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Abstract: We address the IGARCH puzzle, by which we understand the fact that a
GARCH(1,1) model fitted to virtually any financial dataset exhibit the property that
α̂ + β̂ is close to one. We do this by proving that if data is generated by a stochastic
volatility model but fitted to a GARCH(1,1) model one would get that α̂+ β̂ tends to
one in probability as the sampling frequency is increased. We also demonstrate that
the conditional variance based on the GARCH(1,1) model converges in probability
to the true unobserved volatility process even when the model is misspecified. An
included study of simulations and empirical high frequency data is found to be in
very good accordance with the mathematical results. The paper establishes that the
IGARCH effect is apparently merely a consequence of the mathematical structure of
a GARCH model and not a property of the true data generating mechanism.
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1 Introduction

A complete characterization of the volatility of financial assets has long been one

of the main goals of financial econometrics. Since the seminal papers of Engle

(1982) and Bollerslev (1986) the class of generalized autoregressive heteroskedas-

tic (GARCH) models has been a key tool when modelling time dependent volatil-

ity. Indeed the GARCH(1,1) model has become so widely used that it is often

referred to as “the workhorse of the industry” (Lee & Hansen 1994).

Recall that given a sequence of returns (yt)t=0,...,T the GARCH(1,1) model defines

the conditional volatility as

σ2
t (θ) = ω + αy2

t−1 + βσ2
t−1(θ),
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for some non-negative parameters θ = (ω, α, β)′. Estimation of GARCH(1,1)

models on financial returns almost always indicates that α̂ is small, β̂ is close

to unity, and the sum of α̂ and β̂ is very close to one and approaches one as

the sample is increased, see e.g. Engle & Bollerslev (1986), Bollerslev & Engle

(1993), Baillie, Bollerslev & Mikkelsen (1996), Ding & Granger (1996), Andersen

& Bollerslev (1997), Engle & Patton (2001). This phenomenon, where α̂ + β̂ is

close to one, seems to be present independently of the considered asset class or

sampling frequency. Engle & Bollerslev (1986) proposed the integrated GARCH

(IGARCH) model specifically to reflect this fact. Also in the recent litterateur on

quasi maximum likelihood estimation in GARCH models it has been paramount

to allow for α + β to be close to or even exceeding one, see e.g. Jensen &

Rahbek (2004) and Francq & Zaköıan (2004). IGARCH implies that the return

series is not covariance stationary and multiperiod forecasts of volatility will

trend upwards. Recently it has been suggested that either long memory, see e.g.

Mikosch & Stărică (2004), or parameter changes, see e.g. Hillebrand (2005), in

the data generating process can give the impression of IGARCH.

In this paper we prove that a very large class of data generating processes will

spuriously lead to the conclusion of IGARCH. Specifically, in Theorem 2 we ad-

dress the IGARCH puzzle by proving that if the returns were in fact generated by

a stochastic volatility model, but fitted to a GARCH(1,1) model the estimated

parameters would exhibit the IGARCH property. Furthermore, in Theorem 1 we

establish that the conditional variance process based on the GARCH(1,1) model

converges to the actual unobserved volatility process as the sampling frequency is

increased. This result provides additional theoretical justification for the recent

literature on realized volatility, see e.g. Andersen, Bollerslev, Diebold & Labys

(2003) and Barndorff-Nielsen & Shephard (2001), who have found empirical evi-

dence indicating that a GARCH(1,1) model is an impressively accurate predictor

of the realized volatility and hence also of the actual unobserved volatility process.

The paper also provides a more intuitive explanation of the IGARCH puzzle

by exposing similarities between the GARCH model and non-parametric estima-

tion of a volatility process, see Stărică (2003) for a related study. The GARCH

model provides a filter for computing the present volatility as, roughly speaking,

a weighted average of past squared observations and a constant. Examination
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of the weights makes it plausible to believe that the performance of the filter is

optimized when α and β sum to one.

Finally, since the theoretical results not only establish that the sum of the

GARCH parameters will tend to one, but also indicate that they will do so at

a polynomial rate, an illustration using high frequency exchange rates as well as

simulated data is provided. The results are found to be in remarkably good ac-

cordance with the theoretical results. Hence our paper contributes by addressing

a very well known puzzle in financial econometrics in a mathematically rigor-

ous way and by providing increased theoretical justification for well established

practices in the industry.

The rest of the paper is organized as follows. Section 2 presents the main results

in Theorem 1 and 2 and explores connections between the GARCH(1,1) model

and non-parametric estimation of volatility. Section 3 illustrates our results by

both simulations and empirical data, while Section 4 concludes and presents ideas

for future research. Finally, all technical lemmas are deferred to the Appendix.

2 Main Results

Based on a very large class of volatility models this section initially provides a

more heuristic explanation of the IGARCH puzzle by exposing similarities be-

tween the GARCH model and non-parametric estimation of a volatility process.

In the second part of the section we present a mathematical setup where these

heuristic arguments can be formalized and we state our two main theorems.

2.1 An Intuitive Explanation of the IGARCH Puzzle

Essentially all volatility models for a sequence (yt)t=0,...,T can be captured by the

formulation

yt =
√

ft · zt, (1)
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where zt is an i.i.d. sequence of zero mean random variables with unit variance

and (ft)t=0,...,T a sequence of volatilities, which are measurable with respect to the

past and may be stochastic. Define σ2
t (θ) to be the conditional variance process

corresponding to the GARCH(1,1) model with parameters θ = (ω, α, β)′

σ2
t (θ) = ω + αy2

t−1 + βσ2
t−1(θ)

= ω

t−1∑
i=0

βi + α

t−1∑
i=0

βiy2
t−1−i + βtσ2

0, (2)

with σ2
0 a fixed constant. Corresponding to the GARCH(1,1) model define the

usual quasi log-likelihood function

lT (θ) = − 1

T

T∑
t=1

(log(σ2
t (θ)) +

y2
t

σ2
t (θ)

) (3)

and note that under the data generating process given by (1) the likelihood

function can be rewritten as

lT (θ) =
1

T

T∑
t=1

(1− z2
t )

ft

σ2
t (θ)

− 1

T

T∑
t=1

(log(σ2
t (θ)) +

ft

σ2
t (θ)

).

Strictly speaking this is not a likelihood function, but just an objective function

for the GARCH(1,1) model. However, to ease comparison with the literature

on estimation of GARCH models we will refer to it as the likelihood function.

Since the first term is the average of a martingale difference sequence and the

function x 7→ − log(x)−a/x has a unique maximum at x = a, this decomposition

suggests that for a large class of data generating processes it is plausible that the

likelihood function is optimized when the conditional variance process is close to

the true unobserved volatility process ft.

For large values of t the conditional variance process in (2) can be viewed as

a kernel estimator of the unobserved volatility at time t with kernel weights

αβi, i = 0, . . . , t − 1 on past observations y2
t−1, . . . , y

2
0 plus the constant ω

1−β
. In

order for this to be an unbiased estimator of the non-constant volatility f on

average over the entire sample one must have
∑∞

i=0 αβi = α
1−β

≈ 1 and the

constant ω
1−β

small. Hence when considering the conditional variance process,
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σ2
t (θ), as a non-parametric estimator of the unobserved volatility one must have

α + β ≈ 1 and ω small in order to avoid introducing a systematical bias. Clearly

the method above is not always the optimal way to match the conditional variance

process, σ2
t (θ) with the volatility process, ft. For instance if the data generating

process is in fact the GARCH(1,1) model one should choose θ to be the true

parameter value and hence obtain σ2
t (θ) = ft.

2.2 A Mathematical Explanation of the IGARCH Puzzle

In the following we introduce a mathematical framework allowing us to formalize

the considerations above. Clearly we cannot give unified mathematical proofs

of our results covering all interesting stochastic volatility models. However, the

framework below offers a compromise between flexibility of the model class and

clarity of the formal mathematical arguments. Following Theorem 2 we discuss

possible generalizations.

Assume that the sequence (yt)t=0,...,T is generated by

yt =
√

f(t/T ) · zt, (4)

where f is a strictly positive continuous function on the unit interval. Consider

the sequence of parameters θT = (0, T−d, 1 − T−d)′ and introduce the stochastic

processes

hT (u) = σ2
bTuc(θT )

on u ∈ [0, 1]. Here and throughout the paper bxc denotes the integer part of x.

Further, let D([a, b]) denote the space of càdlàg functions on the interval [a, b].

Theorem 1. If E[z8
t ] < ∞ then for any d ∈]1/2, 1[ and γ ∈]0, 1] the process

hT
P→ f in the uniform norm on D([γ, 1]) as T tends to infinity.

The theorem establishes that there exists a sequence of parameters such that

the conditional variance process associated with the GARCH(1,1) model gets

arbitrarily close to the unobserved volatility process when the sampling frequency

is increased.
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Proof of Theorem 1. Introduce the notation gT (u) := E[hT (u)] for u ∈ [0, 1]. For

γ, η > 0

P( sup
u∈[γ,1]

|hT (u)− f(u)| > η)

≤ P( sup
u∈[γ,1]

|hT (u)− gT (u)| > η/2) + P( sup
u∈[γ,1]

|gT (u)− f(u)| > η/2).

By Lemma 2 in the Appendix the last term converges to zero as T tends to

infinity. To handle the first term note that by Lemma 1 in the Appendix it holds

that

P( sup
u∈[γ,1]

|hT (u)− gT (u)| > η/2)

= P( max
t=bTγc−1,...,T

|hT (t/T )− gT (t/T )| > η/2)

≤
T∑

t=bTγc−1

P(|hT (t/T )− gT (t/T )| > η/2)

≤ Aη−4Tα2
T

which converges to zero as T tends to infinity since αT = T−d with d > 1/2. ¤

Before stating our main theorem define the parameter set

Θ = {(ω, α, β)′ ∈ R3 | 0 ≤ ω, 0 ≤ α ≤ 1, 0 ≤ β ≤ 1} (5)

and let θ̂T = (ω̂T , α̂T , β̂T )′ = arg maxθ∈Θ lT (θ) be the usual quasi maximum like-

lihood estimator based on (3).

Theorem 2. If f is non-constant and E[z8
t ] < ∞ then (ω̂T , α̂T , β̂T )′

P→ (0, 0, 1)′

as T tends to infinity.

Remark 1. To facilitate the presentation we have assumed that the volatility

process f is a continuous function. However, the proofs of both Theorem 1 and

Theorem 2 can be extended to cover a finite number of discontinuities at the price

of a somewhat more cumbersome notation (Theorem 1 will in this case apply to

every open interval where f is continuous).
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Remark 2. The result also covers the case of a stochastic volatility f as long as

the innovations zt are independent conditionally on f . This includes Taylor’s SV

model as well as many diffusion based models, but excludes the GARCH(1,1)

model itself for which the result obviously does not hold. When f is stochastic

the result should be read as conditional on the given realization of f .

Remark 3. The initial value σ2
0 for the conditional volatility process σ2

t (θ) does

not need to be a constant. For instance both theorems still hold if σ2
0 is merely

bounded in probability as T tends to infinity. This includes defining σ2
0 as the

unconditional variance of the full sample, which is implemented in many software

packages.

Remark 4. The proof is given for the case of Gaussian innovations zt, however,

it can easily be adapted to most other distributions such as the t-distribution.

Another generalization is to allow for some dependence in the sequence of inno-

vations. For instance including an autoregressive structure on zt would permit

modeling leverage effects, but leads to considerably more complicated proofs.

Proof of Theorem 2. For ωU > 0 divide the full parameter space Θ defined in (5)

into the compact subset

ΘωU
:= {θ = (α, β, ω)′ ∈ Θ | ω ≤ ωU}

and its complement Θc
ωU

. Let

Vε(0, 0, 1) = {(ω, α, β)′ ∈ Θ | ||(ω, α, β)′ − (0, 0, 1)′|| < ε}

and use Lemma 5 in the Appendix to construct a finite covering

∪k
i=1V (θi) ⊃ ΘωU

\Vε(0, 0, 1)

of the compact set ΘωU
\Vε(0, 0, 1) with open subsets of Θ and let γθ1 , . . . , γθk

> 0

be constants such that according to Lemma 5

lim
T→∞

P( sup
θ∗∈V (θi)

lT (θ∗) < −
∫ 1

0

log(f(u))du− 1− γθi
) = 1
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for i = 1, . . . , k. With γ = min(γθ1 , . . . , γθk
) we conclude that

1 ≥ P( sup
θ∈Θ\Vε(0,0,1)

lT (θ) < −
∫ 1

0

log(f(u))du− 1− γ)

≥ P( sup
θ∈∪k

i=1V (θi)∪Θc
ωU

lT (θ) < −
∫ 1

0

log(f(u))du− 1− γ)

≥ 1−
k∑

i=1

P( sup
θ∈V (θi)

lT (θ) ≥ −
∫ 1

0

log(f(u))du− 1− γ) (6)

− P( sup
θ∈Θc

ωU

lT (θ) ≥ −
∫ 1

0

log(f(u)))du− 1− γ) (7)

where by construction (6) converges to one as T tends to infinity. Further, as

σ2
t (θ) ≥ ωU on Θc

ωU
we get that

sup
θ∈Θc

ωU

lT (θ) = sup
θ∈Θc

ωU

− 1

T

T∑
t=1

(log(σ2
t (θ)) +

y2
t

σ2
t (θ)

) ≤ − log(ωU)

hence the probability in (7) is zero if we choose ωU large enough. By Lemma 3

in the Appendix it holds that lT (θT )
P→ − ∫ 1

0
log(f(u))du− 1 and since lT (θ̂T ) ≥

lT (θT ) we conclude that for any ε > 0

lim
T→∞

P(θ̂T ∈ Vε(0, 0, 1)) = 1.

¤

3 Illustrations

Below we illustrate the convergence results established in the previous section

using both exchange rates and simulated data. The main result (Theorem 2)

establishes that the quasi maximum likelihood estimators for the GARCH(1,1)

will converge to (0, 0, 1)′ as the sampling frequency increases. However, in this

section we go a step further and examine also the rate of convergence. Based

on Theorem 1 one could conjecture that α̂T and 1− β̂T are proportional to T−d

for some d ∈ (0, 1). This assertion can be examined by plotting log(α̂T ) and

8



log(1− β̂T ) against log(T ). If a linear relationship is found the parameter d can

be obtained by ordinary least squares.

EUR-USD Based on 30-minute recordings of the EUR-USD exchange rate span-

ning the period from the 2nd of February 1986 to the 30th of March 20071

log-returns are computed corresponding to 4 through 72 hour returns. This

gives estimates θ̂T for T between 3.687 and 64.525.

Simulation A. Based on simulated data from (4) with f(x) = sin(xπ) + 2,

zt ∼ i.i.d.N(0, 1), and T between 500 and 10 million.

Simulation B. Based on simulated data from (4) with f(x) = sin(xπ) + 2, zt

i.i.d. standardized t-distributed with 5 degrees of freedom, and T between

500 and 10 million.

Simulation C. Based on simulated data from (4) with f(x) = 1 + 1{x≤1/2},

zt ∼ i.i.d.N(0, 1), and T between 500 and 10 million.

Note that the only simulation setup formally covered by our mathematical results

is Simulation A. For Simulation B the moment condition E[z8
t ] < ∞ is not met

and in Simulation C the volatility process is not continuous, but as mentioned

we expect Theorem 1 and Theorem 2 to hold under much weaker conditions than

those stated. Unreported simulation results show that the functional form of f

does not affect the conclusions. Furthermore simulation studies based on high

frequency sampling from the Heston (1993) square root model with parameters

matched to the S&P-500 index yield qualitatively similar results.

Figure 1 reports the correspondence between the estimates of α and T for the

four setups. The conjectured linear relationship between the logarithm of α̂T and

T is clearly present. The estimated values for d are in all configurations found

to be quite close to a half, but explaining this phenomenon is left for future

research. The corresponding plots for 1 − β̂T have been omitted since they are

indistinguishable from Figure 1 and leads to the same estimates for d.

1Prior to January 1999 the series is generated from the DEM-USD exchange rate using a
fixed exchange rate of 1.95583 DEM per EUR. Preceding the analysis the dataset has been
cleaned as described in Andersen et al. (2003).
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Figure 1: Correspondence between α̂T and T in log-scale for the four configu-
rations. The estimate of d is obtained by regressing log(α̂T ) on log(T ) and a
constant.

The fact that only Simulation A satisfies the assumptions of the theorems clearly

indicates that the results in Theorem 1 and Theorem 2 hold for a far larger class

of models than for those covered by the present version of our proof. Even more

important is the similarity between plots based on simulated and real data. This

emphasizes that the IGARCH effect is apparently merely a consequence of the

mathematical structure of a GARCH model and not a property of the true data

generating mechanism.

4 Conclusion

In this paper we have established that if a GARCH(1,1) model is fitted to data

generated by a wide class of stochastic volatility model then the sum of the quasi

maximum likelihood estimates of α and β will converge to one in probability.

Our results therefore indicate that the IGARCH property often found in empirical
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work may indeed be an artifact caused by misspecification. We also establish that

the conditional variance process, σ2
t (θ), converges to the unobserved volatility

process even if the data is not generated by a GARCH(1,1) model.

The simulations and the empirical studies confirmed the theoretical results and

further suggested that: i) the assumptions of the main results may be weakened

considerably and ii) that it may be possible to derive the exact rate of convergence

of the estimators in specific mathematical frameworks.

Even though our results indicate that the IGARCH property is in fact only an

artifact caused by misspecification this is by no means bad news for the wide

application of the GARCH(1,1) model. Indeed our Theorem 2 establishes that

the GARCH(1,1) model is a well suited filter to extract the volatility process, for

a wide class of data generating processes.
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Appendix: Auxilliary lemmas

Lemma 1. If E[z8
t ] < ∞ there exists some A > 0 such that for any η > 0

sup
u∈[0,1]

P[|hT (u)− gT (u)| > η] ≤ Aη−4α2
T .

Proof. It follows from Chebychev’s inequality that

P(|hT (u)− gT (u)| > η)

≤ η−4E[|hT (u)− gT (u)|4]

≤ η−4E[(αT

bTuc−1∑
t=0

βt
T f( bTuc−1−t

T
)(z2

bTuc−1−t − 1))4]

≤ η−4||f ||∞α4
T{

bTuc−1∑
t=0

β4t
T κ4 + 2η−4α4

T

bTuc−1∑
t=1

t−1∑
j=0

β2t+2j
T κ2

2}

≤ A1η
−4α4

T (
∞∑

t=0

β4t
T +

∞∑
t=1

β2t
T

1−β2t
T

1−β2
T

),

where we make use of the fact that f is bounded and that κ1 = 0 with kr :=

E[(z2
t − 1)r]. Evaluating the geometric series above, using that αT = 1− βT , and
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that the last expression does not depend on u one arrives at an inequality of the

form stated in the lemma. ¤

Lemma 2. For any γ > 0 then supu∈[γ,1] |gT (u)−f(u)| → 0 as T tends to infinity.

Proof. For any sequence cT and any u ∈ [γ, 1] we get

|gT (u)− f(u)|

= |βbTuc
T σ2

0 + αT

bTuc−1∑
t=0

βt
T (f( bTuc−t−1

T
)− f(u))− αT

∞∑

t=bTuc
βt

T f(u)|

≤ β
bTuc
T σ2

0 + αT

cT−1∑
t=0

βt
T |f( bTuc−t−1

T
)− f(u)|+ αT

∞∑
t=cT

βt
T ||f ||∞

≤ β
bTγc
T σ2

0 + αT
1− βcT

T

1− βT

sup
v∈[u− cT

T
,u]

|f(v)− f(u)|+ αT
βcT

T

1− βT

||f ||∞.

If cT /T = o(1) the uniform continuity of f implies that the middle term can be

made arbitrary small by choosing T adequately large and that the convergence

is uniform over u ∈ [γ, 1]. To complete the proof note that

log(βcT
T ) = cT log(1− T−d) = −cT T−d log(1− T−d)− log(1)

T−d
→ −∞

as T tends to infinity provided that we choose cT so that cT /T d tends to infinity

as T tends to infinity. ¤

Lemma 3. For d > 1/2 then

lT (θT )
P→ −

∫ 1

0

log(f(u))du− 1, as T →∞.

Proof of Lemma 3. Rewriting the expression for lT (θT ) yields

lT (θT ) = − 1

T

T∑
t=1

(log(σ2
t (θT )) +

f(t/T )

σ2
t (θT )

) (8)

− 1

T

T∑
t=1

f(t/T )

σ2
t (θT )

(z2
t − 1) (9)
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By the law of large numbers for martingale difference sequences (9)
P→ 0. For-

mally, since E[z2
t − 1] = 0 and σ2

t (θT ) is Ft−1−measurable we get by applying

Chebechev’s inequality that

P(| 1
T

T∑
t=1

f(t/T )

σ2
t (θT )

(z2
t − 1)| > η)

≤ B1

T 2

T∑
i=1

T∑
j=i

E[E[
(z2

i − 1)(z2
j − 1)

σ2
i (θT )σ2

j (θT )
| Fj−1]]

=
B2

T 2

T∑
t=1

E[
1

σ4
t (θT )

] ≤ B3

Tα2
T β2cT

T

E[
1

(z2
1 + . . . + z2

cT
)2

],

where cT is a sequence of positive integers. For T sufficiently large (Mathai &

Provost (1992), p. 59)

E[
1

(z2
1 + . . . + z2

cT

)2] ≤ B4

c2
T

hence

0 ≤ lim sup
T→∞

P(| 1
T

T∑
t=1

f(t/T )

σ2
t (θT )

(z2
t − 1)| > η) ≤ lim sup

T→∞

B5

Tα2
T β2cT

T c2
T

and by choosing cT = bα−1
T c = bT dc the right hand side is zero.

For any γ > 0 (8) may be written as

− 1

T

bTγc−1∑
t=1

log(σ2
t (θT ))− 1

T

bTγc−1∑
t=1

f(t/T )

σ2
t (θT )

−
∫ 1

γ

log(hT (u))du−
∫ 1

γ

f(u)

hT (u)
du +

T∑

t=bTγc

∫ t/T

(t−1)/T

f(u)− f(t/T )

hT (u)
du,

using that hT (u) is piecewise constant on intervals of the form [(t − 1)/T, t/T [.
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We deduce from Theorem 1 and the continuous mapping theorem that

∫ 1

γ

log(hT (u))du
P→

∫ 1

γ

log(f(u))du

∫ 1

γ

f(u)

hT (u)
du

P→ 1− γ

∫ 1

γ

1

hT (u)
du

P→
∫ 1

γ

1

f(u)
du.

By the uniform continuity of f we conclude that

T∑

t=bTγc

∫ t/T

(t−1)/T

f(u)− f(t/T )

hT (u)
du

P→ 0.

For η > 0 then

P(| 1
T

bTγc−1∑
t=1

1

σ2
t (θT )

| > η) ≤ P( max
t=1,...,bTγc−1

1

T

1

σ2
t (θT )

>
η

bTγc − 1
)

≤ P( min
t=1,...,bTγc−1

σ2
t (θT ) ≤ γ

B6

)

≤
bTγc∑
t=1

P(σ2
t (θT ) ≤ γ

B6

).

Noting that E[σ2
t (θT )] ≥ min(f, σ2

0) ≡ σ2 > 0 uniformly in t and T we find that

for γ > 0 sufficiently small then

P(σ2
t (θ) ≤

γ

B6

) ≤ P(|σ2
t (θT )− E[σ2

t (θT )]| ≥ E[σ2
t (θT )]− γ

B6

)

≤ P(|σ2
t (θT )− E[σ2

t (θT )]| ≥ σ2 − γ

B6

)

16



we get by applying Lemma 1 that

P(| 1
T

bTγc−1∑
t=1

1

σ2
t (θT )

| > η) ≤ B7bTγcα2
T

which tends to zero as T tends to infinity. For η > 0 given we get

P(| 1
T

bTγc−1∑
t=1

log(σ2
t (θT ))| > η)

≤ P( max
t=1,...,bTγc−1

| 1
T

log(σ2
t (θT ))| > η

bTγc − 1
)

≤ P( max
t=1,...,bTγc−1

σ2
t (θT ) ≥ exp(B8/γ)) + P( min

t=1,...,bTγc−1
σ2

t (θT ) ≤ exp(−B8/γ))

≤
bTγc−1∑

t=1

P(σ2
t (θT ) ≥ exp(B8/γ)) +

bTγc−1∑
t=1

P(σ2
t (θT ) ≤ exp(−B8/γ)).

From the previous argument we find that for γ > 0 sufficiently small

P(σ2
t (θT ) ≥ exp(B8/γ)) ≤ P(|σ2

t (θT )− E[σ2
t (θT )]| ≥ exp(B8/γ)− σ2)

P(σ2
t (θT ) ≤ exp(−B8/γ)) ≤ P(|σ2

t (θT )− E[σ2
t (θT )]| ≥ σ2 − exp(−B8/γ)),

where σ2 = σ2
0 + ‖f‖∞. From Lemma 1 we get that

P(| 1
T

bTγc−1∑
t=1

log(σ2
t (θT ))| > η) ≤ B9bTγcα2

T

as T tends to infinity. ¤

Lemma 4. For any θ ∈ Θ it holds that if f is non-constant there exists a constant

cθ > 0 such that

lim
T→∞

P(lT (θ)− {−
∫ 1

0

log(f(u))du− 1} < −cθ) = 1.

Proof of Lemma 4. Assume initially that θ is such that α 6= 0 and β 6= 0, 1 and

17



rewrite the log-likelihood function as follows

lT (θ)− {−
∫ 1

0

log(f(u))du− 1}

=

∫ 1

0

log(f(u))du− 1

T

T∑
t=1

log(f(t/T ))− 1

T

T∑
t=1

f(t/T )

σ2
t (θ)

(z2
t − 1) (10)

+
1

T

T∑
t=1

{log(
f(t/T )

σ2
t (θ)

) +
σ2

t (θ)− f(t/T )

σ2
t (θ)

}. (11)

By the LLN for martingale differences (10) tends to zero in probability as T tends

to infinity. Formally, since E[z2
t − 1] = 0 and σ2

t (θ) is measurable with respect to

Ft−1 = F(z0, ..., zt−1) we get by applying Chebechev’s inequality that

P(| 1
T

T∑
t=1

f(t/T )

σ2
t (θ)

(z2
t − 1)| > η)

≤ C1

T 2

T∑
i=1

T∑
j=i

E[E[
(z2

i − 1)(z2
j − 1)

σ2
i (θ)σ

2
j (θ)

| Fj−1]]

=
C2

T 2

T∑
t=1

E[
1

σ4
t (θ)

] ≤ C3

T
E[

1

(α(z2
5 + βz2

4 + . . . + β4z2
1))

2
]

and the expectation on the right hand side is finite if α, β > 0 c.f. Mathai &

Provost (1992).

Next turn to the expression in (11) which we decompose into

1

T

T∑
t=1

(log(
f(t/T )

σ2
t (θ)

)− E[log(
f(t/T )

σ2
t (θ)

)]) (12)

+
1

T

T∑
t=1

(E[
f(t/T )

σ2
t (θ)

]− f(t/T )

σ2
t (θ)

) (13)

+
1

T

T∑
t=1

E[log(
f(t/T )

σ2
t (θ)

) +
σ2

t (θ)− f(t/T )

σ2
t (θ)

] (14)

Initially we will establish that (12) converges in probability to zero. For any

18



η > 0 direct calculations yield

P(|T−1

T∑
t=1

log(
f(t/T )

σ2
t (θ)

)− E[log(
f(t/T )

σ2
t (θ)

)]| > η)

= P(|T−1

T∑
t=1

log(σ2
t (θ))− E[log(σ2

t (θ))]| > η)

≤ 2

T 2η2

T∑
i=1

T∑
j=i

|cov(log(σ2
i (θ)), log(σ2

j (θ)))|. (15)

Utilizing the following inequalities

− 1√
x
≤ log(x) ≤ √

x, 0 ≤ log(1 + x) ≤ x,

which hold for all strictly positive x, it can be concluded that

|Cov(log(σ2
i (θ)), log(σ2

j (θ)))|

= |Cov(log(σ2
i (θ)), log(βj−iσ2

i (θ) + ω
1− βj−i

1− β
+ α

j−i−1∑

k=0

βky2
j−1−k

︸ ︷︷ ︸
:=Z(i,j)

))|

= |Cov(log(σ2
i (θ)), log(Z(i, j)(1 +

βj−iσ2
i (θ)

Z(i, j)
)))|

= |Cov(log(σ2
i (θ)), log(1 +

βj−iσ2
i (θ)

Z(i, j)
))|

≤
√
E[(log(σ2

i (θ)))
2]

√
E[(log(1 +

βj−iσ2
i (θ)

Z(i, j)
))2]

≤
√
E[(

1√
σ2

i (θ)
+

√
σ2

i (θ))
2]

√
E[(

βj−iσ2
i (θ)

Z(i, j)
)2]

≤ βj−i

√
E[(σ2

i (θ) +
1

σ2
i (θ)

+ 2)]
√
E[σ4

i (θ)]

√
E[

1

Z(i, j)2
].

For j > i + 1 the right hand side can be bounded by βj−1C4, where the constant

C4 does not depend on either i nor j. In the derivations it is used repeatedly

that σ2
i (θ) is independent of Z(i, j). Since T−2

∑T
i=1

∑T
j=i β

j−i tends to zero as T
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tends to infinity it can be concluded that (15) and hence also (12) tends to zero.

To show that (13) tends to zero in probability note that

|Cov(
f(i/T )

σ2
i (θ)

,
f(j/T )

σ2
j (θ)

)|

= |f(
i

T
)f(

j

T
)(E[

1

σ2
i (θ)

1

βj−iσ2
i (θ) + Z(i, j)

]− E[
1

σ2
i (θ)

]E[
1

βj−iσ2
i (θ) + Z(i, j)

])|

≤ f(
i

T
)f(

j

T
)E[

1

σ2
i (θ)

] | E[
1

Z(i, j)
]− E[

1

βj−iσ2
i (θ) + Z(i, j)

]|

≤ f(
i

T
)f(

j

T
)E[

1

σ2
i (θ)

]E[
βj−iσ2

i (θ)

Z(i, j)(βj−iσ2
i (θ) + Z(i, j))

]

≤ βj−if(
i

T
)f(

j

T
)E[

1

σ2
i (θ)

]E[σ2
i (θ)]E[

1

Z(i, j)2
].

As before if j > i + 4 the expression can be bounded by βj−1C5, where the

constant C5 does not depend on either i nor j. Hence it can be concluded that

(13) tends to zero. Before turning towards (14) note that for any η > 0 it holds

that

P(σ2
t (θ) /∈ [f − η, ‖f‖∞ + η]) ≥ P(σ2

t (θ) > ‖f‖∞ + η)

≥ P(αfz2
t > ‖f‖∞ + η) = C6 > 0.

Furthermore since the function x 7→ log(a/x)+ (x−a)/x has a unique maximum

at a with the value 0 and the function f is strictly positive and bounded there

exists a constant C7 > 0 such that

sup
a∈[f,‖f‖∞]

sup
x∈[0,a−η]∪[a+η,∞]

log(a/x) + (x− a)/x < −C7.
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Finally it can be concluded that (14) can be bounded by

1

T

T∑
t=1

E[log(
f(t/T )

σ2
t (θ)

) +
σ2

t (θ)− f(t/T )

σ2
t (θ)

]

≤ 1

T

T∑
t=1

−C7P(σ2
t (θ) /∈ [f − η, ‖f‖∞ + η])

≤ 1

T

T∑
t=1

−C7C6 = −C7C6 = cθ < 0,

which verifies the claim of the lemma. For the special cases α = 0 or β = 0

the lemma is trivially satisfied. If β = 1 the lemma follows from observing σ2
t (θ)

tends to infinity almost surely as t grows. ¤

Lemma 5. For θ ∈ Θ\(0, 0, 1) there exists an open subset of Θ around θ denoted

V (θ) and a constant γθ > 0 such that

P( sup
θ∗∈V (θ)

lT (θ∗) < −
∫ 1

0

log(f(u))du− 1− γθ)

tends to one as T tends to infinity.

Proof of Lemma 5. We divide the proof into seven cases mainly because we have

to be very careful when θ lies on the boundary of Θ.

1. θ = (ω, α, β)′ ∈ (0,∞)× [0, 1]× [0, 1)

2. θ = (ω, α, β)′ ∈ (0,∞)× (0, 1]× {1}

3. θ = (ω, α, β)′ ∈ (0,∞)× {0} × {1}

4. θ = (ω, α, β)′ ∈ {0} × (0, 1]× {0}

5. θ = (ω, α, β)′ ∈ {0} × (0, 1]× (0, 1)

6. θ = (ω, α, β)′ ∈ {0} × (0, 1]× {1}

7. θ = (ω, α, β)′ ∈ {0} × {0} × [0, 1)
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Case 1. Choose according to Lemma 4 a cθ > 0 such that

lim
T→∞

P(lT (θ)− {−
∫ 1

0

log(f(u))du− 1} ≥ −cθ) = 0.

For ε > 0 denote by

Vε(θ) = {θ∗ ∈ Θ | ||θ∗ − θ|| ≤ ε}

and note that for T sufficiently large

P( sup
θ∗∈Vε(θ)

lT (θ∗) < −
∫ 1

0

log(f(u))du− 1− cθ/2)

= 1− P( sup
θ∗∈Vε(θ)

lT (θ) ≥ −
∫ 1

0

log(f(u))du− 1− cθ/2)

≥ 1− P(lT (θ) ≥ −
∫ 1

0

log(f(u))du− 1− cθ)− P( sup
θ∗∈Vε(θ)

|lT (θ∗)− lT (θ)| ≥ cθ/2).

To complete the proof we only need to show that for some sufficiently small ε > 0

then

lim
T→∞

P( sup
θ∗∈Vε(θ)

|lT (θ∗)− lT (θ)| ≥ cθ/2) = 0. (16)

Note that this is much weaker than proving that

sup
θ∗∈Vε(θ)

|lT (θ∗)− lT (θ)|

converges to zero in probability since the probability in (16) should not necessarily

converge to zero for this particular ε if cθ is replaced by an arbitrarily small

positive number. We proceed by showing that there exists a constant, D1 > 0,

such that for any small ε > 0 then

sup
θ∗∈Vε(θ)

|lT (θ∗)− lT (θ)|

can be bounded above by something that converges in probability to D1ε as T

tends to infinity. In particular, the conclusion given by (16) holds for ε > 0 such
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that D1ε < cθ/2.

Trivially, for ε sufficiently small we get the inequalities

sup
θ∗∈Vε(θ)

|βt − β∗t| ≤ εt(β + ε)t−1

sup
θ∗∈Vε(θ)

|αβt − α∗β∗t| ≤ εαt(β + ε)t−1 + ε(β + ε)t

sup
θ∗∈Vε(θ)

|ω
t−1∑
i=0

βi − ω∗
t−1∑
i=0

β∗i| ≤ ε
1

1− β
+ ε(ω + ε)

∞∑
i=0

i(β + ε)i−1.

Hence

sup
θ∗∈Vε(θ)

|σ2
t (θ)− σ2

t (θ
∗)|

≤ D1ε + ||f ||∞ε

t−1∑
i=0

z2
t−1−i [αi(β + ε)i−1 + (β + ε)i]︸ ︷︷ ︸

:=ci

+εt(β + ε)t−1σ2
0 (17)

and

sup
θ∗∈Vε(θ)

1

T

T∑
t=1

|σ2
t (θ)− σ2

t (θ
∗)|

≤ 1

T

T∑
t=1

sup
θ∗∈Vε(θ)

|σ2
t (θ)− σ2

t (θ
∗)|

≤ D1ε + ||f ||∞ε

T∑
t=1

t−1∑
i=0

z2
t−1−ici +

1

T

T∑
t=1

t(β + ε)t−1σ2
0ε

≤ D2ε + ||f ||∞ε{
∞∑
i=0

ci} 1

T

T−1∑
t=0

z2
t

P→ D3ε

as T tends to infinity. As σ2
t (θ

∗) is bounded below by ω−ε on Vε(θ) the derivations

just above demonstrate that

sup
θ∗∈Vε(θ)

1

T

T∑
t=1

| log(σ2
t (θ))− log(σ2

t (θ
∗))| ≤ sup

θ∗∈Vε(θ)

1

T

T∑
t=1

1

ω − ε
|σ2

t (θ)− σ2
t (θ

∗)|
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is bounded above by something that converges in probability to D4ε as T tends

to infinity. Consider now the decomposition

sup
θ∗∈Vε(θ)

|lT (θ)− lT (θ∗)|

≤ sup
θ∗∈Vε(θ)

1

T

T∑
t=1

| log(σ2
t (θ))− log(σ2

t (θ
∗))|

+ ||f ||∞ 1

T

T∑
t=1

z2
t sup

θ∗∈Vε(θ)

| 1

σ2
t (θ)

− 1

σ2
t (θ

∗)
|

≤ sup
θ∗∈Vε(θ)

1

T

T∑
t=1

1

ω − ε
|σ2

t (θ)− σ2
t (θ

∗)| (18)

+
||f ||∞

(ω − ε)2

1

T

T∑
t=1

(z2
t − 1) sup

θ∗∈Vε(θ)

|σ2
t (θ)− σ2

t (θ
∗)| (19)

+
||f ||∞

(ω − ε)2

1

T

T∑
t=1

sup
θ∗∈Vε(θ)

|σ2
t (θ)− σ2

t (θ
∗)|. (20)

It follows by previous computations that (18) and (20) can be bounded above by

variables converging in probability to constants of the form Dε. The remaining

term (19) is a martingale difference and by (17) we find that for ε > 0 sufficiently

small

0 ≤ sup
θ∗∈Vε(θ)

|σ2
t (θ)− σ2

t (θ
∗)|

≤ D5ε + D6ε
t−1∑
i=0

(z2
t−1−i − 1)ci.
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This implies that

E[(
1

T

T∑
t=1

(z2
t − 1) sup

θ∗∈Vε(θ)

|σ2
t (θ)− σ2

t (θ
∗)|)2]

≤ κ2
2

1

T 2

T∑
t=1

E[( sup
θ∗∈Vε(θ)

|σ2
t (θ)− σ2

t (θ
∗)|)2]

≤ 1

T
D2

5ε
2 + D2

6ε
2 1

T 2

T∑
t=1

E[(z2
1 − 1)2]

t−1∑
i=0

c2
i

≤ 1

T
D2

5ε
2 +

1

T
D2

6ε
2κ2

∞∑
i=0

c2
i

verifying that (19) tends to zero in probability which is much stronger that what

we need.

Case 2 and 6. Note initially that for ε adequately small

inf
θ∗∈Vε(θ)

σ2
t (θ

∗) ≥ (α− ε)
t−1∑
i=0

(1− ε)ifz2
t−1−i ≡ σ2

t (ε).

Hence

sup
θ∗∈Vε(θ)

lT (θ∗) = sup
θ∗∈Vε(θ)

− 1

T

T∑
t=1

(log(σ2
t (θ

∗)) +
y2

t

σ2
t (θ

∗)
) ≤ 1

T

T∑
t=1

− log(σ2
t (ε)),

which can be bounded by

− log(α− ε)− log(f)− k log(1− ε)− 1

T

T∑
t=1

log(
t∧k−1∑
i=0

z2
t−i−1)

P→ − log(α− ε)− log(f)− k log(1− ε)− E[log(Uk)] (21)

where the convergence is due to the the law of large numbers and Uk = z2
1+· · ·+z2

k.

Now choose k ∈ N and ε so small that (21) is strictly less then
∫ 1

0
log(f(u))−1du

as desired.
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Case 3. Note initially that for ε adequately small

inf
θ∗∈Vε(θ)

σ2
t (θ

∗) ≥ (ω − ε)
t−1∑
i=0

(1− ε)i ≡ σ2

t
(ε).

Hence for suitably large T

sup
θ∗∈Vε(θ)

lT (θ∗) ≤ 1

T

T∑
t=1

− log(σ2

t
(ε)) ≤ − log(ω − ε) + log(2) + log(ε),

and since the right hand side converges to minus infinity as ε tends to zero the

desired result has been established.

Case 4. Note that for ε sufficiently small then infθ∗∈Vε(θ) σ2
t (θ

∗) ≥ (α − ε)y2
t−1.

In particular

lT (θ∗) ≤ − 1

T

T∑
t=1

(log((α− ε)y2
t−1) +

y2
t

σ2
t (θ

∗)
)

= − log(α− ε)− 1

T

T∑
t=1

log(f(
t− 1

T
))− 1

T

T∑
t=1

log(z2
t−1)−

1

T

T∑
t=1

y2
t

σ2
t (θ

∗)
.

Now, working on a probability space where we have a doubly infinite sequence,

(zt)t∈Z, of innovations we get that

inf
θ∗∈Vε(θ)

1

T

T∑
t=1

y2
t

σ2
t (θ

∗)
≥ 1

T

T∑
t=1

y2
t

ε
1−ε

+ (α + ε)
∑t−1

i=0 εiy2
t−1−i + εtσ2

0

≥ D7
1

T

T∑
t=1

z2
t

ε + D8

∑t−1
i=0 εiz2

t−1−i

≥ D7
1

T

T∑
t=1

z2
t

ε + D8

∑∞
i=0 εiz2

t−1−i

.

By the ergodic theorem the right hand side converges in probability towards its
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mean, and since by Fatou’s lemma

lim inf
ε→0

E[
1

T

T∑
t=1

z2
t

ε + D8

∑∞
i=0 εiz2

t−1−i

]

= lim inf
ε→0

E[
z2

t

ε + D8

∑∞
i=0 εiz2

t−1−i

]

≥ E[lim inf
ε→0

z2
t

ε + D8

∑∞
i=0 εiz2

t−1−i

] = E[
z2

t

Dz2
t−1

] = +∞

we conclude that for ε > 0 sufficiently small

lim
T→∞

P( sup
θ∗∈Vε(θ)

lT (θ∗)− {−
∫ 1

0

log(f(u))du− 1} < −1) = 1.

Case 5. Since for ε > 0 sufficiently small

sup
θ∗∈Vε(θ)

|σ2
t (θ

∗)− σ2
t (θ)|

≤ ε

1− (β + ε)
+ ε

t−1∑
i=0

(β + ε)iy2
t−1−i + α

t−1∑
i=1

iε(β + ε)i−1y2
t−1−i + (β + ε)tσ2

0

and for any k ∈ N

inf
θ∗∈Vε(θ)

σ2
t (θ

∗) ≥ (α− ε)
k∑

i=1

(β − ε)iy2
t−1−i

we deduce from previous arguments that

sup
θ∗∈Vε(θ)

|lT (θ∗)− lT (θ)|

≤ 1

T

T∑
t=1

1

infθ∗∈Vε(θ) σ2
t (θ

∗)
sup

θ∗∈Vε(θ)

|σ2
t (θ

∗)− σ2
t (θ)|

+
1

T

T∑
t=1

y2
t

(infθ∗∈Vε(θ) σ2
t (θ

∗))2
sup

θ∗∈Vε(θ)

|σ2
t (θ

∗)− σ2
t (θ)|

In particular, to demonstrate that supθ∗∈Vε(θ) |lT (θ∗)− lT (θ)| is bounded in prob-
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ability by εD we only need to work with terms of the form

1

T

T∑
t=1

ε
∑t−1

i=0(β + ε)iz2
t−1−i

(α− ε)
∑k

i=1(β − ε)iz2
t−1−i

(22)

1

T

T∑
t=1

αε
∑t−1

i=1 i(β + ε)i−1z2
t−1−i

(α− ε)
∑k

i=1(β − ε)iz2
t−1−i

(23)

1

T

T∑
t=1

εz2
t

∑t−1
i=0(β + ε)iz2

t−1−i

[(α− ε)
∑k

i=1(β − ε)iz2
t−1−i]

2
(24)

1

T

T∑
t=1

αεz2
t

∑t−1
i=1 i(β + ε)i−1z2

t−1−i

[(α− ε)
∑k

i=1(β − ε)iz2
t−1−i]

2
. (25)

As in the proof of Case 4 introduce a doubly infinite sequence, (zt)t∈Z, of inno-

vations and note that for ρ1, ρ2 ∈ (0, 1) then by the ergodic theorem

1

T

T∑
t=1

∑∞
i=0 iρi

1z
2
t−1−i∑k

i=1 ρi
2z

2
t−1−i

P→ E[

∑∞
i=0 iρi

1z
2
t−1−i∑k

i=1 ρi
2z

2
t−1−i

]

where

E[

∑∞
i=0 iρi

1z
2
t−1−i∑k

i=1 ρi
2z

2
t−1−i

]

=
k∑

i=0

E[
iρi

1z
2
t−1−i∑k

i=1 ρi
2z

2
t−1−i

] + E[
1∑k

i=1 ρi
2z

2
t−1−i

]E[
∞∑

i=k+1

iρi
1z

2
t−1−i]

≤
k∑

i=1

i(ρ1/ρ2)
i + E[

1∑k
i=1 ρi

2z
2
t−1−i

]
∞∑

i=k+1

iρi
1

and the right hand side is finite for k ≥ 5, c.f. Mathai & Provost (1992). This

shows that asymptotically for T large then (22) and (23) may be bounded above

in probability by εD. To show that (24) and (25) may be bounded in probability
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by εD note that

1

T

T∑
t=1

z2
t

∑∞
i=0 iρi

1z
2
t−1−i

(
∑k

i=1 ρi
2z

2
t−1−i)

2

P→ E[
z2

t

∑∞
i=0 iρi

1z
2
t−1−i

(
∑k

i=1 ρi
2z

2
t−1−i)

2
]

where

E[
z2

t

∑∞
i=0 iρi

1z
2
t−1−i

(
∑k

i=1 ρi
2z

2
t−1−i)

2
]

≤
k∑

i=1

E[
iρi

1z
2
t−1−i

(
∑k

i=1 ρi
2z

2
t−1−i)

2
] + E[

1

(
∑k

i=1 ρi
2z

2
t−1−i)

2
]E[

∞∑

i=k+1

iρi
1z

2
t−1−i]

≤
k∑

i=1

{1

2
E[(iρi

1z
2
t−1−i)

2] +
1

2
E[

1

(
∑k

i=1 ρi
2z

2
t−1−i)

4
]}

+ E[
1

(
∑k

i=1 ρi
2z

2
t−1−i)

2
]

∞∑

i=k+1

iρi
1

with the right hand side finite for k large enough.

Case 7. For θ = (0, 0, β)′, 0 ≤ β < 1 and ε > 0 small enough we get that

sup
θ∗∈Vε(θ)

σ2
t (θ

∗) ≤ 1

1− (β + ε)
ε+ ε||f ||∞

t−1∑
i=0

(β + ε)iz2
t−1−i +(β + ε)tσ2

0 := σ2
t (ε).

Using the inequality −1/x ≤ 2 log(x) we get that

sup
θ∗∈Vε(θ)

lT (θ∗) = sup
θ∗∈Vε(θ)

1

T

T∑
t=1

(− log(σ2
t (θ

∗))− y2
t

σ2
t (θ

∗)
)

≤ sup
θ∈Vε(θ)

T∑
t=1

(log(σ2
t (θ

∗))− 2 log(y2
t ))

≤ 1

T

T∑
t=1

(log(σ2
t (ε))− 2 log(z2

t )− 2 log(f(t/T )))

≤ log(
1

T

T∑
t=1

σ2
t (ε))−

2

T

T∑
t=1

log(z2
t )−

2

T

T∑
t=1

log(f(t/T )).
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Clearly, the last two terms tend to a constant and since

1

T

T∑
t=1

σ2
t (ε) ≤ ε

1− (β + ε)
+

ε

1− (β + ε)

||f ||∞
T

T∑
t=1

z2
t +

1

T

1

1− (β + ε)
σ2

0

we conclude that for ε > 0 small and a suitable γθ > 0 then

lim
T→∞

P( sup
θ∗∈Vε(θ)

lT (θ∗) < −
∫ 1

0

log(f(u))du− 1− γθ) = 1.

¤
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