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Abstract

We consider the model introduced by Bilu and Linial [14], who study problems for which the optimal clus-

tering does not change when distances are perturbed. They show that even when a problem is NP-hard, it

is sometimes possible to obtain e�cient algorithms for instances resilient to certain multiplicative perturba-

tions, e.g. on the order of O(
p
n) for max-cut clustering. Awasthi et al. [7] consider center-based objectives,

and Balcan and Liang [10] analyze the k-median and min-sum objectives, giving e�cient algorithms for

instances resilient to certain constant multiplicative perturbations.

Here, we are motivated by the question of to what extent these assumptions can be relaxed while allowing

for e�cient algorithms. We show there is little room to improve these results by giving NP-hardness lower

bounds for both the k-median and min-sum objectives. On the other hand, we show that multiplicative

resilience parameters, even only on the order of ⇥(1), can be so strong as to make the clustering problem

trivial, and we exploit these assumptions to present a simple one-pass streaming algorithm for the k-median

objective. We also consider a model of additive perturbations and give a correspondence between additive

and multiplicative notions of stability. Our results provide a close examination of the consequences of

assuming, even constant, stability in data.

1. Introduction

Clustering is one of the most widely-used techniques in statistical data analysis. The need to partition,

or cluster, data into meaningful categories naturally arises in virtually every domain where data is abundant.

Unfortunately, most of the natural clustering objectives, including k-median, k-means, and min-sum, are

NP-hard to optimize [19, 21]. It is, therefore, unsurprising that many of the clustering algorithms used in

practice come with few guarantees.

Motivated by overcoming the hardness results, Bilu and Linial [14] consider a perturbation resilience

assumption that they argue is often implicitly made when choosing a clustering objective: that the optimum

clustering to the desired objective � is preserved under multiplicative perturbations up to a factor ↵ > 1

to the distances between the points. They reason that if the optimum clustering to an objective � is not
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resilient, as in, if small perturbations to the distances can cause the optimum to change, then � may have

been the wrong objective to be optimizing in the first place. Bilu and Linial [14] show that for max-cut

clustering, instances resilient to perturbations of ↵ = O(
p
n) have e�cient algorithms for recovering the

optimum itself.

Continuing that line of research, Awasthi et al. [7] give a polynomial time algorithm that finds the

optimum clustering for instances resilient to multiplicative perturbations of ↵ = 3 for center-based1 clustering

objectives when centers must come from the data (we call this the proper setting), and ↵ = 2 +
p
3 when

when the centers do not need to (we call this the Steiner setting). Their method relies on a stability

property implied by perturbation resilience (see Section 2). For the Steiner case, they also prove an NP-

hardness lower bound of ↵ = 3. Subsequently, Balcan and Liang [10] consider the proper setting and

improve the constant past ↵ = 3 by giving a new polynomial time algorithm for the k-median objective for

↵ = 1 +
p
2 ⇡ 2.4 stable instances.

1.1. Our results

Our work further delves into the proper setting, for which no lower bounds have previously been shown

for the stability property. In Section 3 we show that even in the proper case, where the algorithm is

restricted to choosing its centers from the data, for any ✏ > 0, it is NP-hard to optimally cluster (2 � ✏)-

stable instances, both for the k-median and min-sum objectives (Theorems 5 and 7). To prove this for the

min-sum objective, we define a new notion of stability that is implied by perturbation resilience, a notion

that may be of independent interest.

Then in Section 4, we look at the implications of assuming resilience or stability in the data, even for a

constant perturbation parameter ↵. We show that for even fairly small constants, the data begins to have

very strong structural properties, as to make the clustering task fairly trivial. When ↵ approaches ⇡ 5.7, the

data begins to show what is called strict separation, where each point is closer to points in its own cluster

than to points in other clusters (Theorem 9). We show that with strict separation, optimally clustering in

the very restrictive one-pass streaming model becomes possible (Theorem 11).

Finally, in Section 5, we look at whether the picture can be improved for clustering data that is stable

under additive, rather than multiplicative, perturbations. One hope would be that additive stability

is a more useful assumption, where a polynomial time algorithm for ✏-stable instances might be possible.

Unfortunately, this is not the case. We consider a natural additive model and show that severe lower bounds

hold for the additive notion as well (Theorems 16 and 20). On the positive side, we show via reductions that

algorithms for multiplicatively stable data also work for additively stable data for a di↵erent but related

parameter.

1For center-based clustering objectives, the clustering is defined by a choice of centers, and the objective is a function of the

distances of the points to their closest center.
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Our results demonstrate that on the one hand, it is hard to improve the algorithms to work for low

stability constants, and that on the other hand, higher stability constants can be quite strong, to the point

of trivializing the problem. Furthermore, switching from a multiplicative to an additive stability assumption

does not help to circumvent the hardness results, and perhaps makes matters worse. These results, taken

together, narrow the range of interesting parameters for theoretical study and highlight the strong role that

the choice of constant plays in stability assumptions.

One thing to note that there is some di↵erence between the very related resilience and stability properties

(see Section 2), stability being weaker and more general [7]. Some of our results apply to both notions, and

some only to stability. This still leaves open the possibility of devising polynomial-time algorithms that, for

a much smaller ↵, work on all the ↵-perturbation resilient instances, but not on all ↵-stable ones.

1.2. Previous work

We examine previous work on stability, both as a data dependent assumption in clustering and in other

settings.

1.2.1. Stability as a data assumption in clustering

The classical approach in theoretical computer science to dealing with the worst-case NP-hardness of

clustering has been to develop e�cient approximation algorithms for the various clustering objectives [3, 4,

11, 15, 22, 17], and significant e↵orts have been exerted to improve approximation ratios and to prove lower

bounds. In particular, for metric k-median, the best known guarantee is a (3 + ✏)-approximation [4], and

the best known lower bound is (1 + 1/e)-hardness of approximation [19, 21]. For metric min-sum, the best

known result is a O(polylog(n))-approximation to the optimum [11].

In contrast, a more recent direction of research has been to characterize under what conditions we can

find a desirable clustering e�ciently. Perturbation resilience/stability are such conditions, but they are

related to other stability notions in clustering. Ostrovsky et al. [27] demonstrate the e↵ectiveness of Lloyd-

type algorithms [24] on instances with the stability property that the cost of the optimal k-means solution

is small compared to the cost of the optimal (k � 1)-means solution, and their guarantees have later been

improved by Awasthi et al. [6].

In a di↵erent line of work, Balcan et al. [9] consider what stability properties of a similarity function, with

respect to the ground truth clustering, are su�cient to cluster well. In a related direction, Balcan et al. [8]

argue that, for a given objective �, approximation algorithms are most useful when the clusterings they

produce are structurally close to the optimum originally sought in choosing to optimize � in the first place.

They then show that, for many objectives, if one makes this assumption explicit – that all c-approximations

to the objective yield a clustering that is ✏-close to the optimum – then one can recover an ✏-close clustering
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in polynomial time, even for values of c below the hardness of approximation constant. The assumptions

and algorithms of Balcan et al. [8] have subsequently been carefully analyzed by Schalekamp et al. [28].

Ackerman and Ben-David [1] also study various notions of resilience, and among their results, introduce a

notion of stability similar to the one studied herein, except only the positions of cluster centers are perturbed.

Their notion is strictly weaker – i.e. any perturbation resilient instance is also stable in their framework. They

show that Euclidean instances stable to perturbations of cluster centers will have polynomial algorithms for

finding near-optimal clusterings. Our results, however, hold for more general metric spaces, which evidently

is a harder setting for perturbation-resilient clustering.

1.2.2. Stability in other settings

Just as the Bliu and Linial [14] notion of stability gives conditions under which e�cient clustering is

possible, similar concepts have been studied in game theory. Lipton et al. [23] propose a notion of stability

for solution concepts of games. They define a game to be stable if small perturbations to the payo↵ matrix

do not significantly change the value of the game, and they show games are generally not stable under this

definition. Then, in a similar spirit to the work of Bilu and Linial, Awasthi et al. [5] propose a related

stability condition for a game, which can be leveraged in finding its approximate Nash equilibria.

The Bilu and Linial [14] notion of stability has also been studied in the context of the metric travel-

ing salesman problem, for which Mihalák et al. [25] give e�cient algorithms for 1.8-perturbation resilient

instances, illustrating another case where a stability assumption can circumvent NP-hardness.

From a di↵erent direction, Ben-David et al. [13] consider the stability of clustering algorithms, as opposed

to instances. They say an algorithm is stable if it produces similar clusterings for di↵erent inputs drawn from

the same distribution. They argue that stability is not as useful a notion as had been previously thought in

determining various parameters, such as the optimal number of clusters.

2. Notation and preliminaries

In a clustering instance, we are given a set S of n points in a finite metric space, and we denote

d : S ⇥ S ! R�0

as the distance function. � denotes the objective function over a partition of S into k

clusters which we want to optimize over the metric, i.e. � assigns a score to every clustering. The optimal

clustering with respect to � is denoted as C = {C
1

, C
2

, . . . , Ck}.

The k-median objective requires S to be partitioned into k disjoint subsets {S
1

, . . . , Sk} and each

subset Si to be assigned a center si 2 S. The goal is to minimize �
med

, measured by

�
med

(S
1

, . . . , Sk)
.
=

kX

i=1

X

p2Si

d(p, si).

The centers in the optimal clustering are denoted as c
1

, . . . , ck. In an optimal solution, each point is assigned

to its nearest center.
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For the min-sum objective, S is partitioned into k disjoint subsets, and the objective is to minimize

�
m�s

, measured by

�
m�s

(S
1

, . . . , Sk)
.
=

kX

i=1

X

p,q2Si

d(p, q).

Now, we define the perturbation resilience notion introduced by Bilu and Linial [14].

Definition 1. For ↵ > 1, a clustering instance (S, d) is ↵-perturbation resilient to a given objective �

if for any function d0 : S ⇥ S ! R�0

such that 8p, q 2 S,

d(p, q)  d0(p, q)  ↵d(p, q),

there is a unique optimal clustering C0 for � under d0 and this clustering is equal to the optimal clustering

C for � under d.

In this paper, we consider the k-median and min-sum objectives, and we thereby investigate the following

definitions of stability, which are implied by perturbation resilience, as shown in Sections 3.1 and 3.2. The

following definition is adapted from Awasthi et al. [7].

Definition 2. A clustering instance (S, d) is ↵-center stable for the k-median objective if for any optimal

cluster Ci 2 C with center ci, Cj 2 C (j 6= i) with center cj, any point p 2 Ci satisfies

↵d(p, ci) < d(p, cj).

Next, we define a new analogous notion of stability for the min-sum objective, and we show in Section 3.2

that for the min-sum objective, perturbation resilience implies min-sum stability. To help with exposition

for the min-sum objective, we define the distance from a point p to a set of points A,

d(p,A)
.
=

X

q2A

d(p, q).

Definition 3. A clustering instance (S, d) is ↵-min-sum stable for the min-sum objective if for all optimal

clusters Ci, Cj 2 C (j 6= i), any point p 2 Ci satisfies

↵d(p, Ci) < d(p, Cj).

This is a useful generalization because, as we shall see, known algorithms working under the perturbation

resilience assumption can also be made to work under the weaker notion of min-sum stability.
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3. Lower bounds

3.1. The k-median objective

Awasthi et al. [7] prove the following connection between perturbation resilience and stability. Both their

algorithms and the algorithms of Balcan and Liang [10] crucially use this stability assumption.

Lemma 4. Any clustering instance that is ↵-perturbation resilient for the k-median objective also satisfies

the ↵-center stability.

Awasthi et al. [7] proved that for ↵ < 3 � ✏, k-median clustering ↵-center stable instances is NP-hard

when Steiner points are allowed in the data. Afterwards, Balcan and Liang [10] circumvented this lower

bound and achieved a polynomial time algorithm for ↵ = 1 +
p
2 by assuming the algorithm must choose

cluster centers from within the data.

In the theorem below, we prove a lower bound for the center stable property in this more restricted

setting, showing there is little hope of progress even for data where each point is nearly twice closer to its

own center than to any other.

Theorem 5. For any ✏ > 0, the problem of solving (2� ✏)-center stable k-median instances is NP-hard.

Proof. We reduce from the perfect dominating set promise problem, which we prove to be NP-hard (see

Appendix), where we are promised that the input graph G = (V,E) is such that all of its smallest dominating

sets D are perfect, and we are asked to find a dominating set of size at most d. The reduction is simple.

We take an instance of the NP-hard problem PDS-PP on G = (V,E) on n vertices and reduce it to an

↵ = 2 � ✏-center stable instance. Our distance metric as follows. Every vertex v 2 V becomes a point in

the k-center instance. For any two vertices (u, v) 2 E we define d(u, v) = 1/2. When (u, v) /2 E, we set

d(u, v) = 1. This trivially satisfies the triangle inequality for any graph G, as the sum of the distances along

any two edges is at least 1. We set k = d.

We observe that a k-median solution of cost (n � k)/2 corresponds to a dominating set of size d in

the PDS-PP instance, and is therefore NP-hard to find. We also observe that because all solutions of size

 d in the PDS-PP instance are perfect, each (non-center) point in the k-median solution has distance

1/2 to exactly one (its own) center, and a distance of 1 to every other center. Hence, this instance is

↵ = (2� ✏)-center stable, completing the proof.

3.2. The min-sum objective

Analogously to Lemma 4, we can show that ↵-perturbation resilience implies our new notion of ↵-min-

sum stability.

Lemma 6. If a clustering instance is ↵-perturbation resilient, then it is also ↵-min-sum stable.
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Proof. Assume to the contrary that the instance is ↵-perturbation resilient but is not ↵-min-sum stable.

Then, there exist clusters Ci, Cj in the optimal solution C and a point p 2 Ci such that ↵d(p, Ci) � d(p, Cj).

We perturb d as follows. We define d0 such that for all points q 2 Ci, d0(p, q) = ↵d(p, q), and for the

remaining distances, d0 = d. Clearly d0 is an ↵-perturbation of d.

We now note that C is not optimal under d0. Namely, we can create a cheaper solution C0 that assigns

point p to cluster Cj , and leaves the remaining clusters unchanged, which contradicts optimality of C. This

shows that C is not the optimum under d0 which contradicts the instance being ↵-perturbation resilient.

Therefore we can conclude that if a clustering instance is ↵-perturbation resilient, then must also be ↵-min-

sum stable.

Moreover, we show in the Appendix that the min-sum algorithm of Balcan and Liang [10], which requires

↵ to be bounded from below by 3
⇣

maxC2C |C|
minC2C |C|�1

⌘
, works with this more general condition. This further

motivates following bound.

Theorem 7. For any ✏ > 0, the problem of finding an optimal min-sum k clustering in (2 � ✏)-min-sum

stable instances is NP-hard.

Proof. Consider the triangle partition problem. Let graph G = (V,E) and |V | = n = 3k, and let each

vertex have maximum degree of d = 4. The problem of whether the vertices of G can be partitioned into

sets V
1

, V
2

, . . . , Vk such that each Vi contains a triangle in G is NP-complete [18], even with the degree

restriction [29].

We reduce the triangle partition problem to an ↵ = (2 � ✏)-min-sum stable clustering instance. The

metric is as follows. Every vertex v 2 V becomes a point in the min-sum instance. For any two vertices

(u, v) 2 E we define d(u, v) = 1/2. When (u, v) /2 E, we set d(u, v) = 1. This satisfies the triangle inequality

for any graph, as the sum of the distances along any two edges is at least 1.

Now we show that we can cluster this instance into k clusters such that the cost of the min-sum objective

is exactly n if and only if the original instance is a YES instance of triangle partition. This follows from two

facts.

1. A YES instance of triangle partition maps to a clustering into k = n/3 clusters of size 3 with pairwise

distances 1/2, for a total cost of n

2. A cost of n is the best achievable because a balanced clustering with all minimum pairwise intra-cluster

distances is optimal.

In the clustering from our reduction, each point has a sum-of-distances to its own cluster of 1. Now we

examine the sum-of-distances of any point to other clusters. A point has two distances of 1/2 (edges) to

its own cluster, and because d = 4, it can have at most two more distances of 1/2 (edges) into any other

7



cluster, leaving the third distance to the other cluster to be 1, yielding a total cost of � 2 into any other

cluster. Hence, it is ↵ = (2� ✏)-min-sum stable.

We note that it is tempting to restrict the degree bound to 3 in order to further improve the lower

bound. Unfortunately, the triangle partition problem on graphs of maximum degree 3 is polynomial-time

solvable [29], and we cannot improve the factor of 2� ✏ by restricting to graphs of degree 3 in this reduction.

4. Strong consequences of stability

In Section 3, we showed that k-median clustering even (2� ✏)-center stable instances is NP -hard. In this

section we show that even for resilience to constant multiplicative perturbations of ↵ > 1

2

(5 +
p
41) ⇡ 5.7,

the data obtains a property referred to as strict separation, where all points are closer to all other points

in their own cluster than to points in any other cluster; this property is known to be helpful in clustering [9].

Then we show that this property renders center-based clustering fairly trivial even in the di�cult one-pass

streaming model.

4.1. Strict separation

We will make use of the following lemma, whose proof follows from the triangle inequality. A similar

observation appears in [10].

Lemma 8. For any two points p and p0 belonging to di↵erent centers ci and cj, respectively, in the optimal

clustering of an ↵-center stable instance,

d(ci, p
0) >

↵(↵� 1)

↵+ 1
d(ci, p).

Proof. By triangle inequality, we have d(ci, cj)  d(ci, p0) + d(p0, cj) and also d(cj , p)  d(cj , ci) + d(ci, p).

Combining the two inequalities, we get

d(cj , p)� (ci, p)  d(ci, p
0) + d(p0, cj).

Applying the definition ↵-center stability to each side separately, we get

(↵� 1)d(ci, p) <

✓
1 +

1

↵

◆
d(ci, p

0),

finishing the proof.

Now we can prove the following theorem, which shows that even for relatively small multiplicative

constants for ↵, center stable, and therefore perturbation resilient, instances exhibit strict separation.

Theorem 9. Let C = {C
1

, . . . , Ck} be the optimal clustering of a 1

2

(5 +
p
41)-center stable instance. Let

p, p0 2 Ci and q 2 Cj (i 6= j), then d(p, q) > d(p, p0).

8



Proof. Let {c
1

, . . . , ck} be the centers of clusters {C
1

, . . . , Ck}. Define

pf
.
= argmax

r2Ci

d(p, r).

By Lemma 8 we have

d(ci, q) >
↵(↵� 1)

↵+ 1
d(ci, p)

and also

d(ci, q) >
↵(↵� 1)

↵+ 1
d(ci, pf ).

Adding the two gives us
↵(↵� 1)

↵+ 1
d(ci, p) +

↵(↵� 1)

↵+ 1
d(ci, pf ) < 2d(ci, q),

and by the triangle inequality, we get

↵(↵� 1)

↵+ 1
d(p, pf ) < 2d(ci, q). (1)

We also have

d(ci, q)  d(p, ci) + d(p, q). (2)

Combining Equations 1 and 2, and by the definition of pf , we have

↵(↵� 1)

↵+ 1
d(p, pf ) < 2d(p, ci) + 2d(q, p)

 2d(p, pf ) + 2d(q, p).

From the RHS and LHS of the above, it follows from the definitions of pf and p0 that

d(p, q) >

✓
↵(↵� 1)

2(↵+ 1)
� 1

◆
d(p, pf )

�
✓
↵(↵� 1)

2(↵+ 1)
� 1

◆
d(p, p0).

Finally, the statement of the Lemma follows by setting ↵ � 1

2

(5 +
p
41) ⇡ 5.7.

4.2. Clustering in the streaming model

Here, we turn to the restrictive one-pass streaming model. In the natural streaming model for center-

based objectives, the learner sees the data p
1

, p
2

, . . . in one pass, and must, using limited memory and time,

implicitly cluster the data by retaining k points to use as centers.

The clustering is then the one induced by placing each point in the cluster to the closest center produced

by the algorithm. We note that a streaming algorithm can be used for the general batch problem, as one

can present the data to the algorithm in a streaming fashion.
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Streaming models have been extensively studied in the context of clustering objectives [2, 16, 20, 26],

where the known approximation guarantees are weaker than in the standard o✏ine model. We, however,

show that an ↵-center stability assumption can make the problem of finding the optimum tractable for

center-based objectives, in only one pass. We view this not so much as an advance in the state-of-the-art

in clustering, but rather as an illustration of how powerful stability assumptions can be, even for constant

parameter values.

For our result, we can use Theorem 9 to immediately give us the following.

Corollary 10. Let C = {C
1

, . . . , Ck} be the optimal clustering of a 1

2

(5 +
p
41)-center stable instance. Any

algorithm that chooses centers {c0
1

, . . . , c0k} such that c0i 2 Ci induces the partition C when points are assigned

to their closest centers.

This leads to an algorithm that easily and e�ciently finds the optimal clustering.

Theorem 11. For 1

2

(5+
p
41)-center stable instances, we can recover the optimal clustering for the k-median

objective, even in one pass in the streaming model.

Proof. Consider Algorithm 1. It proceeds as follows: it keeps k candidate centers, and whenever a new point

comes in, it adds it as a candidate center and arbitrarily (choosing from at least two points) removes any

point that realizes the argmin distance among the current candidate centers.

Algorithm 1 A streaming algorithm for 1

2

(5 +
p
41)-center stable instances

let p
1

, p
2

, . . . be the stream of points

let C be a set of candidate centers, initialized C = {p
1

, . . . , pk}

while there is more data in stream do

receive point pi

C = C [ pi

let p 2 argmin{pj ,pk}2C d(pj , pk)

C = C \ p

end while

return C (thereby inducing a clustering C)

The correctness of this algorithm follows from two observations:

1. By the pigeonhole principle, some pair from any set of k + 1 points must belong to the same cluster.

2. It follows from Theorem 9 that two points in di↵erent clusters cannot realize the argmin distance.

Hence, whenever a point is removed as a candidate center, it has a partner in the same optimal cluster

that remains. Once the algorithm sees a point from each cluster, by Corollary 10, we get the optimal

partition.
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5. Additive stability

So far, in this paper our notions of stability were defined with respect to multiplicative perturbations.

Similarly, we can imagine an instance being resilient with respect to additive perturbations. Consider the

following definition.

Definition 12. Let d : S ⇥ S ! [0, 1], and let 0 < �  1. A clustering instance (S, d) is additive

�-perturbation resilient to a given objective � if for any function d0 : S ⇥ S ! R � 0 such that 8p, q 2 S,

d(p, q)  d0(p, q)  d(p, q) + �,

there is a unique optimal clustering C0 for � under d0 and this clustering is equal to the optimal clustering

C for � under d.

We note that in the definition above, we require all pairwise distances between points to be at most

1. Otherwise, resilience to additive perturbations would be a very weak notion, as the distances in most

instances could be scaled as to be resilient to arbitrary additive perturbations.

Especially in light of positive results for other additive stability notions [1, 12], one possible hope is that

our hardness results might only apply to the multiplicative case, and that we might be able to get polynomial

time clustering algorithms for instances resilient to arbitrarily small additive perturbations. We show that

this is unfortunately not the case – we introduce notions of additive stability, similar to Definitions 2 and 3,

and for the k-median and min-sum objectives, we show correspondences between multiplicative and additive

stability.

5.1. The k-median objective

Analogously to Definition 2, we can define a notion of additive �-center stability.

Definition 13. Let d : S⇥S ! [0, 1], and let 0  �  1. A clustering instance (S, d) is additive �-center

stable to the k-median objective if for any optimal cluster Ci 2 C with center ci, Cj 2 C (j 6= i) with center

cj, any point p 2 Ci satisfies

d(p, ci) + � < d(p, cj).

We can now prove that perturbation resilience implies center stability.

Lemma 14. The proof is similar to that of Lemmas 4. Any clustering instance satisfying additive �-

perturbation resilience for the k-median objective also satisfies additive �-center stability.

Proof. We prove that for every point p and its center ci in the optimal clustering of an additive �-perturbation

resilient instance, it holds that d(p, cj) > d(p, ci) + � for any j 6= i.
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Consider an additive �-perturbation resilient clustering instance. Assume we blow up all the pairwise

distances within cluster Ci by an additive factor of �. As this is a legitimate perturbation of the distance

function, the optimal clustering under this perturbation is the same as the original one. Hence, p is still

assigned to the same cluster. Furthermore, since the distances within Ci were all changed by the same

constant factor, ci will remain the center of the cluster. The same holds for any other optimal clusters.

Since the optimal clustering under the perturbed distances is unique it follows that even in the perturbed

distance function, p prefers ci to cj , which implies the lemma.

We now consider center stability, as in the multiplicative case. We first prove that additive center stability

implies multiplicative center stability, and this gives us the property that any algorithm for
⇣

1

1��

⌘
-center

stable instances will work for additive �-center stable instances.

Lemma 15. Any additive �-center stable clustering instance for the k-median objective is also (multiplica-

tive)
⇣

1

1��

⌘
-center stable.

Proof. Let the optimal clustering be C
1

, . . . , Ck, with centers c
1

, . . . , ck, of an additive �-center stabile

clustering instance. Let p 2 Ci and let i 6= j. From the stability property,

d(p, cj) > d(p, ci) + � � �. (3)

We also have d(p, ci) < d(p, cj)� �, from which we can see

1

d(p, cj)� �
<

1

d(p, ci)
.

This gives us
d(p, cj)

d(p, ci)
>

d(p, cj)

d(p, cj)� �
� 1

1� �
. (4)

Equation 4 is derived as follows. The middle term, for d(p, cj) � � (which we have from Equation 3),

is monotonically decreasing in d(p, cj). Using d(p, cj)  1 bounds it from below. Relating the LHS to the

RHS of Equation 4 gives us the needed stability property.

Now we prove a lower bound that shows that the task of clustering additive (1/2 � ✏)-center stable

instances with respect to the k-median objective remains NP-hard.

Theorem 16. For any ✏ > 0, the problem of finding an optimal k-median clustering in additive (1/2� ✏)-

center stable instances is NP-hard.

Proof. We use the reduction in Theorem 5, in which the metric satisfies the needed property that d :

S⇥S ! [0, 1]. We observe that the instances from the reduction are additive (1/2� ✏)-center stable. Hence,

an algorithm for solving k-median on a (1/2 � ✏)-center stable instance can decide whether a PDS-PP

instance contains a dominating set of a given size, completing the proof.
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5.2. The min-sum objective

Here we define additive min-sum stability and prove the analogous theorems for the min-sum objective.

Definition 17. Let d : S ⇥ S ! [0, 1], and let 0  �  1. A clustering instance is additive �-min-sum

stable for the min-sum objective if for every point p in any optimal cluster Ci, it holds that

d(p, Ci) + �(|Ci|� 1) < d(p, Cj).

Lemma 18. If a clustering instance is additive �-perturbation resilient, then it is also additive �-min-sum

stable.

Proof. Assume to the contrary that the instance is �-perturbation resilient but is not �-min-sum stable.

Then, there exist clusters Ci, Cj in the optimal solution C and a point p 2 Ci such that d(p, Ci)+�(|Ci|�1) �

d(p, Cj). Then, we perturb d as follows. We define d0 such that for all points q 2 Ci, d0(p, q) = d(p, q) + �,

and for the remaining distances d0 = d. Clearly d0 is a valid additive �-perturbation of d.

We now note that C is not optimal under d0. Namely, we can create a cheaper solution C0 that assigns

point p to cluster Cj , and leaves the remaining clusters unchanged, which contradicts optimality of C. This

shows that C is not the optimum under d0 which is contradictory to the fact that the instance is additive

�-perturbation resilient. Therefore we conclude that if a clustering instance is additive �-perturbation

resilient, then it is also additive �-min-sum stable.

As we did for the k-median objective, we can also reduce additive stability to multiplicative stability for

the min-sum objective.

Lemma 19. Let t = maxC2C |C|
minC2C |C|�1

. Any additive �-min-sum stabile clustering instance for the min-sum

objective is also (multiplicative)
⇣

1

1��/t

⌘
-min-sum stable.

Proof. Let the optimal clustering be C
1

, . . . , Ck and let p 2 Ci. Let i 6= j. From the stability property, we

have

d(p, Cj) > d(p, Ci) + �(|Ci|� 1)

� �(|Ci|� 1). (5)

We also have

d(p, Ci) < d(p, Cj)� �(|Ci|� 1).
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Taking reciprocals and multiplying by d(p, Cj), we get

d(p, Cj)

d(p, Ci)
>

d(p, Cj)

d(p, Cj)� �(|Ci|� 1)

� |Cj |
|Cj |� �(|Ci|� 1)

(6)

� maxC2C |C|
maxC2C |Cj |� �(minC2C |C|� 1)

� 1

1� �/t
. (7)

Equation 6 is derived as follows: d(p, Cj) � �(|Ci|�1) (which we have from Equation 5), is monotonically

decreasing in d(p, Cj). Observing d(p, cj)  |Cj | bounds it from below. Equation 7 gives us the needed

property.

Finally, as with the k-median objective, we show that additive min-sum stability exhibits similar lower

bounds as in the multiplicative case.

Theorem 20. For any ✏ > 0, the problem of finding an optimal min-sum clustering in additive (1/2 � ✏)-

min-sum stable instances is NP-hard.

Proof. We use the reduction in Theorem 7, in which the metric satisfies the property that d : S⇥S ! [0, 1].

The instances from the reduction are additive (1/2� ✏)-min-sum stable. Hence, an algorithm for clustering

a (1/2� ✏)-min-sum stable instance can solve the triangle partition problem.

6. Discussion

Our lower bounds, together with the structural properties implied by fairly small constants, illustrate

the importance parameter settings play in stability assumptions. These results make us wonder the degree

to which the assumptions studied herein hold in practice; empirical study of real datasets is warranted.

Another interesting direction is to relax the assumptions. Awasthi et al. [7] suggest considering stability

under random, and not worst-case, perturbations. Balcan and Liang [10] also study a relaxed version of the

assumption, where perturbations can change the optimal clustering, but not by much. It is open to what

extent, and on what data, any of these approaches will yield practical improvements.
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Appendix A. Dominating set promise problem

A dominating set in a unweighted graph G = (V,E) is a subset D ✓ V of vertices such that each

vertex in V \D has a neighbor in D. A dominating set is perfect if each vertex in D \ V has exactly one

neighbor in D. The problems of finding the smallest dominating set and smallest perfect dominating set are

NP-hard.

We introduce a related problem, called the perfect dominating set promise problem. In this

problem we are promised that the input graph is such that all its dominating sets of size less at most d are

perfect, and we are asked to find a set of cardinality at most d.

First, we prove the following.

Theorem 21. The perfect dominating set promise problem (PDS-PP) is NP-hard.

Proof. The 3d matching problem (3DM) is as follows: let X,Y, Z be finite disjoint sets with m = |X| =

|Y | = |Z|. Let T contain triples (x, y, z) with x 2 X, y 2 Y, z 2 Z with L = |T |. M ✓ T is a perfect

3d-matching if for any two triples (x
1

, y
1

, z
1

), (x
2

, y
2

, z
2

) 2 M , we have x
1

6= x
2

, y
1

6= y
2

, z
1

6= z
2

. We notice

that M is a disjoint partition. Determining whether a perfect 3d-matching exists (YES vs. NO instance) in

a 3d-matching instance is known to be NP-complete.

Now we reduce an instance of the 3DM problem to PDS-PP on G = (V,E). For 3DM elements X, Y ,

and Z we construct vertices VX , VY , and VZ , respectively. For each triple in T we construct a vertex in

set VT . Additionally, we make an extra vertex v. This gives V = VX [ VY [ VZ [ VT [ {v}. We make the

edge set E as follows. Every vertex in VT (which corresponds to a triple) has an edge to the vertices that it

contains in the corresponding 3DM instance (one in each of VX , VY , and VZ). Every vertex in VT also has

an edge to v.

Now we will examine the structure of the smallest dominating set D in the constructed PDS-PP instance.

The vertex v must belong to D so that all vertices in VT are covered. Then, what remains is to optimally

cover the vertices in VX [VY [VZ – the cheapest solution is to use m vertices from VT , and this is precisely

the 3DM problem, which is NP-hard. Hence, any solution of size d = m+ 1 for the PDS-PP instance gives

a solution to the 3DM instance.
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We also observe that such a solution makes a perfect dominating set. Each vertex in VT \ D has one

neighbor in D, namely v. Each vertex in VX [ VY [ VZ has a unique neighbor in D, namely the vertex in

VT corresponding to its respective set in the 3DM instance.

Appendix B. Average linkage for min-sum stability

Here, we further support the claim that algorithms designed for ↵-perturbation resilient instances with

respect to the min-sum objective can often be made to work for data satisfying the more general ↵-min-sum

stability property.

Algorithm 2 min-sum, ↵ perturbation resilience

Input: Data set S, distance function d(·, ·) on S, mini |Ci|.

Phase 1: Connect each point with its 1

2

mini |Ci| nearest neighbors.

• Initialize the clustering C0 with each connected component being a cluster.

• Repeat till only one cluster remains in C0: merge clusters C,C 0 in C0 which minimize davg(C,C 0).

• Let T be the tree with components as leaves and internal nodes corresponding to the merges performed.

Phase 2: Apply dynamic programming on T to get the minimum min-sum cost pruning C̃.

Output: Output C̃.

One such algorithm is Algorithm Appendix B, the Average Linkage algorithm appearing in [10]. The

algorithm requires the condition in Lemma 22 to hold, which we can prove indeed holds for ↵-min-sum stable

instances (their proof of the lemma holds for the more restricted class of perturbation-resilient instances).

To state the lemma, we first define the distance between two point sets, A and B:

d(A,B)
.
=

X

p2A

X

q2B

d(p, q).

Lemma 22. Assume the optimal clustering is ↵-min-sum stable. For any two di↵erent clusters C and C 0

in C and every A ⇢ C, ↵d(A, Ā) < d(A,C 0).

Proof. From the definition of ↵d(A, Ā), we have

↵d(A, Ā) = ↵
X

p2A

X

q2 ¯A

d(p, q)

 ↵
X

p2A

X

q2C

d(p, q)

=
X

p2A

↵
X

q2C

d(p, q)

<
X

p2A

X

q2C0

d(p, q)

= d(A,C 0).
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The first inequality comes from Ā ⇢ C and the second by definition of min-sum stability.

This, in addition to Lemma 6, can be used to show their algorithm can be employed for min-sum stable

instances.
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