn(s, a) = Nn(s), and

∑

s∈T
Nn(s) = n−D(n)

I. Csiszár and Zs. Talata, Context Tree Estimation via BIC and MDL 7

for any feasible tree T . Regarding such a tree T as the context tree of a
hypothetical process Q′, the probability of the sample xn1 can be written as

Q′(xn1) = Q′(xD(n)
1)

∏

s∈T , a∈A
Q′(a| s)Nn(s,a).

With some abuse of terminology, for a hypothetical context tree T ∈ F1(xn1 , D(n))
we define the maximum likelihood MLT (xn1) as the maximum in Q′(a| s) of
the second factor above, that is,

(2) MLT (xn1) =
∏

s∈T , Nn(s)≥1

∏

a∈A

(
Nn(s, a)
Nn(s)

)Nn(s,a)

.

We investigate two information criteria to estimate T0, both motivated
by the MDL principle. An information criterion assigns a score to each hy-
pothetical model (here, context tree) based on the sample, and the estimator
will be that model whose score is minimal.

Definition 2.4. Given a sample xn1 , the BIC for a feasible tree T is

BICT (xn1) = − log MLT (xn1) +
(|A| − 1)|T |

2
logn.

Logarithms are to the base e.

Remark 2.5. Characteristic for BIC is the “penalty term” half the number
of free parameters times logn. Here, a process Q with context tree T is
described by the conditional probabilities Q(a| s), a ∈ A, s ∈ T , and (|A| −
1)|T | of these are free parameters when the tree T is complete. For a process
with an incomplete context tree, the probabilities of certain strings must be
0, hence, the number of free parameters is typically smaller than (|A|−1)|T |
when T is not complete. Thus, Definition 2.4 involves a slight abuse of
terminology. We note that replacing (|A| − 1)/2 in Definition 2.4 by any
c > 0 would not affect the results below and their proofs. In the literature,
context trees are often required to be complete. This can be achieved by
adding dummy edges if necessary, but this increases the penalty term in
Definition 2.4, and the analog of Theorem 2.6 below appears a weaker result
for completed context trees.

It is known [4] that for estimating the order of Markov chains, the BIC
estimator is consistent without any restriction on the hypothetical orders.
The following theorem does need a bound on the depth of the hypothetical
context trees. Still, as this bound grows with the sample size n, no a priori
bound on the size of the unknown T0 is required; in fact, even d(T0) =∞ is
allowed. Note also that the presence of this bound decreases computational
complexity.

I. Csiszár and Zs. Talata, Context Tree Estimation via BIC and MDL 8

Theorem 2.6. In the case d(T0) <∞, the BIC estimator

T̂BIC(xn1) = arg min
T ∈F1(xn1 ,D(n))∩I

BICT (xn1)

with D(n) = o(log n), satisfies

T̂BIC(xn1) = T0

eventually almost surely as n→∞.
In the general case, this estimator satisfies for any constant K

T̂BIC(xn1)
∣∣
K

= T0

∣∣
K

eventually almost surely as n→∞.

Proof. See Section 3.

Remark 2.7. Here and in Theorem 2.10 later, the indicated minimum is
certainly attained, as the number of feasible trees is finite, but the minimizer
is not necessarily unique; in that case, either minimizer can be taken as
arg min.

The other information criterion we consider is the Krichevsky–Trofimov
code length [7], [16].

Definition 2.8. Given a sample xn1 , the KT criterion for a feasible tree T
is

KTT (xn1) = − logPKT,T (xn1),

where

PKT,T (xn1) =
1

|A|D(n)

∏

s∈T

∏
a:Nn(s,a)≥1

[(
Nn(s, a)− 1

2

) (
Nn(s, a)− 3

2

) · · · (1
2

)]
(
Nn(s)− 1 + |A|

2

)(
Nn(s)− 2 + |A|

2

)
· · ·
(|A|

2

)

is the KT-probability of xn1 corresponding to T .

Remark 2.9. The coding distribution PKT,T is nearly optimal for the
class of processes with context tree T , in the sense that the code lengths
d− log2 PKT,T (xn1)e (using base 2 rather than base e logarithm) minimize
the worst case average redundancy for this class, up to an additive constant.

For estimating the order of Markov chains, the consistency of the KT
estimator has been proved when the hypothetical orders are o(log n) [5],
while without any bound on the order, or with a bound equal to a sufficiently
large constant times logn, a counterexample to its consistency is known [4].

I. Csiszár and Zs. Talata, Context Tree Estimation via BIC and MDL 9

Theorem 2.10. In the case d(T0) <∞, the KT estimator

T̂KT(xn1) = arg min
T ∈F1(xn1 ,D(n))∩I

KTT (xn1)

with D(n) = o(log n), satisfies

T̂KT(xn1) = T0

eventually almost surely as n→∞.
In the general case, the KT estimator

T̂KT(xn1) = arg min
T ∈Fnα (xn1 ,D(n))∩I

KTT (xn1)

with D(n) = o(log n) and arbitrary 0 < α < 1, satisfies for any constant K

T̂KT(xn1)
∣∣
K

= T0

∣∣
K

eventually almost surely as n→∞.

Proof. See Section 3.

Remark 2.11. Strictly speaking, the MDL principle would require to min-
imize the “code length” KTT (xn1) incremented by an additional term, the
“code length of T ” (called the cost of T in [16]). This additional term is
omitted, since this does not affect the consistency result.

Corollary 2.12. The vector of the empirical conditional probabilities

Q̂bT (a| s) =
Nn(s, a)
Nn(s)

, a ∈ A, s ∈ T̂

converges to that of the true conditional probabilities Q(a|s), a ∈ A, s ∈ T0

almost surely as n → ∞, where T̂ is either the BIC estimator or the KT
estimator.

Proof. Immediate from Theorems 2.6, 2.10 and the ergodic theorem.

In practice, it is infeasible to calculate estimators via computing the
value of an information criterion for each model, since the number of the
hypothetical context trees is very large. However, an algorithm in Section
4 admits finding the considered estimators with practical computational
complexity.

We consider both off-line and on-line methods, in the latter case with a
slight modification of the estimators. Note that on-line calculation of the
estimator is useful when the sample size is not fixed but we keep sampling
until the estimator becomes “stable,” say it remains constant when the
sample size is doubled.

As usual, see [1], [8], we assume that the computations are done in
registers of size O(log n).

I. Csiszár and Zs. Talata, Context Tree Estimation via BIC and MDL 10

Theorem 2.13. The number of computations needed to determine the BIC
estimator and the KT estimator in Theorems 2.6 and 2.10 for a given sample
xn1 is O(n), and this can be achieved storing O(nε) data, where ε > 0 is
arbitrary.

Proof. See Section 4.

On-line algorithms are considered with the following minor modifications
of the estimators, which obviously do not affect the consistency. In the BIC
penalty term, logn is replaced by blog|A| nc log |A|, and in the second kind of
KT estimator in Theorem 2.10 Fnα(xn1 , D(n)) is replaced by Fr(xn1 , D(n))
with r = eαblog|A| nc. No modification is needed in the first kind of KT
estimator whose consistency has been proved for the case d(T0) <∞.

Theorem 2.14. Suppose D(n) = o(logn) is a nondecreasing function of
n. Adopting the above modifications, the number of computations needed
to determine the BIC estimator in Theorem 2.6 or the KT estimator in
Theorem 2.10, simultaneously for all subsamples xi1, i ≤ n, is o(n log n),
and this can be achieved storing O(nε) data at any time, where ε > 0 is
arbitrary.

Proof. See Section 4.

Remark 2.15. Of course, the O(nε) storage does not include storage of the
context tree estimators for all i ≤ n; note that for the indicated purpose of
deciding when to stop sampling, it suffices to keep track of the last instance
when the estimator has changed.

3 Consistency of the KT and BIC Estimators

In this section, we prove the consistency theorems stated in Section 2.

Proof of Theorem 2.6

It suffices to prove the second assertion of the theorem. Fix an arbitrary con-
stant K. It suffices to show that if T ∣∣

K
6= T0

∣∣
K

for some T ∈ F1(xn1 , D(n))∩
I then there exists a modification T ′ of T also satisfying T ′ ∈ F1(xn1 , D(n))∩
I such that

(3) BICT (xn1) > BICT ′(xn1)

simultaneously for all considered trees T , eventually almost surely as n →
∞.

According to (2), the maximum likelihood factorizes as

(4) MLT (xn1) =
∏

s∈T
P̃ML, s(xn1)

I. Csiszár and Zs. Talata, Context Tree Estimation via BIC and MDL 11

where

(5) P̃ML, s(xn1) =

{ ∏
a∈A

[
Nn(s,a)
Nn(s)

]Nn(s,a)
if Nn(s) ≥ 1,

1 if Nn(s) = 0.

Using this and the definition of BIC, see Definition 2.4, (3) is equivalent to

(6)
∑

s∈T
log P̃ML, s(xn1)−

∑

s′∈T ′
log P̃ML, s′(xn1)

<
(|A| − 1)

2
(|T | − |T ′|) log n.

Since T is a feasible tree by assumption, so is also T ∣∣
K

defined by (1).
For n sufficiently large, so that Nn(s) ≥ 1 for all s with l(s) ≤ K, Q(s) > 0,
it follows by Remark 2.2 that T0

∣∣
K

is feasible, as well. Hence, the indirect
assumption T ∣∣

K
6= T0

∣∣
K

implies that there exist strings s̃ ∈ T ∣∣
K

and s̃0 ∈
T0

∣∣
K

such that either s̃ ≺ s̃0 (underestimation) or s̃ � s̃0 (overestimation).
Equivalently, there exist s ∈ T and s0 ∈ T0 such that either (a) l(s) < K,
s ≺ s0 or (b) l(s0) < K, s0 ≺ s.

We claim that a modification T ′ of T with the required properties is

(7) T ′ = (T \{s}) ∪ T̃

in case (a), with T̃ as in Lemma 3.1 below, and

(8) T ′ = (T \T̃) ∪ {w}

in case (b), with T̃ and w as in Lemma 3.2 below. The properties of T̃ in
Lemmas 3.1 and 3.2 immediately imply that the condition T ′ ∈ F1(xn1 , D(n))∩
I is satisfied in both cases (a) and (b) (in case (a), T ′ ∈ F1(xn1 , D(n)) holds
by the ergodic theorem, eventually almost surely as n → ∞). Thus, it
remains to check (6) for this choice of T ′.

In case (a), for T ′ given by (7), we have |T | − |T ′| = 1 − |T̃ |, and
the left-hand side of (6) is equal to that of (9) below. By Lemma 3.1, the
latter is less than −c n, eventually almost surely as n → ∞, and thus (6)
certainly holds. Regarding simultaneity for all considered trees T , note that
T̃ corresponding to a particular T may be chosen depending on s only, and
the number of strings s with l(s) ≤ K is finite.

In case (b), for T ′ given by (8), we have |T | − |T ′| = |T̃ | − 1, and the
left-hand side of (6) is equal to that of (10) below. Hence, by Lemma 3.2,
(6) is satisfied also in this case, eventually almost surely as n → ∞ for all
considered T .

Lemma 3.1. For any proper postfix s of some s0 ∈ T0, there exists an
irreducible tree T̃ with d(T̃) < ∞ such that u � s and Q(u) > 0 for each

I. Csiszár and Zs. Talata, Context Tree Estimation via BIC and MDL 12

u ∈ T̃ , each v � s with Q(v) > 0 has a postfix in T̃ , and

(9) log P̃ML, s(xn1)−
∑

u∈eT log P̃ML, u(xn1) < −c n

eventually almost surely as n → ∞, where c > 0 is a sufficiently small
constant.

Proof. Given s ≺ s0 ∈ T0, denote by s0l the l-length postfix of s0. Let

T̃ = { s0L+1 } ∪ { as0l : l(s) ≤ l ≤ L, a ∈ A, as0l 6= s0l+1, Q(as0l) > 0 } .

We show that if L = l(s0)−1 when l(s0) <∞, or L is sufficiently large with
the property Q(s0L+1) < Q(s0L) when l(s0) = ∞, this tree T̃ satisfies the
assertions of the lemma.

Now, using (5), the inequality (9) can be written as

∑

u∈eT , a∈ANn(u, a) log
Nn(u, a)
Nn(u)

−
∑

a∈A
Nn(s, a) log

Nn(s, a)
Nn(s)

> cn.

Due to the ergodic theorem, Nn(v, a)/n → Q(va) for any string v, almost
surely as n→∞. Hence, it is enough to show that

∑

u∈eT , a∈AQ(ua) log
Q(ua)
Q(u)

−
∑

a∈A
Q(sa) log

Q(sa)
Q(s)

> 0.

Jensen’s inequality implies

Q(s)
∑

u∈eT
Q(u)
Q(s)

(
Q(ua)
Q(u)

log
Q(ua)
Q(u)

)
≥ Q(sa) log

Q(sa)
Q(s)

, a ∈ A

where the strict inequality holds for some a ∈ A, unless Q(a| s) = Q(a|u) for
each a ∈ A and u ∈ T̃ , in particular, for u = s0L+1. In the case l(s0) <∞, we
have s0L+1 = s0, hence, the last contingency is ruled out by s ≺ s0 ∈ T0 and
the definition of context tree T0. In the case l(s0) =∞, if Q(a|s) were equal
to Q(a|s0L+1) for each a ∈ A and all L satisfying Q(s0L+1) < Q(s0L), letting
L→∞ would give Q(a|s) = Q(a|s0), again contradicting s ≺ s0 ∈ T0.

The irreducibility of T̃ is obvious when l(s0) = ∞, and in the case
l(s0) <∞ it only requires checking that for L = l(s0)− 1 there exists a ∈ A
with as0L 6= s0, Q(as0L) > 0; this follows from s0 ∈ T0 by Definition 2.1.

Moreover, we have Q(u) > 0 for each u ∈ T̃ , and each v � s with
Q(v) > 0 has a postfix in T̃ by construction.

Lemma 3.2. For any irreducible tree T with d(T) ≤ D(n), D(n) = o(log n),
and s ∈ T that has a proper postfix s0 ∈ T0 with l(s0) ≤ K, there exists w

I. Csiszár and Zs. Talata, Context Tree Estimation via BIC and MDL 13

satisfying s � w � s0 such that, for T̃ = {u ∈ T : u � w } and arbitrary
ν > 0

(10)
∑

u∈eT log P̃ML, u(xn1)− log P̃ML, w(xn1) < ν |T̃ | logn

holds simultaneously for all T and s as above, eventually almost surely as
n → ∞. Moreover, here w = a−ka−k+1 . . . a−1 can be chosen such that
a−k+1 . . . a−1 is a proper postfix of some u ∈ T \T̃ .

Proof. Let w = a−ka−k+1 . . . a−1 be the longest postfix of s with k < l(s)
for which there exists a string in T not equal to w but having the postfix
a−k+1 . . . a−1. Then T0 ∈ I implies that w � s0, and hence, a−k+1 . . . a−1 ≺
u for some u ∈ T \T̃ .

Since ∏

a∈A

[
Nn(w, a)
Nn(w)

]Nn(w,a)

≥
∏

a∈A
Q(a|w)Nn(w,a)

the left-hand side of the claimed inequality can be bounded above by

∑

u∈eT , a∈ANn(u, a) log
Nn(u, a)
Nn(u)

−
∑

a∈A
Nn(w, a) logQ(a|w)

(i)
=

∑

u∈eT , a∈ANn(u, a) log
Nn(u, a)
Nn(u)

−
∑

u∈eT , a∈ANn(u, a) logQ(a|u)

=
∑

u∈eT Nn(u)
∑

a∈A

Nn(u, a)
Nn(u)

log
Nn(u, a)/Nn(u)

Q(a|u)

=
∑

u∈eT Nn(u) D
(
Nn(u, ·)
Nn(u)

∥∥∥∥ Q(· |u)
)

Here (i) follows as u � w � s0 ∈ T0 implies Q(a|u) = Q(a|w) = Q(a| s0)
by Definition 2.1. Using Lemmas A.2 and A.3 in the Appendix, this can
be further bounded above, eventually almost surely simultaneously for all
considered T and s, by

∑

u∈eT Nn(u)
1
qmin

∑

a∈A

[
Nn(u, a)
Nn(u)

−Q(a|u)
]2

<
∑

u∈eT Nn(u)
1
qmin

|A| δ log n
Nn(u)

≤ δ |A|
qmin

|T̃ | log n

where qmin is the minimum of the nonzero conditional probabilities Q(a| s0),
a ∈ A, s0 ∈ T0, l(s0) ≤ K, and δ > 0 is arbitrary small.

I. Csiszár and Zs. Talata, Context Tree Estimation via BIC and MDL 14

Proof of Theorem 2.10

If d(T0) < ∞, the assumptions T ∈ F1(xn1 , D(n)), D(n) = o(logn) imply
that T ∈ Fnα(xn1 , D(n)) eventually almost surely as n → ∞, by Lemma
A.1 in the Appendix. Hence, it suffices to prove the second assertion of the
theorem.

The proof is similar to that of Theorem 2.6. It has to be checked that if
T ∣∣

K
6= T0

∣∣
K

for some T ∈ Fnα(xn1 , D(n)) ∩ I with d(T) ≤ D(n), then the
modification T ′ of T defined by (7) or (8) satisfies T ′ ∈ Fnα(xn1 , D(n)) ∩ I
and

(11) KTT (xn1) > KTT ′(xn1),

simultaneously for all considered trees T , eventually almost surely as n →
∞.

Let P̃KT, s(xn1) denote

(12)

∏
a:Nn(s,a)≥1

[(
Nn(s, a)− 1

2

) (
Nn(s, a)− 3

2

) · · · (1
2

)]
(
Nn(s)− 1 + |A|

2

)(
Nn(s)− 2 + |A|

2

)
· · ·
(|A|

2

)

if Nn(s) ≥ 1, and 1 if Nn(s) = 0. Then the KT probability PKT,T (xn1) in
Definition 2.8 factorizes as

(13) PKT,T (xn1) =
1

|A|D(n)

∏

s∈T
P̃KT, s(xn1).

It follows that (11) is equivalent to

(14)
∑

s∈T
log P̃KT, s(xn1)−

∑

s′∈T ′
log P̃KT, s′(xn1) < 0.

Substituting T ′ given by (7) or (8), this reduces to

(15) log P̃KT, s(xn1)−
∑

u∈eT log P̃KT, u(xn1) < 0

in case (a), where T̃ is as in Lemma 3.1, respectively, to

(16)
∑

u∈eT log P̃KT, u(xn1)− log P̃ML, w(xn1) < 0

in case (b), where T̃ and w are as in Lemma 3.2.
To deduce (15) and (16) from Lemmas 3.1 and 3.2 (in the required

eventually almost sure sense), we use the standard bound (see, e.g., [4,
eq. (2.12)])
∣∣∣∣∣ log P̃KT, u(xn1)−

∑

a∈A
Nn(u, a) log

Nn(u, a)
Nn(u)

+
|A| − 1

2
logNn(u)

∣∣∣∣∣ < C

I. Csiszár and Zs. Talata, Context Tree Estimation via BIC and MDL 15

for any string u with Nn(u) ≥ 1, where C is a constant depending only on the
alphabet size |A| with the notation (5). The last bound can be equivalently
written as

(17)
∣∣∣∣ log P̃KT, u(xn1)− log P̃ML, u(xn1) +

|A| − 1
2

logNn(u)
∣∣∣∣ < C .

The claim (15) immediately follows from (9) by (17) and the trivial
bounds 0 ≤ logNn(u) ≤ logn.

Also, (17) gives for the left-hand side of (16), the upper bound

∑

u∈eT
(

log P̃ML, u(xn1)− |A| − 1
2

logNn(u) + C

)

−
(

log P̃ML, w(xn1)− |A| − 1
2

logNn(w)− C
)
.

For T̃ in Lemma 3.2, the assumption T ∈ Fnα(xn1 , D(n)) implies Nn(u) ≥ nα
for each u ∈ T̃ , and since the sum of Nn(u) for u ∈ T̃ is equal to Nn(w), we
have Nn(u) ≥ Nn(w)/|T̃ | for at least one u ∈ T̃ . Using these facts in the
last bound, and denoting the left-hand side of (10) in Lemma 3.2 by ∆, it
follows that the left-hand side of (16) is bounded above by

∆− (|T̃ | − 1)
|A| − 1

2
α log n − |A| − 1

2
log

Nn(w)

|T̃ |
+
|A| − 1

2
logNn(w) + (|T̃ |+ 1)C.

By Lemma 3.2, here ∆ < ν |T̃ | log n eventually almost surely as n→∞, for
arbitrary ν > 0, simultaneously for all considered T and s, and thus, the
claim (16) follows.

4 Computation of the KT and BIC Estimators

The estimators T̂BIC(xn1) and T̂KT(xn1) in Theorems 2.6 and 2.10, the latter
for the case d(T0) <∞, can be represented as

(18) T̂ (xn1) = arg max
T ∈F1(xn1 ,D(n))∩I

∏

s∈T
P̃s(xn1)

where P̃s(xn1) = P̃KT, s(xn1) in the KT case, and P̃s(xn1) = n−
|A|−1

2 P̃ML, s(xn1)
in the BIC case, see (13), Definition 2.8, (4), Definition 2.4.

These facts admit a joint treatment of the computations of the BIC and
KT estimators, via an extension of the CTM algorithm of [15], [17] developed
for the KT case. This algorithm has the following construction.

I. Csiszár and Zs. Talata, Context Tree Estimation via BIC and MDL 16

Consider the full tree AD, where D = D(n) = o(logn), and let SD denote
the set of its nodes, i.e., the set of all strings of length at most D. Based on
the sample xn1 we assign to each node a value and a binary indicator. This
assignment is recursive, that is, the value and the indicator assigned to a
node are calculated from the values assigned to the children of this node.
The desired estimator will be the subtree determined by the indicators as
specified below.

In the sequel, P̃s(xn1) denotes either possibility in the first passage of this
section.

Definition 4.1. Given a sample xn1 , to each string s ∈ SD with Nn(s) ≥ 1,
D = D(n) we assign recursively, starting from the leaves of the full tree AD,
the value

V D
s (xn1) =





max
{
P̃s(xn1) ,

∏
a∈A:Nn(as)≥1

V D
as (xn1)

}
if 0 ≤ l(s) < D,

P̃s(xn1) if l(s) = D,

and the indicator

χDs (xn1) =





1 if 0 ≤ l(s) < D and
∏

a∈A:Nn(as)≥1
V D
as (xn1) > P̃s(xn1),

0 if 0 ≤ l(s) < D and
∏

a∈A:Nn(as)≥1
V D
as (xn1) ≤ P̃s(xn1),

0 if l(s) = D.

Using these indicators, we assign to each s ∈ SD, D = D(n) a maxi-
mizing tree T Ds (xn1) consisting of strings u � s. The term “maximizing” is
justified by Lemma 4.4 below.

Definition 4.2. Given s ∈ SD, let T Ds (xn1) equal to
{
u ∈ SD : χDu (xn1) = 0, χDv (xn1) = 1 for all s � v ≺ u}

if χDs (xn1) = 1, and to {s} if χDs (xn1) = 0.

The maximizing tree T Ds (xn1) is irreducible unless it equals {s}. Indeed,
if Nn(s) = Nn(as) holds for a string s ∈ SD−1 and a letter a (and thus
Nn(a1s) = 0 for all a1 6= a, a1 ∈ A) then χDs (xn1) = 1 implies χDas(x

n
1) = 1.

Proposition 4.3. The context tree estimator T̂ (xn1) in (18) equals the max-
imizing tree assigned to the root, that is,

T̂ (xn1) = T D? (xn1).

Proof. The claimed equality follows from the next lemma by substituting
s = ∅, on account of (18) and the fact that T D? (xn1) is irreducible.

I. Csiszár and Zs. Talata, Context Tree Estimation via BIC and MDL 17

For any s ∈ SD with Nn(s) ≥ 1, define F1(xn1 |s) as the family of all trees
T of depth d(T) ≤ D, consisting of strings u � s with Nn(u) ≥ 1, such that
each s′ � s with Nn(s′) ≥ 1 is either a postfix of some u ∈ T or has a postfix
in T .

Lemma 4.4. For any s ∈ SD with Nn(s) ≥ 1

V D
s (xn1) = max

T ∈F1(xn1 |s)

∏

u∈T
P̃u(xn1) =

∏

u∈T Ds (xn1)

P̃u(xn1).

Proof. By induction on the length of the string s, similarly to [15]. For
l(s) = D the statement is obvious.

Supposing the assertion holds for all strings of length d; we have for any
s with l(s) = d− 1

∏

a∈A:Nn(as)≥1

V D
as (xn1) =

∏

a∈A:Nn(as)≥1

(
max

Ta∈F1(xn1 |as)

∏

u∈Ta
P̃u(xn1)

)

= max
T ∈F1(xn1 |s): d(T)≥1

∏

u∈T
P̃u(xn1).

Here the second equality holds since any family of trees Ta, a ∈ A, Nn(as) ≥
1, satisfying the indicated constraints, uniquely corresponds to a tree T ∈
F1(xn1 |s) with d(T) ≥ 1 via T = ∪aTa.

It follows by Definition 4.1 that

V D
s (xn1) = max

{
P̃s(xn1) , max

T ∈F1(xn1 |s): d(T)≥1

∏

u∈T
P̃u(xn1)

}

= max
T ∈F1(xn1 |s)

∏

u∈T
P̃u(xn1),

proving the first equality in the lemma. The second equality also follows
from the last identity, by the induction hypothesis and Definitions 4.1 and
4.2.

Remark 4.5. For the KT case, Lemma 4.4 above with the condition T ∈
F1(xn1 |s) replaced by the condition that T is complete, is a result of [15],
[17] (with the minor difference that the trees there also had “costs”), and
the above proof is similar to theirs.

The KT estimator in Theorem 2.10 for the general case can still be
represented as in (18), with P̃s(xn1) = P̃KT, s(xn1), the only difference is that
F1(xn1 , D(n)) in (18) is replaced by Fr(xn1 , D(n)) with r = nα. For this
case, Definition 4.1 is modified by setting V D

s (xn1) = 0 for all s ∈ SD with
Nn(s) < r. The definition remains unchanged for s ∈ SD with Nn(s) ≥ r,
but of course the values V D

s (xn1) may change also for these strings s. In

I. Csiszár and Zs. Talata, Context Tree Estimation via BIC and MDL 18

particular, if Nn(s) ≥ r but 1 ≤ Nn(as) < r for some a ∈ A, the modified
definition gives V D

s (xn1) = P̃s(xn1) and χDs (xn1) = 0.
Adopting this modified Definition 4.1, it is easy to see that Proposition

4.3 still holds, that is, the maximizing tree of Definition 4.2 assigned to the
root equals the KT estimator in Theorem 2.10 for the general case.

Next we show that the computation of the estimators in Theorems 2.6
and 2.10 via the above method has the asserted complexity in the off-line
case.

Proof of Theorem 2.13

Since D(n) = o(log n), we may write D(n) = εn logn, where εn → 0.
For each string s ∈ SD, D = D(n) = εn logn, the counts Nn(s, a), a ∈ A,

as well as P̃s(xn1), V D
s (xn1), χDs (xn1) are stored. The number of stored data

is proportional to the cardinality of SD, which is

(19)
D∑

j=0

|A|j =
|A|D+1 − 1
|A| − 1

≤ 2|A|D = O(nε).

To get the indicators χDs (xn1), s ∈ SD which give rise to the trees T Ds (xn1)
according to Definition 4.2, first we need the counts Nn(s, a), s ∈ SD, a ∈ A.

The counts Nn(s, a) for s ∈ AD, a ∈ A can be determined by successively
processing the sample xn1 from position j = D(n) to j = n, and at instance
j incrementing the count Nn(xj−1

j−D(n) , xj) by 1 (the starting values of all
counts being 0). This is O(n) calculations. The other counts Nn(s, a), s ∈
SD−1, a ∈ A can be determined recursively, as Nn(s, a) =

∑
b∈ANn(bs, a).

This is |A| |SD−1| = o(n) calculations.
Then, from these counts the values P̃s(xn1) are determined by O(n) multi-

plications. The calculation of the values V D
s (xn1) and χDs (xn1) requires calcu-

lations proportional to the cardinality of SD, which is less than 2|A|D = o(n).
Consider next the on-line versions of the estimators, with the modifica-

tions described in the passage before Theorem 2.14. In the BIC case, the
representation (18) holds with

P̃s(xn1) = e−
|A|−1

2 blog|A| nc log |A| P̃ML, s(xn1).

In the KT case, the same estimator is used as for the off-line computation,
when d(T0) < ∞. The on-line version of the KT estimator for the general
case is analogous to the off-line version, with r = eαblog|A| nc instead of
r = nα.

Finally, we show that these algorithms have the asserted computational
complexity in the on-line case.

I. Csiszár and Zs. Talata, Context Tree Estimation via BIC and MDL 19

Proof of Theorem 2.14

The calculations required by the algorithm in Definition 4.1 can be per-
formed recursively in the sample size n.

Suppose at instant i, for each string s ∈ SD(i), the counts Ni(s, a), a ∈ A,
as well as P̃s(xi1), V D

s (xi1), χDs (xi1) are stored, where D = D(i). The number
of stored data is proportional to the cardinality of SD(i), which is O(iε), see
(19).

Consider first those instances i when the sample size increases from i−1
to i but blog|A|(i− 1)c = blog|A| i c, and the depth does not change, D(i) =
D(i− 1). If P̃s(xi−1

1) at a node s is known, P̃s(xi1) can be calculated using,
for the KT case, that

P̃KT, s(xi1) =
Ni(s, xi) + 1/2
Ni(s) + |A|/2 P̃KT, s(xi−1

1)

and in the BIC case that in the expression of P̃ML, s(xi−1
1) only the counts

Ni(s, xi) and Ni(s) were incremented to obtain P̃ML, s(xi1). From P̃s(xi1) the
values V D

s (xi1) and χDs (xi1) can be computed in constant number of steps.
These values are different for xi−1

1 and xi1 only when s is a postfix of xi−1
1 ,

hence updating is needed at D(i) nodes only. Thus, the number of required
computations is proportional to D(i).

Consider those instances i when the sample size increases from i− 1 to
i such that blog|A| i c = blog|A|(i − 1)c + 1 but the depth does not change.
The additional task compared to the previous case is that recalculation
of V D

s (xi1) and χDs (xi1) is needed for all nodes s ∈ SD(i), which requires
calculations proportional to the cardinality of SD(i).

Consider next those instances i when the depth increases, D(i) = D(i−
1) + 1. In this case we have three tasks. We have to update P̃s(xi−1

1)
at those nodes s that already existed at instance i − 1, namely, where
l(s) < D(i). In addition, we have to calculate them for the new termi-
nal nodes s, l(s) = D(i), and recalculate V D

s (xi1) and χDs (xi1) at all nodes
s of the new full tree. The former needs O(i) calculations. Indeed, the
counts Ni(s, a), l(s) = D(i), can be determined by successively processing
the sample xi1 from position j = D(i) to j = i, and at instance j increment-
ing the count Ni(x

j−1
j−D(i) , xj) by 1, the starting values of all counts being 0;

from these counts, the values P̃s(xi1) are determined by O(i) multiplications.
The recalculation of the values VD, s(xi1) and χD, s(xi1) requires calculations
proportional to the cardinality of SD(i).

Finally, the total number of computations performed on a sample xn1 is
bounded as follows. The number of computations needed for the updating
at all instances i ≤ n is proportional to

n∑

i=1

D(i) =
n∑

i=1

bεi log ic = o(n logn).

I. Csiszár and Zs. Talata, Context Tree Estimation via BIC and MDL 20

The number of computations to recalculate VD, s, χD, s for all nodes in the
full tree AD(i) at the instances when blog|A| i c increases is of order

blog|A| nc∑

D=0

2|A|D = O
(
|A|log|A| n

)
= O(n).

The number of computations to calculate P̃s for the new terminal nodes at
the instances when D(i) increases is proportional to

bεn lognc∑

D=0

min{ i : D ≤ εi log i } =
bεn lognc∑

D=0

min{ i : eD/εi ≤ i }

≤
bεn lognc∑

D=0

eD/εn + 1 ≤ O
(
e

1
εn
εn logn

)
+ εn logn = O(n).

The number of computations to recalculate VD, s, χD, s for all nodes in the
full tree AD(i) at the instances when D(i) increases is of order

bεn lognc∑

D=0

2|A|D = O
(
|A|εn logn

)
= o(n).

5 Discussion

We have proved the strong consistency of the BIC estimator and the KT
version of MDL estimator of the context tree of any (stationary ergodic)
process, when the depth of the hypothetical context trees is allowed to grow
with the sample size n as o(logn). This context tree may have infinite
depth, and it is not necessarily complete. These consistency results are
generalizations of similar results for estimation of the order of Markov chains
[4], [5].

We have considered processes with time domains equal to the set of all
integers, but as long as stationarity and ergodicity are insisted upon, any
process with one-sided time domain N can be obtained by restricting the
time domain of a process of the former kind. When dealing with Markov
chain order estimation in the one-sided case, dropping the stationarity as-
sumption causes no additional difficulty, see [4]. For context tree estimation
of tree sources, non-stationarity may cause technical problems in dealing
with transient phenomena, but does not appear to significantly change the
picture, see [8].

While the BIC Markov-order estimator is consistent without any bound
on the hypothetical orders [4], it remains open whether the BIC context
tree estimator remains consistent when dropping the depth bound o(logn),

I. Csiszár and Zs. Talata, Context Tree Estimation via BIC and MDL 21

or replacing it by a bound c logn. For the KT context tree estimator it
also remains open whether the depth bound could be increased; it certainly
can not be dropped or replaced by a large constant times logn, since then
consistency fails even for Markov order estimation [4].

With KT, we have considered two kinds of estimators, the second kind
admitting only “r-frequent” hypothetical trees with r = nα. The latter
conforms with the intuitive idea that the estimation should be based on
those strings that “frequently” appeared in the sample, see [3]. When the
context tree has finite depth, the restriction to nα-frequent hypothetical
trees was not necessary since all feasible trees (of depth D(n) = o(logn))
satisfied it automatically, eventually almost surely. It remains open whether
the mentioned restriction is necessary for consistency when the context tree
has infinite depth.

A consequence of the consistency theorems is that when a process is not
a Markov chain of any (finite) order, the estimated order, produced by either
of the BIC or KT estimators, tends to infinity almost surely.

We have also shown that the BIC and KT context tree estimators can be
computed in linear time, via suitable modifications of the CTM method [15],
[17]. An on-line procedure was also considered that calculates the estimators
for all sample sizes i ≤ n in o(n log n) time. This result may be useful, for
example, to implement context tree estimation with a stopping rule based
on “stabilizing” of the estimator.

The NML version of MDL was not considered for the context tree esti-
mation problem (though it was for Markov order estimation in [5]), because
the structure of the NML criterion, unlike BIC and KT, appears unsuitable
for CTM implementation.

Finally we note that in the definition of BIC (Definition 2.4), the factor
(|A| − 1)|T |/2 in the penalty term could be replaced by c|T |, with any
positive constant c, without affecting our results. The question of what
other penalty terms might be appropriate is not in the scope of this paper.

A Appendix

Lemma A.1. Given a process Q with context tree of finite depth, for any
0 < α < 1 there exists κ > 0 such that, eventually almost surely as n→∞

Nn(s) ≥ nα

simultaneously for all strings s with Q(s) > 0, l(s) ≤ κ logn.

Proof. This bound has been used in [5], Proof of Theorem 5. It is a conse-
quence of the typicality theorem in [4], see also [5], remark after Theorem 1.
Indeed, the latter implies the existence of κ > 0 such that Nn(s)/n ≥ Q(s)/2
simultaneously for all s with l(s) < κ logn, eventually almost surely as

I. Csiszár and Zs. Talata, Context Tree Estimation via BIC and MDL 22

n → ∞. The assertion of the lemma follows, since Q(s), when positive, is
bounded below by ξl(s) for a constant ξ > 0.

Lemma A.2. Given a process Q, to any δ > 0 there exists κ > 0 such that,
eventually almost surely as n→∞

∣∣∣∣
Nn(s, a)
Nn(s)

−Q(a| s)
∣∣∣∣ <

√
δ logn
Nn(s)

simultaneously for all strings s with l(s) ≤ κ logn and Nn(s) ≥ 1 which have
a postfix in the context tree of Q.

Proof. By Theorem 2 of [5], for ξ > (log |A|)/2 there exist η > 0 and c > 0
such that, eventually almost surely,

(20)
∣∣∣∣
Nn(s, a)
Nn(s)

−Q(a| s)
∣∣∣∣ <

√
max{ ξ l(s), η log logNn(s) }

Nn(s)

simultaneously for all strings s with Nn(s) ≥ c l(s) which have a postfix in
the context tree of Q. While Theorem 2 of [5] is stated for Markov processes
only, the proof relies upon the martingale property of the sequence Zn of [5,
eq. (10)], and Zn = Nn(s, a)−Q(a|s)Nn−1(s) defines a martingale whenever
s has a postfix in the context tree of the process Q. Thus, the mentioned
proof applies literally.

Then the choice κ = δ/max{ξ, c/4} is suitable for Lemma A.2. Indeed,
if Nn(s) ≥ c l(s), the bound (20) holds and gives the assertion, while in the
opposite case Nn(s) < c l(s) ≤ c κ logn we have

√
(δ logn)/Nn(s) ≥

√
δ/(c κ) ≥ 2

and the assertion holds trivially.

Lemma A.3. For probability distributions P1 and P2 on A

D(P1‖P2) ≤
∑

a∈A

(P1(a)− P2(a))2

P2(a)
.

Proof.

D(P1‖P2) =
∑

a∈A
P1(a) log

P1(a)
P2(a)

≤
∑

a∈A
P1(a)

(
P1(a)
P2(a)

− 1
)

=
∑

a∈A

(P1(a)− P2(a))2

P2(a)
.

I. Csiszár and Zs. Talata, Context Tree Estimation via BIC and MDL 23

Acknowledgement

The authors are indebted to László Györfi for pointing out Lemma A.3, and
to anonymous reviewers for suggestions to improve presentation.

References

[1] D. Baron and Y. Bresler, “An O(N) semipredictive universal encoder
via the BWT,” IEEE Trans. Inform. Theory, vol. 50, pp. 928–937, May
2004.

[2] A. Barron, J. Rissanen, and B. Yu, “The minimum description length
principle in coding and modeling,” IEEE Trans. Inform. Theory,
vol. 44, pp. 2743–2760, Oct. 1998.

[3] P. Bühlmann and A. J. Wyner, “Variable length Markov chains,”
Ann. Statist., vol. 27, pp. 480–513, 1999.

[4] I. Csiszár and P. C. Shields, “The consistency of the BIC Markov order
estimator,” Ann. Statist., vol. 28, pp. 1601–1619, 2000.

[5] I. Csiszár, “Large-scale typicality of Markov sample paths and consis-
tency of MDL order estimators,” IEEE Trans. Inform. Theory, vol. 48,
pp. 1616–1628, Jun. 2002.

[6] L. Finesso, “Estimation of the order of a finite Markov chain,” In Recent
Advances in Mathematical Theory of Systems, Control, Networks and
Signal Processing, I (H. Kimura and S. Kodama, eds.) pp. 643–645.
Tokyo, Japan: Mita, 1992.

[7] R. E. Krichevsky and V. K. Trofimov, “The performance of univer-
sal encoding,” IEEE Trans. Inform. Theory, vol. 27, pp. 199–207,
Mar. 1981.

[8] A. Mart́ın, G. Seroussi, and M. J. Weinberger, “Linear time univer-
sal coding and time reversal of tree sources via FSM closure,” IEEE
Trans. Inform. Theory, vol. 50, pp. 1442–1468, Jul. 2004.

[9] R. Nohre, “Some topics in descriptive complexity,” Ph.D. dissertation,
Elec. Eng. Dept., Linköping Univ., Linköping, Sweden, 1994.

[10] J. Rissanen, “A universal data compression system,” IEEE Trans. In-
form. Theory, vol. 29, pp. 656–664, Sep. 1983.

[11] J. Rissanen, Stochastic Complexity in Statistical Inquiry. Singapore:
World Scientific, 1989.

I. Csiszár and Zs. Talata, Context Tree Estimation via BIC and MDL 24

[12] G. Schwarz, “Estimating the dimension of a model,” Ann. Statist.,
vol. 6, pp. 461–464, 1978.

[13] M. J. Weinberger, A. Lempel, and J. Ziv, “A sequentional algorithm
for the universal coding of finite memory sources,” IEEE Trans. In-
form. Theory, vol. 38, pp. 1002–1014, May 1992.

[14] M. J. Weinberger, J. Rissanen, and M. Feder, “A universal finite mem-
ory source,” IEEE Trans. Inform. Theory, vol. 41, pp. 643–652, May
1995.

[15] F. M. J. Willems, Y. M. Shtarkov, and T. J. Tjalkens, “The context-
tree weighting method: Basic properties,” Elec. Eng. Dept., Eind-
hoven Univ., Eindhoven, The Netherlands, Tech. Rep., 1993. An earlier
unabridged version of [16].

[16] F. M. J. Willems, Y. M. Shtarkov, and T. J. Tjalkens, “The context-tree
weighting method: Basic properties,” IEEE Trans. Inform. Theory,
vol. 41, pp. 653–664, May 1995.

[17] F. M. J. Willems, Y. M. Shtarkov, and T. J. Tjalkens, “Context-tree
maximizing,” in Proc. 2000 Conf. Information Sciences and Systems,
Princeton, NJ, pp. TP6-7–TP6-12, Mar. 2000.

[18] F. M. J. Willems, “The context-tree weighting method: Extensions,”
IEEE Trans. Inform. Theory, vol. 44, pp. 792–798, Mar. 1998.

