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The main aim of this paper is to define what imprecise reliability is, and 

discuss a variety of problems that can be solved by means of a framework 
of imprecise probabilities. From this point of view, various branches of 
reliability analysis are considered, including analysis of monotone 
systems, repairable systems, multi-state systems, structural reliability, 
software reliability, human reliability, fault tree analysis. Various types of 
initial information used in imprecise reliability are considered. Some open 
problems are briefly discussed in the concluding section. 

 

Introduction 

A lot of methods and models in classical reliability theory assume that all 
probabilities are precise, that is, that every probability involved is perfectly 
determinable. Moreover, it is usually assumed that there exists some 
complete probabilistic information about the system and component 
reliability behavior. The completeness of the probabilistic information 
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means that two conditions must be fulfilled: 
1) all probabilities or probability distributions are known or perfectly 

determinable; 
2) the system components are independent, i.e., all random variables, 

describing the component reliability behavior, are independent, or, 
alternatively, their dependence is precisely known. 

The precise system reliability measures can always (at least 
theoretically) be computed if both these conditions are satisfied (it is 
assumed here that the system structure is precisely defined and that there is 
a known function linking the system time to failure (TTF) and TTFs of 
components or some logical system function [8]). If at least one of these 
conditions is violated, then only interval reliability measures can be 
obtained. In reality, it is difficult to expect that the first condition is 
fulfilled. If the information we have about the functioning of components 
and systems is based on a statistical analysis, then a probabilistic 
uncertainty model should be used in order to mathematically represent and 
manipulate that information. However, the reliability assessments that are 
combined to describe systems and components may come from various 
sources. Some of them may be objective measures based on relative 
frequencies or on well-established statistical models. A part of the 
reliability assessments may be supplied by experts. If a system is new or 
exists only as a project, then there are often not sufficient statistical data on 
which to base precise probability distributions. Even if such data exist, we 
do not always observe their stability from the statistical point of view. 
Moreover, failure times may not be accurately observed or may even be 
missed. Sometimes, failures do not occur at all or occur partially, leading 
to censored observations of failure times, and the censoring mechanisms 
themselves may be complex and not precisely known. As a result, only 
partial information about reliability of system components may be 
available, for example, the mean time to failure (MTTF) or bounds for the 
probability of failure at a time. Of course, one can always assume that the 
TTF has a certain probability distribution, where, for example, 
exponential, Weibull and lognormal are popular choices. However, how 
should we trust the obtained results of reliability analyses if our 
assumptions are only based on our experiences or on those of experts. One 
can reply that if an expert provides an interval for the MTTF on the basis 
of his experience, why should we reject his assumptions concerning the 
probability distribution of TTFs? The fact is that judgements elicited from 
experts are usually imprecise and unreliable due to the limited precision of 
human assessments. Therefore, any assumption concerning a certain 
probability distribution in combination with imprecision of expert 
judgements may lead to incorrect results which often cannot be validated 
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due to lack of (experimental) data. 
In many situations, it is unrealistic to assume that components of 

systems are independent. Let us consider two programs functioning in 
parallel (two-version programming). If these programs were developed by 
means of the same programming language, then possible errors in a 
language library of typical functions produce dependent faults in both 
programs. Several experimental studies show that the assumption of 
independence of failures between independently developed programs does 
not hold. However, the main difficulty here is that the degree of 
dependence between components is unknown, and one typically does not 
get sufficient data from which to learn about such dependence in detail. 
Similar examples can be presented for various applications. This implies 
that the second condition for complete information is also violated in most 
practical applications, and it is difficult to obtain precise reliability 
measures for a system, indeed such measures are mostly based on strong 
assumptions. 

Dependence modelling is particularly important for large systems, for 
example to support high reliability software testing under practical 
constraints [86]. Wooff et al [150] present an approach based on Bayesian 
graphical modelling to support software testers, and thus enhance the 
reliability of software systems, in which dependencies are quantified 
precisely via elicitation of expert judgements. Due to the enormous 
elicitation task this is difficult to achieve completely in practice, hence 
imprecise probability assessments may be needed to enable wide-scale 
implementation of such methods, where imprecision at varying levels of 
model structuring and belief quantification can be used to guide efficient 
elicitation. This is an important research topic both from the perspective of 
statistical theory based on imprecise probability and reliability theory. 
Another possible way to model and quantify dependence structures is via 
Bayes linear methods [35], where expectation (`prevision') rather than 
probability is the central concept. In principle, due to linearity of 
expectation, it promises to be easier to generalize this statistical framework 
to allow imprecision than it is for probability theory, but this is still an 
open topic for research. 

One of the tools to cope with imprecision of available information in 
reliability analysis is fuzzy reliability theory [17,18,48,127,129], which is 
based on using fuzzy and possibilistic models [51], models of fuzzy 
statistics [143]. However, the framework of this theory does not cover a 
large variety of possible judgements in reliability. Moreover, it requires to 
assume a certain type of possibility distributions of TTF or time to repair, 
and may be unreasonable in a wide scope of cases. Existing models of 
fuzzy reliability theory meet some difficulties from the practical point of 
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view. Let us consider one of the most powerful models proposed by Cai 
[17], according to which the TTF of the i-th component is considered to be 
a fuzzy variable governed by a possibility distribution function ( )i tµ  [51]. 
Then the reliability measure (possibility of failure before time t ) of a 
series system consisting of n  components is defined as 

1,...,max sup ( )i n u t i uµ= ≤ . If all components are identical, then the possibility 
of failure does not depend on n . This controversial result is due to the 
operations min and max used in calculations, which practitioners cannot 
accept because it is well known that system reliability decreases with n . In 
this approach, a similarly problematic property holds for parallel systems. 
Other problems with this theory are the lack of clear interpretation of the 
possibility function, and lack of consistent and well founded theory for 
relating the possibility distribution function to statistical data. Cai [16] 
proposed a method based on computing the possibilistic likelihood 
function. However, this method has a shortcoming. By increasing the 
number of observations, the imprecision of the obtained possibility 
distribution function does not decrease and may even increase, which is 
not acceptable for practitioners in reliability analysis. It should be noted 
that the first point can be explained [107] by interpreting the possibility 
distribution by means of lower and upper probability distributions [52] and 
considering conditions of independence of random variables. Some models 
use fuzzy probabilities to describe the system reliability behavior. This 
representation can be regarded as a special type of second-order 
uncertainty models. However, most existing models using fuzzy 
probabilities also have shortcomings due to unreasonable usage of fuzzy 
operations and comparison indices. Moreover, the fuzzy sets and 
possibility theory are often used in reliability analysis as an alternative to 
the classical probability theory that cannot be accepted by many 
practitioners. In spite of these shortcomings, fuzzy reliability models can 
be viewed as an interesting class of models for taking incompleteness of 
information into account, with a variety of challenging open research 
problems. 

Another approach to reliability analysis under incomplete information, 
based on the use of random set and evidence theories [89], has been 
proposed in the literature [6,65,93]. Random set theory offers an 
appropriate mathematical model of uncertainty when the information is not 
complete or when the result of each observation is not point-valued but 
set-valued, so that it is not possible to assume the existence of a unique 
probability measure. However, this approach also does not cover all 
possible judgements in reliability. 

To overcome every difficulty of the methods considered above, the 
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theory of imprecise probabilities [144] and its analogues (the theory of 
interval statistical models [77], the theory of interval probability 
[148,149]) can be used, which can be a general and promising tool for 
reliability analysis. 

Coolen [28] provided an insight into imprecise reliability, discussing a 
variety of issues and reviewing suggested applications of imprecise 
probabilities in reliability. The idea of using some aspects of imprecise 
probability theory in reliability had already been considered in the 
literature. For example, Barlow and Proschan [8] studied a case of the lack 
of information about independence of components (Frechet bounds [55]) 
and nonparametric interval reliability analysis of ageing classes of TTF 
distributions. Barzilovich and Kashtanov [10] considered interval methods 
for optimal preventive maintenance under incomplete information. It has 
also been shown [26,27,37] how several commonly used concepts in 
reliability theory can be generalized, and combined with prior knowledge, 
through the use of imprecise probabilities in a generalized Bayesian 
statistical framework. Recently, nonparametric predictive inference has 
been developed, see Coolen et al [34] for an introductory overview, as a 
coherent statistical framework offering exciting application opportunities 
in reliability in situations where sufficient data are available. In this 
approach, only few mathematical assumptions are made, leading to 
imprecision, and further sources of uncertainty such as censored 
observations also lead to imprecision. Applications of this approach to 
maintenance and replacement problems have also been presented. We 
discuss this approach in more detail in Sec. Imprecise probability models 
for inference. 

Further examples of applications of imprecise probabilities to reliability 
analysis have been presented by Utkin and Gurov [63,133], we briefly 
consider some of these examples. Suppose that the following information 
is available about components of a two-component series system. The 
MTTF of the first component is 10 hours, and the probability that the 
second component fails before 2 hours is 0.01. Without additional 
assumptions, the reliability of the system cannot be determined by means 
conventional reliability theory because the probability distribution of TTF 
is unknown. Any assumption about a certain probability distribution of 
TTF may lead to incorrect results. The reliability can also not be 
determined by means of methods of fuzzy reliability theory without further 
assumptions. However, this problem can be solved by using imprecise 
probabilities, with the restricted information leading to imprecise 
reliability quantifications. 

A main objective of imprecise reliability is the analysis of system 
reliability using only available information without additional assumptions 
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or, with a minimal number of assumptions. This theory also allows clear 
insights into the effects of any such further assumptions, as reflected via 
their effect on the imprecision in the system reliability measures. The 
following virtues of imprecise probability theory can be pointed out: 
1) It is not necessary to make assumptions about probability distributions 

of random variables characterizing the component reliability behavior 
(TTFs, numbers of failures in a unit of time, etc.). 

2) Imprecise probability theory is completely based on classical 
probability theory and can be regarded as its generalization. Therefore, 
imprecise reliability models can be interpreted in terms of classical 
probability theory. Conventional reliability models can be regarded as 
a special case of imprecise models. 

3) Imprecise probability theory provides a unified tool (natural extension) 
for computing system reliability measures under partial information 
about the component reliability behavior. 

4) Imprecise probability theory provides a generalization of possibility 
theory and evidence theory, and allows us to explain and understand 
some results of these approaches in reliability analysis. 

5) Reliability measures that are different in kind can be combined and 
involved into the natural extension in a straightforward way. This 
implies that quite different reliability measures and estimates can be 
combined for computing the system reliability measures. 

6) Imprecise probability theory allows us to obtain the best possible 
bounds for the system reliability given any information about 
component reliability and dependence structures. 

7) The possible large imprecision of resulting system reliability measures 
reflects the available incompleteness of initial information and can 
direct the search for effective additional information sources. 

 At the same time, we can not assert that imprecise probability theory is 
the best and unique tool for reliability analysis under incomplete 
information. Ben-Haim [12,13] developed info-gap decision theory which 
has been successfully applied to solving some reliability problems. Info-
gap models differ from the models of possibility, random set, and 
probability theories using real-valued measures functions defined on the 
space of events, which express either a probability or a possibility for each 
event in the space. An info-gap model of uncertainty is a family of nested 
sets. Each set corresponds to a particular degree of knowledge-deficiency, 
according to its level of nesting. There are no measure functions in an info-
gap model of uncertainty. 

This introductory overview of imprecise reliability is not intended as an 
exhaustive and comprehensive review of the literature. Instead, its aim is 
to show that imprecise reliability theory offers exciting opportunities and 
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has been developed, yet this process is still at a relatively early stage, in 
particular with regard to (large-scale) practical applications.  

System reliability analysis 

Consider a system consisting of n  components. Suppose that partial 
information about reliability of components is represented as a set of lower 
and upper expectations ijfE  and ijfE , 1,...,i n= , 1,..., ij m= , of functions 

ijf . Here im  is a number of judgements that are related to the i-th 
component; ( )ij if X  is a function of the random TTF iX  of the i-th 
component or some different random variable, describing the i-th 
component reliability and corresponding to the j-th judgement about this 
component. For example, the interval-valued probability that a failure is in 
the interval [ , ]a b  can be represented as expectations of the indicator 
function [ , ]( )a b iI X  such that [ , ]( ) 1a b iI X =  if [ , ]iX a b∈  and [ , ]( ) 0a b iI X =  
if [ , ]iX a b∉ . The lower and upper MTTFs are expectations of the 
function ( )i if X X= . 

Denote 1( ,..., )nx x=X  and 1X ( ,..., )nX X= . Here 1,..., nx x  are values of 
random variables 1,..., nX X , respectively. It is assumed that the random 
variable iX  is defined on a sample space Ω  and the random vector X  is 
defined on a sample space ...nΩ = Ω × ×Ω . If iX  is the TTF, then 

+Ω = R . If iX  is a random state of a multi-state system [9], then 
{1,..., }LΩ = , where L  is a number of states of the multi-state system. In 

the case of a discrete TTF, {1,2,...}Ω = , i.e. +Ω = Z . According to Barlow 
and Proschan [8], the system TTF can be uniquely determined by the 
component TTFs. Then there exists a function (X)g  of the component 
lifetimes characterizing the system reliability behavior. The same holds for 
a multi-state system. If iX  is a random state, then a state of the multi-state 
system is determined by states of its components, i.e., there exists a 
function (X)g  called a structure function. 

In terms of imprecise probability theory the lower and upper 
expectations can be regarded as lower and upper previsions. The functions 

ijf  and g  can be regarded as gambles (the case of unbounded gambles is 
studied by Troffaes and de Cooman [96]). The lower and upper previsions 
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ijfE  and ijfE  can be also viewed as bounds for an unknown precise 
prevision ijfE  which will be called a linear prevision. Since the function 
g  is the system TTF, then, for computing the reliability measures (such as 
the probability of failure, MTTF, k-th moment of TTF), it is necessary to 
find lower and upper previsions of a gamble ( )h g , where the function h  
is defined by the system reliability measure which has to be found. For 
example, if this measure is the probability of failure before time t , then 

[0, ]( ) ( )th g I g= . 
If we assume that the vector X  is governed by some unknown joint 

density ( )ρ X , then ( )h gE  and ( )h gE  can be computed by solving the 
following optimization problems (natural extension):  

( ) min ( ( )) ( ) ,
n

h g h g ρ
Ω

= ∫E X X X
P

d  

( ) max ( ( )) ( ) ,
n

h g h g ρ
Ω

= ∫E X X X
P

d  

subject to 
( ) 0, ( ) 1,

n
ρ ρ

Ω
≥ =∫X X Xd  

( ) ( ) , , .
nij ij i ij if f x f i n j mρ

Ω
≤ ≤ ≤ ≤∫E X X Ed  

Here the minimum and maximum are taken over the set P  of all 
possible density functions { ( )}ρ X  satisfying the above constraints, i.e., 
solutions to the problems are defined on the set P  of densities that are 
consistent with partial information expressed in the form of the constraints. 
These optimization problems mean that we only have to find the largest 
and smallest possible values of ( )h gE  over all densities from the set P . 

If the considered random variables are discrete and the sample space 
nΩ  is finite, then integrals and densities in the optimization problems are 

replaced by sums and probability mass functions, respectively. 
It should be noted that only joint densities are used in the above 

optimization problems because, in a general case, we may not be aware 
whether the variables 1,..., nX X  are dependent or not. If it is known that 
components are independent, then 1 1( ) ( ) ( )n nx xρ ρ ρ= ×⋅⋅ ⋅×X . In this 
case, the set P  is reduced and consists only of the densities that can be 
represented as a product of marginal densities. This results in more precise 
reliability assessments. The manner in which the condition of 
independence influences on the precision of assessments is often an 
interesting topic of study, as it may provide useful insights into the effect 
of independence assumptions. 
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If the set P  is empty, this means that the set of available evidence is 
conflicting and the optimization problems become irrelevant, hence this 
method would not provide any solutions. For example, if two experts 
provide [10,12] and [14,15] as bounds for the MTTF of a component, this 
information is clearly conflicting because these bounds produce non-
intersecting sets of probability distributions, so the set P  of common 
distributions is empty. There are several ways to cope with conflicting 
evidence. One is to localize the conflicting evidence and discard it, another 
is to somehow correct the conflicting evidence making it non-conflicting 
[102]. A third possibility is to introduce some beliefs to every judgement 
and to deal with second-order hierarchical models [109,110] which will be 
considered below. 

The dual optimization problems for computing the lower ( )h gE  and 
upper ( )h gE  previsions of ( )h g  are [41,133]:  

( )
1 1

( ) max ,
imn

ij ij ij ij
i j

h g c c f d f
= =

  = + − 
  

∑∑E E E  

subject to ,ij ijc d +∈R , 1,...,i n= , 1,..., ij m= , c ∈R , and n∀ ∈ΩX , 

( )
1 1

( ( )).
imn

ij ij ij
i j

c c d f h g
= =

+ − ≤∑∑ X  

The dual optimization problem for computing the upper prevision 
( )h gE  of the system function ( )h g  is 

( )
1 1

( ) min ,
imn

ij ij ij ij
i j

h g c c f d f
= =

  = + − 
  

∑∑E E E  

subject to ,ij ijc d +∈R , 1,...,i n= , 1,..., ij m= , c ∈R , and n∀ ∈ΩX , 

( )
1 1

( ( )).
imn

ij ij ij
i j

c c d f h g
= =

+ − ≥∑∑ X  

Here c , ijc , ijd  are optimization variables such that c  corresponds to 
the constraint ( ) 1n ρΩ =∫ X Xd , ijc  corresponds to the constraint 

( ) ( )n ij i ijf x fρΩ ≤∫ X X Ed , and ijd  corresponds to the constraint 

( ) ( )nij ij if f x ρΩ≤ ∫E X Xd . It turns out that dual optimization problems are 
simpler in comparison with primal ones in many applications, because this 
representation allows avoidance of situations with infinite numbers of 
optimization variables. 

Most reliability measures (probabilities of failure, MTTFs, failure rates, 
moments of TTF, etc.) can be represented in the form of lower and upper 
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previsions or expectations. Each measure is defined by a gamble ijf . 
Precise reliability information is a special case of imprecise information 
when lower and upper previsions of the gamble ijf  coincide, i.e., 

ij ijf f=E E . 
For example, let us consider a series system consisting of two 

components. Suppose that the following information about reliability of 
components is available. The probability of the first component failure 
before 10 hours is 0.01. The MTTF of the second component is between 
50 and 60 hours. It can be seen from the example that the available 
information is heterogeneous and it is impossible to find system reliability 
measures on the basis of conventional reliability models without using 
additional assumptions about probability distributions. At the same time, 
this information can be formalized as follows:  

[0,10] 1 [0,10] 1 2 2( ) ( ) 0.01, 50, 60,I X I X X X= = = =E E E E  
or 

2 [0,10] 1 1 2 1 20.01 ( ) ( , ) 0.01,I x x x x xρ
+

≤ ≤∫R
d d  

2 2 1 2 1 250 ( , ) 60.x x x x xρ
+

≤ ≤∫R
d d  

If it is known that components are statistically independent, then the 
constraint 1 2 1 1 2 2( , ) ( ) ( )x x x xρ ρ ρ=  is added. The above constraints form a 
set P  of possible joint densities. Suppose that we want to find the 
probability of system failure after time 100 hours. This measure can be 
regarded as previsions of the gamble [100, ) 1 2(min( , ))I X X∞ , i.e., 

1 2(X) min( , )g X X=  and [100, )( ) ( )h g I g∞= . Then the objective functions 
are of the form: 

2 [100, ) 1 2 1 2 1 2( ) min (min( , )) ( , ) ,h g I x x x x x xρ
+

∞= ∫ R
E

P
d d  

2 [100, ) 1 2 1 2 1 2( ) max (min( , )) ( , ) .h g I x x x x x xρ
+

∞= ∫ R
E

P
d d  

Solutions to the problems are ( ) 0h g =E  and ( ) 0.59h g =E , which are 
the sharpest bounds for the probability of system failure after time 100 
hours based solely on the given information. If there is no information 
about independence, then optimization problems for computing ( )h gE  
and ( )h gE  can be written as 

{ }11 11 21 21( ) max 0.01 0.01 50 60 ,h g c c d c d= + − + −E  
subject to 11 11 21 21,, , ,c d c d +∈R , c ∈R , and 2

1 2( , )x x +∀ ∈R , 
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11 11 [0,10] 1 21 21 2 [100, ) 1 2( ) ( ) ( ) (min( , )),c c d I x c d x I x x∞+ − + − ≤  
and 

{ }11 11 21 21( ) min 0.01 0.01 60 50 ,h g c c d c d= + − + −E  
subject to 11 11 21 21,, , ,c d c d +∈R , c ∈R , and 2

1 2( , )x x +∀ ∈R , 

11 11 [0,10] 1 21 21 2 [100, ) 1 2( ) ( ) ( ) (min( , )),c c d I x c d x I x x∞+ − + − ≥  

The solutions to these problems are ( ) 0h g =E  and ( ) 0.99h g =E . This 
example clearly shows the possible influence of independence 
assumptions. 

Another method for computing ( )h gE  and ( )h gE  is based on an 
assertion that optimal densities in the primal optimization problems are the 
weighted sums of Dirac functions [138] which have unit area concentrated 
in the immediate vicinity of some point. In this case, the infinite 
dimensional optimization problems are reduced to a problem with a finite 
number of variables equal to the number of constraints (pieces of 
evidence). The optimization problems, unfortunately, become non-linear, 
but it turns out that in some special cases [108,114,117,140] their solution 
is rather simple. If there is no information about independence of 
components, then  

1

,
1

( ) min ( ( )),
k k

N

k kc
k

h g c h g
+

=

= ∑X
E X  

1

,
1

( ) max ( ( )),
k k

N

k kc
k

h g c h g
+

=

= ∑X
E X  

subject to 
1

1

1, 0, 1,..., 1,
N

k k
k

c c k N
+

=

= ≥ = +∑  

1
( )

1

( ) , , ,
N

k
ij k ij i ij i

k

f c f x f j m i n
+

=

≤ ≤ ≤ ≤∑E E  

where ( ) ( )
1( ,..., )k k n

k nx x += ∈X R , kc +∈R , 1
n
i iN m== ∑ . 

Here kX , kc  are optimization variables. If components are independent, 
then  

1
( )1

1

11
( )( )

1,
1 1 1

( ) min ... ( ( ,..., )) ,
n

vn

v
j j

n

mm n
ll

n lc
l l v

h g h g x x c
++

= = =

= ∑ ∑ ∏X
E  

1
( )1

1

11
( )( )

1, 1 1 1

( ) max ... ( ( ,..., )) ,
n

vn

v
j j

n

mm n
ll

n lc l l v

h g h g x x c
++

= = =

= ∑ ∑ ∏X
E  

subject to  
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1
( ) ( )

1

1, 0, 1,..., ,
lm

l l
k k

k

c c l n
+

=

= ≥ =∑  

1
( ) ( )

1

( ) , , .
im

l i
ij ij i l ij i

l

f f x c f j m i n
+

=

≤ ≤ ≤ ≤∑E E  

Let us introduce the notion of the imprecise reliability model of the i -th 
component as a set of im  available lower and upper previsions and 
corresponding gambles 

1 1, , ( ), 1,..., , , ( ) .i im m
ij ijij iji ij i i j ij j ij if X j m f X= == 〈 = 〉 = ∧ = ∧ 〈 〉E E E EM M  

Our aim is to get the imprecise reliability model , , ( (X))h g= 〈 〉E EM  of 
the system. This can be done by using the natural extension which will be 
regarded as a transformation of the component imprecise models to the 
system model and denoted 1

n
i i=∧ →M M . The models in the above 

considered example are 1 [0,10] 10.01,0.01, ( )I X= 〈 〉M , 2 250,60, X= 〈 〉M , 

[100, ) 1 2, , (min( , ))I X X∞= 〈 〉E EM . 
Different forms of optimization problems for computing system 

reliability measures are studied by Utkin and Kozine [138]. However, if 
the number of judgements about component reliability behavior, 1

n
i im=∑ , 

and the number of components, n , are large, optimization problems for 
computing ( )h gE  and ( )h gE  cannot be practically solved due to their 
extremely large dimensionality. This fact restricts the application of 
imprecise calculations to reliability analysis. Therefore, simplified 
algorithms for approximate solutions to such optimization problems must 
be developed, together with analytical solutions for some special types of 
systems and initial information. Some efficient algorithms are proposed by 
Utkin and Kozine [115,137]. The main idea underlying these algorithms is 
to decompose the difficult non-linear optimization problems into several 
linear programming problems which are easy to solve. For example, in 
terms of the introduced imprecise reliability models, an algorithm given in 
[115] allows us to replace the complex transformation 1

n
i i=∧ →M M  by a 

set of 1n +  simple transformations  
0 , , ( ) , 1,..., ,i i ih X i n→ = 〈 〉 =E EM M  

0
1 .n

i i=∧ →M M  
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Judgements in imprecise reliability 

The judgements considered above can be related to direct ones, which are 
a straightforward way to elicit the imprecise reliability characteristics of 
interest. Moreover, the condition of independence of components can be 
related to structural judgements. However, there is a wide variety of 
possible judgements [76] that imprecise reliability theory can deal with, 
and other types of initial information have to be pointed out. 

Comparative judgements are based on comparison of reliability 
measures concerning one or two components [76,99]. An example of a 
comparative judgement related to one component is the probability of the 
i -th component failure before time t  is less than the probability of the 
same component failure in time interval 1 2[ , ]t t . This judgement can be 
formally represented as 

1 2[ , ] [0, ]( ( ) ( )) 0t t i t iI X I X− ≥E . An example of a 
comparative judgement related to two components is the MTTF of the i -th 
component is less than the k -th component MTTF, which can be rewritten 
as ( ) 0k iX X− ≥E . By using the property of previsions ( )X X= − −E E , 
for instance, the last comparative judgement can be rewritten as 

( ) 0i kX X− ≤E . 
Many reliability measures are based on conditional probabilities or 

conditional previsions, for example, failure rate, mean residual TTF, 
probability of residual TTF, etc. Moreover, experts sometimes find it 
easier to quantify uncertainties using probabilities of outcomes 
conditionally on the occurrence of other events. The lower and upper 
residual MTTFs can be formally represented as [ , )( | ( ))tX t I X∞−E  and 

[ , )( | ( ))tX t I X∞−E , where X t−  is the residual lifetime. The lower and 
upper probabilities of residual TTF after time z  (lower and upper residual 
survivor functions) are similarly written as [ , ) [ , )( ( ) | ( ))z tI X t I X∞ ∞−E  and 

[ , ) [ , )( ( ) | ( ))z tI X t I X∞ ∞−E . It should be noted that the imprecise conditional 
reliability measures may be computed from unconditional ones by using 
the generalized Bayes rule [144]. For example, if lower XE  and upper 

XE  MTTFs are known, then the lower and upper residual MTTFs 
produced by the generalized Bayes rule are max{0, }X t−E  and XE , 
respectively. A more detailed description of conditional judgements in 
reliability analysis can be found in [136]. 

It is often reasonable to assume that lifetime probability distribution 
functions are unimodal. Therefore, additional information about 
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unimodality of lifetime probability distributions may be taken into account 
for imprecise reliability calculations [104,106]. Implementing an 
unimodality condition on discrete probability distributions into imprecise 
reliability calculations has been studied in [106]. 

Some qualitative or quantitative judgements about kurtosis, skewness, 
and variance can also be taken into account in imprecise reliability 
calculations [104]. For example, we may know that the component TTF 
typically has a flat density function, which is rather constant near zero, and 
very small for larger values of the variable (negative kurtosis). This 
qualitative judgement can be represented by the lower and upper 
previsions 2 2X X h= =E E  together with 4 2( 3 ) 0X h− ≤E , where 

2 2[inf ,sup ]h X X∈ . If, for instance, we know that data are skewed to the 
right (positive skewness), then this information can be formalized by the 
lower and upper previsions X X h= =E E  together with 

2 3 3(3 ) 2hX X h− ≤E . If we know that the variance of the component TTF 
is less than the expectation squared, then additional constraints to 
optimization problems for computing lower and upper previsions are of the 
form: X X h= =E E  and 2 22X h≤E . In such cases, the natural extension 
can be conveniently formulated as a parametric linear optimization 
problem with the parameter h . 

Experts are often asked about k%-quantiles of the TTF X , i.e., they 
supply points ix  such that Pr{ } /100iX x k≤ = . As pointed out by Dubois 
and Kalfsbeek [50], experts are often more confident at supplying intervals 
rather than point-values, because their knowledge is often restricted. So 
experts may provide intervals for quantiles in the form [ , ]iix x . This 
information can be written as 

Pr{ [ , ]} ,ii iX x x q≤ =  
and it can be interpreted as I do not know the true value of the quantile 
exactly, but I belief one of the values in the interval [ , ]iix x  to be its true 
value. It is worth noting that the considered model of uncertainty differs 
from standard uncertainty models used in the imprecise probability theory, 
where there exists an interval of previsions of a certain gamble. In the 
models of quantiles, the gamble is viewed as a set of gambles for which 
the same previsions are defined. The model is represented as the union of 
imprecise models  

[0, ][ , ] , , ( ) .
ii i i tt x x q q I X

∈
∨ 〈 〉  

The symbol [ , ]iit x x∈
∨  means that at least one of the models 
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[0, ], , ( )i i tq q I X〈 〉  is true. Then arbitrary reliability measures may be 
computed by using the natural extension. For example, if there are n  
judgements about imprecise quantiles ( 1 ... nq q≤ ≤ ) and a sample space of 
TTF of a component is bounded by values 0x  and Nx , then the lower and 
upper MTTFs of the component are 

1 0 1 11,...,
1

( ) max , 1,
n

ki i nk i
i

X q x q q x q+ +=
=

= + − =∑E  

1 0,...,
1

(1 ) ( ) min , 0.
n

kn N i i k i n
i

X q x q q x q− =
=

= − + − =∑E  

 

Imprecise probability models for inference 

 
Standard models for inference usually require a large number of 
observations of events, e.g. failures, or assume that an appropriate precise 
prior probability distribution is available (for Bayesian models). A possible 
way to avoiding these assumptions is by use of imprecise probability 
models or models with imprecise prior distribution for statistical inference 
[37]. As an alternative to the kind of models also used in robust Bayesian 
analysis [14], which provide useful models in the imprecise probability 
context although requiring a different interpretation of the lower and upper 
bounds for inferences, Coolen [24] presents a generalization by including a 
further parameter which explicitly controls the level of imprecision in case 
of updating with newly available data. For all these models, computation 
of lower and upper previsions, as required for many reliability 
applications, may seem to involve complex nonlinear optimization 
problems, in particular if multi-dimensional parameters are involved. 
Coolen [25] shows how these optimization problems can be replaced by 
relatively straightforward one-dimensional search problems, independent 
of the dimensionality of the original parameter space, which makes such 
methods far more readily available for use in imprecise reliability. 

The imprecise Dirichlet model (IDM) was introduced by Walley [145] 
as a model for objective statistical inference from multinomial data. In the 
IDM, prior or posterior uncertainty about the multinomial distribution 
parameter θ  are described by sets of Dirichlet distributions, and inferences 
about events are summarized by lower and upper probabilities which 
depend on the choice of a hyperparameter s . The hyperparameter 
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determines how quickly upper and lower probabilities of events converge 
as statistical data accumulate. There are several arguments [145] in favour 
of 1 2s≤ ≤ . The IDM avoids some shortcomings of alternative objective 
models, either frequentist or Bayesian. Coolen [27] presented a 
generalization of the IDM, suitable for lifetime data including right-
censored observations, which are common in reliability theory and 
survival analysis. The resulting imprecise inferences typically encompass 
frequentist results for the same setting. For statistical inference on interval-
valued data, Utkin [116,119] considered a set of IDMs produced by these 
data. The set of IDMs in this case does not require to divide the time-axis 
into a number of intervals for constructing the multinomial model. These 
intervals are produced by bounds of interval-valued data. The following 
example illustrates the above. Suppose that we observe 5N =  intervals of 
TTF 1 [10,14]A = , 2 [12,16]A = , 3 [9,11]A = , 4 [12,14]A = , 5 [13, )A = ∞ . 
Then the lower and upper probabilities of an arbitrary interval A  are of the 
form:  

: :1 1
( | ) , ( | ) .i ii A A i A A s

P A s P A s
N s N s

⊆ ∩ ≠∅ +∑ ∑
= =

+ +
 

Let [0,14]A =  and 1s = . Then ([0,14] |1) 3/ 6P = , ([0,14] |1) 1P = . It 
can be seen from the above expressions that the lower and upper 
probabilities do not depend on the division of the time-axis into intervals 
and right-censored observations ( 5A ) can be analyzed by the set of IDMs. 

Quaeghebeur and de Cooman [88] applied the main ideas underlying the 
IDM to all distributions belonging to the exponential family, and 
constructed similar imprecise probability models for sampling from these 
distributions. Although the IDM has been established as an attractive 
model for statistical inference using imprecise probabilities, in reliability 
and other application areas, it has several serious shortcomings that were 
raised both by Walley himself in the paper introducing the IDM and by 
several discussion contributors to this paper [145]. These shortcomings 
were mostly apparent in situations where one has few observations, as is 
regularly the case in reliability problems. Recently, Coolen and Augustin 
[31] presented an alternative imprecise probability model for inference in 
case of multinomial data, which overcomes the reported shortcomings of 
the IDM. Applications of this model to reliability problems have not yet 
been presented. 

Walley [145] proposed a bounded derivative model for statistical 
inference about a real-valued parameter in problems where there is little or 
no prior information. Prior ignorance about the parameter is modelled by a 
set of all continuous probability density functions for which the derivative 
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of the log-density is bounded by a positive constant. This is also a 
promising model, which as far as we are aware has not yet been applied to 
reliability problems. 

For restricting to a set of possible distribution functions of TTF, and for 
formalizing judgements about the ageing aspects of lifetime distributions, 
various nonparametric or semi-parametric classes of probability 
distributions can be used. In particular, the classes of all IFRA (increasing 
failure rate average) and DFRA (decreasing failure rate average) 
distributions have been studied by Barlow and Proschan [8]. In order to 
formalize judgements about the ageing aspects of lifetime distributions, 
new flexible classes of distributions, denoted as ( , )r sH  classes 
[64,131,132,134], have been proposed and investigated. The probability 
distribution of the component (or system) lifetime X  can be written as 

( ) Pr( ) exp( ( ))H t X t t= ≥ = −Λ , where 0( ) ( )tt x xλΛ = ∫ d  and ( )tλ  is the 
time-dependent failure rate, also known as the hazard rate. Let r  and s  be 
numbers such that 0 r s≤ ≤ ≤ +∞ . A probability distribution belongs to a 
class ( , )r sH  with parameters r  and s  if ( ) / rt tΛ  increases and ( ) / st tΛ  
decreases as t  increases. In particular, (1, )+∞H  is the class of all IFRA 
distributions; ( , )r sH  with 1 r s≤ <  is the class of all IFRA distributions 
whose failure rate increases with rate bounded by r  and s ; (0,1)H  is the 
class of all DFRA distributions; ( , )r sH  with 1r s< ≤  is the class of all 
DFRA distributions whose failure rate decreases with rate bounded by r  
and s ; and ( , )r sH , 1r s< <  is a class containing distributions whose 
failure rate is non-monotone. Inferences for such classes, and solutions to 
corresponding computational problems, were presented by Utkin and 
others in the papers referred to above. To make these promising 
distributional classes available for imprecise reliability analysis in practice, 
a number of interesting research problems are still open, including the 
important question of how to fit such classes to available data. 

From statistical perspective, imprecise probability enables inferential 
methods based on relatively few mathematical assumptions, in particular 
in situations where data are available. During the last decade, Coolen, with 
a number of co-authors, has developed nonparametric predictive inference 
(NPI), where inferences are directly on future observable random 
quantities, e.g. the random time to failure of the next system. In this 
approach, imprecision depends in an intuitively logical way on the 
available data, as it decreases if information is added, yet aspects as 
censoring or grouping of data result in an increase of imprecision. 
Foundations of NPI, including proofs of its consistency in theory of 
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interval probability, are presented by Augustin and Coolen [4]. An 
introduction to NPI in reliability is presented in [34], and theory for 
dealing with right-censored observations in NPI in [41], with applications 
to some specific reliability problems presented in [39,40]. This framework 
is also suitable for guidance on high reliability demonstration, answering 
the important question of how many failure-free observations are required 
in order to accept a system in a critical operation [32]. The fact that, in 
such situations, imprecise reliability theory allows decisions to be based on 
the more pessimistic one of the lower and upper probabilities, e.g. lower 
probability of failure-free operation over a period of specified length, is an 
intuitively attractive manner for dealing with indeterminacy. Recently, 
Coolen also considered probability safety assessment from similar 
perspective [30]. 

In early work, Coolen and Newby [38] showed how NPI can also be 
applied for support of replacement decisions for technical systems, which 
is often a core reliability activity. Along such lines, Coolen-Schrijner and 
Coolen [32,42,43,44,45] investigated NPI-based alternatives to established 
replacement strategies based on the length of time a system has been in 
operation. These methods are fully adaptive to available failure data, and 
imprecision is reflected in bounds of cost functions. In addition, their 
results provide clear insights into the influence of a variety of assumptions 
which are often used for the more established methods, and which may 
frequently be rather unrealistic if considered in detail. Hence, the fact that 
their NPI-based method can do without most of such assumptions and still 
be useful under quite a reasonable data requirement is interesting, and 
suggests that further development of NPI-based methods for imprecise 
reliability is an interesting topic of research. 

Second-order reliability models 

Natural extension is a powerful tool for analyzing the system reliability on 
the basis of available partial information about the component reliability. 
However, it has a disadvantage. Let us imagine that two experts provide 
the following judgements about the MTTF of a component: (1) MTTF is 
not greater than 10 hours; (2) MTTF is not less than 10 hours. The natural 
extension produces the resulting MTTF [0,10] [10, ) 10∩ ∞ = . In other 
words, the absolutely precise MTTF is obtained from extremely imprecise 
initial data. This is unrealistic in the practice of reliability analysis. The 
reason of such results is that probabilities of judgements are assumed to be 
1. If we assign some different probabilities to judgements, then we obtain 
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more realistic assessments. For example, if the belief to each judgement is 
0.5, then, according to [73], the resulting MTTF is greater than 5 hours. 
Let us consider another example. Suppose that many experts, say 1000, 
provide the same interval for some probability of failure, say [0.9, 0.99] 
and one expert provides the interval [0, 0.89]. Clearly, these judgements 
are conflicting and the set of probability distributions produced by these 
intervals is empty. As a result, we can not use the natural extension. Of 
course, we can use the so called unanimity rule defined as the envelope of 
the expert previsions [97], which is guaranteed to exist, but leads to 
extremely imprecise results (in the considered example, the resulting 
interval is [0, 0.99]). On the other hand, it is intuitively obvious that our 
belief to the judgement supplied by the last expert is rather low in 
comparison with our belief to the judgement provided by 1000 experts, 
and the unreliable judgement could be removed from consideration. One 
might say that this example is highly artificial. Of course, the example is 
given here only for illustration purposes. However, what to do if only 2 
experts instead of 1000 provide the interval [0.9, 0.99] and one expert 
provides the interval [0, 0.99]. In this case, it is difficult to remove the 
contradictory interval. Of course, the inconsistency of the assessments in 
this artificial example were trivial, but in practice, with a variety of 
assessments on possibly different random variables, it may actually be 
difficult to discover whether or not the assessments are inconsistent, 
providing a further difficulty. However, in case of precise judgements, it is 
extremely unlikely that different assessments, even when made by a single 
expert, are consistent, so the generalization to interval reliability offers 
powerful methods for checking and dealing with realistic uncertainty 
judgements. 

The above examples imply that in order to obtain accurate and realistic 
system reliability assessments it is necessary to take into account some 
vagueness of information about the component reliability measures, i.e., to 
assume that expert judgements and statistical information about reliability 
of a system or its components may be unreliable. one possible solution is 
the use of second-order uncertainty models, also known as hierarchical 
uncertainty models, on which much attention has been focused in recent 
years, particularly in the statistics literature. These models describe the 
uncertainty of a random quantity by means of two levels. For example, 
suppose that an expert provides a judgement about the mean level of 
component performance [131]. If this expert sometimes provides incorrect 
judgements, we have to take into account some degree of belief to this 
judgement. In this case, the information about the mean level of 
component performance can be considered on the first level of the 
hierarchical model (first-order information) and the degree of belief to the 
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expert judgements is considered on the second level (second-order 
information). Many papers are devoted to the theoretical [62,81,147] and 
practical [58,82] aspects of second-order uncertainty models. Lindqvist 
and Langseth [79] investigated monotone multi-state systems under the 
assumption that probabilities of the component states (first-order 
probabilities) can be regarded as random variables governed by the 
Dirichlet probability distribution (second-order probabilities). A 
comprehensive review of hierarchical models is given in [49], where it is 
argued that Bayesian hierarchical models are most common [61]. 
However, the use of Bayesian hierarchical models may be unrealistic in 
problems where only partial information is available about the system 
behavior. 

Troffaes and de Cooman [97] specify and discuss two general ways for 
approaching the problem of aggregating expert opinions: axiomatic and ad 
hoc. Axiomatic approaches aim at deriving a preferably unique rule of 
aggregation from axioms or properties that this rule should satisfy. Ad hoc 
approaches are not as much concerned with axioms: one simply proposes 
or derives a mathematical formula, together with some form of 
justification. Both approaches have shortcomings and virtues, but 
axiomatic ones can be justified for various applications and initial data, 
whereas ad hoc approaches depend on specific applications and data. 

Various methods of the pooling of assessments, taking into account the 
quality of experts, are available in the literature [23,57,80]. These methods 
use the concept of precise probabilities for modelling uncertainty, and the 
quality of experts is modelled by means of weights assigned to each expert 
in accordance with some rules. It should be noted that most of these rules 
use some available information about correctness of previous expert 
opinions. This might meet several difficulties. First, the behavior of 
experts is unstable, i.e., exact judgements related to a system elicited from 
an expert do not mean that this expert will provide results of the same 
quality for new systems. Second, when experts provide imprecise values of 
an evaluated quantity, the weighted rules can lead to controversial results. 
For instance, if an expert with a small weight, say 0.1, provides a very 
large interval, say [0, 10], for a quantity (covering its sample space), it is 
obvious that this expert is too cautious and the interval he supplies is non-
informative, although this interval covers a true value of the quantity. On 
the other hand, if an expert with a large weight, say 0.9, supplies a very 
narrow interval, say [5, 5.01], the probability that true value of the quantity 
lies in this interval is rather small. We can see that the values of weights 
contradict with the probabilities of provided intervals. It should be noted 
that sometimes we do not know anything about the quality of experts, and 
assignment of weights might meet some psychological difficulties. This 
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implies that weights for experts as measures of the quality of their 
expertise should not normally be interpreted as measures of the quality of 
provided opinions [113,116,119]. 

Most axiomatic second-order uncertainty models assume that there is a 
precise second-order probability distribution (or possibility distribution). 
Moreover, most models use precise probabilities for the first-level 
uncertainty quantification. Unfortunately, such information is often absent 
in many applications and additional assumptions may lead to some 
inaccuracy in results. A study of some tasks related to the homogeneous 
second-order models without any assumptions about probability 
distributions has been presented by Kozine and Utkin [73,75]. However, 
these models are of limited use due to homogeneity of gambles considered 
on the first-order level. A hierarchical uncertainty model for combining 
different types of evidence was proposed by Utkin [103,109], where the 
second-order probabilities can be regarded as confidence weights and the 
first-order uncertainty is modelled by lower and upper previsions of 
different gambles. However, the proposed model [103,109] supposes that 
the second-order initial information is analyzed only for one random 
variable. At the same time, the reliability applications suppose that there is 
a set of random variables (component TTFs) described by a second-order 
uncertainty model, and it is necessary to find a model for some function of 
these variables (system TTF). Suppose that we have a set of weighted 
expert judgements related to some measures ( )ij if XE  of the component 
reliability behavior, 1,...,i n= , 1,..., ij m= , i.e., there are lower and upper 
previsions ijfE  and ijfE . Here n  is the number of components, im  is the 
number of judgements that are related to the i-th component. Suppose that 
each expert is characterized by an interval of probabilities [ , ]ijij

γ γ . Then 

the judgements can be represented as  

{ }Pr [ , ], , .ij ij ij iijij
f f f i n j mγ γ≤ ≤ ∈ ≤ ≤E E E  

Here the set { , }ij ijf fE E  contains the first-order previsions, the set { , }ijij
γ γ  

contains the second-order probabilities. Our aim is to produce new 
judgements which can be regarded as combinations of available ones. In 
other words, the following tasks can be solved: 
1) Computing the probability bounds [ , ]γ γ  for some new interval 

[ , ]g gE E  of the system linear prevision gE . 
2) Computing an average interval [ , ]g gEE EE  for the system linear 
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prevision gE  (reduction of the second-order model to first-order one). 
An imprecise hierarchical reliability model of systems has been studied 

by Utkin [111]. This model supposes that there is no information about 
independence of components. A model taking into account the possible 
independence of components leads to complex non-linear optimization 
problems. However, this difficulty can be overcome by means of 
approaches proposed in [112,121]. Some hierarchical models of reliability 
taking into account the imprecision of parameters of known lifetime 
distributions are investigated in [118,120]. 

Reliability of monotone systems 

A system is called monotone if it does not become better by a failure of 
one or more components. Various results have been obtained for 
computing imprecise reliability measures of typical monotone systems 
based on some particular types of initial information. 

Some results concerning the reliability of typical systems are given in 
[70,71]. If initial information about reliability of components is restricted 
by lower and upper MTTFs, then the lower and upper system MTTFs have 
been obtained in explicit form for series and parallel systems [98,128]. 
The MTTFs of cold standby systems have been obtained by Utkin and 
Gurov [63,133]. The cold standby systems do not belong to a class of 
monotone systems. Nevertheless, we consider these systems as typical 
ones. It is worth noticing that expressions in the explicit form have been 
derived for the cases of independent components and complete lack of 
information about independence. 

Suppose that the probability distribution functions of the component 
TTFs iX  are known only at some points ijt , i.e., the available initial 
information is represented in the form of lower [0, ]( )

ijt iI XE  and upper 

[0, ]( )
ijt iI XE  previsions, 1,...,i n= , 1,..., ij m= . Here ijt  is the j -th point of 

the i -th component TTF. Explicit expressions for lower and upper 
probabilities of the system failures before some time t  have been obtained 
for series, parallel [114], m-out-of-n [117], cold standby [108] systems. For 
example, the lower and upper probabilities of the n -component parallel 
system failure before time t , for independent components, are  

( )[0, ] [0, ]1,...,
1

max ( ),
iwi

n

t i t ii n
i

I X I X
=

=

= ∏E E  
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( )[0, ] [0, ]1,...,
1

max ( ),
ivi

n

t i t ii n
i

I X I X
=

=

= ∏E E  

and, in case of complete lack of knowledge about independence,  

( )[0, ] [0, ]1,..., 1,...,
max max ( ),

iwit i t ii n i n
I X I X

= =
=E E  

( )[0, ] [0, ]1,..., 1
max min 1, ( ) ,

ivi

n

t i t ii n i
I X I X

=
=

 
=  

 
∑E E  

where min{ : }i ijv j t t= ≥  and max{ : }i ijw j t t= ≤ . 
General expressions for the reliability of arbitrary monotone systems 

under the same conditions are given by Utkin [110]. Moreover, it is proved 
that the lower (upper) bound for the system reliability of arbitrary 
monotone systems by given lower and upper points of probability 
distributions of the component TTFs depends only on these upper (lower) 
points. This result allows us to simplify the system reliability analysis. 

It is interesting to study a case when the initial information about 
reliability of components is given in the form:  

Pr{ } , 1,..., , 1,..., ,ijij i iijij
p X p i n j mα α≤ ≤ ≤ ≤ = =  

where  
1 21 2[ , ] [ , ] ... [ , ], 1,..., .ii

i i imi i im i nα α α α α α⊂ ⊂ ⊂ =  

So there are nested intervals [ , ]ijijα α , with interval probabilities 

[ , ]ijij
p p  for the event that the failure of the i -th component is inside these 

intervals. If we denote max{ : }ijiv j tα= ≥  and max{ : }ijiw j tα= ≤ , 
then the lower and upper probabilities, for instance, of the n -component 
series system failure before time t, under the assumption of independent 
components, are  

( )[0, ] 1,...,
1

min 1 (1 ),
i

n

t i iwi n
i

I X p
=

=

= − −∏E  

( )[0, ] 1,...,
1

min 1 .
i

n

t i ivi n
i

I X p
=

=

= − ∏E  

If there is no information about independence, then  

( )[0, ] 1,..., 1,...,
min max ,

i
t i iwi n i n

I X p
= =

=E  

( )[0, ] 1,...,
1

min 1 max 0, ( 1) .
i

n

t i ivi n
i

I X p n
=

=

 
= − − − 

 
∑E  

It can be seen that the lower and upper bounds for the system 
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unreliability depend only on the lower probabilities of the nested intervals. 
This implies that knowledge of upper probabilities does not give any 
useful information in this case. The same is valid for arbitrary monotone 
systems. Moreover, the initial information can be regarded as the 
possibility and necessity measures [51]. It is proved that the system 
reliability measures [0, ]( )tI ⋅E  and [0, ]( )tI ⋅E  also can be regarded as the 
possibility and necessity measures. This result allows us to obtain and to 
explain the reliability measures of systems by fuzzy initial data. 

Multi-state and continuum-state systems 

The reliability behavior of many system can be formalized by means of 
multi-state and continuum-state models which can be viewed as an 
extension of binary-state models [78]. Let L  be a set representing levels of 
component performance ranging from perfect functioning, sup L , to 
complete failure, inf L . A general model of the structure function of a 
system consisting of n  multi-state components can be written as 

: nS L L→ . If {0,1}L = , we have a classical binary system; if 
{0,1, , }L m= … , we have a multi-state system; if [0, ]L T= , T +∈R , we 

have a continuum system. The i -th component may be in a state ( )ix t  at 
arbitrary time t . This implies that the component is described by the 
random process { ( ), 0}iX t t ≥ , ( )iX t L∈ . Then the probability distribution 
function of the i -th component states at time t  is defined as the mapping 

: [0,1]iF L →  such that ( , ) Pr{ ( ) }i iF r t X t r= ≥ , r L∀ ∈ . The state of the 
system at time t  is determined by states of its n  components, i.e., 

1( ) ( , , ) .nS S X X L= ∈X …   
The mean level of component performance is defined as { ( )}iX tE . For 

a system, we write the mean level of system performance { ( )}SE X . 
Suppose that probability distributions of the component states are 
unknown and we have only partial information in the form of lower 

{ ( )}iX tE  and upper { ( )}iX tE  mean levels of component performance. It 
is proved by Utkin and Gurov [131], that the number of states in this case 
does not influence on the mean level of system performance which is 
defined only by boundary states inf L  and sup L . This implies that 
reliability analysis of multi-state and continuum-state systems by such 
initial data is reduced to analysis of a binary system. A number of 
expressions for these systems have been obtained in explicit form [131]. 
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At the same time, incomplete information about reliability of the multi-
state and continuum-state components can be represented as a set of 
reliability measures (precise or imprecise) defined for different time 
moments. For example, interval probabilities of some states of a multi-
state unit at time 1t  may be known. How to compute the probabilities of 
states at time 2t  without any information about the probability distribution 
of time to transitions between states? This problem has been solved by 
using the imprecise probabilities models [139]. 

Fault tree analysis 

Fault tree analysis (FTA) is a logical and diagrammatic method to 
evaluate the probability of an accident resulting from sequences and 
combinations of faults and failure events. Fault tree analysis can be 
regarded as a special case of event tree analysis. A comprehensive study of 
event trees by representing initial information in the framework of convex 
sets of probabilities has been proposed by Cano and Moral [22]. Therefore, 
this work may be a basis for investigating fault trees. One of the 
advantages of imprecise fault tree analysis is a possibility to consider 
dependent events in a straightforward way, although complete lack of 
knowledge about the level of dependence is likely to lead to too much 
imprecision for practical use of such methods. However, the influence of 
any additional assumptions about dependence will then easily show in the 
final results, which in itself may provide valuable information, as well as 
guidance on the information requirement for practically useful 
conclusions. 

Other substantial topics include the influence of events in a fault tree on 
a top event, and the influence of uncertainty of the event description on 
uncertainty of the top event description. This may be done by introducing 
and computing importance measures of events and uncertainty importance 
measures of their description. However, we are not aware of any reported 
study on this topic within the framework of interval reliability, which 
clearly suggests an important area of research. 

Repairable systems 

Reliability analysis of repairable systems often involves difficult 
computational tasks, even when based on precise initial information. In 
addition, such analyses tend to require a substantial information input, 
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often not in line with practical experience as many state descriptors are 
typically not observable or directly measurable without serious effort, if at 
all. A simple repairable process with instantaneous repair (the time to 
repair (TTR) is equal to 0), and under complete lack of information about 
dependence of random TTFs iX , has been studied in [133]. According to 
this work, if the lower and upper MTTFs of a system are known, then the 
time-dependent lower ( )B t  and upper ( )B t  mean time between failures 
(MTBF) before time t  are ( ) 0B t = ,  

1
1

1( ) min min , .
1

k

k
i

t k X t k XB t X
i k k≤ <+∞

=

  − −
= +   +  

∑ E EE  

These bounds are of limited interest because ( ) 0B t =  and ( )B t  becomes 
very large for large values of t  (with ( )B t → ∞  for t → ∞ ), due to the 
lack of information about dependence. 

Another basic and interesting model for repairable systems, based on 
interval-valued Markov chains, has been considered by Kozine and Utkin 
[72,74]. Some results on optimal preventive maintenance under incomplete 
information are presented in [10]. Useful preventive replacement 
guidelines for situations where failure data are available are presented 
within the NPI framework, as discussed in Sec. Imprecise probability 
models for inference. A quite general approach for reliability analysis of 
repairable systems, proposed by Gurov and Utkin, is to substitute the 
optimal density functions of TTF and time to repair, which are weighted 
sums of Dirac functions [138], into integral equations modelling arbitrary 
repairable systems, and to solve the obtained optimization problems. Let 
us illustrate this approach for computing the lower and upper probabilities 
of the working state at time t  (the time-dependent availability) under 
condition that the distributions of TTF and TTR are unknown and only the 
precise MTTF, denoted a , and the precise mean time to repair, denoted 
b , are specified. For the component, the following system of integral 
equations holds:  

0 10

1 00

( , ) ( ) (0, ) ( )
.

( , ) ( ) (0, )

t

t

y s t f x s y t x x f t s

y t g x y t x xτ τ

 = + − + +∫


= + −∫

d
d

 

Here ( )f x  and ( )g x  are unknown densities of the TTF and TTR such that 

0 ( )xf x x a∞ =∫ d  and 0 ( )xg x x b∞ =∫ d . The probability of the working state 

0( )p t  at time t  is computed as  

0 00
( ) ( , ) .p t y s t s

∞
= ∫ d  
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The optimal densities ( )of x  and ( )og x  are in the classes of densities of 
the form (the weighted sums of Dirac functions ( )x cδ − , see Sec. System 
reliability analysis): 

2 1
1 2

2 1 2 1

( ) ( ) ( ),o
x a a xf x x x x x
x x x x

δ δ− −
= − + −

− −
 

2 1
1 2

2 1 2 1

( ) ( ) ( ).o
z b b zg x x z x z
z z z z

δ δ− −
= − + −

− −
 

Here 1 2 1 2, , ,x x z z +∈R  are optimization variables. Then the lower (upper) 
bound for 0( )p t  is computed by minimizing (maximizing) 0( )p t  over all 
possible values of 1 2 1 2, , ,x x z z  after substituting the densities ( )of x  and 

( )og x  into integral equations. 
Although it is possible, in principle, to analyze arbitrary systems in this 

manner, this approach requires extremely complex non-linear optimization 
problems. An efficient and practical approach for imprecise reliability 
analysis of repairable systems remains an open problem. 

Structural reliability 

A probabilistic model of structural reliability and safety has been 
introduced by Freudenthal [56]. Following his work, a number of studies 
have been carried out to compute the probability of failure under different 
assumptions about initial information. The problem of structural reliability 
can be stated as follows. Let Y  represent a random variable describing the 
strength of a system and let X  represent a random variable describing the 
stress or load placed on the system. By assuming that X  and Y  are 
defined on X  and Y , respectively, system failure occurs when the stress 
on the system exceeds the strength of the system: 

{( , ) : }x y x yΦ = ∈ ∈ ≥X Y . Here Φ  is a region where the combination of 
system parameters leads to an unacceptable or unsafe system response. 
Then the reliability of the system is determined as { }PrR X Y= ≤ , and the 
unreliability is determined as { }Pr 1Q X Y R= > = − . 

Uncertainty of parameters in engineering design was successfully 
modelled by means of interval analysis [84]. Several authors [7,85] used 
fuzzy set and possibility theories to cope with a lack of complete statistical 
information about stress and strength. The main idea of their approaches is 
to consider the stress and strength as fuzzy variables or fuzzy random 
variables. Another approach to structural reliability analysis based on 
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using random set and evidence theories has been proposed by several 
authors [6,65,92]. Several solutions to structural problems by means of 
random set theory have been presented in [93,94,95]. 

A more general approach to structural reliability analysis using 
imprecise probabilities was proposed by Utkin and Kozine [140,141]. This 
approach allows us to utilize a wider class of partial information about 
structural parameters, which includes possible data about probabilities of 
arbitrary events, expectations of the random stress and strength and their 
functions. At the same time, this approach allows us to avoid additional 
assumptions about probability distributions of the random parameters 
because the identification of precise probability distributions requires more 
information than what experts or limited statistical data are able to supply. 

For example, if interval-valued probabilities 
Pr{ } , Pr{ } ,i ji ji j

p X p q Y qα β≤ ≤ ≤ ≤ ≤ ≤  

of the stress X  and strength Y  are known at points iα , 1,...,i n= , and 

jβ , 1,...,j m= , then the interval-valued stress-strength reliability, based 
on complete lack of information about dependence of X  and Y , is  

( )( )1,...,
max max 0, ,  ( ) min{ : },i jj iii n

R p q j i j α β
=

= − = ≤  

( )( )1,...,
1 max max 0, ,  ( ) min{ : }.k ll kkk m

R q p l k l β α
=

= − − = ≤  

If X  and Y  are independent, then  

( )1
1

( )(1 ),  ( ) min{ : },
n

i jj ii i
i

R p p q j i j α β
−

=

= − − = ≤∑  

( )1
1

1 ( )(1 ),  ( ) min{ : }.
m

k ll kk k
k

R q q p l k l β α
−

=

= − − − = ≤∑  

Utkin [112] investigated stress-strength reliability analysis based on 
unreliable information about statistical parameters of stress and strength in 
the form of a second-order hierarchical uncertainty model. However, there 
are cases when properties of probability distributions of the stress and 
strength are known, for example, from their physical nature, but some 
parameters of the distributions must be assigned by experts. If experts 
provide intervals of possible parameter values, and these experts are 
considered to be absolutely reliable, then the problem of structural 
reliability analysis is solved by standard interval arithmetic. Often, 
however, it will be necessary to take into account the available information 
about the quality of experts, to obtain more credible assessments of the 
stress-strength reliability. An approach for computing the stress-strength 
reliability under these conditions is considered in [118]. 
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Software reliability  

Software reliability has been studied extensively in the literature with the 
objective of improving software performance [19,90,151]. In the last 
decades, various software reliability growth models have been developed 
based on testing or debugging processes, but no model can be accurate for 
all situations. This fact is due to the unrealistic assumptions in each model. 
A comprehensive critical review on probabilistic software reliability 
models (PSRMs) was proposed by Cai et al [20]. Authors argued that 
fuzzy software reliability models (FSRMs) should be developed in place of 
PSRMs because the software reliability behavior is fuzzy in nature as a 
result of the uniqueness of software. This point is explained in three ways. 
First, any two copies of software exhibit no differences. Second, software 
never experiences performance deterioration without external intervention. 
Third, a software debugging process is never replicated. Due to the 
uniqueness of software and the environment of its use, frequentist 
statistical methods are rarely suitable for software reliability inferences. In 
addition, a large variety of factors contribute to the lack of success of 
existing PSRMs. To predict software reliability from debugging data, it is 
necessary to simultaneously take into account the test cases, characteristics 
of software, human intervention, and debugging data. It is impossible to 
model all four aspects precisely because of the extremely high complexity 
behind them [20]. 

To take into account the problems described above, Cai et al [21] 
proposed a simple FSRM and validated it. Central in this FSRM are the 
random time intervals between software failures, which are considered to 
be fuzzy variables governed by membership functions. Extensions of Cai's 
FSRMs taking into account the programmer's behavior (possibility of error 
removal and introduction) and combined fuzzy-probabilistic models have 
been investigated by Utkin et al [135]. 

Available PSRMs and FSRMs can be incorporated into more general 
imprecise software reliability models (ISRMs) [105], by application of the 
theory of imprecise probabilities. A family of non-countably many 
probability distributions constrained by some lower and upper distributions 
is constructed and analyzed in the ISRM. Let iX  be the random time 
interval between the ( 1)i − -th and i-th software failures. It is supposed that 

there exist lower  and upper ( | )i iP x θ  probability distributions of the 
random variable iX  with parameters iθ  and these distributions produce a 
set iR  of distributions such that ( | ) min ( )

ii i iP x P xθ = R , 
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( | ) max ( )
i

i i iP x P xθ = R . Let { }1,..., nx x  be the successive intervals between 
failures. It is assumed that ( , )i f iθ θ= , where f  is some function 
characterizing the software reliability growth. The main aim is to find the 
function ( )f i  and its parameters θ . It is proved that the maximum of the 
likelihood function by the lack of information about independence of 
random times between software failures is determined as follows:  

{ }
1 2

1 1,...,...
max max ( ,..., | ) max min ( | ) ( | ) .

n

i in i ii n
L x x P x P x

θ θ
θ θ θ

=∪ ∪ ∪
= −

R R R
 

If random variables are independent, then  

{ }
1 2

1...
1

max max ( ,..., | ) max ( | ) ( | ) .
n

n

i in i i
i

L x x P x P x
θ θ

θ θ θ
∪ ∪ ∪

=

= −∏R R R
 

It is also proved that in the case of right-censoring times for software 
failures the upper probabilities in the above expressions are replaced by 1 . 

ISRMs can be regarded as a generalization of the well known 
probabilistic and possibilistic models. Moreover, they allow us to explain 
some peculiarities of known models, for example, taking into account the 
condition of independence of times to software failures, which are often 
hidden or can be explained intuitively. For example, the ISRM explains 
why FSRMs, as stated in [20], allow us to take into account a lot of factors 
influencing the software reliability. At the same time, PSRMs and FSRMs 
can be regarded as some boundary cases. Indeed, too rigid and often 
unrealistic assumptions are introduced in PSRMs, namely, times to 
software failure are independent and governed by a certain distribution. In 
FSRMs, it is assumed that the widest class of possible distributions of 
times to software failure is considered and there is no information about 
independence. It is obvious that the functions ( )iP x , ( )iP x  in the ISRM 
cannot be chosen arbitrarily because maximization of ( | )L θ⋅  over 
parameters θ  would give ( ) 1iP x = , ( ) 0iP x = . This implies that the 
functions ( )iP x , ( )iP x  must be constrained. For example, they may be 
connected by means of common parameters. Another possibility is to 
restrict the degree of imprecision { }max ( ) ( )i ix P x P x ε− ≤ . It should be 
noted that such constraints can also be used to arrive again at the PSRM 
and the FSRM. The PSRM assumes ( ) ( )i iP x P x=  and 0ε = . In the 
FSRM, we have identical parameters θ  for lower and upper distributions. 

Although quantification of software reliability metrics can provide 
useful insights into both the likely software performance and the quality of 
its development, uptake of such mathematical models has remained 
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limited. This is mostly due to the crucial practical circumstances under 
which software developers and testers operate, typically with short turn-
around times and huge time pressures. In addition, many models which 
have been suggested for supporting their activities, are based on unrealistic 
assumptions, e.g. independence assumptions underlying partition testing. 
Rees et al. [86] and Coolen et al. [36] have described such practical 
circumstances in detail, and report on a method employing Bayesian 
graphical models to support software testing of large-scale systems that 
require high reliability, with complex tasks and huge time pressures, 
technical details of the statistical aspects are described in [150]. This 
approach is fully subjective, with the testers' activities central to the model. 
As such, building the models requires substantial subjective inputs, which 
provides a bottle-neck to wide-scale practical application due to the 
enormous time pressures. So far, case studies have used a variety of 
methods to limit the elicitation effort, and the effect of assumptions have 
been studied by sensitivity analyses. It is recognized that imprecise 
probabilistic methods can offer much benefit to this approach in future, 
putting less pressure on experts to provide reasonably coherent information 
on very many variables. In addition, the effects of differing levels of 
imprecision, at different input places of the models, on the overall test 
strategies that result from such exercises, can be studied in order to decide 
where best to focus detailed elicitation effort. This is an exciting area of 
future research, requiring algorithms for manipulating Bayesian graphical 
models with imprecise probabilities. Although research on this latter issue 
has been ongoing in the statistical and computer science literatures for 
several years, it is not yet at the stage that it can be implemented to 
realistic large-scale software reliability models, due to the often complex 
dependence structures in these models. A possible way around this 
problem might be the use of Bayes linear methods [59], where useful in 
combination with full Bayesian models, to model complex dependence 
structures. This would have the benefit of the fact that previsions, the core 
concept in Bayes linear methods, are linear functionals, which would make 
inclusion of imprecision more straightforward, both in principle and from 
computational perspective. Coolen et al [35] present a first approach for 
such Bayes linear modelling for software reliability, Goldstein and Shaw 
[60] have shown how Bayes linear and Bayesian methods can be 
combined. Generalizing these approaches to include imprecision, hence 
further reducing elicitation effort and more clearly reporting levels of 
indeterminacy, is also an exciting topic for future research. 
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Human reliability 

Human reliability [66,67] is defined as the probability for a human 
operator to perform correctly required tasks in required conditions and not 
to assume tasks which may degrade the controlled system. Human 
reliability analysis aims at assessing this probability. Fuzzy or possibilistic 
descriptions of human reliability behavior are presented in [83]. Human 
behavior has been described also by means of evidence theory [91]. Cai 
[18] noted the following factors of human reliability behavior contributing 
to the fuzziness: 
1) inability to acquire and process an adequate amount of information 

about systems; 
2) vagueness of the relationship between people and working 

environments; 
3) vagueness of human thought process; 
4) human reliability behavior is unstable and vague in nature because it 

depends on human competence, activities, and experience. 
These factors can also be addressed via imprecision, so imprecise 

probability theory might be successfully applied to human reliability 
analysis. Moreover, the behavioral interpretation of lower and upper 
previsions may well be suitable for describing human behavior. However, 
we are not aware of any research reported on imprecise human reliability, 
suggesting another stream of interesting research topics. 

Risk analysis 

Risk of an unwanted event happening is often defined as the product of the 
probability of the occurrence of this event multiplied by its consequences, 
assuming that these consequences can be combined into a simple metric. 
The consequences may include financial cost, elapsed time, etc. One of the 
main objectives of performing risk analyses is to support decision-making 
processes. Risk analysis provides a basis for comparing alternative 
concepts, actions or system configurations under uncertainty [5,11]. A 
variety of methods has been developed for estimating losses and risks. 
When events occur frequently and when they are not very severe, it is 
relatively simple to estimate the risk exposure of an organization, as well 
as a reasonable premium when, for instance, an insurance transaction is 
made [53]. Commonly used methods rely on variations of the principle of 
maximizing expected utility, tacitly assuming that all underlying 
uncertainty can adequately be described by a precise and completely 
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known probability measure. However, when the uncertainty is complex 
and the quality of the estimates is poor, the customary use of such rules 
together with overprecise data could be harmful as well as misleading. 
Therefore, it is necessary to extend the principle of maximizing expected 
utility to deal with complex uncertainty. Imprecise probability theory 
provides an efficient way for realizing such an extension. 

The imprecision of information about unwanted events leads to 
consideration of minimal and maximal values of risk, which can be 
regarded as lower and upper previsions of consequences whose 
computation by complex events is studied in [101]. Some methods of 
handling partial information in risk analysis have been investigated by 
several authors [53,54]. Risk analysis under hierarchical imprecise 
uncertainty models has been studied by Utkin and Augustin [122], where 
two types of the second-order uncertainty models of states of nature are 
considered. The first type assumes that first-order uncertainty is modelled 
by lower and upper previsions of different gambles and the second-order 
probabilities can be regarded as confidence weights of judgements on the 
first-order level. The second type assumes that some aspects of the 
probability distribution of the states of nature is known, for example, from 
their physical nature, but (some) parameters of the probability distribution 
must be defined by experts, and there is some degree of our belief to each 
expert's judgement whose value is determined by experience and 
competence of the expert. New procedures for risk analysis under different 
conditions of partial information about states of nature in the framework of 
imprecise probabilities have been studied by Utkin and Augustin 
[123,124,125,126]. 

In situations where risk can be assessed via experiments, with the 
emphasis on low risk situations where systems are only released for 
practical operation following a number of tests without failures, the NPI 
framework (see Sec. Imprecise probability models for inference) provides 
useful guidelines on required test effort, in particular via the use of lower 
probabilities of corresponding future successful operation, to take 
indeterminacy into account (`to err on the side of safety', so to say). Some 
initial results in this area have been presented [30,33]. A further interesting 
topic, which has remained largely neglected as far as we are aware, is the 
fact that consequences, and their impact on life, are often not known in 
great detail. In particular where random features are studied with 
information occurring at different moments in time, it is natural to also 
take learning about such consequences and impacts into account. This also 
typically suggests that, at least at early stages (e.g. when designing a new 
chemical process), indeterminacy about such risks may well be modelled 
via imprecision, and it should be possible to take adaptive metrics for such 
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risks into account. It is possible that the Bayesian adaptive utility 
framework [47], which was developed in the seventies within economics 
contexts, may provide an attractive solution to this problem. However, 
adaptive utility has not yet been generalized to allow imprecision, even 
more its uptake has been almost nonexistent, quite possibly due to both the 
computational complexities involved and the foundational aspects. Work 
in this direction has recently been initiated, and we hope to report on 
progress in the near future, where we will also particularly focus on 
applications in risk and reliability. 

Security engineering 

Security engineering is concerned with whether a system can survive 
accidental or intentional attacks on it from outside (e.g. from users or virus 
intruders). In particular, computer security deals with the social 
regulations, managerial procedures and technological safeguards applied to 
computer hardware, software and data, to assure against accidental or 
deliberate unauthorized access to, and dissemination of, computer system 
resources (hardware, software, data) while they are in storage, processing 
or communication [68]. An important problem in security engineering is 
the quantitative evaluation of security efficiency. An interesting and 
valuable approach to measuring and predicting the operational security of 
a system was proposed by Brocklehurst et al. [15]. According to this 
approach, the behavior of a system should be considered from owner's and 
attacker's points of view. From the attacker's point of view, it is necessary 
to consider the effort (E) expended by the attacking agent and the reward 
(R) an attacker would get from breaking into the system. Effort includes 
financial cost, elapsed time, experience, ability of attacker, and could be 
expressed in such terms as mean effort to next security breach, probability 
of successfully resisting an attack, etc. Examples of rewards are personal 
satisfaction, gain of money, etc. From the owner's point of view, it is 
necessary to consider the system owner's loss (L) which can be interpreted 
as an infimum selling price for a successful attack, and the owner's 
expenses (Z) on the security means which include, for instance, anti-virus 
programs, new passwords, encoding, etc. The expenses come out in terms 
of time used for system verification, for maintenance of anti-virus 
software, as well as in terms of money spent on the protection. The 
expenses can be interpreted as a supremum buying price for a successful 
attack. Brocklehurst et al. [15] proposed to consider also the viewpoint of 
an all-knowing, all-seeing oracle, as well as the owner and attacker. This 
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viewpoint could be regarded as being in a sense the true security of the 
system in the testing environment. 

From the above, we can say that four variables are the base for obtaining 
security measures: effort, rewards, system owner's loss, owner's expenses. 
Moreover, their interpretation coincides with the behavioral interpretation 
of lower (expenses) and upper (system owner's loss) previsions and linear 
previsions (the all-knowing oracle). Therefore, imprecise probability 
theory provides an interesting and logical framework for quantifying such 
security measures [100,142]. Because of the increasing importance of 
security engineering, this also provides exciting opportunities for (research 
into) theory and application of imprecise methods. 

Concluding remarks and open problems 

In recent years, many results have been presented which enable application 
of imprecise probability theory to reliability analyses of various systems, 
many of such results have been discussed here. Imprecise reliability theory 
is being developed step-by-step, mostly addressing problems from the 
existing reliability literature. However, the state-of-the-art is only a visible 
top of the iceberg called the imprecise reliability theory and there are many 
open theoretical and practical problems, which should be solved in future. 
Several exciting areas for future research have been indicated in the earlier 
sections, let us now say a bit more on this, and mention some further 
related topics of research. 

It is obvious that modern systems and equipment are characterized by 
complexity of structures and variety of initial information. This implies 
that, on the one hand, it is impossible to adjust all features of a real system 
to the considered framework. On the other hand, introduction of some 
additional assumptions for constructing a reasonable model of a system 
may cancel all advantages of imprecise probabilities. Where are limits for 
introducing additional assumptions (simplification) in construction of a 
model? How do possible changes of initial information and assumptions 
influence the results of system reliability calculations? It is obvious that 
such questions relate to the informational aspect of imprecise reliability. 
The same can be said about necessity of studying the effects of possible 
estimation errors of initial data on resulting reliability measures. This leads 
to introducing and determining uncertainty importance measures. 

Another important point is how to solve the optimization problems if the 
function ( ( ))h g X  is not expressed analytically in explicit form and can be 
computed only numerically. For example, this function may be a system of 
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integral equations (repairable system). One of the ways to solve the 
corresponding optimization problems is the well-known simulation 
technique. However, the development of effective simulation procedures 
for solving the considered optimization problems is an open problem. 

Many results of imprecise reliability are based either on the assumption 
of independence of components, or complete lack of information about 
independence. However, the imprecise probability theory allows us to take 
into account more subtle types of dependence [46,77] and, thereby, to 
make reliability analysis more flexible and adequate. Therefore, a clear 
interpretation and development of dependence concepts imprecise 
reliability theory is also an open problem, which has to be solved in future. 

In spite of the fact that many algorithms and methods for reliability 
analysis of various systems have been developed, they are rather 
theoretical and cover some typical systems, typical initial evidence, and 
typical situations. At the same time, real systems are more complex. 
Therefore, practical approaches to analyze real systems by imprecise 
reliability methods have to be developed, which is likely to require 
development of appropriate approximate computational methods. 

In order to achieve a required level of system reliability by minimal 
costs, it is possible to include redundant components in systems. To 
optimize cost and reliability metrics, the number of redundant components 
in a system can be determined, together with optimal system structures. 
Various algorithms for determining the optimal number of redundant 
components are available in the literature. However, most results assume 
that there exists complete information about reliability. Therefore, the 
development of efficient algorithms of optimization by partial information 
is also an open problem. 

A similar problem is the product quality control which needs a trade-off 
between a better product quality and lower production costs by system 
constraints related to operating feasibility, product specifications, safety 
and environmental issues. Here results obtained by Augustin [2,3], 
concerning decision making under partial information about probabilities 
of states of nature, and results by Quaeghebeur and de Cooman [87], 
extending some aspects of game theory, might be a basis for investigating 
this problem. Quality control, in particular the use of control charts, has 
also been considered within the nonparametric predictive inferential 
framework [1]. This is also an exciting research area with many open 
problems, and with imprecision appearing naturally related to limited 
information. Clearly, ensuring high quality output in production processes 
can greatly enhance reliability. Even earlier than that, reliability often 
depends on the actual design of components and systems. At such an early 
stage, modelling uncertainties via precise probabilities is often extremely 
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restricted, in particular when the designs involve revolutionary products. 
This is another area where imprecise reliability theory may offer exciting 
opportunities. 

It should be noted that the list of open problems can be extended. 
However, most problems include at least some optimization problems 
(natural extension), which are often very complex. This may well be the 
reason why imprecise probability and reliability was not greatly developed 
earlier in the twentieth century. Nowadays, with the ever increasing 
computer power, complex optimization problems do not need to stop 
further development of appropriate methods for dealing with uncertainty, 
even though such problems still may need detailed consideration, and the 
need to develop approximate methods will remain. We believe that these 
are exciting times for imprecise reliability theory, as so much more can be 
achieved now than before. Therefore, the time is also right to take on 
challenges of actual applications, with all careful modelling and complex 
computational aspects involved. We look forward to these challenges, and 
hope that many fellow researchers also take up some of these challenges. 
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