An Adaptive Resource Partitioning Algorithm in SMT Processors

Huaping Wang, Israel Koren and C. Mani Krishna
Department of Electrical and Computer Engineering
University of Massachusetts, Amherst, MA 01003
E-mail:{hwang, koren krishna}@ecs.umass.edu

Abstract

Simultaneous Multithreading (SMT) increases pro-
cessor throughput by allowing the parallel execution of
several threads. However, fully sharing processor re-
sources may cause resource monopolization by a sin-
gle thread or other misallocation, resulting in overall
performance degradation. Static resource partitioning
techniques have been suggested, but are not as effective
as dynamically controlling the resource usage of each
thread since program phases are not fixed all the time.

In this paper, we propose an Adaptive Resource Par-
titioning Algorithm (ARPA) that dynamically assign
resources to each thread according to thread behavior
changes. ARPA analyzes the resource usage efficiency
of each thread in a time period and assigns more re-
sources to threads which can use them in a more ef-
ficient way. The purpose of ARPA is to improve
the efficiency of resource utilization, thereby improv-
ing overall instruction throughput. Our simulation re-
sults on a large set of 42 multiprogramming workloads
show that ARPA outperforms the traditional fetch pol-
icy, ICOUNT by 55.8% considering overall instruction
throughput, achieving 42.3% more improvement than
static resource allocation policy. It also generates 7.3%
more gains than the current best dynamic resource al-
location technique, Hill-climbing. Considering the fair-
ness accorded to each thread, ARPA achieves 14.0% im-
provement over ICOUNT and attains 7.2% and 5.9%
more improvement than Static and Hill-climbing over
ICOUNT respectively.

1 Introduction

Simultaneous Multithreading (SMT) is an increas-
ingly popular technique for improving overall instruc-
tion throughput by effectively countering the impact of
both long memory latencies and limited available par-
allelism within a single thread [3, 4, 5, 16]. Through
processor resource sharing, SMT takes advantage not
only of the existing instruction level parallelism (ILP)
within each thread but also thread level parallelism
(TLP) among them. In an SMT model, all the proces-
sor resources can be shared among threads except some
architecture state related resources which are separated
to maintain the correct state of each logical processor.

Traditionally, a fetch policy [18] decides which

threads enter the pipeline to share available resources.
Threads compete for resource access and there are no
individual restrictions on the resource usage of each
thread. Unfortunately, threads with outstanding L2
data cache misses often run slowly as they must wait
for these misses to be served. Such threads can oc-
cupy a disproportionately large share of overall system
resources, and slow down other threads [17].

Statically partitioning resources to each thread has
been suggested as one way of preventing a thread from
clogging resources [12]. However, such techniques are
limited by the fact that different threads have differing
requirements, and that these can vary with time. Re-
cently, techniques have been published do dynamically
partition resources [7, 8]. Such techniques can lead to
significant improvements in performance.

Resource partitioning approaches [7, 8, 12] mainly
focus on some critical resources which significantly im-
pact performance if clogged by some threads. Com-
monly, they apply the same partitioning principles to
all the resources to be partitioned. [12] studies the ef-
fect of partitioning the instruction queue or the reorder
buffer. DCRA [7] separately partitions queue and reg-
ister entries using the same sharing model. Threads ex-
ceeding the specified bound are prevented from entering
the pipeline. Hill-climbing [8] partitions integer rename
registers among the threads, assuming that integer is-
sue queue (IQ) and reorder buffer (ROB) will be roughly
proportionately partitioned. It does not directly control
the floating point IQ and the corresponding renaming
registers.

In this paper, we present a new Adaptive Resource
Partitioning Algorithm (ARPA) which concentrates on
partitioning the following shared queue structures: in-
struction fetch queue (IFQ), IQ and ROB. We do not
partition renaming registers since partitioning ROB can
efficiently control the sharing of registers. Doing so,
however, would be quite easy. We assume a shared ROB
as in [7, 8] (if it is not shared, we will constrain the us-
age by each thread). We do not constrain the usage of
individual queues. Instead, we impose an upper bound
on the sum of IFQ and ROB assigned to each thread.
The total number of instructions, in any thread, occupy-
ing these queues should not exceed this bound. The 1Q
is partitioned proportionately. Since a thread’s usage
of different hardware resources are dependent on each
other, partitioning one type of resources will indirectly
control the usage of the other resources.

The purpose of ARPA is to prevent resource un-
derutilization and make each resource unit used effi-
ciently, thus improving overall instruction throughput.
ARPA analyzes the resource usage efficiency of each
thread and assigns more resources to threads which can
use them in a more efficient way. Our simulation re-
sults on a large set of 42 multiprogramming workloads
show that ARPA outperforms the traditional fetch pol-
icy, ICOUNT by 55.8% considering overall instruction
throughput, achieving 42.3% more improvement than
static resource allocation policy. It also generates 7.3%
more gains than the current best dynamic resource al-
location technique, Hill-climbing. Considering the fair-
ness accorded to each thread, ARPA achieves 14.0%
improvement over ICOUNT and attains 7.2% and 5.9%
more improvement than Static and Hill-climbing over
ICOUNT respectively.

The rest of this paper is organized as follows. In
the next section, we describe some related work. In
Section 3 we present our adaptive resource partitioning
algorithm and describe its implementation. Our eval-
uation methodology is presented in Section 4 followed
by numerical results in Section 5. Finally, we present a
summary in Section 6.

2 Related work

Prior related work can be categorized into three
groups: fully flexible resource distribution [6, 9, 10, 18],
static resource allocation [11, 12] and partly flexible dy-
namic resource partitioning [7, 8].

Tullsen et al. [16] have been pioneers in SMT archi-
tecture research and in [18] they exploit several fetch
policies which determine how threads are selectively
fetched to share a common pool of resources. RR is their
simplest policy; it fetches instructions from all threads
in Round Robin order, disregarding the resource usage
of each thread. ICOUNT is a policy which dynamically
biases toward threads that will use processor resources
most efficiently, thereby improving processor through-
put. It outperforms RR and is easy to implement. How-
ever, [ICOUNT cannot prevent some threads with a high
L2 miss rate from being allocated an excessive share of
pipeline resources.

STALL and FLUSH [17] are two techniques built on
top of ICOUNT to ameliorate this problem. STALL
prevents a thread with a pending L2 miss from entering
the pipeline. FLUSH, an extension of STALL, flushes
all instructions from such a thread: this obviously has
an energy overhead. FLUSH++ [6] combines FLUSH
and STALL.

Data Gating (DG) [9] stalls threads when the number
of L1 data misses exceeds a given threshold. Predictive
Data Gating (PDG) [9] prevents a thread from fetch-
ing instructions as soon as a cache miss is predicted.
Both techniques build upon ICOUNT to prevent re-
source hogging.

Static resource partitioning [11, 12] evenly splits crit-
ical resources among all threads, thus preventing re-
source monopolization by a single thread. However, this

method lacks flexibility and can cause resources to re-
main idle when one thread has no need for them, even
if other threads could benefit from additional resources.

DCRA [7] is a partly dynamic resource sharing algo-
rithm. Each thread is assigned a resource usage bound
and these bounds are changed dynamically. The bound
is higher for threads with more L1 Data cache misses.
However, DCRA does not work well on applications
with high data cache miss rates and extremely low base-
line performance. Allocating more resources to such
threads improves their performance by very little and
comes at the expense of decreased performance of other
resources-starved threads.

Hill-climbing [8] uses performance feedback to direct
the partitioning. This learning-based algorithm starts
from equal partitioning, then moves an equal amount of
resources from all the other threads to a “trial” thread.
Hill-climbing appears to be the best resource partition-
ing technique currently available.

Like DCRA [7] and Hill-climbing [8], our algorithm,
ARPA, also partitions resources dynamically. However,
ARPA’s analysis of program behavior results in a more
effective use of resources.

3 ARPA: Adaptive Resource Partition-
ing Algorithm

3.1 Framework

Figure 1 shows a high-level flow chart of how ARPA
works. We divide the whole program execution into
fixed-sized epochs (measured in processor cycles) and
start with equally partitioned resources among the
threads. After each epoch, we analyze the current re-
source usage to identify whether the threads have used
their allocated resources efficiently in this epoch. Our
resource partitioning decision is driven by these analy-
ses. The analysis and partitioning process will be re-
peated every epoch until the end of the program.

3.2 Resource Utilization Analysis

In an SMT processor, the overall instruction through-
put is not only determined by the set of threads running
simultaneously, but is also significantly affected by the
sharing scheme among threads. The objective of ARPA
is to increase the performance of processors by improv-
ing the resource usage efficiency of their resources. In
the next several sections, we will describe how we an-
alyze the resource usage efficiency and use the analysis
to drive the partitioning.

3.2.1 Metric of Usage Efficiency

As shown in Figure 1, the whole program execution is
divided into thousands of equal intervals (epochs). Our
utilization analysis is carried out interval by interval.
We use Committed Instructions Per Resource Entry
(CIPRE) to represent the usage efficiency of processor

Running a fixed

Adaptive

ez artitionin New
Behavior P g > s

. " Partition
Analysis

Figure 1. A simple description of the ARPA algorithm

Equall .
Start q , .y , epoch size
— 3| Partitioning - >
Resources
AY
ARSI ERD
X -
v Ye+Y,| _‘,.:'_.l
71(X1+A)___.___/ "”"_." I
X, e [ne |
F————— |
Y, Li |- |
|
v Yob—— ALy I I
Xy = D)= A= L !
X, ? i I [
: &1 1 |
X, =D X, X, X, +A X, +X, X

Figure 2. An example to illustrate the CIPRE changes after
a specific epoch, n + 1

resources in each interval. It is important to note that
CIPRE can express two different characteristics: (a) the
usage efficiency of all processor resources and (b) the
usage efficiency of the resources which are allocated to
the specific thread. We focus on the former.

Note that a thread with a higher CIPRE does not
necessarily have a higher IPC. For example, given
threads A and B running simultaneously with 50 and 20
queue entries, respectively, suppose thread A commits
2000 instructions and thread B commits 1000 instruc-
tions during an epoch of length 1000 cycles. Therefore,
the IPC of thread A is 2 and that of thread B is 1;
the CIPRE of thread A is % = 40 while the CIPRE
of thread B is % = 50. Because the CIPRE of B is
greater than that of A, we say that thread B is more
productive in this epoch. Resources allocated to B con-
tribute more per unit to system performance than re-
sources allocated to A although the IPC of A is greater
than that of B. Therefore, giving more resources to the
higher-CIPRE thread does not necessarily mean giving
the high-IPC thread more resources.

3.2.2 Partitioning Process

ARPA follows an adaptive resource partitioning strat-
egy. It adjusts the number of resources allocated to
threads at each epoch based on the CIPRE metric.
Threads with a greater CIPRE value will take some
resources from threads with a lower CIPRE in every
epoch until the CIPREs of the two threads are close
to each other. That is to say, all threads can use their
allocated resources with approximately equal efficiency,
thus improving the usage efficiency of all processor re-
sources. At the same time, resource starvation will be

avoided by giving each thread a minimum number of
resources.

We use a two-thread example shown in Figure 2 to
illustrate this process. Figure 2 shows the change in the
CIPRE value when a program completes epoch n + 1.
X1 and X5 are the number of resource entries allocated
to threads 1 and 2, respectively. Y7 and Y5 are the num-
ber of committed instructions of threads 1 and 2 during
epoch n, respectively. A is the number of resource en-
tries that a thread can transfer to another thread in any
one epoch.

The CIPREs of threads 1 and 2, and the CIPRE
of all processor resources at the end of epoch n are
shown below in (1), (2) and (3), respectively; we as-
sume CIPRFE; > CIPREj5 in this example.

Y1
IPRE, = -~ 1
CIPRE, e (1)
Y,
IPRE, = —> 2
CIPRE, X, (2)
Y +Y,
CIPREpypeh pn = —— =2 3
Epoch X; + Xy (3)

It is easy to show that

CIPRE; < CIPREgyoehn < CIPRE, (4)

Since thread 1 achieves a more efficient usage of the
allocated resources in epoch n, ARPA will transfer to it
A resources from thread 2 in the next epoch. That is to
say, thread 1 will be assigned X; + A resource entries
and thread 2 will be restricted to X5 —A resource entries
in epoch n + 1. If both threads 1 and 2 still use their
allocated resources with the same efficiency as in epoch
n, the CIPRE of the total resources in epoch n + 1 will
be:

H+Y2+A*(}%—%)

X+ X5

OIPREEpochJH—l = (5)

Compared with the no-adjustment case which has the
same CIPRE as in (3), after epoch n+ 1, the CIPRE of
all resources is increased by

X1+ Xo

Whenever CIPRFE, is greater than CIPRE;, re-
sources continue to be transferred from thread 2 to
thread 1 in subsequent epochs as long as each thread has
at least its specified minimum allocation. The CIPRE

#define EPOCH Fixed for the entire execution
#define Num Number of running threads
#define ComInsts(x) Compute CIPRE[x]

#define max(A,n) Get the index of the maximum
value in the array A[0:n]
Number of queue entries moved

keeps increasing and getting ever closer to CIPRE;
(but will not exceed CIPRE;). That is to say, Line
is getting closer to Line; as shown in Figure 2.

As thread 1 obtains more resources, its resource us-

age efficiency, i.e., CIPRE;, will tend to decrease. #define STEP

At the same time, CIPRFE, will increase gradually
(as the number of resources allocated to a thread re-
duces, the usage efficiency of the remaining resources
will increase). In one situation, CIPRE;, CIPRE,
and CIPRE will be getting closer and closer (Lines,
Liney and Line in Figure 2 will nearly overlap). Both
threads can use the allocated resources at the same effi-
ciency and the CIPRE of all resources reaches its opti-
mal value. Another situation is that the CIPRE value of
thread 1 may still be greater than that of thread 2 even
when thread 1 takes all the resources it can from thread
2. As mentioned previously, ARPA assures each thread
a certain minimum number of resources to avoid re-
source starvation or under-utilization of threads in such
situation.

ARPA improves the resource usage efficiency of all re-
sources by allocating more resources to the high-CIPRE
thread but still avoids resource starvation. A more de-
tailed analysis is presented in Section 5.

3.3 Partitioning Algorithm

Figure 3 presents the pseudocode of ARPA. At the
end of an epoch, the ComlInsts function computes the
CIPRE value of each thread: this is the number of com-
mitted instructions divided by the total number of IFQ
and ROB entries allocated to the thread in the current
epoch. We then compare the CIPRE of each thread
and select the thread with the greatest CIPRE as the
reference thread (if the CIPREs of the two threads are
equal, we do not move resources between them in the
next epoch). The reference thread can take STEP entries
of IFQ and ROB from every other thread. I(Q entries
are also proportionately moved.

3.4 Implementation of ARPA

Figure 4 shows how to implement ARPA. The top
layer in Figure 4 is the baseline SMT processor structure
used in our study. We do not modify this part.

The middle layer lists the counters and comparators
we add to the processor for each thread, which will be
used for resource partitioning using ARPA. We need
one In-flight_Instructions_Counter per thread to moni-
tor the current usage of queue entries by each thread.
The counter will be incremented as instructions are
fetched and decremented as instructions are commit-
ted. The Committed_Instructions_Counters are used to
count the committed instructions for each thread in the
current epoch. A Committed_Instructions_Counter will
be reset to zero at the start of each epoch while an
In-flight_Instructions_Counter will not be reset during
the execution of a thread. We use one comparator per
thread to determine if the current resource usage of the
thread has already exceeded its specified bound; if so,

at each comparison

For every EPOCH cycles{

//compute CIPRE of each thread.

for(tid = 0; tid < Num; tid ++){
CIPRE[tid] = ComInsts(tid);

}

// select the reference thread

Ref_tid = max(CIPRE, Num);

// assign resources

for(tid = 0; tid < num; tid ++){
Partition[Ref_tid] += STEP;
Partition[tid] -= STEP;

Figure 3. ARPA pseudo-code

a throttling signal will be generated to throttle further
fetching for this thread.

The bottom layer is the implementation of the algo-
rithm. At the end of each epoch, we run the resource
allocation algorithm. The resources upper bound as-
signed to each thread is saved in its Partition Register.
At the start of the program, this assignment is set to
be equal for every thread. In every epoch the Parti-
tion Registers will be read and the CIPRE computed
for each thread. Based on this value, a new partition
will be generated and these new partition values will be
updated in the Partition Registers. As was done in [8],
we suggest to implement this in software. At the end
of each epoch, an interrupt signal can be sent to one
of the application threads, using its hardware context
to execute the partitioning algorithm. The overhead of
running the algorithm is considered in this paper in the
same way as in [8].

4 Evaluation Methodology

4.1 Configuration

Our simulator is based on Simplescalar [2] for the
Alpha AXP instruction set with Wattch [1] power ex-
tensions. We modified SimpleScalar to support simul-
taneous multithreaded processors. Moreover, we have
decoupled the centralized Register Update Unit (RUU)
structure adapted by SimpleScalar and have separate
issue queue, reorder buffer and physical registers. Our
baseline processor configuration is shown in Table 1.
Other detailed features are based on the SMT architec-
ture of Tullsen et al. [18].

Out simulator adds support for the dynamic par-
titioning of the fetch queue and reorder buffer. We
keep counters for the number of In-flight instructions
(which are the instructions in the fetch queue and re-
order buffer) per thread, allowing a thread to fetch in-
structions as long as its In-flight instructions have not

Fetch Queue

Fetch

LT

Reorder Buffer

Decode,
Rename

ROB

\ 4

v

In-flight Instructions Counters]

[Committed Instructions Counters]

Reading Old Partitioning Value

Updating New Partitioning Value

Figure 4. An implementation of ARPA

Table 1. Baseline parameters

’ Parameter ‘ Value
IF,ID,IS Width 8-way
Queue size 32 IFQ, 80 1Q, 64 LSQ

Table 2. Twenty two SPEC CPU2000 benchmarks used in
this study.

Functional Units 6 Int, 4 FP, 4 1d/st

2 Int Mul/Div, 2 FP Mul/Div
256 Int, 256 FP

256 entries

2048 entries, 4-way associative
4K entries gshare,

10-bit global history

128KB, 4-way, writeback
128KB, 4-way, writeback
1MB, 4-way associative

20 cycles

300 cycles

Physical Registers

Reorder Buffer size
BTB

Branch Prediction

L1 D-cache

L1 I-cache

Combined L2 cache
L2 Cache hit time
Main memory hit time

exceeded its assigned limit. The counter for In-flight in-
structions is similar to that in [18] for implementing the
ICOUNT fetch policy. When the number of In-flight
instructions exceeds the assigned bound, we apply fetch
throttling [19, 20] to this thread until it releases some
of its entries or is allocated more resources. The issue
queue will be partitioned proportionally with these two
queue structures.

We use the ICOUNT fetch policy to fetch instruci-
tons. Other parameters are set as shown in Table 1.

4.2 Workloads

Table 2 lists the benchmarks used in our simula-
tions. All benchmarks are taken from the SPEC2000
suite and use the reference data sets. We use
the pre-compiled alpha binaries from C. Weaver
source: (www.simplescalar.com); these binaries are built
with the highest level of compiler optimization. From
these 22 benchmarks, we created multiprogrammed
workloads following the methodology proposed in [7,
8, 17]. SPEC benchmarks are first categorized into
memory-bound and computation-bound programs (rep-
resented by MEM and ILP, respectively, in Table 2).
Based on the MEM or ILP character of different bench-

App # skipped | Type App # skipped | Type

(in mil- (in mil-

lions) lions)
mcf 4000 | MEM gce 1000 | ILP
lucas 2000 | MEM wupwise 2500 | ILP
applu 500 | MEM vortex 0.5 | ILP
equake 3400 | MEM gap 65 | ILP
twolf 400 | MEM mesa 250 | ILP
vpr 1150 | MEM perlbmk 500 | ILP
art 2900 | MEM gzip 40 | ILP
swim 250 | MEM crafty 10 | ILP
parser 250 | MEM bzip2 200 | ILP
ammp 2600 | MEM eon 3 | ILP
apsi 30 | ILP fma3d 3000 | ILP

marks, we create our multiprogrammed workloads with
2-benchmark and 4-benchmark combinations as shown
in Table 3. All the workloads are labeled to indicate the
character and number of threads, as well as a number
to distinguish one workload from another. MIX work-
loads select half of their threads from ILP and the other
half from MEM. We select simulation regions of differ-
ent benchmarks based on [13] as shown in Table 2. We
simulate 100 million instructions for each benchmark in
the workload.

4.3 Metrics

Measuring the performance of a single thread is sim-
ple, but for multithreaded workloads, things become
more complicated. We need to consider not only the
overall throughput of the processor but also the fair-
ness accorded to each thread running on the proces-
sor. Several performance metrics have been proposed
to measure SMT performance in the past years: how-
ever, no one measure has emerged as a standard. In
our paper, we therefore show the throughput and fair-
ness results quantified by each of three metrics to give a
comprehensive comparison of different algorithms. The
metrics are explained as follows.

Table 3. Benchmark combinations based on cache behavior of threads.

Name Combinations Name Combinations Name Combinations
MEM.2.1 | applu, ammp MIX.2.1 | applu, vortex ILP.2.1 | apsi, eon
MEM.2.2 | art, mcf MIX.2.2 | art, gzip ILP.2.2 | fma3d, gcc
MEM.2.3 | swim, twolf MIX.2.3 | wupwise, twolf ILP.2.3 | gzip, vortex
MEM.2.4 | mcf, twolf MIX.2.4 | lucas, crafty ILP.2.4 | gzip, bzip2
MEM.2.5 | art, vpr MIX.2.5 | mcf, eon ILP.2.5 | wupwise, gcc
MEM.2.6 | art, twolf MIX.2.6 | twolf, apsi ILP.2.6 | fma3d, mesa
MEM.2.7 | swim, mcf MIX.2.7 | equake, bzip2 ILP.2.7 | apsi, gcc
MEM.4.1 | ammp, applu, art, mcf MIX.4.1 | ammp, applu, apsi, eon ILP.4.1 | apsi, eon, fma3d, gcc
MEM.4.2 | art, mcf, swim, twolf MIX.4.2 | art, mcf, fma3d, gcc ILP.4.2 | apsi, eon, gzip, vortex
MEM.4.3 | ammp, applu, swim, twolf | MIX.4.3 | swim, twolf, gzip, vortex | ILP.4.3 | fma3d, gcc, gzip, vortex
MEM.4.4 | mcf, twolf, vpr, parser MIX.4.4 | gzip, twolf, bzip2, mcf ILP.4.4 | gzip, bzip2, eon, gcc
MEM.4.5 | art, twolf, equake, mcf MIX.4.5 | mcf, mesa, lucas, gzip ILP.4.5 | mesa, gzip, fma3d, bzip2
MEM.4.6 | equake, parser, mcf, lucas | MIX.4.6 | art, gap, twolf, crafty ILP.4.6 | crafty, fma3d, apsi, vortex
MEM.4.7 | art, mcf, vpr, swim MIX.4.7 | swim, fma3d, vpr, bzip2 ILP.4.7 | apsi, gap, wupwise, perlbmk
1400
I1PC; 1200
Avg IPC = % (7) 1000 |
) L
Avg IPC metric only quantifies the overall throughput g iﬁ

improvement and doesn’t taken fairness into consider-
ation. Therefore, the problem of this metric is that it
may boost IPC by starring some threads.

IPC;
Z SingleI PC;
S SIREIIEL ()

Avg_Single_Weighted TPC metric weights IPC on
each thread’s behalf to its nature IPC if run alone and
reflects the fairness accorded to each thread. How-
ever, the drawback of this metric is it does not give
any importance to the overall throughput and may bias
against the thread with very low IPC. For example, con-
sider thread A with single thread IPC 3.0 and thread
B with single thread IPC 0.1 running simultaneously,
with thread A achieving 1.5 IPC and thread B 0.09
IPC with the ICOUNT fetch policy and Static Par-
titioning achieves 2.1 TPC and 0.06 IPC respectively.
The Avg_Single_ Weighted IPC of Static Partitioning is
7.1% slower than that of ICOUNT although the overall
throughput of Static Partitioning is much better.

Avg_Single W eighted_I PC =

IPChew
Avg_Baseline_-Weighted I PC' = Zthreadsépcb“SEL'i“'e
9)
Avg_Baseline_Weighted IPC weights IPC of each
thread with IPC of corresponding thread in the base-
line scheme or the reference scheme. It reflects the
change in TPC of each thread for the optimized scheme
compared to the baseline scheme. Regardless of
how each thread would run in single thread mode,
Avg_Baseline_Weighted IPC benefits from any thread
running faster.

5 Results and Analysis

We first illustrate the adaptive nature of ARPA
through an example. Then, we compare ARPA im-
provement with other schemes using three different met-
rics introduced in Section 4.3 across the 42 workloads.

400
200

co C9 C18 C27 C36 C45 C54 C63 C72 C81 C9 C99

300 -
250
200
150
100

Num of Queue Entries

50

(0

co C9 C18 C27 C36 C45 C54 C63 C72 C81 C90 C99

(®)

Figure 5. An example illustrating the adaptive nature of
ARPA for epochs 0 to 99.

Finally, we provide a sensitivity analysis of ARPA to
the STEP, EPOCH and the size of queue entries.

5.1 Adaptive Process

Figure 5 illustrates the adaptive nature of resource
partitioning by ARPA. Threads twolf, a memory-
bound program and apsi, a computation-bound pro-
gram are running simultaneously. Figure 5(a) displays
the CIPRE changes of these two threads for the epochs
0 to 99 when using ARPA, while Figure 5(b) shows the
resulting partitioning of queue entries between the two
threads for epochs 0 to 99.

In the first epoch, we equally partition resources to
twolf and apsi, as indicated in the Figure 5(b). The
CIPRE of twolf is higher than that of apsi in this epoch,
and in epoch 2, twolf can take A queue entries from
apsi. We can see that the CIPRE of twolf is bigger than
that of apsi until epoch 49. Therefore, twolf will take
A queue entries from apsi at each epoch until epoch 49.
The allocated number of queue entries of twolf increases

S

&

()Q N N N N N\ N\ N\ N\ N
S ¥ o“’§ S &S SS &

_=
S w
S 2

Num Of Queue Entries

D N 3 N N N\ Q Q
TSNS S

O} O\
& o

(b)

Figure 6. An example illustrating the adaptive nature of
ARPA.

linearly while the allocated number of queue entries of
apsi decreases linearly during this time period. Now the
CIPRESs of the two threads have become close to each
other in epoch 49. In other words, the two threads are
using their allocated resources with similar efficiency.
Between epoch 49 and 63, twolf takes back and forth
some number of queue entries from apsi. At epoch 64,
the number of queue entries of apsi reaches its mini-
mum. Although the CIPREs of twolf beat those of apsi
most of time after epoch 64, twolf cannot take resources
from apsi in order to prevent resource under-utilization.
The number of queue entries become stable for each
thread and the resources allocated to each thread will
remain in this setting if no big phase changes occur.
Figure 5 provides a detail of the tuning process over a
short time period (100 epochs). In order to understand
the resource adaptation process during a long program
execution time, we also display in Figure 6(a) and Fig-
ure 6(b), respectively the CIPRE changes and the cor-
responding resource partitions of these two threads for
the whole program execution which lasts 12206 epochs.
There are different stable resource allocation phases
during the execution of the workload combination twolf
and apsi as indicated in Figure 6. The first stable phase
comes after the resource tuning process as shown in
Figure 5 and lasts short. The second stable phase is
also short compared to the following five phases; during
this phase, the number of resources allocated to each
thread are close to each other. In the third tuning pro-
cess phase, CIPREs of twolf beat that of apsi in most
epochs, which allows twolf to own more resources to
improve resources usage efficiency. The similar tuning
process happens at the start of the next three stable
phases. In the final stable phase, although the CIPREs
of twolf are bigger than those of apsi all the time, re-
source allocations are fixed since the number of queue
entries of apsi reaches low-bound limitation. As we can

see, a static resource partitioning can not satisfy these
varied program phases. ARPA tunes resource based
on the contribution of those resources to performance
and grasp program phase changes, thus improves per-
formance.

5.2 ARPA Improvement

Figure 7 compares the Avg_Single.Weighted_IPC of
different schemes across the 42 workloads listed in Ta-
ble 3. The schemes include ICOUNT, Static, Hill-
climbing, ARPA. The Epoch size we used in these exper-
iments is 32K cycles and STEP size is 2 queue entries.
We allow each thread to keep at least quarter number
of equally partitioned queue entries to avoid resource
starvation.

From Figure 7, we see that ARPA outperforms
ICOUNT and static partitioning significantly in MEM
and MIX workloads. For some workloads like MEM.2.5,
MIX.4.2, the improvement of ARPA over ICOUNT and
Static is more than 50%. The ICOUNT policy gives pri-
ority to threads which move faster through the pipeline,
i.e., threads which have an efficient resource usage.
However, ICOUNT cannot constrain threads from clog-
ging resources, resulting in poor performance when this
happens. Because the memory-bound threads in MEM
and MIX workloads more readily clog resources than do
computation-bound threads in ILP workloads, we can
see from Figure 7 that the improvement in MEM and
MIX workloads is much greater than that in ILP work-
loads in both 2-thread workloads and 4-thread work-
loads. Static partitioning can prevent resource monop-
olization by a single thread. This characteristic benefits
especially to the resource tight situation since the pos-
sibility of resource monopolization increases when the
number of resources reduce. From the Figure 7 we can
see, Static achieves more improvement over I[COUNT in
4-thread workloads than in 2-thread workloads. How-
ever, it does not consider program phase changes and
the needs of individual threads. As a result, the per-
formance improvement of ARPA over Static is consid-
erable.

Hill-climbing [8] is the best-performing algorithm
from the literature. From Figure 7, we can see that Hill-
climbing outperforms ICOUNT and Static significantly
in MIX workloads. Using the Avg_Single_ Weighted_IPC
metric, Hill-climbing achieves a 8.1% improvement over
ICOUNT, close to the results published in [8], increas-
ing our confidence in the precision of our implementa-
tion of this algorithm. However, because Hill-climbing
does not analyze the behavior of individual threads and
makes its decisions based only on periodic trials, there
is scope for further improvement. Figure 7 shows that
ARPA outperforms Hill-climbing in all but 8 of the 42
workloads.

Figure 8 shows the Awg IPC improvement and
Avg_Single_Weighted_IPC' improvement of different
schemes over ICOUNT respectively. The figure aver-
ages the MEM, MIX, ILP workloads separately in both
2-thread and 4-thread workloads.

g 1 \ DICOUNT B Static OHill-Climbing DARPA
< 0.8

E

E" 0.6 I

e

2 0.4

o 0.2

g5

£

o SR N T - N A O ST LAY - VAR A SR ST Y- B A
A & o & & & & & o e e e o R R R o o o
SR R I G R R R R RS R SRR
£ o8 | OICOUNT MStatic OHill-Climbing CJARPA
<0 alt — Ml - = — 5 - — - — g5 - — - — - — - — - — - — -
% 04

Cd
2 02
:g:’,, 0
@ IR R N SR A S RN N R S SR B G I U
E®§$®@$®@®@$§\®®”Q@§'§'§'§'@'@'@'*5 S F IS
Figure 7. Avg _Single ‘Weighted _IPC of different schemes in 42 workloads.
140 \ OStatic @Hill-climbing OARPA 29 ‘ O Static @Hill-climbing O ARPA

Avg_Single_Weighted_IPC Imp (%)

Figure 8. Avg _IPC improvement of different schemes over ICOUNT

The Awvg_IPC improvement of Static, Hill-climbing
and ARPA over ICOUNT is much better than the
Avg_Single_Weighted_IPC improvement for the MEM
and MIX groups. For example, Hill-climbing achieves
100.3% Awvg_IPC improvement over ICOUNT, but us-
ing the Awvg_Single-Weighted_IPC' metric, it only gets
11.7% improvement for MIX.2.Avg. However, for ILP
groups, the improvement of the two metrics are close
to each other. This is caused by the metric character-
istics as explained in Section 4.3. Static, Hill-Climbing
and ARPA control the resource utilization by clogging
threads to improve the overall throughput. Since the
clogging thread which takes more time on using clogged
resources usually has a low single-thread IPC (more ag-
gressive clogging, less IPC), a small absolute IPC reduc-
tion will result great weighted IPC reduction. That is
to say, the weighted ITPC improvement of one thread can
not make up for the weighted IPC loss of another thread
for the Avg_Single-Weighted_IPC metric although the
overall throughput increases greatly.

The Avg_ IPC improvements of 2-thread workloads
are less than that of 4-thread workloads for all three
schemes. It is obvious that with the same number of
resources, 4-thread workloads result in greater resource
clogging than 2-thread workloads. The improvement
of MIX workloads is much greater than that of MEM
and ILP workloads. By preventing the resource clog-
ging of memory-bound threads in MIX workloads, the
optimized scheme can greatly improve the performance
of the computation-bound threads, thus improving the
overall throughput. The optimized scheme is especially

beneficial in clogging aggressive and resource-tight sit-
uations.

ARPA performs much better than Static and Hill-
climbing in MEM and MIX workloads but shows no
significant advantages for ILP workloads compared to
these two schemes. The reason is that computation-
bound threads require fewer resources to exploit ILP,
Static and Hill-climbing have provided optimization to
great extent.

Figure 8 shows that with Avg IPC metric, Static,
Hill-Climbing and ARPA achieve 13.5%, 48.5% and
55.8% improvement over ICOUNT, respectively. With
Avg_Single_Weighted_IPC metric, they also achieve
6.8%, 8.1% and 14.0% improvement over ICOUNT.
ARPA achieves 7.3% and 5.9% more improvement
than the current best-performing algorithm, Hill-
climbing, as expressed by the Awvg IPC metric and
Avg_Single_Weighted_IPC metric respectively.

As mentioned on Section 4.3, the drawback of
Avg_Single_Weighted_IPC' is that it does not give any
importance to the overall throughput and may bias
against threads with very low IPC. However, regardless
of how each thread would run in single thread mode,
Avg_Baseline_Weighted_IPC reflects the improve-
ment of optimized scheme over the baseline scheme.
Figure 9 shows the Awg_Baseline_Weighted IPC
speedup of Static, Hill-climbing and ARPA over
the ICOUNT baseline. = ARPA achieves a better
Avg_Baseline-Weighted_IPC speedup than Static and
Hill-climbing for almost all workloads in MEM and MIX
groups; the improvement in ILP group is not significant

g 25

"5‘2 - - - - - - - __ _

3

Z 15 - — - — - — -

¥

g

Z\O.S

= 0

3

E

I3

E NP at o

AT R S o

2H S N R
o
[sgXag]

g 25 o<

=

< 2

2

= 15

i)

5 1

=

y 05

£ 9

3

o

o Y

<«

3.417
3.564

‘ OICOUNT @Static OHill-Climbing OARPA

v > > o o A A v » % o A %
!» !}. "\'. ?’. ?’. ?’. r}. r}. fJ’. fJ’. Vv V Vv o V’A
ST

‘ OICOUNT M Static OHill-Climbing O ARPA ‘

Figure 9. Avg _Baseline Weighted _IPC of different schemes in 42 workloads.

40*-*—0—%—4\’__‘_‘_‘_‘_‘_‘_‘__‘

7777777 7‘ —o—MIX44 +ILP.4.5" - T

Avg_IPC Imp (%)

S 40 —
g 30 - — - — - [—e—MIX44 —m—1P4s| T ¥
[®]

£ 20

|

£ 10 = —a—= = —a

<

EPOCH- EPOCH- EPOCH- EPOCH- EPOCH- EPOCH- EPOCH-
32k 64k 256k 1024k 4096k 16384k 65536k

(b)

Figure 10. Avg _IPC improvement of ARPA over ICOUNT
as EPOCH and STEP sizes change.

compared with that in the MEM and MIX groups.
Static, Hill-climbing and ARPA respectively achieve
7.8%, 32.6% and 39.1% improvement in 2-thread
workloads, and 18.2%, 39.4% and 48.0% improvement
in 4-thread workloads. ARPA outperforms both Static
and Hill-climbing. Compared to Static, it achieves
30.6% more Avg_Baseline_Weighted_IPC improvement
and compared to Hill-climbing, it achieves 7.6% more
Avg_Baseline-Weighted_IPC improvement.

5.3 Sensitivity Analysis

In this section, we study the impact of the EPOCH
and STEP sizes for ARPA. Then, we compare the
ARPA with other schemes when the amount of re-
sources changes.

5.3.1 Epoch and Step Size

Figure 10(a) and Figure 10(b) show the average IPC
improvement of ARPA over ICOUNT as the STEP size
changes from 2 to 54 with EPOCH size fixed to 256K,
and as the EPOCH size changes from 32K to 65536K
with STEP size fixed to 2. We focus on two representa-
tive 4-thread workloads from the 42 workloads to show
the sensitivity of ARPA to STEP and EPOCH sizes.

From Figure 10 (a) we can see that as the STEP size
increases from 2 to 18, the performance improvement
of ARPA over ICOUNT is roughly the same. It drops
as we continue to increase the STEP size beyond STEP
18. With a small STEP size, ARPA may take a slightly
long tuning time (if EPOCH size is not too big) to the
optimal partitioning, which has no big effect on perfor-
mance. However, if STEP size is big, partitioning may
miss some optimal level, thus causing performance loss.

From Figure 10 (b) we can see that as the EPOCH
size is increased from 32K to 65536K cycles, MIX.4.4
and ILP.4.5 exhibit a different IPC improvement ten-
dency: the performance improvement of MIX.4.4 has
significant reduction as EPOCH size is increased be-
yond 4096k, while for ILP.4.5, the performance im-
provement is roughly constant for all tested EPOCH
sizes. The reason is that ILP.4.5 performs well when
resources are equally partitioned; since ARPA starts
with equal resource partitioning, there is no significant
performance decrease even with great EPOCH sizes for
ILP.4.5. However, equally partitioned resources is not
ideal for MIX.4.4. ARPA cannot grasp the thread be-
havior changes accurately when using a big EPOCH size
and this causes performance loss.

5.3.2 Queue Entries

We will now examine the impact of the size of LSQ, 1Q
and ROB on performance for different schemes.

Figure 11 shows the average IPC of ARPA versus
ICOUNT, Static and Hill-climbing when LSQ, IQ and
ROB increase from (32, 40, 128) to (96, 120, 384).

9]
&
o 06 - - — - — - —— = = = — -
b —<&—ICOUNT
0.4 -— - — - — - — - — - —| —&—Static
Hill-Climbing
02 . ARPA

LSQ-32,1Q-40,ROB-128 LSQ-64,1Q-80,ROB-256 LSQ-96,1Q120,ROB-384

Figure 11. Avg _IPC of different schemes as the number of
gueue entries changes.

N
wn

D LSQ-32,1Q-40,ROB-128
B LSQ-64,1Q-80,ROB-256
- — - — 4 D0OLSQ-96,]Q120,ROB-384 || —_—

[
=

—
wm

[
<

Avg_Single_Weighted_ IPC Imp (%)
wn

=

Static Hill ARPA

Figure 12. Avg _Single Weighted _IPC improvement of dif-
ferent schemes over ICOUNT as the number of queue en-
tries changes.

From Figure 11 we can see that average IPC improves
when the size of queue entries increases from (32, 40,
128) to (96, 120, 384) for each scheme. However, the
degree of improvement declines when the size of queue
entries is increased from (64,80,256) to (96,120,384) be-
cause of the ILP limitation of workloads. As the number
of queue entries is increased to (96,120,384), the average
IPCs of Static and ICOUNT draw close to each other
since an increased number of resources reduces the re-
source clogging of ICOUNT and the benefit of resource
sharing of ICOUNT over resource partitioning of Static
exhibits.

ARPA and Hill-climbing performs much better than
ICOUNT and Static in all resource sizes since the partly
flexible dynamic resource partitioning can combine the
resource sharing benefit of ICOUNT and resource par-
titioning benefit of Static, thus improve performance
significantly.

Average IPCs of ARPA and Hill-climbing at (32, 40
and 128) are close to each other, while as the size of
queue entries increases, the degree of performance im-
provement of ARPA is bigger than that of Hill-climbing.
The reason is that Hill-climbing is a learning-based al-
gorithm and the increased number of resources will in-
crease the search space, thereby increasing the learning
time and the chances being trapped on local-maxima.

Figure 12 compares the average single_execution
weighted IPC improvement of different schemes over
ICOUNT as LSQ, IQ and ROB increase from (32, 40,
128) to (96, 120, 384). From Figure 12, we can see that

as the number of resources increases, the improvements
over ICOUNT decrease for almost all the schemes. It
is obvious that the increased number of resources miti-
gates the resource clogging and decrease the optimiza-
tion space. The performance improvement of ARPA
over ICOUNT is biggest among all the schemes in any
number of queue sizes, achieving 21.7%, 16.9% and
17.1%, respectively, while Hill-climbing only achieves
13.4%, 7.8% and 6.8% improvement.

6 Conclusion

This paper proposes an Adaptive Resource Partition-
ing Algorithm (ARPA) for SMT processors. The al-
gorithm identifies the resource usage efficiency of each
thread using the CIPRE metric and gives more re-
sources to threads which can use them in a more ef-
ficient way. The efficient usage of processor resources
greatly improves the overall instruction throughput.
Our experimental results show that ARPA improves
Avg_IPC by 55.8% over ICOUNT, while Static only
achieves 13.5% improvement over ICOUNT. Com-
pared with the currently best-performing algorithm
Hill-climbing, ARPA also achieves 7.3% more Avg_IPC
improvement. Allocating more resources to threads
which can use them more efficiently does not always
mean giving more resources to threads with a higher
IPC. In fact, ARPA is an adaptive process that al-
lows threads to share resources more fairly and ef-
ficiently. With the Awg_Single.Weighted_IPC metric,
ARPA achieves 14.0% improvement over ICOUNT and
attains 7.2% and 5.9% more improvement than Static
and Hill-climbing over ICOUNT respectively. With the
Avg_Baseline_Weighted_IPC metric, ARPA gains 43.6%
improvement over ICOUNT, achieving 30.6% and 7.6%
more improvement than Static and Hill-climbing.

Acknowledgment

The authors would like to thank Dr. James Donald
of Princeton University for help on the modification of
the SMT simulator. This work was supported in part
by NSF undergrants EIA-0102696 and CCR-0234363.

References

[1] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch:
A Framework for Architectural-level Power Analy-
sis and Optimizations,” Proc. 27th Ann. Int’l Symp.
Computer Architecture, pp. 83-94, June 2000.

[2] D. C. Burger and T. M. Austin, “The SimpleScalar
Tool Set, Version 2.0,” Technical Report CS-TR-
1997-1342, University of Wisconsin, Madison, June
1997.

[3] H. Hirata, K. Kimura, S. Nagamine, Y. Mochizuki,
A. Nishimura, Y. Nakase, and T. Nishizawa, “An El-
ementary Processor Architecture with Simultaneous

Instruction Issuing from Multiple Threads,” Proc.
19th Ann. Int’l Symp. Computer Architecture, pp.
136-145, May 1992.

[4] W. Yamamoto and M. Nemirovsky, “Increasing Su-
perscalar Performance Through Multistreaming,”
Proc. First Int’l Symp. High Performance Computer
Architecture, pp. 49-58, June 1995.

[5] S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo,
R. L. Stamm, and D. M. Tullsen, “Simultaneous
Multithreading: A Platform for Next-Generation
Processors,” IEEE Micro, vol.17, no.5, pp. 12-19,
Sept. 1997.

[6] F. J. Cazorla, E. Ferndndez, A. Ramirez, and
M. Valero, “Improving Memory Latency Aware
Fetch Policies for SMT Processors,” Proc. Fifth
Int’l Symp. High Performance Computing, pp. 70-
85, Oct. 2003.

[7] F. J. Cazorla, A. Ramirez, M. Valero, and
E. Fern’andez, “Dynamically Controlled Resource
Allocation in SMT Processors,” Proc. 37th Int’l
Symp. Microarchitecture, pp. 171-182, Dec. 2004.

[8] S. Choi and D. Yeung, “Learning-Based SMT Pro-
cessor Resource Distribution via Hill-Climbing,”
Proc. 33rd Ann. Int’l Symp. Computer Architecture,
pp- 239-251, 2006.

[9] A. El-Moursy and D. H. Albonesi, “Front-End Poli-
cies for Improved Issue Efficiency in SMT Proces-
sors,” Proc. 9th Int’l Symp. High Performance
Computer Architecture, pp. 31-40, Feb. 2003.

[10] K. Luo, J. Gummaraju, and M. Franklin, “Balanc-
ing Throughout and Fairness in SMT Processors,”
Proc. Int’l Symp. Performance Analysis of Systems
and Software, pp. 164-171, Nov. 2001.

[11] D. T. Marr, F. Binns, D. L. Hill, G. Hinton,
D. A. Koufaty, J. A. Miller, and M. Upton, “Hyper-
Threading Technology Architecture and Microarchi-
tecture,” Intel Technology J., vol.6, no.1, pp. 4-15,
Feb. 2002.

[12] S. E. Raasch and S. K. Reinhardt, “The Im-
pact of Resource Partitioning on SMT Processors,”
Proc. 12th Int’l Conf. Parallel Architecture and
Compilation Techniques, pp. 15-26, Sept. 2003.

[13] S. Sair and M. Charney, “Memory Behavior of
the SPEC2000 Benchmark Suite,” Technical Re-
port, IBM T.J. Watson Research Center, 2000.

[14] J. J. Sharkey, D. Balkan, and D. Ponomarev,
“Adaptive Reorder Buffers for SMT processors,”
Proc. 15th Int’l Conf. Parallel Architecture and
Compilation Techniques, pp. 244-253, Sept. 2006.

[15] A. Snavely, D. M. Tullsen, and G. M. Voelker,
“Symbiotic Jobscheduling with Priorities for a Si-
multaneous Multithreading Processor,” Proc. Int’l

Conf. Measurement and Modelling of Computer Sys-
tems, pp. 66-76, June 2002.

[16] D. M. Tullsen, S. J. Eggers, and H. M. Levy, “Si-
multaneous Multithreading: Maximizing On-Chip
Parallelism,” Proc. 22nd Ann. Int’l Symp. Computer
Architecture, pp. 392-403, June 1995.

[17] D. M. Tullsen and J. A. Brown, “Handling Long-
latency Loads in a Simultaneous Multithreading
Processor,” Proc. 34th Int’l Symp. Microarchitec-
ture, pp. 318-327, Dec. 2001.

[18] D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy,
J. L. Lo, and R. L. Stamm, “Exploiting Choice: In-
struction Fetch and Issue on an Implementable Si-
multaneous MultiThreading Processor,” Proc. 25rd
Ann. Int’l Symp. Computer Architecture, pp. 191-
202, May 1996.

[19] H. Wang, Y. Guo, I. Koren, and C. M. Krishna,
“Compiler-Based Adaptive Fetch Throttling for En-
ergy Efficiency,” Proc. Int’l Symp. Performance
Analysis of Systems and Software, pp. 112-119, Mar.
2006.

[20] S. Lee and J. Gaudiot, “Throttling-Based Re-
source Management in High Performance Multi-
threaded Architectures.” IFEE Trans. Computers,
vol.55, no.9, pp. 1142-1152, Sept. 2006.

