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Abstract—In location-based social networks (LBSNs), time significantly affects users’ check-in behaviors, for example, people usually
visit different places at different times of weekdays and weekends, e.g., restaurants at noon on weekdays and bars at midnight on
weekends. Current studies use the temporal influence to recommend locations through dividing users’ check-in locations into time slots
based on their check-in time and learning their preferences to locations in each time slot separately. Unfortunately, these studies
generally suffer from two major limitations: (1) the loss of time information because of dividing a day into time slots and (2) the lack of
temporal influence correlations due to modeling users’ preferences to locations for each time slot separately. In this paper, we propose
a probabilistic framework called TICRec that utilizes Temporal Influence Correlations (TIC) of both weekdays and weekends for
time-aware location recommendations. TICRec not only recommends locations to users, but it also suggests when a user should visit a
recommended location. In TICRec, we estimate a time probability density of a user visiting a new location without splitting the
continuous time into discrete time slots to avoid the time information loss. To leverage the TIC, TICRec considers both user-based TIC
(i.e., different users’ check-in behaviors to the same location at different times) and location-based TIC (i.e., the same user’s check-in
behaviors to different locations at different times). Finally, we conduct a comprehensive performance evaluation for TICRec using two
real data sets collected from Foursquare and Gowalla. Experimental results show that TICRec achieves significantly superior location
recommendations compared to other state-of-the-art recommendation techniques with temporal influence.

Index Terms—Location-based social networks, location recommendations, time-aware location recommendations, continuous
temporal influence, temporal influence correlations, kernel density estimation.
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1 INTRODUCTION

LOCATION-based social networks (LBSNs), such as
Foursquare, Gowalla, and Facebook Places, have been

growing rapidly in recent years. For example, as of May
2014, Foursquare had over 50 million people worldwide,
over 6 billion check-ins with millions more every day, and
over 1.7 million businesses using its Merchant Platform.
Therefore, it is important to recommend relevant locations
for users, since it can bring a lot of benefits to the society.
For instance, location recommendations help people explore
new places to enhance the quality of their daily life and
enable businesses to provide relevant advertisements for
their potential customers.

In an LBSN (Fig. 1), users can establish social links
and share their experiences or tips of visiting or checking
in some interesting locations, e.g., restaurants, stores, and
museums. Such check-in locations are also known as points-
of-interest (POIs). To make location recommendations for
users, most existing studies infer their preferences to POIs
through utilizing collaborative filtering techniques based on
users’ check-in data [1], [2], [3], [4], [5], social influence
between users in terms of their social links [6], [7], [8],
[9], and/or geographical influence of locations according to
their geographic coordinates [6], [7], [8], [9], [10], [11], [12],
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Fig. 1. A location-based social network

[13], [14], [15]. However, all these studies cannot suggest
appropriate time for users to visit a recommended POI,
because they do not consider the influence of the temporal
context when users visiting locations on their check-in
behaviors, called temporal influence for short hereafter. In
reality, time is a very important factor influencing human
activities at different times on weekdays and weekends [16],
[17], [18], [19]. For example, users often visit restaurants
at noon on weekdays and bars at midnight on weekends.
These weekday and weekend patterns reflect the temporal
check-in preferences of users to locations [20], which can be
used to make time-aware location recommendations by sug-
gesting properly visiting time on weekdays or weekends.
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Fig. 2. User-based temporal influence correlations

Existing methods using temporal influence and their
limitations. To the best of our knowledge, although there
are some studies [16], [17], [18], [19] that investigate the
importance of temporal dynamics in human activities, only
three existing methods [21], [22], [23] consider the temporal
influence to recommend POIs for users in LBSNs. They split
a day into time slots, e.g., 24 hours, and apply the memory
or model based collaborative filtering recommendation tech-
niques to infer users’ preferences on locations at each time
slot separately. Unfortunately, these studies generally suffer
from two major limitations. (1) Time information loss. In
these three existing methods, the exact time information of
users visiting locations is lost, since they transform the con-
tinuous time into discrete time slots, e.g., one hour per slot.
Consequently, they learn the user preference at a predefined
time slot based on discrete time models that only aggregate
the check-in data of users at the corresponding time slot.
However, it is better to integrate the user preference within
a target time interval based on continuous time models
that derive the user preference at any continuous time by
considering all check-in data of users. (2) Lack of tempo-
ral influence correlations (TICs). Even worse, these three
existing methods employ the temporal influence separately
for each time slot when making location recommendations,
although they also utilize the temporal consecutiveness of
the same user visiting the same location at different time slots. As
a result, they are unable to correlate the temporal influences
of different time slots on different users’ check-in behaviors
to different locations. However, in reality there exist two
important kinds of TICs. (a) User-based TIC: The check-
in behaviors of different users to the same location at
different times may be correlated. For example, similar
users (e.g., friends) may check in a location at different
hours instead of the same hour, since they may have the
common interest on the location but with different available
time. (b) Location-based TIC: The check-in behaviors of
the same user to different locations at different times
may be also correlated. For instance, similar locations (e.g.,
locations belong to the same category) may be visited by a
user at different times, because she may visit the locations
sequentially.

Real-world motivating examples. To observe the two
important kinds of temporal influence correlations: user-
based TIC and location-based TIC, we conduct analysis
on two publicly available real data sets collected from
Foursquare [7] and Gowalla [24], which are the two of
the most popular LBSNs. (1) For the user-based TIC, we
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Fig. 3. Location-based temporal influence correlations

select ten thousands of user pairs (similar users) from each
data set who have checked in the most common locations,
and calculate the time difference of two users in a pair
visiting the same location. Fig. 2 plots the distribution of
time difference: in both data sets more than 95% user pairs
who visited the same location have a more than one hour
time difference; in other words, different users usually check
in the same location at different hours. This validates that
different users at different times correlate to the same loca-
tion. As a result, it is undesirable to separate the temporal
influence on users at one time slot from another time slot as
in the existing methods [21], [22], [23]. (2) For the location-
based TIC, we select ten thousands of location pairs (similar
locations) which have been visited by the most common
users, and calculate the time difference of two locations in a
pair visited by the same user. Fig. 3 plots the distribution
of time difference: more than 90% location pairs visited
by the same user in both data sets have a time difference
longer than one hour; in other words, different locations
are usually visited by the same user at different hours. This
validates that different locations at different times correlate
to the same user. Hence, it is also undesirable to separate
the temporal influence on locations at one time slot from
another time slot as in the existing methods [21], [22], [23].

Our approach. In this paper, we propose a probabilis-
tic framework to utilize Temporal Influence Correlations
for time-aware location Recommendations, called TICRec
that overcomes the two aforementioned limitations. (1) To
avoid the loss of time information, we estimate a proba-
bility density over the continuous time of a user visiting
a location rather than transforming the continuous time
into discrete time slots. Specifically, we model the contin-
uous time probability densities based on a non-parametric
density estimation method, i.e., the popular kernel density
estimation (KDE) [25], since time densities of users visiting
locations are very diverse and we cannot assume their
forms. (2) To estimate the time probability density of a user
visiting a location, we collect (a) the different time history
of different users visiting the same location based on the
user-based TIC and (b) the different time history of the
same user visiting different locations based on the location-
based TIC. Accordingly, the time history is weighed by
the similarity between users (resp. locations) for the user-
based (resp. location-based) TIC. It is worth noting that:
(i) TICRec not only recommends locations to users, but it
also suggests when a user should visit a recommended lo-
cation. (ii) TICRec differentiates users’ check-in activities on
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weekdays and weekends, since their check-in patterns are
distinct from each other. For example, users often go to office
on weekdays while visit tourist attraction on weekends.

This study is a significant extension to our previous
works [14], [15] on non-time-aware recommendations by
proposing a new probabilistic framework to utilize temporal
influence correlations for time-aware location recommenda-
tions; the new probabilistic framework tackles the aforemen-
tioned limitations in the existing location recommendation
methods that use temporal influence. The main contribu-
tions of this paper can be summarized as follows:

• We propose TICRec — a probabilistic framework
for time-aware location recommendations. TICRec
is a general framework for integrating the tempo-
ral influence with other important information, e.g.,
the social influence (social links between users) and
geographical influence (geographic coordinates of
locations) in our previous work [15]. TICRec focuses
on the problem of time-aware location recommen-
dations that is significantly distinct from and much
more challenging than the problem of non-time-
aware recommendations studied in the work [15].
In TICRec, the proposed time models for tackling
the “time-aware” challenge are totally new to the
work [15].

• In TICRec, we estimate a time probability density
over continuous time on weekdays and weekends
for each user visiting a location rather than split-
ting the continuous time into discrete time slots to
avoid the loss of time information. The proposed
continuous time models in TICRec are adaptive to
different notions of time, e.g., time of a day, time of a
week, etc. Moreover, our continuous time models are
essentially different from the discrete time models
used in the works [21], [22], [23]; the differentiation
is not only about the temporal granularity but also
the way or methodology of modeling the temporal
influence.

• We develop an approach to model the time prob-
ability density of a user visiting a location from
the check-in time history of other users visiting the
same location and the same user visiting other lo-
cations in order to exploit the user-based TIC and
location-based TIC, respectively. To the best of our
knowledge, this is the first approach to correlate the
temporal influences of different users and different
locations, which can enhance the predictive ability of
the time probability density and improve the quality
of location recommendations.

• We conduct extensive experiments to evaluate the
performance of TICRec using two large-scale real
data sets collected from Foursquare and Gowalla. Ex-
perimental results show that TICRec outperforms the
state-of-the-art time-aware recommendation tech-
niques [21], [22], [23] in terms of recommendation
precision, recall, and time error.

The remainder of this paper is organized as follows.
Section 2 highlights related work. Section 3 describes the
proposed probabilistic framework to exploit the tempo-
ral influence correlations for location recommendations. In

Sections 4 and 5, we present our experiment settings and
analyze the performance of TICRec, respectively. Finally, we
conclude this paper in Section 6.

2 RELATED WORK

Recently with the rapid growth of LBSNs, like Foursquare,
Gowalla, Facebook places, etc., recommending locations
(i.e., POIs) for users becomes prevalent [26]. In general,
there are four main categories for existing location recom-
mendation approaches: collaborative filtering, social influence,
geographical influence, and temporal influence.

Collaborative filtering techniques. Although there are
a few works that recommend POIs through the content-
based techniques [27], [28], [29], most studies provide POI
recommendations by using the conventional collaborative
filtering techniques based on users’ check-in data [2], [3],
[30], travel tour data [31], GPS trajectory data [32], [33], [34],
[35], [36], [37], [38], or text data [39]. In particular, some
techniques [1], [4], [5] employ users’ residence to derive
their similarity weights as an input of the conventional col-
laborative filtering techniques [40], [41], [42]. However, the
performance of all these techniques is considerably limited
due to no consideration for the social influence, geographical
influence, or temporal influence.

Social influence. Since friends are more likely to share
common interests, social link information has been widely
utilized to improve the quality of recommender systems in
the conventional social networks like Twitter [43], [44], [45]
and the LBSNs [6], [7], [8], [9], [10], [14] by deriving the
similarity between users based on their social friendships
and integrating it into the collaborative filtering techniques.

Geographical influence. The geographical proximity be-
tween POIs significantly affects the check-in behaviors of
users on the POIs. To exploit geographical influence for
improving the quality of location recommendations, the
studies [8], [10], [13], [46] view locations as ordinary non-
spatial items and consider the geographical influence of
locations by predefining a range; locations only within this
range will be possibly recommended to users. The litera-
ture [11] presents a geo-topic model by assuming that if a
location is closer to the locations visited by a user or the
current location of a user, it is more likely to be visited
by the same user. More sophistically, the studies [6], [9],
[12], [22], [23], [47], [48] model the distance between two
locations visited by the same user as a common distribution
for all users, e.g., a power-law distribution or a multi-center
Gaussian model. In particular, our previous papers [14],
[15], [49], [50] personalize the geographical influence by
modeling the distance between locations visited by the same
user as a personalized distribution for each user.

Temporal influence. The time-dependent recommenda-
tion techniques can be divided into five main categories.
(1) Absolute time factor. The time factor has been widely
used for the conventional recommendations (e.g., books,
music and movies) by considering the time gap between
the occurring time of a previous rating and the recommen-
dation time as a decaying factor to weigh the rating [51],
which is different from the periodic time factor for location
recommendations. (2) Sequential time factor. The time se-
quence has also been utilized to recommend next POI for
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TABLE 1
Key notations in this paper

Symbol Meaning
U Set of all users in an LBSN
u Some user: u ∈ U

L Set of all locations (or POIs) in an LBSN
l Some location: l ∈ L

T A time interval
⟨u, l, t⟩ Check-in or visit that describes user u visiting

location l at time t

D Collection of check-ins of all users visiting all loca-
tions in an LBSN: D = {⟨ui, li, ti⟩}

|D|
i=1

Du,l Check-in time sample of user u visiting location l:
Du,l = {ti|⟨ui, li, ti⟩ ∈ D ∧ ui = u ∧ li = l} (note
that usually Du,l = ∅)

Su,l Du,l’s extended time sample that is derived from
D based on the temporal influence correlations

Wu,l(ti) Weight of the sample point ti ∈ Su,l

P (l|u, T,D) Predicted probability of u visiting new location l at
time interval T given D

P (l|u,D) Prior probability of user u visiting location l

f(t|u, l,D) Time probability density conditioned on user u and
location l

users [52], which is distinct from the time slots in a day.
Accordingly, the method in [52] cannot generate time-aware
recommendations for users. (3) Using time information for
location predictions. The literatures [53], [54], [55], [56],
[57] study the relationship between visited locations and
temporal information for location predictions that refer to
predicting an existing location. It is not straightforward to
apply these techniques in location recommendations that
refer to recommending a new location. (4) Periodic time
pattern discovering. The works [16], [17], [18], [19] only
show the temporally periodic patterns of users visiting
locations without using the patterns to make location recom-
mendations. (5) Periodic time pattern deducing. To the best
of our knowledge, there only exist three literatures [21], [22],
[23] that utilize the temporal influence in location recom-
mendation. Specifically, they split a day into time slots, e.g.,
24 hours, divide the user-location check-in data according
to the check-in time and the time slots, and apply matrix
factorization [21], user-based collaborative filtering [22], or
graph-based method [23] to infer users’ preferences on
locations at each time slot.

3 CONTINUOUS TEMPORAL INFLUENCE

In this section, we define some important concepts and
the research problem of this paper in Section 3.1, propose
a probabilistic framework with temporal influence based
on KDE for location recommendations in Section 3.2, and
develop an approach to exploit the user-based and location-
based temporal influence correlations (TICs) in Section 3.3.

3.1 Problem Statement

TABLE 1 summarizes the key symbols used in this paper.
We first present some basic concepts and the problem defi-
nition as follows.

Definition 1. Check-in or visit. A check-in or visit is a triple
⟨u, l, t⟩ that describes user u ∈ U visiting location l ∈ L at
time t, in which U and L are the sets of users and locations
in an LBSN, respectively.

It is worth emphasizing that the proposed probabilistic
framework in this paper is applicable to different notions
of time, e.g., time of a day and time of a week. However,
since humans show strong daily and weekly periodic behav-
ior [17], [18], [24], in this work we differentiate the temporal
influence on weekdays from weekends, but we can model
the temporal influence on weekdays and weekends based
on the same process. Following, we focus on the temporal
influence of weekdays, i.e., t ∈ [0:00, 24:00) is always a time
instant of a day in weekdays. For example, t = 0:00 and
t = 12:00 represent midnight and noon on weekdays.

Definition 2. Check-in collection. A check-in collection is a
set of check-ins of all users visiting all locations in an LBSN,
denoted as D = {⟨ui, li, ti⟩}|D|

i=1, in which |D| represents the
number of check-ins in D, the same hereafter.

Definition 3. Check-in time sample. Given a check-in
collection D, the check-in time sample of user u visiting
location l is denoted as Du,l = {ti|⟨ui, li, ti⟩ ∈ D ∧ ui =
u∧li = l}. Note that |Du,l| represents the number of records
in the sample, i.e., the frequency of u visiting l.

Problem definition. In the problem of time-aware loca-
tion recommendations with the temporal influence, given
a check-in collection D, a user u and a time interval T ,
the goal is to predict the probability of user u visiting new
location l ∈ L at time interval T , denoted as P (l|u, T,D),
and then return the top-k locations with the highest visiting
probability P (l|u, T,D) for u at T .

It is important to note that: (1) In the problem of time-
aware location recommendations, it is required to not only
recommend interesting locations to users based on their
preferences but also suggest proper time for users to visit
recommended locations. This task is much more challeng-
ing than the traditional problem of non-time-aware location
recommendations that can recommend users with their
preferred locations but not advise appropriate visit time.
(2) If we straightforwardly apply the non-time-aware rec-
ommendation techniques to make time-aware location rec-
ommendations by randomly suggesting visiting time, their
recommendation quality is pretty poor because of failing
to advise proper visit time, as shown in our experimental
results in Section 5.

3.2 A Probabilistic Framework with Continuous Tem-
poral Influence

Existing time-aware location recommender systems trans-
form the continuous time into discrete time slots and then
learn a user’s preference on locations in each time slot sep-
arately [21], [22], [23]. Such a discretization transformation
leads to loss of continuous time information. In contrast,
our TICRec does not require any discretization processing,
so it can address this limitation. More specifically in terms
of probability theory, we infer the probability P (l|u, T,D)
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of user u visiting new location l ∈ L at time interval T by

P (l|u, T,D) =
P (l|u,D)P (T |u, l,D)

P (T |u,D)

∝ P (l|u,D)P (T |u, l,D),∀l ∈ L

= P (l|u,D)

∫
t∈T

f(t|u, l,D)dt, (1)

where P (l|u,D) is the prior probability of user u visit-
ing location l that is independent of time interval T , and
f(t|u, l,D) is the time probability density conditioned on
user u and location l that is essential to utilize the temporal
influence.

Deriving the prior probability with social and geo-
graphical influences. First, to obtain the prior probabil-
ity P (l|u,D), we can apply a variety of recommendation
techniques. Specifically, since the social and geographical
influences play a significant role in the check-in behaviors of
users on locations, we employ the geo-social location recom-
mendation technique proposed in our previous works [14],
[15] to compute the prior probability of a user visiting a
location independently of the temporal influence. In general,
this technique has three main steps.

(1) The social links between users and distances between
their residences are used to derive their similarities:

simsoc(u, u′) =

1− distance(u,u′)
max

u′′∈F (u)
distance(u,u′′) , u′ ∈ F (u);

0, u′ /∈ F (u),
(2)

where F (u) is the set of users having social links with user
u in an LBSN and distance(u, u′) is the distance between
the residences of u and u′. Accordingly, we derive the
social rating rsocu,l of user u to location l based on social
collaborative filtering:

rsocu,l =

∑
u′∈U simsoc(u, u′)|Du′,l|∑

u′∈U simsoc(u, u′)
, (3)

where |Du′,l| is the frequency of user u′ visiting location l
given in Definition 3.

(2) We use the geographic latitude and longitude co-
ordinates of locations that a user has visited to derive a
probability of the user visiting a new location. Formally,
let Lu be the set of locations visited by user u, i.e., Lu =
{li|⟨ui, li, ti⟩ ∈ D ∧ ui = u}, the geographical probability
P geo(l|Lu) of user u to new location l is given by:

P geo(l|Lu) = 1−∏
li∈Lu

(
1− 1

|Xu|
√
2π

∑
x∈Xu

e−[distance(l,li)−x]2/(2σ2)

)
, (4)

where distance(l, li) is the geographical distance between
l and li, Xu = {distance(li, lj)|∀li, lj ∈ Lu} is the set
of distances between every pair of locations in Lu, and σ
is approximately the standard deviation of Xu divided by
|Xu|1/5 [15].

(3) The geo-social prior probability in Equation 1 of user
u to location l is given by

P (l|u,D) =
rsocu,l · P geo(l|Lu)∑

l∈L

rsocu,l · P geo(l|Lu)
. (5)

Estimating the time probability density with kernel
density estimation. To exploit the temporal influence, we
can obtain the time probability density f(t|u, l,D) in Equa-
tion 1 using density estimation techniques. Because the
time densities f(t|u, l,D) of different users to different
locations are very diverse, in this paper we apply a gen-
eral non-parametric method, known as the kernel density
estimation [25] (KDE), which can be used with arbitrary
distributions and without any assumption on the form of
the underlying distribution. f(t|u, l,D) is computed by:

f(t|u, l,D) =

∑
ti∈Su,l

Wu,l(ti)
1
hK

(
t⊖ti
h

)
∑

ti∈Su,l

Wu,l(ti)
, (6)

where Su,l is the time sample for estimating f(t|u, l,D) and
Wu,l(ti) is the weight of the sample point ti that are derived
from D based on the temporal influence correlations. The
details of deriving Su,l and Wu,l(ti) will be presented in
Section 3.3. In addition, t⊖ ti, K(·), and h in Equation 6 are
defined as follows:

• t ⊖ ti is the time difference between two time in-
stances t and ti. Since time is periodic, we cannot
directly subtract ti from t to obtain their difference;
hence, their difference is determined by:

t⊖ ti =

{
|t− ti|, |t− ti| ≤ 12 : 00;
24 : 00− |t− ti|, |t− ti| > 12 : 00.

(7)
For example, when t = 4:10 and ti = 1:05, t ⊖ ti =
3:05; when t = 23:10 and ti = 1:05, t⊖ ti = 24:00−
22:05 = 1:55.

• K(·) is a kernel function satisfying the following two
conditions:

∀x,K(x) ≥ 0 and
∫ +∞

−∞
K(x)dx = 1. (8)

In this paper, we apply the most popular normal
kernel:

K(x) =
1√
2π

e−
x2

2 . (9)

• h is a smoothing parameter, called the bandwidth. In
terms of the well-known three-sigma rule [58], nearly
all values lie within three standard deviations of the
mean in a normal distribution, i.e.,∫ 3h

−3h

1√
2πh

K
(x
h

)
dx ≈ 1, (10)

and t always lies in [0:00, 24:00). Thus, 6h ≈ 24, i.e.,

h ≈ 4. (11)

3.3 Exploiting User-based and Location-based Tempo-
ral Influence Correlations
In the proposed probabilistic framework with temporal
influence described in Section 3.2, the key task is to derive
sample ti ∈ Su,l and weight Wu,l(ti) in order to estimate
the time probability density f(t|u, l,D) in Equation 6. Note
that we cannot simply regard Su,l as Du,l, since we are
inferring the probability of user u visiting new location l,
i.e., u has not checked in location l before and Du,l is empty.
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(b) Gowalla

Fig. 4. The relationship between the time difference with the similarity of users
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(b) Gowalla

Fig. 5. The relationship between the time difference with the similarity of locations

To this end, we exploit the user-based TIC and location-
based TIC to derive the sample ti ∈ Su,l and weight Wu,l(ti)
for estimating the time probability density f(t|u, l,D) in
Equation 6.

Observing temporal influence correlations by analyz-
ing the check-in data. The user-based TIC states that the
check-in behaviors of different users to the same location at
different times may be correlated. For example, a group of
friends may visit a POI at different times, because they
have the common interest in the POI, but with different
available time. On the other hand, the location-based TIC
indicates that the check-in behaviors of the same user to different
locations at different times may be correlated as well. For
instance, the POIs belonging to the same category may be
visited by a user at different times, because she could visit
the POIs for different purposes (e.g., a user visits a restau-
rant for a breakfast, lunch or dinner). To further observe
the user-based and location-based TICs, we analyze these
TICs in two publicly available real data sets collected from
Foursquare [7] and Gowalla [24]. Specifically, we calculate
(a) the cosine similarity between every pair of users

sim(u, u′) =

∑
l∈L

|Du,l||Du′,l|√∑
l∈L

|Du,l|2
√∑

l∈L

|Du′,l|2
, (12)

and the average time difference of them visiting the same
location, and (b) the cosine similarity between every pair of
locations

sim(l, l′) =

∑
u∈U

|Du,l||Du,l′ |√∑
u∈U

|Du,l|2
√∑

u∈U

|Du,l′ |2
, (13)

and the average time difference of them visited by the same
user. Figs. 4 and 5 show the relationships between the time
difference with the similarity of users and the similarity of
locations, respectively. In general, we have two findings:
(1) Different users check in a POI at different times while
different locations are visited by a user at different times
as well, both with the time gap of larger than two hours.
(2) With the increase of similarity of users or locations, the
time difference decreases approximately linearly.

Exploiting temporal influence correlations for estimat-
ing time probability densities. The experimental results
shown in Figs. 4 and 5 inspire us to correlate (a) the temporal
influences of different users to the same location at different
times and (b) the temporal influences of the same user to
different locations at different times, in order to obtain the
time sample Su,l for estimating the time probability density
f(t|u, l,D) in Equation 6. In other words, we can derive the
time sample Su,l of user u to location l through combining
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the check-in samples: (i) Du′,l of another user u′ visiting l
(i.e., u, u′ ∈ U ∧ u ̸= u′) and (ii) Du,l′ of u visiting another
location l′ (i.e., l, l′ ∈ L ∧ l ̸= l′). Formally,

Su,l =

( ∪
u′∈U

{ti|ti ∈ Du′,l}

)∪(∪
l′∈L

{tj |tj ∈ Du,l′}

)
,

(14)
where the time sample Su,l is a multiset that may contain
duplicate sample points from Du′,l and Du,l′ . It is important
to note that the temporal influence correlations used in
Equation 14 are different from the temporal consecutiveness
that smooths the check-in activity of a user to a location at
a time slot through the check-in activity of the same user
to the same location at other time slots, as applied in [21],
[22]. Thus, the methods in [21], [22] cannot correlate the
temporal influence of different users or different locations.

Further, we consider the similarity between users or
locations as the sample weight of the corresponding time
sample points, since the higher the similarity is, the smaller
is the time difference of users visiting locations. Actually,
the relationship between the similarity of users or locations
and the time difference is approximately linear, as shown in
Figs. 4 and 5. Thus, Wu,l is given by:

∀ti ∈ Du′,l,Wu,l(ti) = sim(u, u′);

∀tj ∈ Du,l′ ,Wu,l(tj) = sim(l, l′). (15)

Therefore, by employing temporal influence correlations
for estimating the time probability density f(t|u, l,D) based
on Equations 14 and 15, Equation 6 is rewritten into

f(t|u, l,D) =
1

C

∑
u′∈U

sim(u, u′)
∑

ti∈Du′,l

1

h
K

(
t⊖ ti
h

)

+
∑
l′∈L

sim(l, l′)
∑

tj∈Du,l′

1

h
K

(
t⊖ tj
h

) (16)

together with

C =
∑
u′∈U

sim(u, u′)|Du′,l|+
∑
l′∈L

sim(l, l′)|Du,l′ |. (17)

Note that all time sample points in Du′,l or Du,l′ have the
same weight sim(u, u′) or sim(l, l′), respectively, accord-
ing to Equation 15. Thus, in Equation 17, sim(u, u′) and
sim(l, l′) are multiplied by |Du′,l| and |Du,l′ |, respectively.
Further, to obtain the time-aware probability P (l|u, T,D)
of user u visiting new location l at time interval T in
Equation 1, we can compute the integral of f(t|u, l,D) at
time interval T through∫

t∈T

f(t|u, l,D)dt =

1

C

∑
u′∈U

sim(u, u′)
∑

ti∈Du′,l

∫
t∈T

1

h
K

(
t⊖ ti
h

)
dt

+
∑
l′∈L

sim(l, l′)
∑

tj∈Du,l′

∫
t∈T

1

h
K

(
t⊖ tj
h

)
dt

 , (18)

where
∫
t∈T

1
hK( ·

h )dt is the integral of the normal probabil-
ity density that can be easily calculated by the numerical
integration methods [59].

Algorithm 1 TICRec: The computation of P (l|u, T,D)

Input: User set U , location set L, check-in collection D, and
time interval T .

Output: P (l|u, T,D) for each pair of (u, l), u ∈ U unvisit-
ing l ∈ L.

1: // Step 1: The pre-computation step
2: Compute user similarity matrix UM [u, u′] by Equa-

tion 12
3: Compute location similarity matrix LM [l, l′] by Equa-

tion 13
4: Compute integral of normal probability density at time

interval T for each pair of (u, l):

Φ[u, l] =
∑

ti∈Du,l

∫
t∈T

1

h
K

(
t⊖ ti
h

)
dt

5: // Step 2: The prior probability calculation step
6: Compute social rating rsocu,l by Equation 3
7: Compute geographical probability P geo(l|Lu) by Equa-

tion 4
8: Compute prior probability P (l|u,D) by Equation 5
9: // Step 3: The time probability density estimation step

10: for each u ∈ U do
11: for each unvisited location l ∈ L do
12: B =

∑
u′∈U

UM(u, u′)Φ[u′, l] +
∑
l′∈L

LM(l, l′)Φ[u, l′]

13: C =
∑

u′∈U

UM(u, u′)|Du′,l|+
∑
l′∈L

LM(l, l′)|Du,l′ |

14: P (l|u, T,D) = P (l|u,D)B/C by Equations 1
and 18

15: end for
16: end for

Algorithm and computational complexity. Algorithm 1
outlines the process for computing P (l|u, T,D) through
Equation 1.

Step 1: The pre-computation step. Algorithm 1 first
computes the user and location similarities which are
used in the time probability density estimation and need
max(O(|U |2|L|), O(|U ||L|2)) work (Lines 2 and 3). The key
idea of Algorithm 1 is to pre-compute the common integrals
Φ (Line 4). Each Φ[u, l] has been accessed repeatedly in the
time probability density estimation. To obtain the common
integrals Φ, we only need to scan the check-in collection D,
compute integral for each check-in, and group the integrals
according to the pair of user and location in the check-ins.
Thus, it requires O(|D|) work. It is important to note that
we can incrementally compute the common integrals Φ for
newly arriving check-ins, which is a nice property.

Step 2: The prior probability calculation step. This
step is based on the geo-social location recommendation
technique [15] and needs O(|U |2|L|) work (Lines 6 to 8).

Step 3: The time probability density estimation step.
This step calculates the visiting probability of user u to
location l by summing all temporal influence correlations
based on the user and location similarities and the com-
mon integrals. The computational complexity of this step is
max(O(|U |2|L|), O(|U ||L|2)) work (Lines 10 to 16).

Overall computational complexity. The complexity of
Algorithm 1 is max(O(|U |2|L|), O(|U ||L|2)) + O(|D|) =
max(O(|U |2|L|), O(|U ||L|2)), in which |D| ≪ |U ||L| since
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TABLE 2
Statistics of the two data sets

Foursquare Gowalla
Number of users 11,326 196,591
Number of locations (POIs) 182,968 1,280,969
Number of check-ins 1,385,223 6,442,890
Number of social links 47,164 950,327
User-location matrix density 2.3× 10−4 2.9× 10−5

Avg. No. of visited POIs per user 42.44 37.18
Avg. No. of check-ins per location 2.63 3.11
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(b) Gowalla

Fig. 6. Distribution of check-in locations on a world map

users only check in a small fraction of locations. More
importantly, Algorithm 1 has the same computational com-
plexity with the conventional collaborative filtering tech-
niques (i.e., the computation of a user or location similarity
matrix), although it takes full advantage of temporal influ-
ence correlations.

4 EXPERIMENTAL EVALUATION

In this section, we describe our experiment settings for
evaluating the performance of TICRec.

4.1 Two Real Data Sets
We use two publicly available large-scale real check-in data
sets that were crawled from Foursquare [7] between January
2011 and July 2011 and Gowalla [24] between February 2009
and October 2010. The statistics of the data sets are shown
in TABLE 2. Fig. 6 depicts the distribution of the locations
in the data sets on a world map. In the pre-processing, we
split each data set into the training set and the testing set
in terms of the check-in time rather than using a random
partition method, because in practice we can only utilize
the past check-in data to predict the future check-in events.
A half of check-in data with earlier timestamps are used as
the training set, and the other half of check-in data are used
as the testing set that needs to be divided into different time
slots for the purpose of evaluation. In the experiments, the
training set is used to learn the recommendation models of
the evaluated techniques described in Section 4.2 to predict
the testing data.

4.2 Evaluated Recommendation Techniques
The location recommendation techniques implemented in
our experiments are listed below.

• iGeoRec [15]: iGeoRec is presented in our recent
work to make time-unaware location recommenda-
tions since it does not take into account the temporal

influence. Here, we apply iGeoRec to recommend
time-aware locations by advising a random time slot
for a user to visit a recommended location.

• LRT [21]: The Location Recommendation framework
with Temporal effects (LRT) uses the temporal influ-
ence through separately learning the user check-in
preferences to locations at each time slot from the
check-in user-location matrix at the corresponding
time slot only based on matrix factorization with the
temporal regularization term. Note that originally
LRT does not suggest a time slot for a user to visit a
recommended location, but we can straightforwardly
apply LRT to make time-aware location recommen-
dations without aggregating the learned user check-
in preferences at different time slots. To make fair
comparison, LRT also utilizes the geo-social influ-
ence to compute the prior visiting probability, as
shown in Section 3.2.

• UTE [22]: The User-based collaborative filtering with
Temporal influence and smoothing Enhancement
method (UTE) utilizes the temporal influence
through separately inferring users’ preferences to
locations at each time slot from the check-in user-
location matrix at the corresponding time slot only
based on the user-based collaborative filtering. Note
that UTE also incorporates the spatial (i.e., geograph-
ical) influence and temporal popularity [22].

• GTAG [23]: The method constructs a Geographical-
Temporal Aware Graph (GTAG) for each time slot
separately from the check-in data at the correspond-
ing time slot only. Then, GTAG injects preferences to
user nodes and propagates preferences to candidate
location nodes via various paths in the graph based
on geographical and temporal influences in order to
find the locations with large preferences for each user
at the corresponding time slot.

• TICRec: Our technique exploits the temporal influ-
ence correlations based on the proposed probabilistic
framework in Section 3.

4.3 Performance Metrics
Recommendation accuracy. In general, time-aware location
recommendation techniques compute a score for each POI
regarding a target user at time interval T and return loca-
tions with the top-k highest scores as a recommendation
result to the target user. To evaluate the quality of location
recommendations, it is important to find out how many
locations that are being recommended are actually visited
by the target user at the corresponding time interval T in
the testing data set. Also, it is important to know how many
locations actually visited at T were recommended by the
evaluated technique for the corresponding time interval T .
The former aspect is captured by precision and the latter
by recall. Precision and recall are standard metrics used to
evaluate the recommendation accuracy [6], [9], [22], [23].
We define a discovered location as a location that is both
recommended and actually visited by the target user at the
same time interval T . Formally,

• Precision at T defines the ratio of the number of
discovered locations for T to the total number k of
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recommended locations, i.e.,

precision(T ) =
No. of discovered locations for T

k
.

• Recall at T defines the ratio of the number of discov-
ered locations for T to the total number of actually
visited locations at T by the target user in the testing
set, i.e.,

recall(T ) =
No. of discovered locations for T

No. of visited locations at T
.

Recommendation time error. To comprehensively com-
pare TICRec to LRT, UTE and GTAG, we also investigate
the time deviation between the recommended visit time and
the actual visit time of a user to a location which can be mea-
sured by the popular metric: mean absolute error (MAE),
calculated by:

MAE =
1

N

N∑
i=1

|t̂(li)− t(li)|,

where t̂(li) is the time at which the evaluated technique
recommends a user to visit location li while t(li) is the actual
time at which the same user visits location li.

4.4 Parameter Settings

We examine (1) the effect of the number of recommended
locations for users (top-k from 1 to 10), the number of visited
locations of users in the testing set (from 1 to 10), and the
length of time slots on precision and recall; and (2) the
effect of the time interval (T for each hour of a day) and
the number of visited locations of users in the training set
(given-n from 5 to 50) on precision, recall and MAE.

Note that: The number of recommended locations for
users (top-k), the number of visited locations of users in the
testing set, and the length of time slots have no effect on
MAE. k is set to a smaller number than n because a large
number of recommended locations may not be helpful for
users, and the number of visited locations of users at an
hour in the testing set is often less than 10. Since the three
existing methods [21], [22], [23] split a day into 24 hour slots,
for comparison we compute the probability P (l|u, T,D) in
Equation 1 for each hour of a day by default, and also study
the effect of different lengths of time slots. Precision, recall
and MAE are averaged on all users for the effect of T , k
and length of time slots, or a subset of users having a given
number of visited locations in the training or testing set.

5 EXPERIMENTAL RESULTS

This section analyzes our extensive experimental results. We
compare our TICRec against the state-of-the-art location
recommendation techniques [15], [21], [22], [23] in terms
of recommendation accuracy (Section 5.1) and recommendation
time error (Section 5.2), using two large-scale real data sets
collected from Foursquare and Gowalla.

It is worth emphasizing that, unlike prediction tech-
niques for trajectory data, the accuracy of all recommenda-
tion techniques for LBSNs is usually not high, because the
density of user-location check-in matrix is pretty low. For
example, the reported maximum precision is 0.035 over a

data set with 8.84× 10−4 density in [21], and 0.03 over two
data sets with 9.85× 10−4 and 6.35× 10−3 densities in [22].
Even worse, the two data sets used in our experiments
have a lower density, 2.3 × 10−4 in the Foursquare data
set and 2.9 × 10−5 in the Gowalla data set (TABLE 2), so
the relatively low precision and recall values are common
and reasonable in the experiments. Thus, we focus on the
relative accuracy of TICRec compared to the state-of-the-
art techniques, which we expect that TICRec can improve
recommendation accuracy as more check-in activities are
logged in Section 5.1. In addition to the precision and recall,
we also study the time error in location recommendations
generated by the evaluated techniques in Section 5.2.

5.1 Recommendation Accuracy

Here we compare the recommendation accuracy of iGeo-
Rec, LRT, UTE, GTAG, and TICRec with respect to the effect
of various time intervals of weekdays and weekends (Fig. 7),
numbers of recommended locations for users (Fig. 8), num-
bers of visited locations of users in the training set (Fig. 9),
numbers of visited locations of users in the testing set
(Fig. 10), and lengths of time slots (Fig. 11). At first, we
conclude the most important and general findings in all
experiments on two large-scale real data sets collected from
Foursquare and Gowalla as follows.

iGeoRec. iGeoRec does not use the influence of the
temporal context when users visiting locations based on
their check-in behaviors and simply suggests a random time
slot for a user to visit a recommended location. As a result,
it usually fails to advise a proper visiting time slot for the
user to the recommended location. Accordingly, iGeoRec
returns the most inaccurate locations in terms of precision
and misses most locations actually visited by target users
in terms of recall, especially on the Gowalla data set. This
experimental result shows that it is ineffective to straightfor-
wardly apply the non-time-aware location recommendation
techniques to make the time-aware recommendations, even
though they perform well in the non-time-aware recommen-
dations.

LRT. LRT utilizes the temporal influence through divid-
ing the check-in user-location matrix into sub-matrices for
each time slot and learning the user preferences to locations
at each time slot based on matrix factorization collaborative
filtering techniques. In general, LRT is greatly superior
to iGeoRec according to their recommendation accuracy,
which shows that the temporal influence is an essential
factor to recommend time-aware location recommendations.
However, the overall performance of LRT still does not
perform well in contrast to our TICRec. The reason is that
LRT cannot correlate the temporal influences of different
users visiting different locations at different time slots so as to
deal with the sub-matrices with a very low density at each
time slot, although it uses the regularization term in matrix
factorization to model the temporal consecutiveness of the
same user visiting the same location at two neighboring time slots.

UTE. By utilizing the smoothing technique on every pair
of time slots instead of only two neighboring time slots in LRT
to increase the density of the check-in user-location sub-
matrices at each time slot, UTE improves the precision and
recall to some extent in comparison to LRT. Nonetheless,
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Fig. 7. Effect of hours of weekdays and weekends on recommendation accuracy

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

Top−k

P
re

ci
si

on

 

 
LRT

UTE

GTAG

 

 

iGeoRec

TICRec

(a) Foursquare

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Top−k

R
ec

al
l

 

 
LRT

UTE

GTAG

 

 

iGeoRec

TICRec

(b) Foursquare

1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1

0.12

Top−k

P
re

ci
si

on

 

 

LRT

UTE

GTAG

 

 

iGeoRec

TICRec

(c) Gowalla

1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Top−k

R
ec

al
l

 

 
LRT

UTE

GTAG

 

 

iGeoRec

TICRec

(d) Gowalla

Fig. 8. Effect of numbers of recommended locations for users on recommendation accuracy

like LRT it still inherits the two major limitations: (a) the
loss of time information because of dividing a day into
time slots and (b) the lack of temporal influence correlations
due to modeling users’ preferences to locations for each slot
separately.

GTAG. As opposed to UTE that applies a linearly
weighted method to combine the geographical and temporal
influences into the final preference score for a user to a
location at each time slot, GTAG employs a graph-based
preference propagation method to integrate the geographical
and temporal influences at each time slot. Consequentially,
GTAG generally outperforms UTE based on their precision

and recall, but the improvement is very limited since GTAG
has the same two limitations as UTE.

TICRec. By exploiting the two important kinds of tem-
poral influence correlations, our TICRec always exhibits the
best recommendation quality in terms of precision and re-
call. The main reason is that when estimating the probability
of a user visiting a new location at a given time, TICRec
leverages (a) the time history of other users visiting the lo-
cation based on the user-based TIC and (b) the time history
of the user visiting other locations based on the location-
based TIC, in which the time history is well weighed by
the similarity between users or locations, respectively. These
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Fig. 9. Effect of numbers of visited locations of users in the training set on recommendation accuracy

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Number of visited locations

P
re

ci
si

on

 

 
LRT

UTE

GTAG

 

 

iGeoRec

TICRec

(a) Foursquare

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of visited locations

R
ec

al
l

 

 
LRT

UTE

GTAG

 

 

iGeoRec

TICRec

(b) Foursquare

1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Number of visited locations

P
re

ci
si

on

 

 
LRT

UTE

GTAG

 

 

iGeoRec

TICRec

(c) Gowalla

1 2 3 4 5 6 7 8 9 10
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Number of visited locations

R
ec

al
l

 

 

LRT

UTE

GTAG

 

 

iGeoRec

TICRec

(d) Gowalla

Fig. 10. Effect of numbers of visited locations of users in the testing set on recommendation accuracy
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Fig. 11. Effect of lengths of time slots on recommendation accuracy

promising results verify the superiority of exploiting the
temporal influence correlations for location recommenda-
tions proposed in this paper over analyzing the temporal
influence in a separated manner as in LRT, UTE and GTAG.

5.1.1 Effect of hours in weekdays and weekends
Fig. 7 depicts the recommendation accuracy with respect
to varying the time intervals, i.e., hours in weekdays and
weekends. (1) Interestingly, from 2:00 to 24:00 (or 0:00),
the precision and recall of most time-aware location rec-

ommendation methods (e.g., TICRec) steadily increase at
first and then gradually decrease. Usually, they achieve
the best accuracy around noon. Our explanation is that at
noon most users leave their office or home and visit some
other places, e.g., restaurants for lunch; as a result, the
density of check-ins at this hour is higher than the others.
(2) The recommendation accuracy of all evaluated methods
in the weekdays is higher than that in the weekends. The
reason is that: the check-in behaviors of users are regular
on weekdays, i.e., they usually travel between their home
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Fig. 12. Effect of hours of weekdays and weekends on time error

and office. In contrast, the check-in behaviors of users on
weekends are diverse, e.g., indoorsy persons like visiting
venues around their living areas while outdoorsy persons
prefer traveling around the world to explore new interesting
places.

5.1.2 Effect of numbers of recommended locations for
users
Fig. 8 depicts the recommendation accuracy regarding the
various numbers of recommended locations for users, i.e.,
k is increased from 1 to 10. Aside from the accuracy of
iGeoRec, in general the precision steadily gets lower while
the recall gradually becomes higher with the increase of k.
The reason is that by returning more locations for users, it
is always able to discover more locations that users would
like to check in, but some recommended locations are less
possible to be liked by users due to their lower visiting
probabilities. Note that the recommendation techniques re-
turn the top-k locations based on the estimated visiting
probability, for example, the second recommended location
has the lower visiting probability than the first one.

5.1.3 Effect of numbers of visited locations of users in the
training set
Fig. 9 depicts the recommendation accuracy regarding the
change of the number of visited locations of users in the
training set. For instance, a measure at “Given-n = 5” is
averaged on all users who have checked in five locations
in the training set. As users check in more locations, our
TICRec can more accurately estimate the time probability
density and predict the visiting probability of new locations
for these users at the corresponding hour through using
more check-in data. As a result, their precision and recall
incline. We have the similar observation in our previous
work [15].

5.1.4 Effect of numbers of visited locations of users in the
testing set
Fig. 10 depicts the recommendation accuracy with respect
to varying the number of visited locations of users in the
testing set. For example, a measure at “Number of visited
locations = 5” is averaged on all users who have checked
in five locations in the testing data set. As the number gets

larger, the precision generally increases but the recall usually
decreases. The reason is that: the raise of the number of the
visited locations in the testing set means that the recommen-
dation techniques are more capable of discovering locations
that users would like to visit but it is hard to discover all of
this kind of locations. We also have the similar observation
in our previous work [15].

5.1.5 Effect of lengths of time slots
Fig. 11 depicts the recommendation accuracy with regard
to varying the length of time slots which determines the
time granularity of time-aware location recommendations.
(1) As the length of time slots gets larger, the precision of
all recommendation methods gradually inclines in Figs. 11a
and 11c. The reason is twofold: (i) A larger length of
time slots indicates that the recommendation results will
be less time-specific. (ii) The check-in matrix at the larger
time slot becomes denser that benefits for recommenda-
tion models to estimate the accurate visiting probability
of users to locations. (2) Nevertheless, the larger length
of time slots brings in a larger number of ground truth
locations, i.e., the locations visited by users in the testing
set at each time slot, which will counteract the increase of
discovered locations from higher precision under the longer
time slots in Figs. 11a and 11c. Subsequently, the recall
of time-aware recommendation techniques including LRT,
UTE, GTAG, and TICRec drops in Figs. 11b and 11d, but
the recall of iGeoRec still increases because its precision
raises dramatically that dominates the effect of the larger
number of ground truth locations. (3) More importantly, our
TICRec consistently outperforms the state-of-the-art time-
aware location recommendation technique for all lengths of
time slots, since it models the continuous time probability
densities of users visiting locations independently of the
time granularity based on temporal influence correlations.

5.2 Recommendation Time Error
To further compare the performance of TICRec, LRT, UTE
and GTAG, Fig. 12 depicts their recommendation time error
on the time intervals from 2:00 to 24:00 (or 0:00) of weekdays
and weekends. Interestingly, the recommendation time error
on weekdays (Figs. 12a and 12c) is quite distinct from that
on weekends (Figs. 12b and 12d). (1) On the weekdays,
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Fig. 13. Effect of numbers of visited locations of users in the training set
on time error

the minimum MAE lies in the daytime, i.e., from 10:00 to
18:00, since most users regularly visit POIs around their
office for different purposes, e.g., checking in restaurants at
noon for dinner. From 20:00 to 6:00, after work users usually
go out for relaxation and their check-in behavior has more
diversity relative to the daytime. Thus, it is more difficult
to recommend the correct visit time for users to POIs and
then the MAE reaches the maximum. (2) Reversely on the
weekends, the maximum MAE often occurs in the daytime,
because the users’ check-in behaviors on POIs are highly
diverse during daytime, e.g., they usually explore different
categories of POIs in a new city on weekends. Around
midnight, i.e., from 22:00 to 2:00, the four methods record
the minimum MAE, since the POIs visited at this time have
the strong time indicator. For example, some bars open only
at night and users often go there on weekends. (3) The time
error on weekdays is lower than that on weekends, which is
in accordance with Fig. 7.

Fig. 13 depicts the recommendation time error regarding
the change of the number of visited locations of users
in the training set. As expected, the MAE gradually de-
creases since these time-aware recommendation methods
have more information about users’ check-in behaviors and
can infer users’ time preferences more accurately as users
check in more locations. Promisingly, TICRec accomplishes
the time error of less than two hours when users check in
more than five locations. In addition, the MAE of TICRec is
still significantly lower than that of LRT, UTE and GTAG.

6 CONCLUSION AND FUTURE DIRECTIONS

In this paper, we proposed TICRec; a probabilistic frame-
work to utilize temporal influence correlations (TICs) for
location recommendations in location-based social networks
(LBSNs). TICRec overcomes two major limitations in exist-
ing time-aware location recommendation techniques. In our
TICRec, we use kernel density estimation (KDE) method
to estimate a continuous time probability density of a user
visiting a new location to avoid the time information loss.
To incorporate TICs in TICRec, our time probability density
considers (1) user-based TIC by correlating the check-in
behaviors of different users to the same location at different
times and (2) location-based TIC by correlating the check-in

behaviors of the same user to different locations at different
times. Finally, we have conducted extensive experiments
to evaluate the recommendation accuracy and time error
of TICRec using the two real data sets collected from
Foursquare and Gowalla. Experimental results show that
TICRec provides significantly better performance than the
state-of-the-art time-aware location recommendation tech-
niques.

In the future, we plan to study two directions of location
recommendations to extend TICRec: (a) how to integrate
the temporal influence with the social and geographical
influences more effectively, and (b) how to incorporate
the category information of locations into the probabilistic
location recommendation framework.
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