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Abstract—Smart grids are a relatively new development in 

power systems and due to the possible complexity of such 
systems; the possibilities have yet to be clearly defined. Drawing 
a clear distinction between one grid configuration being “smart” 
and another failing the criterion is not realistic. Instead, it is 
much more practical to consider smart grids in terms of 
opportunities to improve the operation of the power system that 
are exploited or can be exploited. One of the keys features of a 
smart grid is the ability to utilize information to make better 
operational decisions. This paper proposes that significant 
improvements can be made to the operations of a smart grid by 
providing information about the likely behavior of renewable 
energy – either through online short-term forecasting or longer-
term assessments. 
 

Index Terms—Smart grid, renewable energy, forecasting, 
assessment. 

I.  INTRODUCTION 
NE of the fundamental challenges of power system 
operation is running a true supply-on-demand system that 

is expected to be absolutely reliable. Historically this 
challenge led to a power system based on highly controllable 
supply to match a largely uncontrolled demand.  However, 
with the dual concerns of climate change and energy security 
alternative sources of energy have become an increasingly 
attractive proposition and are now beginning to achieve 
significant levels of penetration in certain areas. This can 
cause problems with the conventional system balancing 
methodologies. Since penetration levels of renewable energy 
are likely to continue increasing a rethink of the existing 
energy balancing paradigm may be required. Fortunately, an 
operational smart grid has the potential to mitigate some of the 
difficulties that are posed by high levels of renewable energy 
generation.  

The use of smarter grid operations allows for greater 
penetration of variable energy sources through the more 
flexible management of the system. This can be achieved in 
many ways from active demand-side management (DSM) to 
temporary storage technologies, whether dedicated to 
electricity or sourced through a symbiotic supply (such as 
electric vehicles).  
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One of the key aspects to a smarter grid is the ability to 
make decisions on how to operate the power system on both 
the supply-side and the demand-side. The right information is 
essential in order to make the right decisions and this is 
ubiquitous throughout the entire smart grid system.  

II.  SMART GRIDS 
The term “smart grid” is somewhat qualitative since there 

are various proposed implementations that have varying levels 
of sophistication [1..5]. However, standard among all 
implementations is the use of advanced sensor and 
communications technologies to enable better use of assets, 
provide improved reliability and enable consumer access to a 
wider range of services. There are some defining features that 
exist in most smart grids. 

A.  A smart grid will provide an interface between consumer 
appliances and the traditional assets in a power system 
(generation, transmission and distribution) 

This two-way communication will allow the consumer to 
better control their energy usage and provides more choices to 
the customer. Furthermore, the two-way communication will 
also allow better DSM such that in certain situations the 
system operator can be given control of the loads in the system 
enabling more agile responses to system behavior. 

B.  A smart grid will be at least semi-autonomous 
The use of intelligent systems will enable the power system 

to respond to stimulus, observed through sensor networks, 
with limited input from a human. This will enable much faster 
operations when handling interruptions in the power system 
and may even be able to identify areas of concern and 
reconfigure the power system to mitigate potential 
contingencies. 

C.  A smart grid will optimize the assets of the power system 
The use of responsive operating protocols will optimize 

power flows along existing transmission thereby improving 
the reliability of the system and deferring capital expenditure 
on transmission upgrades. Due to the communication of peak 
load periods and the likely subsequent consumer response to 
increased price signals the peak loads will be reduced and the 
need for expensive flexible generation technologies will be 
reduced. 
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D.  A smart grid will support better integration of distributed 
generation into the conventional centralized power system 

Improved communications and more advanced metering 
technologies will enable more intelligent incorporation of 
decentralized power production through the use of better 
sensors and two-way metering. This will allow customers 
(whether residential, commercial or industrial) to re-evaluate 
the proposition of connecting local generation equipment. The 
customer could in fact be an energy supplier instead of 
consumer. 

III.  RENEWABLE ENERGY INTEGRATION USING A SMART GRID 
Weather-driven, non-scheduled, renewable energy sources 

require new operational procedures. Conventional fossil fuel 
power plants can be operated in accordance with the needs of 
the power system; the present power system operating 
procedures were designed with this in mind. Renewable 
energy sources such as wind or solar are variable and thus the 
operating schedules of such plants are largely dictated by the 
changing “fuel” supply. This is especially pertinent in the case 
of wind, photovoltaic solar and run-of-the-river hydro, none of 
which have inherent storage in their power plant design. These 
systems cannot be controlled in the same manner as a 
conventional generation facility. 

With low levels of wind or solar energy penetration the 
overall effect on grid operations is limited, yet as the 
penetration levels increase so too do the effects. It has been 
recognized that as the penetration levels increase, more 
advanced control of the power system will be required to 
maintain system reliability [6]. These controls include more 
efficient use of transmission, use of demand response and 
intelligent energy storage, all of which can be enabled through 
the application of a smart grid. In fact, the ability to better 
integrate renewable energy is one of the driving factors in 
some smart grid installations. Xcel Energy’s SmartGridCity 
white paper specifically communicates that a key aspect to its 
renewable energy integration plan involves a smart grid: 

 
“The ability to communicate (via a smart grid) and 
new improvements in storage (cheaper, longer 
lasting, higher capacity batteries) allows for a 
creation of a new market instrument. A smart grid 
with advanced energy storage reduces the 
variability associated with renewable energy, 
enabling more renewable energy on the grid, thus 
reducing emissions.” 
 

IV.  ASSESSING RENEWABLE ENERGY IN A SMART GRID 
A smart grid must be able to make decisions and those 

decisions must be based upon information. However, not all of 
that information is necessarily “live” data. In fact, when 
designing a smart grid the likely limitations on the system 
must be understood – some of these limitations will be 
physical, some will be contractual and some may even be 
political. Without enabling the smart grid to properly handle 
these limitations, the smart grid would not perform correctly. 

For example, a smart grid may allow for load curtailment, but 
no consumer is going to be happy to accept such an agreement 
without some guarantee of a maximum number of 
interruptions. Similarly, storage may be purchased to allow for 
better operation of localized portions of the power system 
(taking strain off transmission during constrained periods) or 
even utilizing storage that is designed to support the power 
system as a whole. Alternatively, the storage may be sourced 
from an electric-vehicle-to-grid arrangement, but again an 
agreement must be made on how often the system can cycle 
the batteries and how much it is allowed to draw them down. 
Such system design decisions, whether in terms of contractual 
agreements or the installment of physical equipment, must be 
based on accurate information about the degree of flexibility 
that is required. If high levels of non-scheduled renewable 
energy are employed in the system, these will tend to 
dominate the flexibility requirements and so careful 
assessment of the renewable energy resources is vital when 
setting-up a smart grid, re-negotiating contracts or considering 
installation of physical equipment. In essence, an assessment 
of the variability of renewable energy and the effects on the 
power system must be performed. 

Integration studies are continuing to improve and as the 
level of sophistication increases, so too does importance of 
accurately modeling the “fuel” that drives the renewable 
energy [8]. In order to assess the likely behaviour of long-term 
patterns the best information we have about the future is what 
has happened in the past. Unfortunately, long-term records of 
renewable energy production are not available for a vast 
majority of the generation plants. Most plants have only been 
operational for a few years at most and the growth rate of new 
renewable energy is still a significant portion of total 
installation. In fact, it is usually not even possible to obtain 
long-term, on-site meteorological data [9]. Thus, an alternative 
must be used to be able to obtain the historical information 
used to determine the requirements for the smart grid. IEEE 
Transactions on Power Systems had a Special Section on 
Wind Energy in 2007 including the paper “Utility Wind 
Integration and Operating Impact State of the Art” [10] which 
stated: 

 
“A state-of-the-art wind-integration study typically 
devotes a significant effort to obtaining wind data 
that are derived from large-scale meteorological 
modeling...” 

 
In fact, one of the strongest advantages of using numerical 

weather prediction modeling to downscale reanalysis datasets 
is that long-term records can be obtained. It is possible to 
perform a 40-year climate variability analysis, detailing the 
hour-by hour wind and power capacity at a site. This level of 
detail may not be warranted for small energy installations , but 
for large installations (or even high concentrations of small 
installations) this information can be used to develop some 
key decision making tools that allow the optimization of the 
system design for the smart grid.  



 3 

A.  Daily Variability 
Each renewable energy project (or region) has specific 

variability patterns that are typical depending the time of day 
and time of year. The energy output is based on the local 
weather patterns, which change depending on the seasonal and 
daily influences. After performing a record extension over a 
period of 40 years the average behavior in terms of monthly 
diurnal cycle can be established. Fig. 1. shows an example of a 
site with diurnal cycles defined for each month. The figure 
shows that highest generation occurs between 0400 and 1200 
UTC in spring and summer (it is a site from the northern 
hemisphere). However, the lowest generation typically occurs 
in summer from 1500 to 0100 UTC. This clearly demonstrates 
that the winter production tends to have a fairly low difference 
in its diurnal behavior while in summer the diurnal behavior is 
marked. The variation in the diurnal cycle during summer 
would be something that should be addressed in a smart grid.  

 

 
Fig. 1.  Daily variability graphic showing the long-term averaged diurnal 
cycles, defined separately for each month. It also provides a yearly average 
indicating the overall diurnal cycle and monthly cycle of the site. 

 

B.  Monthly Variability 
Even though the monthly variability may be understood in a 

general sense from Fig. 1. the difference in behavior in the 
same months in different years is also important to understand. 
The variability assessment over a period of 40 years generally 
defines the average behavior reasonably well, yet this does not 
mean that every month will behave exactly as its long-term 
mean would indicate. Fig. 2. shows an example of a month-to-
month climate variability analysis. The figure shows that 
during August the lowest output is expected and there have 
been months where the energy production was nearly as low 
as 15% of the capacity factor. However, the median energy 

production in July is also comparably low, but there was at 
least one instance where the capacity factor was almost 70%. 
This variation is important to understand when designing a 
smart grid system. 

 
Fig. 2.  Month-to-month climate variability analysis showing variable power 
capacity derived from a 40-year dataset. The solid line within the shaded box 
denotes the median power capacity. Upper and lower boundaries of the shaded 
box correspond to the 75% and 25% quartiles, while the extremities denote 
the maximum and minimum power capacity. 
 

C.  Yearly Variability 
Similarly to the monthly variability, each site also has 

variable output from year-to-year. If a renewable energy plant 
is being relied upon to produce energy for the system, it is 
useful to know the level of variability that might be faced from 
year-to-year. Fig. 3. shows an example of a year-to-year 
climate variability analysis – this example has a comparably 
consistent energy production from year-to-year. 

 
Fig. 3.  Month-to-month climate variability analysis showing variable power 
capacity derived from a 40-year dataset. The top panel shows a time series of 
monthly-mean power capacity in gray and a running 36-month mean in black. 
The straight black line is the long-term average. The bottom panel shows the 
time series of monthly-mean El Niño 3.4 anomalies. 

 

V.  FORECASTING RENEWABLE ENERGY IN A SMART GRID 
When actually operating smart grids forecasts of future 

requirements are essential to be able to prepare the flexible 
systems to behave in the appropriate manner. Non-scheduled 
renewable energy resources add another variable to an already 
complicated balancing act. The fact that these sources of 
generation cannot be dispatched in the traditional sense can 
cause problems for conventional system operation. A smart 
grid takes advantage of potential improvements that can be 
made to conventional operation through the use of 
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communications and information. While renewable energy 
cannot necessarily be operated in a conventional manner, its 
behavior can be predicted and the forecast information is 
exactly the kind of information that a smart grid must use to 
improve system efficiency. In fact, as renewable energy 
penetration levels continue to increase, non-scheduled 
renewable energy may become the single largest source of 
variability on the power system. This makes the employment 
of accurate renewable energy forecasting a key component of 
a smart grid. In a smart grid, decisions are dynamically made 
based on information about electricity supply and demand. In 
the world of renewable energy integration, forecasting feeds 
the smart grid. 

Meteorological processes drive renewable energy 
generation and thus it is inherently variable.  This variability 
occurs across all of the time frames of utility operation from 
real-time minute-to-minute fluctuations through to yearly 
variation affecting long-term planning (as demonstrated 
above). However, recent wind integration studies have shown 
that the variations that have the largest effects on the system 
reliability operations and costs of operation are those in the 
hourly and daily timeframe [10]. These two times frames are 
directly related to the ancillary services of load following and 
unit commitment; consequently, the state-of-the-art wind 
energy prediction systems focus on these timescales in order 
to meet the needs of the systems operators and market traders. 
In a smart grid a lot of the human interactions that presently 
try to manage system operation will be able to be replaced by 
machines that have a faster response time and can process 
larger quantities of data.  

In fact, even in a conventional power system forecasts of 
renewable energy are considered crucial once even moderate 
levels of penetration are achieved. During real-time 
operations, the generation and the load must be matched. The 
conventional generation can be controlled to a large extent, 
but the load and the renewable energy generation must be 
forecast; there is no other efficient way that the conventional 
plants can be operated to provide the balancing. Furthermore, 
the uncertainty of the forecast is also vital to understand in 
order to be able to estimate the necessary reserve capacity for 
the system, following reliability and frequency control 
requirements. The ability of a smart grid to process this kind 
of information could result in significant improvements in the 
operation of renewable energy resources. Fig. 4., Fig. 5. and 
Fig. 6. show a range of forecasts with different horizons. 
Fig. 4. shows a plot of an hours-ahead forecast primarily based 
on observations information. This plot includes a portion of 
the plot showing the recent performance of the system. The 
rapid change in wind energy output was well-forecast and a 
smart grid could have used this information to accurately 
account for the changing output from the renewable energy 
plant. Fig 5. and Fig. 6. show plots of longer forecasts that are 
predicting the day-to-day behavior of a wind energy plant 
(including prediction intervals). As can be seen from these 
plots even when the winds are rapidly changing there is still 
significant information that can be obtained about the future 
output from a renewable energy plant. Then, as the forecast 

goes further out into the future (for the week-ahead plot) the 
prediction intervals widen indicating a corresponding 
reduction in the level of confidence in a forecast so far into the 
future.  
 

 
Fig. 4.  Plot of hour-ahead forecast information. The line in the middle of the 
shaded area is the forecast, the line with circular markings to the left of 
“Now” shows the observations. 
 

 
Fig. 5.  Plot of the day-ahead forecast information. 
 

 
Fig. 6.  Plot of the week-ahead forecast information. 
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In fact, the use of a smart grid will also improve the 
forecasting of renewable energy. The state-of-the-art forecasts 
process large amounts of data and the more reliable and timely 
the data transfer, the greater the accuracy of the forecasts – 
especially for the hour-ahead forecast range. The day-ahead 
forecasts are typically created in a similar way to the 
assessment work mentioned previously using numerical 
weather prediction models to downscale information from 
coarse resolution global weather models. These models are 
tuned using data if that data is available.  In a smart grid, the 
data would certainly be available. However, it is the hour-
ahead forecasts that help with the load following of the power 
system that gain the most in a smart grid. Typically the hour-
ahead forecasts employ statistical methods primarily based on 
the most recent observations. The first phase in developing 
this type of forecast consists of identifying, compiling and 
integrating data from a wide variety of sources: location of 
turbines and anemometers, available observation records, etc. 
The second phase consists of developing and training various 
self-learning forecasting methods using all the available data. 
The final product provides a timely, relevant and accurate 
forecast. Taking advantage of a vast communication network 
the forecast of renewable energy will be able to utilize this 
information from an even wider set of sources. Furthermore, it 
also opens other opportunities such as using weather 
forecasting information to forecast transmission line ratings to 
allow for the dynamic rating (and planning) of transmission 
will allow a much more efficient use of the existing 
infrastructure. 

VI.  CONCLUSIONS 
A smart grid has the potential to revolutionize the power 

systems operations, a revolution that will need to occur if very 
large penetrations of renewable energy are to be incorporated 
onto the grid. However, in order to efficiently operate and 
make the best decisions, a smart grid must have information. 
As the penetration of renewable energy continues to increase, 
the variation of such energy sources may become the single 
largest source of variability on the power system. 
Understanding this variability is vital. The variability must be 
understood in terms of long-term behavior through 
assessments of the long-term weather patterns that would 
affect the locations of renewable energy generation. This 
information can be used to develop better procedures and 
capabilities for the smart grid. The variability must also be 
understood in terms of short-term behavior affecting the unit 
commitment and load following reserves. This short-term 
generation variation can be forecast using state-of-the-art 
techniques on both these key timescales. 

VII.  REFERENCES 
[1] Pacific Gas and Electric, “SmartMeter”, Accessed online: 

http://www.pge.com/smartmeter/.  
[2] Enel, “Smart Grid”, Accessed online:  

http://www.enel.it/azienda_en/ricerca_sviluppo/dossier_rs/piano_ambie
ntale/smartgrid.asp   

[3] Austin Energy, “Automated Meters”, Accessed online:  
http://www.austinenergy.com/Customer%20Care/Billing/AM/index.htm  

[4] Xcel Energy, “SmartGridCity”, Accessed online: 
http://www.xcelenergy.com/XLWEB/CDA/0%2c3080%2c1-1-
1_15531_43141_46932-39884-0_0_0-0%2c00.html 
Natioanl Energy Technology Laboratory (U.S.A.), “The Modern Grid 
Strategy”, Accessed online: http://www.netl.doe.gov/moderngrid/ 

[5] Electric Power Research Institute, “IntelliGrid”, Accessed online: 
http://intelligrid.epri.com/default.asp  

[6] European Wind Energy Association, “Large Scle Integration of Wind 
Energy in the European Power Supply: analysis, issues and 
recommendation”, Accessed online: 
http://www.ewea.org/fileadmin/ewea_documents/documents/publication
s/grid/051215_Grid_report.pdf  

[7] Xcel Energy, “Xcel Energy SmartGridCity - Benefits Hypothesis 
Summary”, Accessed online: 
http://www.xcelenergy.com/docs/SmartGridCityHypothesisWhitePaper_
July2008.pdf  

[8] C. W. Potter, H. A. Gil and J. McCaa, “Wind Power Data for Grid 
Integration Studies”, Proc. 2007 IEEE Power Engineering Society 
General Meeting, Tampa, FL, USA. Paper No. 07GM0808, Jun. 2007. 

[9] C. W. Potter, D. Lew, J. McCaa, S. Cheng, S. Eichelberger and E. 
Grimit, “Creating the Dataset for the Western Wind and Solar 
Integration Study”, Presented at the 7th International Workshop on 
Large Scale Integration of Wind Power and on Transmission Networks 
for Offshore Wind Farms, 26-27 May, 2008, Madrid, Spain. 

[10] J. C. Smith, M. R. Milligan, E. A. DeMeo and B. Parsons, “Utility Wind 
Integration and Operating Impact State of the Art”, IEEE Transactions 
On Power Systems, Vol. 22, No. 3, pp. 900-908, Aug. 2007. 

VIII.  BIOGRAPHIES 
Cameron W. Potter (S’03, M’06) graduated from the University of 
Tasmania, Hobart, Tasmania, Australia with a Ph.D. in Power Systems 
Engineering and Artificial Intelligence.  Cameron also attained his BE with 
First Class Honours from the University of Tasmania, Hobart, Tasmania, 
Australia. 

Cameron presently works as the Managing Director of 3TIER Pacific Rim 
Pty Ltd. His employment experience also includes working for 3TIER Inc. in 
Seattle, U.S.A. as a Power Prediction Engineer, for the University of 
Tasmania as a Laboratory Supervisor and Tutor at and as a Technical 
Assistant at Hydro Tasmania. His special fields of interest include the 
application of artificial intelligence, data mining and non-deterministic 
methods to practical renewable energy engineering problems. 
 
Allison Archambault is the Business Liaison Director for 3TIER in 
Washington D.C. She formerly led the renewable energy program for 
GridPoint, a leading clean tech company in the smart grid space.  Allison 
currently focuses on leveraging 3TIER’s global resource mapping work to 
expand renewable energy insights around the world. She has a background in 
grid-tied residential solar, residential demand management, and rural solar 
electrification; she holds a B.A. in International Relations and Economics 
from Tufts University. 
 
Ken Westrick is the founder and CEO of 3TIER. Prior to founding 3TIER in 
1999, Westrick earned both bachelor and masters degrees in atmospheric 
sciences from the University of Washington and was an integral member of 
the University’s PRISM Project, where he specialized in weather and 
environmental forecasting techniques and computer modeling strategies. 
Westrick also served nearly 14 years in the US Army, including tours with the 
US Army Ranger Regiment and Special Operations Command. 


