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Abstract 

A new material model for the dynamic fracture analysis of anisotropic materials has 

been proposed within the framework of the bond-based peridynamic theory. This 

model enables predicting complex fracture phenomena such as spontaneous crack 

nucleation and crack branching, curving and arrest, a capability inherited from the 

bond-based peridynamic theory. An important feature of the model is that the bond 

properties, i.e. the stiffness constant and critical stretch, are continuous functions of 

bond orientation in the principal material axes. This facilitates fracture analysis of 

anisotropic materials with random orientations, such as polycrystalline microstructures. 

Elastic and fracture behaviour of the model has been verified through simulating 

uniaxial tension of a composite plate and fracture of a cortical bone compact tension 

specimen, and making quantitative comparisons to analytical and experimental data. To 

further demonstrate the capabilities of the proposed model, dynamic fracture of a 

polycrystalline microstructure (alumina ceramic) has been simulated. The influence of 

the grain boundary and grain interior fracture energies on the interacting and competing 

fracture modes of polycrystalline materials, i.e. intergranular and transgranular fracture, 

has been studied. 
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1 Introduction 

Optimum design of most engineering structures requires accurate prediction of the 

fracture behaviour of materials.  In the continuum mechanics theory, several techniques have 

been proposed and implemented in numerical programs to solve complex fracture problems. 

Much attention has been paid to isotropic materials, whose stiffness and strength properties 

are not direction-dependent. Prediction of fracture propagation in anisotropic media, such as 
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composites, ceramics, rocks and bone, is also of great technological and clinical importance. 

However, this problem is more complicated because direction-dependence of stiffness and 

strength properties should be included in the formulation. 

In order to predict fracture in anisotropic materials, researchers have extended numerical 

methods established for isotropic materials. Boone et al.  (1987) used the Finite Element 

Method (FEM) to simulate crack propagation in unidirectional (UD) fibre-reinforced 

composites and in rocks. Aliabadi and Sollero (1998) proposed a 2D anisotropic material 

model suitable for implementation in a Boundary Element Method (BEM) code. The model 

was used to simulate crack propagation in UD fibre-reinforced composites (Aliabadi and 

Sollero 1998) and in rocks (Chen et al. 1998; Ke et al. 2009). Motamedi and Mohammadi 

(2010) further developed the extended FEM (X-FEM) to simulate crack propagation in 2D 

anisotropic media, such as UD fibre-reinforced composite plies. In the approaches mentioned 

above, the maximum circumferential tensile stress theory is often used to estimate the crack 

propagation path. For a material with anisotropic fracture properties, the circumferential 

stress needs to be normalised with respect to the fracture properties; the crack grows in the 

direction where the normalised circumferential tensile stress is maximum. These methods 

also require quite complex laws to predict crack nucleation and branching, which are mostly 

developed for isotropic materials (Belytschko et al. 2003). 

The peridynamic theory of continuum mechanics was proposed by (Silling 2000) to 

overcome some of the intrinsic limitations of the classical continuum mechanics theory when 

dealing with problems that contain discontinuous displacement fields, such as fracture 

problems. In this theory, each infinitesimal unit of the continuum, called particle, interacts 

with other particles located in its neighbourhood through forces, similar to the molecular 

dynamics theory (Parks et al. 2008; Parks et al. 2010). The peridynamic theory is nonlocal 

since the interaction between particles extends beyond their immediate neighbourhood. 

Anisotropic peridynamic models have been proposed by (Xu et al. 2008; Hu et al. 2012; 

Oterkus and Madenci 2012) to simulate crack propagation in UD fibre-reinforced composites. 

These models have been able to provide predictions of fibre/matrix fracture and 

delamination, which had good qualitative agreement with experimental observations. 

However, the models proposed in (Xu et al. 2008) and (Oterkus and Madenci 2012) require a 

uniform grid of particles and can only be used to model plies with a certain orientation. Hu et 

al. (Hu et al. 2012) proposed a method to remove these limitations, but it significantly adds to 

the computational cost for problems that use a non-uniform grid or a uniform grid with an 

arbitrary orientation of fibres. Another anisotropic peridynamic model was briefly described 
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in Askari et al. (2008) without presenting relevant equations, where the results of crack 

propagation in a polycrystalline microstructure were presented. In this paper, a new 2D 

anisotropic material model suitable for the bond-based peridynamic theory has been 

proposed. This model can be used with any discretisation of the domain. Several fracture 

problems are solved with this model and quantitative comparisons are made with analytical 

or experimental data.  

This paper is organised as follows. The bond-based peridynamic theory is briefly 

reviewed in section ‎2. The proposed material model is introduced in section ‎3 followed by a 

description of the numerical implementation in section ‎4. Using the proposed model, three 

example problems are solved in section ‎5, where convergence of the solutions is discussed 

and the results are compared with experimental or analytical data. Some concluding remarks 

are presented in section ‎6. 

2 Bond-based peridynamic theory 

In the bond-based peridynamic theory (Silling 2000), the equation of motion of a particle 

at position   in the reference configuration is written as: 

 

  ̈(   )   ∫  ( (    )   (   )     )
  

      (   )  (1) 

 

where   is the mass density,   is the displacement vector field,   is a pairwise force function, 

which is the force per volume squared that the particle    exerts on the particle  , and   is the 

body force vector field.    is a finite volume surrounding  , referred to as the neighbourhood 

of  . It is usually taken to be a sphere in 3D or a circle in 2D problems, centred at   (Figure 

1). Its radius, called the horizon, is denoted by  . In order to ensure conservation of linear 

momentum and angular momentum, the following relations should hold: 

 

 (   )    (     )               (2) 

(   )   (   )                  (3) 

 

where 

 

         (4) 
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   (    )   (   )   (5) 

 

  is the relative position vector in the reference configuration and   is the relative 

displacement vector. The vector   is called a bond. According to eqs. (2) and (3), the forces 

that two particles exert on each other are equal in magnitude and opposite in direction, and 

they are parallel to the relative position vector in the current configuration. 

 

 

Figure 1 Illustration of peridynamic variables; the horizon is shown in the reference 

configuration. 

 

In the peridynamic equation of motion, eq. (1), no spatial derivative appears, in contrast to 

the equation of motion of the classical theory.   is a function of relative displacements, which 

contains the constitutive equation. For a microelastic material (Silling 2000), the pairwise 

force function is derivable from a scalar-valued function  (   ) , called the pairwise 

potential function or micropotential in (Silling and Askari 2005), such that: 

 

 (   )  
  

  
(   )               (6) 

 

Silling and Askari (2005) proposed a prototype microelastic brittle (PMB) material with the 

following pairwise force function: 
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 (   )   ( ) (   ) (     )
   

‖   ‖
               (7) 

 

In this equation,  ( ) is the bond stiffness constant, analogous to a spring constant, and   is 

the bond stretch defined by: 

 

 (   )  
‖   ‖  ‖ ‖

‖ ‖
   (8) 

 

In eq. (7),   determines the failure condition of the bond. It is one for an intact bond. If the 

bond stretch exceeds a critical value (  ( )),   becomes zero permanently, implementing 

breakage of the bond. 

The relation between the bond stiffness constant and the elastic modulus is determined by 

setting equal the strain energy density obtained from the peridynamic theory for a given 

loading condition and the strain energy density obtained from the classical theory of elasticity 

for the same loading condition. For a microelastic material, the strain energy density at a 

particle is the integral of the micropotential over the neighbourhood. For a particle with a 

neighbourhood fully contained within a body, i.e. far from surfaces or interfaces (Silling and 

Askari 2005): 

 

    
 

 
∫  (   )    

  

   (9) 

 

For the PMB material: 

 

 (   )    
 ( )   

 
   (10) 

 

where,    ‖ ‖. Gerstle et al. (2005) have shown that for an isotropic material under plane-

stress or plane-strain conditions: 

 

  
   

    (   )
   

 

(11) 

where   is the thickness of the structure, and 
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plane-stress:       , plane-strain:         (12) 

 

As can be seen, this model leads to constant Poisson’s ratio. In other words, the model 

requires only one material constant to be fully defined, while the elastic behaviour of 

isotropic materials is defined with two independent material constants. This is a consequence 

of the assumptions made for the bond-based peridynamic theory (Silling and Askari 2005; Hu 

et al. 2012; Oterkus and Madenci 2012). This limitation has been removed in the state-based 

peridynamic theory (Silling et al. 2007), where the interaction between   and    depends on 

the collective behaviour of their neighbouring particles. The material model presented in this 

paper was developed within the bond-based peridynamic framework.  

3 Transversely isotropic material model 

Anisotropy can be included in the bond-based peridynamic theory by varying bond 

properties with the direction of   . Proper selection of this dependency simplifies the 

evaluation of the integrals that will appear when trying to obtain the relation between bond 

properties and engineering constants, i.e. the integrations of eqs. (26), (36) and (37), and also 

results in a desirable behaviour of the material. The direction of   in the principal material 

frame (the 123 frame shown in Figure 2) can be described with the polar coordinate,   

     , and the azimuthal coordinate,        ). According to the convention used for most 

transversely isotropic materials (materials that have a plane, called the plane of isotropy, in 

which the mechanical properties are equal in all directions, such as UD composites), the 1 

axis is taken to be normal to the plane of isotropy. A few terms of the following expansion 

may be used to define the dependency of the bond stiffness constant on the direction of the 

bond: 
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Figure 2 Direction of a peridynamic bond in the principal material axes. 

  

 

 (   )  ∑ ∑   
 

 

   

(    )(                   )  

 

   

 (13) 

 

where   
  are the associated Legendre functions of degree   and order  : 

 

  
 (    )  

(  ) 

    
(       )

 
 

    

 (    )   
(       )  (14) 

 

and     and      are constant coefficients (MacRobert 1967). Eq. (13) is the spherical 

harmonic expansion of the bond stiffness constant. For a transversely isotropic material, one 

may assume that the bond stiffness constant,  , is not a function of  . This means that 

           for     in eq. (13), which leads to a simplification of this equation as: 

 

 (   )   ( )  ∑      
 (    )  

 

   

 (15) 

 

For a transversely isotropic material, one may also assume that  ( ) is symmetrical with 

respect to the 23 plane (plane of isotropy), i.e.  ( )    (   ). Using the property of the 

associated Legendre functions   
 (     )  (  )   

 (    ) , one then concludes that 

      for          . Hence, the spherical harmonic expansion of   up to the eighth 

degree will be: 
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 ( )            
 (    )        

 (    )        
 (    )

      
 (    )   

(16) 

 

where 

 

  
 (    )  

 

 
(        )   

  
 (    )  

 

 
(                 )   

  
 (    )  

 

  
(                            )   

  
 (    )  

 

   
(                                        

   )   
 

(17) 

This form of   is suitable for integration. The same model will be used in section  3.2 to 

define the dependency of the critical stretch,   , on  . 

In order to fully determine  ( ) in eq. (16), its value should be known for five different 

angles. For the 1 and 2 axes, one may assume  ( )     and   (   )    .    and    are 

constants of the material model, which are determined by the material properties as explained 

in section  3.1.  ( )    is a sufficient, but not necessary, condition for the material model to 

be stable (Silling et al. 2003). Hence, several oscillations of  ( ) on        , including 

negative and positive values, may be theoretically possible but in order to achieve numerical 

stability and convergence, the domain must be finely discretised, which will significantly 

increase the computational cost. Therefore, the three remaining conditions, required to fully 

determine  ( ), should be chosen with a view to obtain a smooth transition of  ( ) between 

  and    , particularly for cases with         (such as the example problems presented in 

sections  5.1 and  5.2). In this study, it was assumed that  ( )     for      ,     and    . 

The polar plot of  ( ) for         , shown in Figure 3, illustrates the intended smooth 

transition (this plot will be further discussed in the next paragraph). In addition, the relatively 

rapid convergence of the numerical solution for a UD composite (highly anisotropic 

material), presented in section  5.1, confirmed the suitability of the assumptions. By solving 

the system of five linear equations, the following relations were obtained for the constant 

coefficients: 

 

                           
           (     )   
           (     )   
           (     )   

(18) 
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           (     )   
 

It is should be noted that when the material is isotropic, i.e.      ,         , which 

does not depend on  .  

In (Seleson et al. 2013), a model for anisotropic materials, in the context of nonlocal 

diffusion, was presented. Following this reference: 

 

 ( )  
    

‖ ‖ 
   (19) 

 

where   is a second-order tensor. In two dimensions, using polar coordinates (         

and         ), eq. (19) can be written as: 

 

 ( )  
  

         (       )    
    

  
 

                  (       )             

(20) 

 

Again assuming that  ( ) is symmetrical with respect to the plane of isotropy (the 23 plane 

in Figure 2), and that  ( )     and   (   )     lead to          ,        and 

      ; thus: 

 

 ( )      (     )        (21) 

 

This equation is similar to the one suggested by (Silling and Askari 2005) to include 

anisotropy in the microelastic response. Eq. (21) can also be derived from the spherical 

harmonic expansion of   up to the second degree. From eqs. (15) and (17): 

 

 ( )            
 (    )           

 

 
(        )   (22) 

 

Assuming  ( )     and   (   )    , it can be shown that eq. (22) leads to eq. (21). 

Therefore, the model presented in this paper is a generalisation of the models proposed in 

(Silling and Askari 2005; Seleson et al. 2013) for anisotropic materials. Figure 3 shows polar 

plots of  ( ) represented with spherical harmonics up to the second degree, eq. (21), and up 

to the eighth degree, eq. (16), for two different ratios of      . As can be seen, using eq. (16) 

results in significantly stronger anisotropy in the distribution of  ( ), while maintaining the 
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smooth transition of  ( )  on        . Strong anisotropy in the distribution of  ( )  and 

  ( ) is a desirable property, which allows for modelling materials with various levels of 

anisotropy in stiffness and strength. A quantitative comparison between the toughness 

anisotropies achievable with these models is presented in section  3.2.  

 

 

Figure 3 Polar plots of the bond stiffness constant represented with spherical harmonics up to 

the second and the eighth degrees; a) 𝒄  𝟎 𝟓𝒄  and b) 𝒄  𝟎  𝒄 . 

 

3.1 Bond stiffness constant 

In order to obtain the relation between the bond stiffness constants,    and   , and elastic 

moduli, the approach introduced by (Gerstle et al. 2005) was used. Under a certain strain 

state, the strain energy density of a particle was determined from the peridynamic formulation 

and it was set equal to the strain energy determined from the classical theory of elasticity. In 

the classical theory of elasticity, the stress-strain relations (Hooke’s law) for an orthotropic 

material under plane-stress or plane-strain conditions in the 12 plane (Figure 2) can be 

written, in the principal material axes and using the Voigt notation, as: 

 

[

  

  

   

]  [
       
       
     

] [

  

  

   

]   (23) 
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where     is the stiffness matrix. The strain energy density of an element under    strain state 

is: 

 

    
 

 
          (24) 

 

where   and         and       . To derive the relations between the bond stiffness 

constants and the constants of the stiffness matrix, a system of four equations were formed by 

assuming four different strain states. The strain states and corresponding peridynamic bond 

stretches are presented in Table 1. To obtain the bond stretch, the strain vector            
  

was transformed to a coordinate system whose first axis was aligned with the bond. In the 

new coordinate system, the first component of the strain tensor was the bond stretch. For 

example, if the new coordinate system is xy and the angle from the 1 axis to the x axis is  , 

then: 

 

               
                 (25) 

 

 

Table 1 Strain states and the corresponding stretch. 

n Strain state Bond stretch 

1      and  other components are zero           

2      and  other components are zero           

3       and other components are zero               

4         and  other components are zero     

 

 

Under plane-stress or plane-strain conditions, the strain energy density of a particle with a 

neighbourhood fully contained within a body is: 

 

    
 

 
∫ ∫ [

 ( )   

 
]       

 

 

  

 

   (26) 

 

The system of four equations   
     

           (see Table 1) was solved, which 

resulted in: 

 

   
                   

    
   

 

(27) 
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(28) 

                           . (29) 

 

For an isotropic material,         , and eqs. (27) and (29) simplify to: 

 

   
     

    
   

 
(30) 

                   (31) 

 

The stiffness matrices for an isotropic material under plane stress and plane strain conditions 

are: 

 

                  
 

    
[

   
   

  
   

 

]   (32) 

                
 

(   )(    )
[

     
   

  
    

 

]   (33) 

 

Substituting the components of the stiffness matrix from eqs. (32) and (33) into eqs. (30) and 

(31) leads to the same results obtained by Grestle (2005), i.e. eqs. (11) and (12). 

 The proposed anisotropic material model allows only two elastic constants,    and   , 

while the stiffness matrix in eq. (23) has four constants. Hence, the assumptions of the bond-

based peridynamic model impose restrictions on two constants of the stiffness matrix, i.e. eq. 

(29), and as a result, the stiffness matrix has only two independent constants. These 

restrictions can probably be removed within the state-based peridynamic framework, where 

the response of a particle depends on the collective behaviour of all particles in its 

neighbourhood rather than the deformation of the pair-wise bonds between the particle and its 

neighbours. This should be investigated in future works. 

3.2 Critical bond stretch 

The spherical harmonic expansion was also used to define the dependency of the critical 

bond stretch on the direction of  : 
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 ( )            

 (    )        
 (    )        

 (    )
       

 (    )   
(34) 

 

 

 

The constant coefficients were obtained by using the same assumptions leading to eq. (18), as 

follows: 

 

               
            

    
           (   

     
 )   

           (   
     

 )   
           (   

     
 )   

           (   
     

 )   

(35) 

 

    is the critical stretch of the bonds at     and      is the critical stretch of the bonds at 

     . 

The relation between the bond critical stretch and the mode I critical strain energy release 

rate was determined by using the method introduced in (Silling and Askari 2005). According 

to this method, the energy required for a crack to split a body into two halves equals the sum 

of the rupture energy of the bonds that initially crossed the crack surface. The critical strain 

energy release rate is this energy divided by the area of the crack surface. This method can be 

applied to brittle materials, where other dissipative mechanisms, as compared with fracture, 

are negligible. The critical strain energy release rates for mode I crack propagation in the 

planes normal to the 1 and 2 axes,      and      respectively, can be determined from the 

following integrals: 

 

     ∫ ∫ ∫ [
 ( )  

 ( ) 

 
]           

     (
 
 
)

      (
 
 
)

 

 

 

 

 (36) 

     ∫ ∫ ∫ [
 ( )  

 ( ) 

 
]           

       (
 
 
)

     (
 
 
)

 

 

 

 

 (37) 

 

The variables of the integrals are defined in Figure 4. Representation of   and   with a few 

terms of the spherical harmonics expansion facilitates evaluation of these integrals. The 

integrals were evaluated with Mathematica 8.0 (Wolfram 2010), leading to: 

 

        (          
            

            
            

 )   (38) 
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        (          
            

            
            

 )   (39) 

 

Assuming isotropic properties, it can be shown that: 

 

   
     

  
   

    
   (40) 

 

which is identical to the relation obtained by (Gerstle et al. 2005) for isotropic materials 

under plane-stress or plane-strain conditions. Finally, the critical stretches of the bonds were 

determined as: 

 

   
  

    (            )   (              )   

   (    
                

 )
   (41) 

   
  

    (              )   (            )   

   (    
                

 )
   (42) 

 

   
  

and    
  

cannot be less than zero otherwise bond rupture generates energy. This restricts 

the         ⁄  ratio. For a material with isotropic stiffness properties (      ), 

 

             ⁄        (43) 

 

 

which are the consequences of eqs. (41) and (42) with the assumptions of    
    

and 

   
   . Cold drawn steel is an example of a material that has isotropic stiffness properties 

but anisotropic fracture toughness (Toribio and Ayaso 2003). It should be noted that the 

fracture behaviour of the proposed material model is fully defined by using the mode I 

fracture energies. This implies that the mode II (sliding) fracture energy of the model is not 

independent from its mode I fracture energies, which is another consequence of the 

assumptions of the bond-based peridynamic theory. 

If eq. (21) is used to define  ( ), and   
 ( ) so that 

 

  
 ( )      

  (   
     

 )        (44) 

 

integrals (36) and (37) lead to 
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 (         )   (           )  

    (   
            

 )
   (45) 

   
  

(           )    (         )  

    (   
            

 )
   (46) 

Again for a material with isotropic stiffness properties (      ), 

 

            ⁄      (47) 

 

which are the consequences of eqs. (45) and (46) with the assumptions of    
    

and 

   
   . The upper limit of         ⁄  in eq. (43) is significantly greater than that in eq. (47). 

This is due to stronger anisotropy in the distribution of   
 ( ), which was obtained by using 

more terms of the spherical harmonic expansion to define the dependency of    on  , as 

compared with eq. (44). Obviously, this model allows for modelling materials with higher 

degrees of anisotropy in toughness, such as bone (section  5.2). 

 

 

 

Figure 4 Definition of variables used for determination of the strain energy release rates (left) 

GIc1 and (right) GIc2. 

 

For the PMB material, damage at each particle has been defined (Silling and Askari 2005) 

as the number of broken bonds to the total number of bonds: 
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∫  (     )    
  

∫     
  

   (48) 

 

This definition does not include any information about possible dependence of failure 

properties of bonds on their orientation. Hence, it is suitable for isotropic materials, such as 

the PMB material. In the proposed anisotropic model, bonds have different rupture energies 

depending on their orientation. For this model, a suitable definition of damage, based on the 

rupture energy of the failed bonds, would be: 

 

     
∫ [

 ( )  
 ( ) 
 ]  (     )    

  

∫ [
 ( )  

 ( ) 
 ]     

  

   (49) 

 

  can change from 0, when all bonds are intact, to 1, when all bonds are broken. If isotropic 

properties are assumed, eq. (49) simplifies to: 

 

     
∫   (     )    
  

∫      
  

   (50) 

 

which is not identical to eq. (48) because eq. (48) was defined based on the number, and not 

the rupture energy, of bonds. In this paper, eq. (49) was used to define damage at each 

particle. 

4 Numerical implementation 

In order to solve complex problems with the peridynamic theory, a numerical approach 

should be adopted. The approach used in this study, was first described in (Silling and Askari 

2005). According to this approach, the continuum region is discretised into nodes, which 

together form a grid. Each node has a finite volume. The integral in eq. (1) is replaced with a 

finite sum, as follows: 

 

  ̈(     )  ∑ ( (     )   (     )      )  

 

  (     )   (51) 
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where    is the volume of node   and   is supplied from eq. (7). The sum is taken over all 

nodes   that satisfy ‖     ‖   . The method is meshfree because there is no geometrical 

relation between nodes. The displacement vector of node   at time      is obtained from 

approximating the acceleration in the above equation with an explicit central difference 

formula: 

 

 ̈(     )  
 (       )    (     )   (       )

   
   (52) 

 

where Δt is a constant time step. Hence: 

 

 (       )      ̈(     )    (     )   (       )   (53) 

 

The truncation errors associated with these approximations have been discussed in (Silling 

and Askari 2005). When    ,  (      ) must be known to start the procedure in eq. (53) 

(it should be noted that  ̇(     ) and  (     ) are known from initial conditions).  (      ) 

can be approximated (Cook et al. 2002) from its Taylor series expansion about    and 

omitting powers of    higher than second: 

 

 (      )   (     )     ̇(     )  
   

 
 ̈(     )   (54) 

 

where   ̈(     ) is obtained by evaluating eq. (51) at    . 

Silling and Askari (2005) derived the following condition for the stable time step: 

  

   √
  

∑ | (     )|   

   (55) 

 

where   is a second-order tensor and | |  √      . For the PMB material, eq. (7), it can be 

shown that (Macek and Silling 2007): 

 

   ( )   ( )
    

(    )
   

   (56) 
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where the components of the relative position vector,  , are in a Cartesian coordinate system. 

Relation (55) provides a necessary condition for the stable time step. For the simulations 

presented in the next section, the stable time step was obtained by multiplying a factor of 0.7 

by the time step determined from this relation. 

The model described in this paper can be used with any discretisation of the domain and 

an arbitrary orientation of the principal material axes. The computational model introduced in 

(Hu et al. 2012) for fibre-reinforced composites has the same features. However, their model 

has a discrete representation of bond properties, with those bonds aligned with fibre direction 

(fibre bonds) having properties different from all other bonds (matrix bonds). If non-uniform 

grid or an arbitrary fibre orientation is used, properties of each bond should be corrected with 

a scale factor, whose calculation adds to the computational cost. On the other hand, their 

model does not impose restrictions on the ratio of fracture toughness in fibre and matrix 

directions, in contrast to the model proposed in the current study. 

Two types of convergence introduced in (Bobaru et al. 2009) were used in the current 

study. Assuming a uniform grid with a    spacing and      : 

1) the  -convergence is when   increases while   is fixed, and 

2) the  -convergence is when   decreases while   is fixed. 

A FORTRAN program has been developed to numerically solve peridynamic equations 

for complex problems. The pre and post-processing, e.g. discretising the domain, defining 

boundary and initial conditions, and visualising and manipulating the results, are performed 

using LS-PrePost (LSTC 2012), which is freely available. 

5 Example problems 

In this section, some problems are analysed using the proposed transversely isotropic 

material model in order to verify its elastic and fracture behaviour and to demonstrate its 

application to fracture analysis of different materials, e.g. cortical bone and polycrystalline 

microstructures. The problems were run on a single CPU core of a 2.66 GHz Intel Xeon 

processor using 16 GB RAM. Some details of the numerical simulations are presented in 

Table 2. It is worth noting that for each example problem, thus given stiffness constants, the 

stable time step,   , depends on   not    (    ).  
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Table 2 Some details of the numerical simulations. 

Example problem   [mm] m Approx. No. of 

bonds 
   [ns]

a Wall-clock run 

time [min]
a 

Uniaxial tension of a 

UD fibre-reinforced 

composite 

6 3 67,000 240 7 

4 195,000 240 25 

5 539,000 240 60 

3 4 846,000 120 190 

Compact tension test 

for cortical bone 

2 3 35,000 160 15 

4 102,000 160 45 

5 264,000 160 110 

6 543,000 160 230 

1 3 139,000 80 120 

4 420,000 80 360 

5 1,100,000 80 935 

6 2,205,000 80 1880 

Non-uniform 

mesh 

520,000 80 480 

Dynamic fracture of 

polycrystalline 

microstructures 

0.010 5 4,041,000 0.230 1500 

a: the values are rounded to facilitate comparisons. 

 

5.1 Uniaxial tension of a UD fibre-reinforced composite 

The purpose of this example is to show the accuracy of the elastic behaviour of the 

material model for a highly anisotropic material. The plate, shown in Figure 5, was made of a 

UD carbon fibre reinforced epoxy with     = 124.0 GPa and     = 12.6 GPa. It was 

discretised with a uniform grid. A constant horizon   = 6 mm and different grid spacing    = 

1.2, 1.5 and 2 mm were used. The lower edge of the plate was constrained against vertical 

displacement. A 2 mm vertical displacement, ramped up over 2 ms to ensure quasi-static 

response, was applied on the upper edge. The boundary conditions were applied within a 

layer of   thickness under the edge, as suggested by (Silling and Askari 2005).  
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Figure 5 The anisotropic plate under tension. 

 

 

The off-axis modulus,   , for various angles of anisotropy,  , was determined from the 

simulation results and compared to its theoretical value, determined from (Jones 1999): 

 

   
 

         (        )                   
   (57) 

 

where     are the components of the compliance matrix. The compliance matrix is the inverse 

of the stiffness matrix shown in eq. (23). To fully define the stiffness matrix,     and     

were determined from eq. (29). It can be seen in Figure 6 that for   ≤‎ 60°, the model 

accurately predicts the modulus with   = 3 (approx. 67,000 bonds, Table 2). For   = 90°, 

however, the peridynamic solution convergences to the theoretical result as   increases to 5 

(approx. 539,000 bonds). In this case, even taking   = 4 (approx. 195,000 bonds) provides an 

acceptable prediction. Hence, for this highly anisotropic material, elastic behaviour can be 

accurately modelled with m values not greater than 5. It is worth mentioning that for isotropic 

materials, m ≥ 3 was recommended (Silling and Askari 2005; Ha and Bobaru 2010), and for  

modelling anisotropic materials using a discrete representation of bond properties, m = 5 was 

recommended (Hu et al. 2011).  
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Figure 6 Off-axis modulus of the anisotropic plate vs. angle of anisotropy. 

 

 

The relations between the bond stiffness constants and engineering constants, i.e. eqs. 

(27) and (28), were derived for a particle with a neighbourhood fully contained within a 

body. If these equations are used to determine the bond stiffness constants of particles that are 

within a   distance from a free surface, thus having a smaller neighbourhood, their bulk 

elastic properties will be different from the bulk elastic properties of the particles that are 

inside the bulk of material. This difference, however, becomes negligible as   decreases to 

zero (Ha and Bobaru 2011). In this paper, the same peridynamic parameters obtained for the 

particles in the bulk were used for the particles near or on the boundary.  

The off-axis modulus was also predicted by using a model with a smaller horizon   = 3 

mm and m = 4 (approx. 846,000 bonds). Figure 6 shows that the prediction of this model is 

almost the same as the prediction of the model with   = 6 mm and m = 4, indicating that the 

latter model, which required significantly lower computational effort (Table 2), was good 

enough for the prediction of the off-axis modulus of the composite plate. It should be noted 

that no fracture occurred in this problem. In dynamic fracture problems where damage 

evolution is affected by stress waves, the horizon can influence the fracture pattern and the 

crack propagation speed (Ha and Bobaru 2010) because wave dispersion is dependent on the 

horizon (Silling 2000). Some discussions on selection of a horizon for these problems can be 

found in (Bobaru and Hu 2012). 
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5.2 The compact tension test for cortical bone 

The compact tension test is usually used to determine the mode I critical stress intensity 

factor of isotropic metals. It has also been used to characterise anisotropic materials, such as 

fibre reinforced polymer composites (Donadon et al. 2007; Laffan et al. 2010) and cortical 

bone (Behiri and Bonfield 1984; Bonfield 1987; Behiri and Bonfield 1989). Crack 

propagation in a cortical bone compact tension specimen was predicted by using the 

anisotropic peridynamic material model. This test has been described in (Behiri and Bonfield 

1984) and is schematically shown in Figure 7. These authors employed the compact tension 

test to obtain stable crack propagation so that the crack length and the corresponding load can 

be recorded during quasi-static loading of the specimens (Bonfield 1987). 

For bovine cortical bone,     and     were obtained from (Van-Buskirk et al. 1981). If 

the 1 axis is assumed to be parallel to the anatomical axis of the bone and the 23 plane is 

assumed to be the plane of isotropy,     = 25 GPa and     = 16.25 GPa. From eq. (29), 

     5.93 GPa and      5.93 GPa, which are reasonably close to the measured (Van-

Buskirk et al. 1981) mean values of 5.89 GPa and 6.65 GPa, respectively. As discussed 

before, it may be possible to develop a state-based peridynamic material model which does 

not impose restrictions on the constants of the stiffness matrix. Plane strain conditions were 

assumed since Behiri et al. (1984) showed that variation in the thickness of cortical bone 

compact tension specimens from 0.5 mm to 2 mm had no effect on fracture parameters. For 

transversely oriented bovine cortical bone (  = 0° in Figure 7), they measured an average 

critical stress intensity factor      = 4.0 MPa.m
1/2

 (crack on a plane normal to the 2 axis). By 

grooving cortical bone compact tension specimens, Behiri et al. (1989) determined an 

average      = 6.5 MPa.m
1/2

 (crack on a plane normal to the 1 axis). To define fracture 

parameters of the peridynamic material model, critical strain energy release rates      and 

     were required. They were calculated from (Sih et al. 1965): 

 

          
 √

      

 
√√

   

   
 

        

    
   (58) 

          
 √

      

 
√√

   

   
 

        

    
   (59) 
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where     are the components of the compliance matrix. The compliance matrix is the inverse 

of the stiffness matrix shown in eq. (23) where     = 25 GPa,     = 16.25 GPa and     

     5.93 GPa. Eq. (59) was derived by Sih et al. (1965) for orthotropic materials under 

plane stress or plane strain conditions in the 12 plane (Figure 2) with a crack on the 13 plane. 

It should be noted that in the equation presented in (Sih et al. 1965) a factor of   appears. 

This factor has been included in the critical stress intensity factors reported in (Behiri and 

Bonfield 1984) and (Behiri and Bonfield 1989). Eq. (58) follows from eq. (59) by rotating the 

coordinate system by    ⁄  around the 3 axis. Using eqs. (58) and (59), and      = 6.5 

MPa.m
1/2

 and      = 4.0 MPa.m
1/2

,      = 2190 J/m
2
 and      = 1030 J/m

2
 were determined. 

The latter is in good agreement with the average value of 1019 J/m
2
, directly measured by 

(Behiri and Bonfield 1984). There was no direct measurement for     . 

 

 

Figure 7 The compact tension specimen – dimensions are in mm. 

 

The domain was discretised with uniform grids,   = 1 mm and 2 mm, and   = 3, 4, 5 and 

6. It was also discretised with a non-uniform grid,   = 0.96 mm. For this grid,    was linearly 

decreased, from 0.32 mm (equivalent to m = 3) to 0.16 mm (equivalent to m = 6), from the 

left edge towards the right edge (Figure 7) and from the upper and lower edges towards the 

centre line (at where the notch is located). Hence, the grid is symmetrical about the notch. 

The specimen was loaded by applying 0.17 mm displacements, ramped up over 7 ms, along 

the load lines shown in Figure 7. When each displacement was applied on one node 
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approximately located at the centre of the loading pin, it was observed that the slope of the 

force-displacement curve was dependent on the grid spacing,   . To avoid this behaviour, the 

displacement was prescribed on a set of nodes located within a 1 mm diameter circle centred 

at the position of the loading pin. No-fail circular zones (Ha and Bobaru 2010), where bonds 

cannot break, with a 4 mm diameter (diameter of the loading pins) centred at the loading pins 

were defined to avoid crack nucleation in the vicinity of these nodes. The ramp duration was 

long enough to ensure that dynamic effects were negligible before fracture and that these 

effects did not influence the initiation of crack propagation. Figure 8 indicates that the kinetic 

energy of the specimen was negligible as compared with the elastic energy. This figure also 

shows that the total energy of the system, which is the sum of the elastic energy, kinetic 

energy and the energy dissipated due to bond rupture (damage energy), perfectly matches the 

external work. This confirms the numerical implementation of the theory since different types 

of energies were evaluated independently. 

 

 

Figure 8 Different energies during the compact tension simulation – δ = 1 mm and m = 5. 

 

 

Typical load-displacement plots are shown in Figure 9. As can be seen, before damage 

initiates, the load increases linearly with displacement. The slope of this region of the load-

displacement plot has been reported in Table 3 for all models. The difference between the 

reported values is marginal (less than 6%), which confirms that the models have converged in 

the elastic region. The maximum damage propagation load,   , has also been reported in 

Table 3. As can be seen, when m increases to 4,    decreases by up to 14%. Using larger 
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values of m has a negligible effect on   , particularly when   = 1 mm, but it significantly 

increases the solution time (Table 2).  For all models, except the model with a uniform grid   

= 2 mm and   = 3, the difference between the predicted    and that determined from the test 

(Behiri and Bonfield 1984), i.e. 98 N, was less than 8%. It should be mentioned that in 

(Behiri and Bonfield 1984) the following equation was used to determine the critical stress 

intensity factor: 

 

     
  

     
    (60) 

 

where 
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      (
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     (
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      (
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   (61) 

 

  and   are defined in Figure 7. The experimental value of    = 98 N was determined from 

eq. (60) for       = 4.0 MPa.m
1/2

 and   = 1 mm. 

 

 

Figure 9 Typical load-displacement graphs for the cortical bone compact tension specimen. 
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Table 3 Simulation results for the cortical bone compact tension specimen. 

δ [mm] 1 2 1 

m 3 4 5 6 3 4 5 6 Non-uniform grid 

Slope
a
 [N/mm] 921 894 914 900 935 896 881 894 906 

Pc [N] 105 97 96 94 109 94 96 91 98 

       a: the slope of the load-displacement curve in the elastic region. 

 

Experimental observations (Behiri and Bonfield 1989) have shown that in cortical bone 

compact tension specimens with   > 0°, the crack does not grow along the introduced notch. 

Instead, the fracture path is approximately parallel to the anatomical axis of the bone. In fact, 

the crack chooses a path so that it requires minimum energy to propagate. As can be seen in 

Figure 10, the peridynamic material model accurately predicts the failure paths when   = 60° 

and 90°. As can be seen, when   = 90°, the crack propagates towards one side of the initial 

crack surface. For models with uniform grids, this occurred without injecting any 

imperfections into the model. In (Ha and Bobaru 2011), the asymmetry in the crack 

propagation path for a perfectly symmetrical  model was attributed to the order of summation 

in eq. (51). For any two nodes symmetrically located on either side of the crack, the 

neighbours are not listed in the same order in the computational program. This would cause 

different round-off errors when evaluating the sum in eq. (51), which breaks the symmetry of 

the solution. Obviously, the asymmetric crack propagation path in the experiments was a 

result of imperfections in the geometry, material and boundary conditions. For the model 

with a non-uniform grid, the differences in round-off errors were not enough to break the 

symmetry of the model about the notch. Hence, the notch was slightly (0.02 mm) moved 

towards the upper edge of the specimen to break the symmetry. 
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Figure 10 Experimental (▲) and predicted crack propagation paths for the cortical bone 

compact tension specimen. 

 

5.3 Dynamic fracture of polycrystalline microstructures 

In this section, the applicability of the peridynamic model to prediction of microfracture 

in polycrystalline materials has been demonstrated with an example. A polycrystalline 

material is composed of randomly oriented grains connected to each other at their interfaces. 

Microfracture of polycrystalline aggregates involves crack initiation, propagation of cracks 

between grains (intergranular fracture) and through grains (transgranular fracture), and crack 

branching and arrest. These complex phenomena are affected by random location, 

morphology and orientation of grains, and the ratio of the fracture toughness of the grain 

boundary (   ) to that of the grain interior (      ). In previous studies, the Boundary 

Element method and the Finite Element method were used to predict intergranular fracture 

(Espinosa and Zavattieri 2003a; Yousef et al. 2005; Sfantos and Aliabadi 2007; Benedetti and 

Aliabadi 2013a), and the FEM and particularly the X-FEM were used to predict inter/trans-

granular fracture and their interaction within a polycrystalline microstructure (Sukumar et al. 

2003; Zhai et al. 2004). The peridynamic theory is also a suitable method for simulating 

dynamic brittle fracture in polycrystalline microstructures because it allows for crack 

nucleation and growth within and between grains and can predict crack branching without 
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requiring any external criteria. Peridynamic predictions of inter/trans-granular fracture within 

a polycrystal with cubic symmetry (Benedetti and Aliabadi 2013b) have been presented in 

(Askari et al. 2008). The material model proposed in the current paper extends the 

capabilities of the bond-based peridynamic theory so that it can be used to model 

polycrystalline microstructures whose randomly oriented grains are transversely isotropic 

(hexagonal systems), such as alumina (Al2O3). 

The example presented in this section is an aggregate of 100 grains of alumina, within a 

square, subjected to dynamic tension. The average grain size was ASTM G = 5 (E112-10 

2010), which corresponds to an average grain area of 4032 μm
2
. To represent random 

morphology and location of grains, the microstructure was generated by employing the 

Voronoi tessellation method, available within the Multi-Parametric Toolbox for MATLAB 

(Herceg et al. 2013). The generator points were obtained by using a two dimensional quasi-

random generator (Sfantos and Aliabadi 2007). Since the model was two dimensional (plane 

strain with the 1 axis parallel to the axis of isotropy), one axis of the principal material frame 

(the 123 frame) of each grain was randomly selected and made coincident with the z axis of 

the global frame (the xyz frame). The other axes were rotated about the z axis by a randomly 

selected angle, 0° ≤   < 360°, as shown in Figure 11. It is clear that this angle does not affect 

the mechanical response of the grain when 1 ≡ z. 

 

Figure 11 Random orientation of the principal material axes of the grains. 
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For the alumina grains, the stiffness properties     = 563 GPa and      = 465 GPa were 

used (Espinosa and Zavattieri 2003b). The grain boundary fracture energy was assumed to be 

equal to the lattice fracture energy     = 10 J/m
2
 (Yousef et al. 2005).            was 

varied (0.1, 0.5 and 1.0) in order to investigate its influence on the microfracture pattern and 

the failure load. The bonds that connect particles in two different grains, called the interface 

bonds, control the grain boundary behaviour. It was assumed that the properties of these 

bonds do not change with their orientation (isotropic). The stiffness constant of the interface 

bonds was determined using eq. (30), in which the average of     and     was inserted. To 

ensure that the correct amount of energy is dissipated when cracks propagate along the grain 

boundary, the critical stretch of the interface bonds was determined using eq. (40), in which 

    was inserted. 

The specimen was discretised with a uniform grid,   = 10 μm and m = 5. If the origin of 

the global coordinate system is at the centre of the specimen, the boundary conditions were: 

  (      )      (     )         (      )        and   (     )        where 

 (     ) is the displacement vector and   is a constant velocity. The displacements were 

applied within a layer of   thickness under the edge. Since one aim was to predict the 

macroscopic elastic moduli of the ceramic,   and the loading duration, 0.1 m/s and 6 μs 

respectively, were chosen so that there were several reflections of the stress waves within the 

specimen prior to failure. Figure 12 shows that in the top and bottom regions, the relative 

displacement between the last layer of nodes with prescribed displacements (i.e. the layer of 

nodes immediately above the line AA´ and that immediately below the line BB´) and the 

adjacent layer of nodes without a prescribed displacement is significantly larger than the 

relative displacement between the nodes within the bulk of the material. As a result, the 

bonds that connect nodes on opposite sides of the AA´ and BB´ lines break early during the 

simulation, leading to crack initiation at these zones. To avoid this, these bonds were not 

allowed to break during the simulation. A significant reduction in   may also avoid 

premature fracture at the boundaries but the loading duration has to be increased drastically, 

which renders the simulation time unreasonable.  
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Figure 12 Displacement of the specimen exaggerated by a factor of 1000. Ramp displacements 

are applied on the nodes above the line AA´ and those below the line BB´. 

 

 

The average stresses on the specimen were determined by averaging the tractions: 

 

 ̅ ( )   
  (      )    (     )

 
   

 ̅ ( )   
  (      )    (     )

 
   

(62) 

 

Each traction was obtained by summing the reaction forces measured at the nodes on which 

the displacement was prescribed and dividing the resulting value by   . First degree 

polynomials were fitted to  ̅ (    )        ̅(    )  and  ̅ (    )        ̅(    )  plots, 

where    is the time corresponding to damage initiation and   ̅( )         . The slopes of 

these polynomials are respectively     and          Effective moduli of the microstructure, 

namely Young’s modulus and Poisson’s ratio, were determined by solving the following 

equations (Jones 1999) simultaneously: 

  



31 

 

    
(   ) 

(   )(    )
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(63) 

 

In order to consider the influence of random location, morphology and orientation of 

grains on the effective moduli, ten microstructures were randomly generated, as described 

above, and loaded up to failure. Young’s modulus and Poisson’s ratio obtained from the 

simulation results were 393±3 GPa and 0.235±0.001, respectively, which are in good 

agreement with the values reported for a very low porosity alumina (at least 99.6% Al2O3), 

380 – 410 GPa and 0.24 – 0.27 (Auerkari 1996). 

The microfracture patterns predicted for three different            ratios are shown in 

Figure 13. For these cases, damage initiates at the interior of the specimen, near its centre. 

Subsequently, the damage propagates towards the left and right edges in the form of a crack. 

Both tips of the crack branch into several cracks, which some of them join as they propagate 

towards the edges. As can be seen in Figure 13, when the grain boundary is significantly 

weaker than the grain interior, the fracture mode is transgranular. For            = 0.5, the 

model predicts a combination of the inergranular and transgranular fracture modes, with the 

former being dominant. When           , cracks propagate through the grains. These 

results agree well with the predictions made by using a peridynamic model (Askari et al. 

2008) and also the predictions made by using an X-FEM model of a polycrystalline 

microstructure (Sukumar et al. 2003). The X-FEM model, however, predicted a single crack 

path while the peridynamic models predicted crack branching. It should be noted that in 

contrast to the X-FEM method (Belytschko et al. 2003), the peridynamic theory does not 

require any special criterion for crack branching.  
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Figure 13 Dependency of crack patterns in an alumina microstructure on the fracture toughness 

ratio. Displacements are exaggerated by a factor of 20. 

 

The plot of the reaction force measured at (   )    (   ) vs. displacement is shown in 

Figure 14. The response of the microstructures is linear up to failure. For all            

ratios, the failure force and the corresponding displacement are almost equal. However, the 

bar plot of damage energies in Figure 14 indicates that when            = 0.1, the fracture 

process dissipated less energy compared with the other two cases. These simulations, together 

with further studies on the influence of morphology, random location and size of grains on 

the fracture response of polycrystalline microstructures, can provide insight into microscale 

behaviour of polycrystalline materials and help optimise them for the failure load and energy 

absorption. 
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Figure 14 The force-displacement and damage energy plots of the alumina microstructure 

under tension. 

 

6 Conclusions 

A new peridynamic material model has been proposed for the analysis of fracture 

propagation in anisotropic materials under plane-stress and plane-strain conditions. The 

spherical harmonic expansion has been used to define the dependence of the bond stiffness 

constant and the bond critical stretch on bond orientation. This has simplified the evaluation 

of the integrals that appear in the equations relating engineering material constants and 

constants of the peridynamic model. Furthermore, since the bond stiffness constant and the 

critical stretch are continuous functions of bond orientation, the model can be used with any 

discretisation of the domain and any orientation of the principal material axes. Without 

compromising its advantages over previous models, this model can be easily extended to 3D. 

Several fracture problems in different length scales have been analysed with the proposed 

approach. These problems are of technological or clinical importance. The results show very 

good quantitative agreement with analytical calculations and experimental results. Converged 

solutions have been obtained with reasonable mesh refinement and relatively small values of 

  (the ratio between the horizon and the grid spacing, i.e.    ⁄ ). For a highly orthotropic 

composite lamina,     has been sufficient to accurately predict the elastic response. For 

the compact bone with         ⁄   , the fracture behaviour has been well predicted with a 

uniform grid with     and also with a non-uniform grid. The fracture analysis of the 

alumina ceramic further illustrates the capabilities of the model in predicting complex 

fracture phenomena, such as intergranular and transgranular crack propagation in 
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heterogeneous brittle microstructures. The proposed material model can be readily used to 

study the influence of pre-existing cracks, voids and inclusions on microfracture of ceramics.  
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