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Figure 1: Interface of Triple Perspective Visual Trajectory Analytics (TripVista) visualizing traffic trajectory data at a road intersection. (a) Spatial
traffic view showing geometrical trajectory information; (b) Temporal views of ThemeRiver and scatterplots; (c) Parallel coordinates plot showing
multiple properties of the multi-dimensional data; (d) Time sliders for two-level time range selection; (e) Control panel for system parameter
settings and data classification.

ABSTRACT

In this paper, we present an interactive visual analytics system,
Triple Perspective Visual Trajectory Analytics (TripVista), for ex-
ploring and analyzing complex traffic trajectory data. Users are
equipped with a carefully designed interface to inspect data in-
teractively from three perspectives (spatial, temporal and multi-
dimensional views). While most previous works, in both visualiza-
tion and transportation research, focused on the macro aspects of
traffic flows, we develop visualization methods to investigate and
analyze microscopic traffic patterns and abnormal behaviors. In
the spatial view of our system, traffic trajectories with various pre-
sentation styles are directly interactive with user brushing, together
with convenient pattern exploration and selection through ring-style
sliders. Improved ThemeRiver, embedded with glyphs indicating
directional information, and multiple scatterplots with time as hori-
zontal axes illustrate temporal information of the traffic flows. Our
system also harnesses the power of parallel coordinates to visual-
ize the multi-dimensional aspects of the traffic trajectory data. The
above three view components are linked closely and interactively
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to provide access to multiple perspectives for users. Experiments
show that our system is capable of effectively finding both regular
and abnormal traffic flow patterns.

Keywords: Visual analytics, Linked view, Spatiotemporal, Multi-
dimensional data visualization, Traffic visualization

Index Terms: I.3.6 [Computer Graphics]: Methodology and
techniques—Interaction Techniques; H.5.2 [Information Interfaces
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1 INTRODUCTION

With rapid economic growth, large increases in both motorization
and urbanization have been witnessed in many countries since the
beginning of the last century. As a consequence, the considerably
increased number of automobiles in many cities has quickly con-
gested transportation pathways. Heavy traffic may give rise to air
pollution, aggravate time consumption of people who need to com-
mute to work or school, pose a significant safety risk, and even ex-
acerbate feelings of inequities in the society. In late August, 2010,
the world witnessed the longest traffic jam in China [34]. Road
construction, traffic accidents and breakdowns created a 60-mile,
11-day bumper-to-bumper gridlock on National Expressway 110
between the capital Beijing and inner Mongolia. It is indisputable
that transportation has become a key issue in city development and
management in today’s world, which leads to the urgent require-



ment of advanced technologies for us to monitor, model, and opti-
mize traffic flows in our transportation systems.

Recently, much work has been devoted to improving trans-
portation systems with the state-of-the-art information technolo-
gies. Sensing devices, such as RFID tags, video recorders, laser
scanners, GPS tracking units and cellphones have been utilized to
collect various data and construct intelligent transportation systems.
With more and more data available, one major challenge coming
into our sight is how to effectively analyze the traffic data we have
gathered and extract insights. Many researchers have focused on
macro simulation data or observations in order to find network bot-
tlenecks. As a matter of fact, it is also essential to analyze and mon-
itor the micro behaviors of traffic, find out the origin of accidents
and jams, and evaluate traffic light and crossing configurations for
potential adjustments. In addition to the traffic scenario that can
be generated by micro-simulation software like Paramics [12] and
VisSim[13], data collected from real traffic flow is vital to research
as there are many features and exceptions of real-life situations that
cannot be well modeled. Micro traffic data is a collection of object
movements, including the position, speed, size and other proper-
ties of the vehicles and pedestrians. The movement of an object is
usually described as a specific trajectory.

In this work, we analyze the traffic data at a road intersection
collected through several laser scanners and some other auxiliary
devices, which is a typical microscopic traffic dataset. The dataset
is generated from the raw point cloud by post processing tech-
niques [37]. Laser-scanned data provides a possibility of study-
ing micro behaviors of individual vehicles and pedestrians. Much
more information can be uncovered from such detailed data in com-
parison with data obtained through video or other traditional tech-
nologies, if appropriate analytic tools are provided. However, such
datasets are challenging for various reasons. First, at a busy road in-
tersection, thousands of moving objects can be captured in a short
period of time. It is not a trivial task visualizing and analyzing such
datasets efficiently and conveniently. Second, the collection of the
point clouds inherently includes noises, containing short, incom-
plete, even nonsense trajectories that can hardly be filtered out by
automatic algorithms. Therefore new approaches are demanded to
deal with the magnitude of data and to reduce the influence of the
inherent noises.

In this paper, we design a visual analytics system, Triple Per-
spective Visual Trajectory Analytics (TripVista), for exploring mi-
croscopic traffic data, as illustrated in Figure 1. The developed vi-
sualization system enables the user to investigate trajectories from
different angles, including spatial, temporal and multi-dimensional
perspectives. In our system, by taking advantages of the linked
views, the user can perceive the underlying features of the dataset
and filter out noises and irrelevant trajectories for further investiga-
tion of interesting cases. Experiments show that our system is ca-
pable of effectively finding regular patterns and anomalies of traffic
flows.

The remainder of this paper is organized as follows. First the
related works are reviewed in Section 2. Our design philosophy, to-
gether with the data to be visualized, is given in Section 3. Detailed
description of the proposed visual analytics system is in Section 4,
followed by several analysis results from the traffic data presented
in Section 5. Important issues of the work and possible improve-
ments are discussed in Section 6 before the paper is concluded in
Section 7.

2 RELATED WORKS

Traffic data acquisition, collection and processing have been widely
studied in intelligent traffic system research. Micro traffic data can
be obtained by simulation from existing software like VisSim [13]
and Paramics [12]. In recent years, laser scanners and camera-
based methods have been developed to capture vehicle data, thus

moving objects can be detected and tracked to estimate their sta-
tus parameters, including location, speed and direction at each time
instance [37]. The advent of GPS and cellphone tracking methods
also makes those properties more accessible [24, 10].

Trajectory and movement data have been studied with various
approaches, including visual analysis [3], machine vision [31],
clustering [5], feature extraction [4] and movement pattern taxon-
omy [14]. Visual analysis tools enable interactive and intuitive data
exploration. Andrienko and Andrienko [2] investigate ways of us-
ing aggregation for visual analysis of movement data. A variety
of visualizations and interaction techniques are designed to repre-
sent results of aggregations and enable comprehensive exploration
of the data. Mosaic diagrams are suggested for the exploration of
cyclical traffic patterns and directional bar diagrams are proposed
for the study of movements in different directions. Visualizations
play vital roles in finding significant locations, extracting tracks and
exploring movement dynamics [1]. Anomalies and other activities
can also be detected and analyzed by exploiting the intuition and
experience of security and surveillance experts through an easy-
to-use visual feedback loop [21]. Viewing datasets from different
perspectives is of high importance to trajectory data investigation.
Movement data has been studied in geospatial and spatiotemporal
visualization systems [22, 36]. Those systems provide connections
between different perspectives to enhance the capability of visu-
alizations. Slingsby [30] proposes a treemap cartography method
to show spatiotemporal traffic patterns. To select a few interest-
ing trajectories from a large number, Bouvier and Oates [9] sug-
gest staining and Hurter [19] proposes a brush-pick-drop interac-
tion scheme. Their methods are general for 2D trajectory data, but
with limited perspectives provided. In our work, we provide com-
prehensive perspectives for data exploration. Our system mainly
focuses on specific types of data, such as traffic data collected at a
road intersection.

Several visualization metaphors have been included in our sys-
tem. Parallel coordinates [20] have been developed for multi-
dimensional visualization. The ThemeRiver metaphor introduced
by Harve et al. [18] provides an intuitive way for time-varying data
visualization with clustering information. Byron et al. [11] have a
detailed discussion on the geometry and aesthetics of ThemeRiver
as one kind of stacked graph. Wei et al. [33] develop the method
of putting labels into the space midst the ThemeRiver in order to
show text information on email contents. In our work we embed
glyphs into ThemeRiver to illustrate time-varying characteristics
as well as directional patterns. Glyph representations have been
commonly applied in information visualization [32]. Visualization
tools can provide interfaces for visually-driven data clustering [28].
Schreck et al. [29] propose a visual-interactive monitoring and con-
trolling framework extending the basic Kohonen Feature Map al-
gorithm for trajectory clustering. Coordinated views have been
widely applied to provide effective visualizations and user inter-
actions [8, 16]. In our system, visualizations of spatial, temporal
and multi-dimensional perspectives are linked together to provide
visual analytics from multiple aspects simultaneously.

3 OVERVIEW

In this section, we first describe the traffic dataset to be explored by
our proposed visual analytics system. Then the design philosophy
of the proposed system is introduced.

3.1 Data Description

In this work, we focus on a microscopic trajectory dataset collected
at a road intersection. The data is captured with roadside laser scan-
ners employed to profile the road conditions horizontally from dif-
ferent viewpoints [37]. The traffic direction and the traffic light
configuration of the cross are shown in Figure 3(a). It is a T-shape
crossroad with a joint one-way road and another multi-lane two-



Linked

Figure 2: Design Philosophy of Triple Perspective Visual Trajectory
Analytics (TripVista). Spatial, temporal and multi-dimensional per-
spectives are closely linked and respectively represented by different
metaphors.

way road. In part of the two-way road, lanes with different di-
rections are separated with a safety island. The compass indicates
the north direction on the data map. The contour points of mov-
ing objects are captured on a horizontal plane at a scanning rate of
26ms per frame. When the objects entered the intersection, they
were detected, tracked and further classified as cars, buses, bicy-
cles, pedestrians and others. The dataset contains 209,426 trajecto-
ries represented by consecutive sampled points recorded over two
days. There are 33,362,651 sampled points in total and each point
has the attributes position, speed, direction and timeInstance. This
dataset collected from a real situation is very challenging to be ana-
lyzed due to its noisy nature and uncertainties caused by occlusions.
The noises resulting from tracking confusions and errors are mainly
in the form of those with an impossibly small faction of movement.
We filter out the trajectories that have very short passing distance
(<10 meters) or time (<1 second). Through a carefully designed
visual analytics system, we enable direct exploration and manipu-
lation on such a dataset.

3.2 Design Philosophy

Based on the nature of the traffic trajectory data, we design a vi-
sual analytics system, Triple Perspective Visual Trajectory Analyt-
ics (TripVista) with three perspectives embedded: spatial, temporal
and multi-dimensional respectively to study microscopic patterns
and discover abnormal behaviors in this data. As illustrated in Fig-
ure 2, each perspective has its own visual representation. They are
closely linked to provide powerful visual exploration capabilities.

Spatial Perspective Spatial information is essential for under-
standing object movements in physical space. To identify certain
types of object movements in traffic flows, flexible and thorough
exploration of the geometrical information is indispensable. In our
design, spatial perspective (the traffic view) provides the intuitive
geometrical information.

Temporal Perspective Traffic movements are typically time-
varying data. Observation of the traffic variation along the temporal
axis is vital for identifying corresponding patterns and features, and
especially for making operational decisions. The temporal perspec-
tive of the visualization is able to provide both an overview span-
ning a long time period and details at a specific time point. We
have employed ThemeRiver with glyphs together with scatterplots
to illustrate temporal features of the dataset.

Multi-dimensional Perspective In addition to the spatiotemporal

properties, traffic trajectory data has multi-dimensional attributes
such as object type, path length and direction. Extra information
can also be derived from the raw data. For example, minimum speed
and maximum speed of each individual track can be extracted from
original speed information. We include original and derived dimen-
sions in the parallel coordinates plot for interactive user manipula-
tion. The multi-dimensional perspective also helps to filter out data
noises, and to find interesting patterns.

Linking all the above three perspectives for analysis is a design
of consequence. Any separation would lead to visualization gap
and result in information loss or an incomplete understanding of the
data. Duplex interactions among all views have been established.

4 INTERFACE

The interface of the system consists of the multiple coordinated
views shown in Figure 1: the traffic view for displaying spatial in-
formation, the ThemeRiver with embedded glyphs and scatterplots
for showing temporal variations, and the parallel coordinates for
multi-dimensional visualization. Two-level time sliders supporting
quick time range selection are integrated to augment data explo-
ration. In the following, we will introduce design details of each
view in our visual analytics system.

4.1 Traffic View

The major function of traffic view is to directly display spatial infor-
mation by rendering each trajectory as a polyline. Each trajectory
is drawn according to its scanned position. The traffic view shows
the accumulation of all trajectories by blending the tracks as semi-
transparent polylines (Figure 3(b)). This gives the user an intuitive
overview of the data over the selected time span. The color of each
line indicates object type: pedestrian, bus, car, bicycle or others.
Alternatively, considering the fact that speed information is also es-
sential to pattern study, we provide another shading mode called
speed, in which one trajectory is drawn with gradually changing
colors. Red color denotes low speed while green denotes higher
speed as shown in (Figure 3(c)). A map of the intersection is dis-
played as background. The user may recognize general clusters of
trajectories through an intuitive perception of the plot. Box-like
representations in the view denote moving objects at a specified
time instance (determined interactively in the temporal views or by
keyboard play/rewind hotkeys).

Convenient selections are integrated into the traffic view. In ad-
dition to normal brushing, the user may apply directional brushing
to pick up trajectories with a specific shape by sketching. Further-
more, ring-style sliders are overlaid on top of the trajectory paths.
The inner ring slider is used to select the entrance direction, while
the outer ring is for exiting angle filtering. By adjusting the slider
bars, the user can specify patterns with a specific entrance and exit
range. Histograms showing the density of the trajectories at dif-
ferent angles are mapped along the ring circumference, which pro-
vides additional information concerning the traffic under investiga-
tion. When the mouse hovers over the histograms, the correspond-
ing region will be shown in an expanded mode to display more
details. The histogram information of selected trajectories will be
highlighted with a darker color (Figure 3(b)). Rotation of the view
is also supported for the user’s convenience.

4.2 ThemeRiver Embedded with Glyphs

Although the standard ThemeRiver can bring forth flow volume in-
formation, it alone cannot show details of direction-related traffic
patterns. We design a ThemeRiver view with embedded glyphs in
TripVista to display directional information. Arrow-shape glyphs
representing specific directional movement of objects are integrated
into the ThemeRiver. The ThemeRiver view supports convenient
user interactions, e.g., mouse-hovering highlighting , glyph brush-
ing and zooming. These interactions can help the user get intuitive
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Figure 3: Traffic View: (a) The map of the road intersection where
the data is collected. The arrows on the map indicate the permitted
traffic directions and the traffic light configurations; (b) Traffic view -
colored according to object types; (c) Traffic view - colored according
to speed variation.

information both on the flow volume and the flow direction of each
traffic object type. By browsing along the time axis, the user may
easily compare different groups of trajectories and simultaneously
identify patterns through the embedded glyphs. In terms of our de-
sign philosophy, the ThemeRiver with embedded glyphs presents a
way of connecting different perspectives such as direction (spatial),
volume statistics (multi-dimensional) and its time-varying features
(temporal) are coordinately visualized.

In our implementation of the ThemeRiver, two layers are com-
puted: standard ThemeRiver as background, and added glyphs.
Harve’s algorithm [18] is adopted to draw the background The-
meRiver (Figure 4(a)). The glyphs are overlaid on the background
ThemeRiver according to the following criteria: 1) the glyphs
should clearly and faithfully represent local characteristics of each
traffic type; 2) the glyphs should be distributed evenly; 3) each
glyph should be placed inside one specific river for aesthetics and
unambiguity; 4) local patterns of glyphs should remain consistent
when zoomed in and out. To determine the positions of glyphs, Fast
Hierarchical Importance Sampling [26] with uniform importance is
applied. As this sampling method has the blue noise property, the
sampled points will be distributed randomly and evenly. The points
outside the rivers or intersecting the boundaries are discarded. The
red dots in Figure 4(b) show the computed candidate glyph posi-
tions. To decide the type of the glyph at each point, every river is
subdivided into several subrivers according to the directional clus-
tering of trajectories. Each sampled point is placed exactly inside
one subriver (Figure 4(c)). Thus one type of glyph represents one
directional pattern. Due to the fact that the directional information
at a road intersection is naturally described by entrance and exit, for
simplification we use discrete encoding for the directional patterns
and glyph generations rather than a fully-developed clustering algo-
rithm based on trajectory comparisons. The details of this process
will be discussed in Section 6.2. After the types of glyphs are de-
termined, the enhanced ThemeRiver is drawn with corresponding
glyphs rendered at each sampled position, as shown in Figure 4(d).
When zoomed in or out, the sampling frequency of the time points
for flux calculation will adapt to the current observation level. The
changes of river contours in this procedure are usually minor so that
the drawing coherence is maintained. We use the local densities of
glyphs to show the importance of the direction pattern feature in-
stead of size [33]. Each traffic trajectory has a certain group of
corresponding glyphs, which guarantees the uniqueness of repre-
sentation and also enables lasso selections in the ThemeRiver.

Five scatterplots are also included in the temporal view on
the right of the ThemeRiver to enhance TripVista, where each
point represents one trajectory path. The horizontal coordinate
of each point in the plot is determined by the occurring time of
the trajectory. Vertical axes are the total passing time, the mini-
mum/maximum/average speed, and the moving distance of the ob-
jects in each plot respectively. To balance point density and maxi-
mize space utilization, we performed logarithmically scaled distor-
tion transformation on the vertical axes [27] in addition to the linear

(a) (b)

(c) (d)

Figure 4: Algorithm Illustration for glyph embedding in ThemeRiver:
(a) Original ThemeRiver; (b) Possible glyph positions determined by
Fast Hierarchical Importance Sampling; (c) Each river is subdivided
and the same type of glyphs are located in the same subriver; (d)
Resulting ThemeRiver with embedded glyphs.

mapping. Scatterplots serve as a medium between the temporal and
the multi-dimensional perspective. The user can brush out a group
of trajectories quickly based on their occurring time or clustering in
the scatterplots.

4.3 Parallel Coordinates

Parallel coordinates are integrated into TripVista to support multi-
dimensional data exploration. As one of the most widely ap-
plied methods of multi-dimensional visualization, parallel coor-
dinates plot amplifies the system’s ability of viewing data in
a multi-dimensional sense. We set the dimensions of parallel
coordinates to the entrance time, passing time/distance, mini-
mum/maximum/average speed, start/end bearing, angle change (for
both raw and preprocessed trajectories), maximum/minimum accel-
eration and object type. Through parallel coordinates, the user can
perceive more features of trajectories rather than be limited to ba-
sic spatiotemporal properties. The user can clearly see singularities
among the common patterns if they have any distinctive properties.
Generally, brushing on the parallel coordinates offers a convenient
way to select those trajectories with interesting features. Noises can
also be filtered out with parallel coordinates.

4.4 User Interactions

Each view in TripVista supports convenient interactions. Besides
click and brush, pertinent interactions such as directional brush and
ring sliders in the traffic view are provided. A free-form lasso is
automatically recognized as a rectangle when the moving distance
of the user’s mouse is close to the straight-line distance between the
beginning and ending points of the lasso [25]. Selection results of
any of the views support intersection, union and subtraction opera-
tions. The user may apply group operations to the current selection,
e.g. they may create or modify groups through the control panel,
which provides a way for user-defined classification. User-defined



color schemes for groups are supported for multi-purpose suitabil-
ity. The two time sliders can be used to select a target time range
at lower and higher levels, to which flow volume histograms are
mapped for a quick overview of distributions. In detail, the lower-
positioned time slider performs on the higher level — enabling the
selection of time spans in tens of minutes or hours from the traf-
fic on a single day (July 16th, 2008 in Figure 1), while the upper-
positioned time slider functions at a lower level — enabling the
selection of time ranges in seconds and minutes. The ThemeRiver
view may be switched to scatterplots by moving the thumbnails of
scatterplots in a drag-and-drop manner in order to assign the scat-
terplots more space for display when necessary. We leave the de-
cisions on the parameters including rendering transparency of tra-
jectories and objects, size of brushed and unbrushed points in the
scatterplots, scale of histograms, etc. to the user.

5 VISUAL ANALYSIS RESULTS

By using TripVista, not only can the user obtain overview informa-
tion of traffic flow over a long time period, but they may also drill
down to traffic trajectory details and discover interesting micro be-
haviors or patterns through interactions. Three cases are demon-
strated in this section to show how TripVista helps analyze traffic
flow data from integrated spatial, temporal and multi-dimensional
perspectives. Our results illustrate the importance of linked per-
spectives, which is the key part of our design philosophy.

5.1 Case 1: Investigate Specific Behaviors

The first case is an example of recognizing special spatial patterns
in the traffic view with the advantage of ring sliders and the direc-
tional brush.

TripVista is capable of identifying different types of traffic tra-
jectory patterns according to differences in their geometry. Dense
rendering line bundles in the traffic view provide an intuitive visual
cue of the directions of the trajectory groups.

In the dataset we are working on, drivers from the low-left main
street are allowed to make a U-turn at the interaction, as illustrated
in Figure 3(a). We are interested in investigating how frequently
such U-turn actions occurred. With TripVista, we first filter out
pedestrians and bicycles by brushing the dimension of type in the
parallel coordinates accordingly. The U-turn traffic then can be im-
mediately isolated by adjusting the ring slider bars to the corre-
sponding positions and ranges as shown in Figure 5(a). Alterna-
tively, directional brush sketched by the user can also disclose a
similar result as illustrated in Figure 5(b).

The selected trajectories are highlighted accordingly in other
views, which enables the user to investigate other properties at the
same time in addition to the geometrical information. For example,
the user can explore the scatterplots or the parallel coordinates for
information of vehicle speed. The visualization shows that the av-
erage speeds of these trajectory patterns are generally low and the
minimum speed values are nearly zero. There are only four cases
in which the minimum speed of the vehicle is above 2 m/s. This
indicates that most cars drive cautiously and make a stop during the
execution of a U-turn. Our system also provides play-back function
of the selected scenes. Figure 5(c) shows individual moving cars
with box-like representations after the time span is narrowed to a
very short period. The system also provides information on the se-
lected traffic volume. Among the total number of 32,777 moving
objects during the selected time span, cars and buses together ac-
count for 9,421, as illustrated in the top-left corners of the figures.
The number of trajectories selected by ring sliders is only 85. This
indicates that there were only 85 cars that made a U-turn in that
time period. The directional brush gives the smaller number of 42
due to more restricted shape matching.

This example demonstrates how to use TripVista to discover and
investigate specific trajectory patterns. The process usually starts

with spatial understanding through brushing. Then the user can
go into more detailed information, such as speed, object type and
others through the linked views. We emphasize the internal connec-
tions between space and other perspectives, as well as the natural
perceptional progressing from one to another.

(a) (b) (c)

Figure 5: Investigation of U-turn Patterns (a) Select the U-turn trajec-
tories with ring sliders; (b) Select the U-turn trajectories using direc-
tional brush; (c) Replay the scene (U-turn patterns in red).

5.2 Case 2: Find Patterns and Violations

The second case focuses on regular pattern recognition and viola-
tion detection.

Through TripVista, the user can perceive traffic flow patterns in
multiple angles. The regular traffic light patterns can be discovered
through the temporal view, which can be illustrated by showing
time variation of the vehicle traffic volume. Such an intermittent
pattern can hardly be observed without the help of the temporal
view.

We first select the trajectories entering the intersection from the
lower-left road. The system then splits and regroups the paths into
two groups according to their exit directions, which can be done
with the ring sliders or the directional brush as we have described
previously. The result is shown in Figure 6.

It is clear in the glyph-embedded ThemeRiver that the left-turn
trajectories (brown river with left-to-top arrows) and the straight
trajectories (blue river with left-to-right arrows) have different tem-
poral patterns. The difference is derived from the underlying traffic
light regulation. The left-turn traffic light turns green following the
go-forward traffic light turning into green with a short lag period
for the pedestrians to cross the road. Here embedded glyphs help
the user quickly identify the flow direction within a certain river
(traffic type). It can also be perceived in the ThemeRiver view that
the left-turn traffic flow has smaller volume. Through the rivers the
proportion variation of the two flows in a single day can be further
investigated.

(a) (b)

Figure 6: Regular Traffic Patterns (a) Group the concerned trajec-
tories according to their exits; (b) Selected trajectory groups have
different volumes as shown in the ThemeRiver.

In addition to understanding general patterns, TripVista also en-
ables us to gain insights into the micro behaviors of pedestrians and



vehicles. Since the vertical road is one-way only as shown in Fig-
ure 3(a), any automobile retrograding violates the traffic rule.

After brushing these trajectories with the reversed direction of
the one-way road and excluding some obvious noises, the trajecto-
ries of the offenders can be shown in Figure 7(a). The cyan trajec-
tories representing cars indicate the violation events. Bicycle traffic
flows are represented as trajectories in purple. The cyclists’ behav-
iors are legal since the applicable regulation in this case only covers
cars. TripVista can also expose another type of offence at this road
intersection. When brushing the traffic from the right to the left,
we can observe that a few vehicles turned right first at the intersec-
tion, and then made an immediate U-turn. At this road intersection,
right turns are always allowed regardless of the status of the traffic
lights. Those identified trajectories indicate drivers who wanted in
effect to go left at the intersection during the red light time. which
is illegal. Furthermore, with the replay function in the temporal
view, we can watch the box-like representation executing the entire
maneuver. The identified violation is shown in Figure 7(b).

This example illustrates the process of identifying both regular
patterns and violations, which is one of the essential objectives of
the TripVista design. Visualization methods in our design present
information from different perspectives, thereby offering more op-
portunities for the user to perform in-depth investigation.

(a) (b)

Figure 7: Traffic Violations (a) Wrong-way offenders; (b) Illegal turn-
ing pattern.

5.3 Case 3: Discover Hidden Information

In the third case, all views are used in conjunction to figure out
interesting but usually hidden information like a chain of inci-
dents among the densely mapped trajectories. This exemplifies that
TripVista can be used to detect potentially dangerous cases, and
even to help make conclusions concerning social behaviors.

In traffic flows, there often exist chain reactions in which the
behavior of one object (vehicle or pedestrian) is the result of the ab-
normal behavior of other moving objects. For example, an abrupt
stop of a moving vehicle would result in several following vehicles
slamming on the brakes. However, such chain reactions are usually
hidden among the data collected and cannot be directly identified.
To discover such events, one needs to fully utilize all the perspec-
tives including space, time and multi-dimension to view the data
from multiple angles. TripVista offers the possibility of such com-
plex investigation. The below example shows an actual finding of a
dangerous moment that was initiated by a cyclist’s violation behav-
ior.

We calculate the angle change for each trajectory, which is the
sum of the included angles (always positive) of consecutive speed
vectors. Trajectories with smooth behaviors would have angle
changes no more than 90 degrees except those performing a U-
turn. An abnormal trajectory that exhibits sudden turns or evasion
actions will have an angle change larger than 90 degrees. In this

case, we select the trajectories with larger angle changes with the
parallel coordinates interface (Figure 8(a), (b)) and identify one tra-
jectory of a bicycle passing the center of the intersection as shown
in Figure 8(c). By replaying the scene in the traffic view, it can be
observed that the large angle change actually resulted from the cy-
clist’s evasive actions to avoid collision with a car. The car made
a panic brake in front of the cyclist in that incident. It can be con-
cluded that it is a dangerous event (Figure 8(d)). Besides the single
violation, it is interesting to reveal through this example that vio-
lations usually appear in groups. Since the violating cyclist passed
directly along the diagonal of the intersection, the travel distance is
rather long. We brush similar behaviors by selecting long passing
distances in one of the scatterplots in a short time span covering
the event identified above. Then we find that there were several
other bicycles going in a similar fashion at the time of the incident
(Figure 8(e)). Such observation helps us identify social behaviors
as violations tend to appear in group due to people’s false sense of
safety.

(a)

(b) (c)

(d) (e)

Figure 8: Dangerous Events Discovered in Dense Trajectories: (a)
Selection of the trajectories with larger angle changes in the parallel
coordinates; (b) Trajectories with larger angle changes in the traffic
view; (c) One interesting trajectory identified in the traffic view; (d) A
dangerous event: the cyclist narrowly escaped being hit by a car; (e)
Other violation behaviors in groups.

6 DISCUSSION

In this section, we summarize a few aspects of the implementa-
tion details of TripVista. Important issues including automatic al-
gorithm features and possible improvements to the system are dis-
cussed. User feedback is provided to further confirm the application
value of the system to its potential users.



6.1 Implementation Details and Scalability

The system was developed in C++ with Qt 4.7, boost 1.43.0 and
OpenGL 3.1. The program has been tested on a Dell T3500 work-
station, with an Intel Xeon W3503 2.4GHz CPU, 2GB RAM and
a NVIDIA GeForce GTX 275 graphics card with 896MB memory.
User interactions can be performed smoothly at a frame rate of more
than 20 frames/second if middle size data is load.

To mitigate the high demand on computing resources when vi-
sualizing large datasets, intermediate results of all views are saved
in frame buffers and only necessary parts are updated when small
changes are made by interactions. For example, the highlighting
effects can be drawn on top of the existing buffer contents. Our
system can run on regular workstations or PCs with general hard-
ware settings.

To take advantage of a better user experience during interactions,
we have also tested our system with a Wacom Cintiq 12WX display
tablet as the input device. Interactions such as brushing and hov-
ering can be performed more efficiently on the tablet with a pen
through sketching than through a mouse and keyboard. The advan-
tages of interactive features of TripVista can be further utilized on
such devices to enhance data exploration.

6.2 Extension of Applicability

TripVista helps the user discover interesting patterns by includ-
ing not only visualization representation techniques, but also semi-
automatic algorithms such as the directional brush and angle change
calculation.

More automatic algorithms can be integrated into our system to
enhance its capability. For example, relative motion detection is an
interesting topic in microscopic traffic analysis. We have discov-
ered a case in which a vehicle narrowly avoided colliding with a
bicycle in Section 5.3. It would be beneficial to automatically ex-
tract similar cases in the whole dataset. One possible solution is to
search for matches of a predefined patterns [23], such as encounter
or approximation [6]. Another is to search for behaviors similar to
a given case. We have integrated into our system a prototype of
a relative motion detection algorithm by searching the similar be-
haviors, taking both spatial and temporal information together with
neighboring movement information into account. As shown in Fig-
ure 9, our system can detect a few similar cases in which moving
bicycles and cars appeared very close. The user can further inspect
the detected events and evaluate the degree of danger accordingly.
The detection is also helpful for data correction. As shown in the
last case of Figure 9, one bicycle is inside the space of a bus at a
specific moment. This impossible scene results from inaccuracies
of the data. Such findings are extremely valuable for data cleaning
and validation.

Figure 9: Several cases discovered by our prototype of relative mo-
tion detection algorithm, in which moving bicycles (purple) and cars
(cyan) appeared very close. However, when speed is considered,
none of them is as dangerous as the case in Section 5.3. It is notice-
able that in the last case, the bicycle is inside the car. This impossible
scene results from the inaccuracies in the data.

In terms of clustering techniques, our present system clusters the
trajectories based on the entrance and exit information. It uses pre-
defined glyphs to represent different patterns. This simple cluster-

ing strategy is appropriate and sufficient in the current case due to
the fact that patterns, as well as abnormal behaviors at a road in-
tersection have limited variation on possible movement directions.
In the future, we would like to extend our approach to more com-
plex traffic movements within larger road networks. More compli-
cated phenomena should be considered, for example the question
of how a congestion propagates through a network can potentially
be visually analyzed. Some research has been done to cluster gen-
eral movement, such as probabilistic trajectory clustering [17] and
density-based trajectory clustering [15, 7] . Such automatic algo-
rithms can be enhanced by visualization and interaction [28, 29, 5].
It is possible to include comprehensive clustering algorithms in our
system. Since it is very difficult to predict all possible trajectory
patterns, glyphs in our ThemeRiver can also be automatically gen-
erated as a visual summary of the trajectory shapes they correspond-
ingly represent.

Views and interactions can be made adaptable to more complex
conditions. For example, ring sliders can be modified to deal with
road networks instead of one single road intersection. We are con-
sidering enhancing the current system by introducing ring slices,
which are partial ring sliders with more freedom in shapes. Our
system can also be extended to handle 3D scenarios, such as airline
traffic data. The directional brush and ring sliders can be improved
to support 3D selections.

6.3 User Feedback

We have consulted people who have expert knowledge in intelligent
transportation system research for comments after internally testing
our TripVista system.

The feedback is very encouraging. The highly supported interac-
tions are greatly appreciated by the experts. Especially the powerful
selection function as well as the animation replaying the scenes re-
ceive very positive comments. These features largely enhance the
user experiences in traffic data exploration. In comparison with
their traditional point cloud analysis tools, in which only limited
functions such as point cloud plotting are supported, our system
makes the whole exploration process much smoother. According
to the feedback, our system is also good for demonstration. The
visualization provides intuition for understanding the data.

Our visual analytics cases are also convincing to the domain ex-
perts. The analysis of the traffic flow patterns in Section 5.2 is
considered very valuable to guide the optimization of traffic lights
control. The discovery of the cyclist’s case in Section 5.3 greatly
arouses the experts’ attention. The detected event is later further
confirmed by their manual inspection on the initial laser-scanned
point cloud data. The experts also indicate that the tablet demon-
stration of our system shows a data exploration process much more
efficient and convenient than traditional methods, which they would
like to apply in their work.

7 CONCLUSION AND FUTURE WORK

In this paper, we present a visual analytics system named TripVista
for visualizing microscopic traffic trajectory data at a road inter-
section. Based on the triple perspective design philosophy, coordi-
nated visualizations with convenient interactions are created in our
proposed system. By simultaneously inspecting the time-varying
trajectory data from spatial, temporal and multi-dimensional views,
our system provides powerful tools for data comprehension and ex-
ploration. The establishment of close linking among each view is
essential to the visualization effectiveness in our system.

As illustrated in the examples of traffic data analysis with
TripVista, our system helps the user not only comprehend regu-
lar traffic patterns, but also discover abnormal behaviors. Some
possible improvements are named in our user feedback. More au-
tomatic algorithms are expected, such as advanced clustering and
relative motion detections. In the future, we would like to explore



the potential of TripVista by equipping it with improved automatic
algorithms and additionally extending it to more complex data, such
as traffic in a larger road network, road-free movement and 3D tra-
jectory data. We also plan to integrate more powerful visualization
techniques. For example, by introducing point representation in the
parallel coordinates plots [35] in our system, we can enhance the
ability to analyze high-dimensional aspects of the trajectory data.

ACKNOWLEDGEMENTS

The authors thank the anonymous reviewers for their invaluable
comments and suggestions. This work is supported by National
Natural Science Foundation of China Project No.60903062, Bei-
jing Natural Science Foundation Project No.4092021, 973 Program
Project No.2009CB320903, 863 Program Project 2010AA012400,
Chinese Ministry of Education Key Project No.109001 and IIPL-
09-016. The work of data collection was supported by NSFC
Project No.60975061. The authors would also like to thank Jie Sha
for precious comments and feedback.

REFERENCES

[1] G. Andrienko and N. Andrienko. Exploration of massive movement

data: a visual analytics approach. In AGILE ’08, 2008.

[2] G. Andrienko and N. Andrienko. Spatio-temporal aggregation for vi-

sual analysis of movements. In Proceedings of IEEE Symposium on

Visual Analytics Science and Technology, pages 51–58, 2008.

[3] G. Andrienko and N. Andrienko. A visual analytics approach to ex-

ploration of large amounts of movement data. In VISUAL ’08: Pro-

ceedings of the 10th international conference on Visual Information

Systems, pages 1–4, 2008.

[4] G. Andrienko, N. Andrienko, J. Dykes, S. I. Fabrikant, and M. Wa-

chowicz. Geovisualization of dynamics, movement and change: key

issues and developing approaches in visualization research. Informa-

tion Visualization, 7(3):173–180, 2008.

[5] G. Andrienko, N. Andrienko, S. Rinzivillo, M. Nanni, D. Pedreschi,

and F. Giannotti. Interactive visual clustering of large collections of

trajectories. In Proceedings of IEEE Symposium on Visual Analytics

Science and Technology, pages 3–10, 2009.

[6] N. Andrienko, G. Andrienko, M. Wachowicz, and D. Orellana. Un-

covering interactions between moving objects. In Extended Abstracts

of GIScience 2008, pages 16–26, 2008.

[7] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander. Optics:

Ordering points to identify the clustering structure. In SIGMOD’99,

pages 49–60, 1999.

[8] A. Barsky, T. Munzner, J. Gardy, and R. Kincaid. Cerebral: Visu-

alizing multiple experimental conditions on a graph with biological

context. IEEE Trans. Vis. Comput. Graph., 14(6):1253–1260, 2008.

[9] D. J. Bouvier and B. Oates. Evacuation traces mini challenge award:

Innovative trace visualization staining for information discovery. In

Proceedings of IEEE Symposium on Visual Analytics Science and

Technology, pages 219–220, 2008.

[10] Y.-J. Byon, B. Abdulhai, and A. Shalaby. Real-time transportation

mode detection via tracking global positioning system mobile devices.

Journal of Intelligent Transportation Systems, 13:161–170, 2009.

[11] L. Byron and M. Wattenberg. Stacked graphs - geometry & aesthetics.

IEEE Trans. Vis. Comput. Graph., 14(6):1245–1252, 2008.

[12] G. Cameron, B. J. N. Wylie, and D. McArthur. Paramics—moving

vehicles on the connection machine. In Supercomputing’94, pages

291–300, 1994.

[13] H. Chen, X. Zhang, and G. Liu. Simulation and visualization of em-

pirical traffic models using vissim. In Proceedings of IEEE Interna-

tional Conference on Networking, Sensing and Control 2007, pages

879–882, 2007.

[14] S. Dodge, R. Weibel, and A.-K. Lautenschütz. Towards a taxonomy of
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