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Abstract—In biomedical data, the imbalanced data problem occurs frequently and causes poor prediction performance for minority

classes. It is because the trained classifiers are mostly derived from the majority class. In this paper, we describe an ensemble learning

method combined with active example selection to resolve the imbalanced data problem. Our method consists of three key

components: 1) an active example selection algorithm to choose informative examples for training the classifier, 2) an ensemble

learning method to combine variations of classifiers derived by active example selection, and 3) an incremental learning scheme to

speed up the iterative training procedure for active example selection. We evaluate the method on six real-world imbalanced data sets

in biomedical domains, showing that the proposed method outperforms both the random under sampling and the ensemble with under

sampling methods. Compared to other approaches to solving the imbalanced data problem, our method excels by 0.03-0.15 points in

AUC measure.

Index Terms—Bioinformatics, classification, interactive data exploration and discovery, mining methods and algorithms.
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1 INTRODUCTION

MACHINE learning techniques have been used in many
real-world domains such as the Internet, scientific

and business studies, and industry applications. Biomedical
data are one of the popular domains of applications. When
we train a classifier from data, training data sometimes
have imbalanced class distribution [1], [2], [3], [4]. The
imbalanced data problem occurs when class examples are
inherently rare or hard to collect. For example, biomedical
data derived from rare disease and abnormal prognosis are
difficult to obtain, and some biomedical data are often
obtained via expensive experiments. Since most machine
learning algorithms train a classifier based on the assump-
tion that the number of training examples of classes is
almost equal, when we apply machine learning algorithms
to imbalanced data, the trained classifier is mostly derived
from the majority class. Additionally, we may miss or
ignore essential patterns (i.e., information) from the
minority class; this results in very poor prediction perfor-
mance of the minority class because training the minority
class is not done. In many cases, the user is more interested
in minority classes. Thus, addressing and solving imbal-
anced data problem is very critical for improving classifica-
tion performance.

Since reliability and performance of an output model
depend on the quality of training data, the sufficient
amount of informative examples is essential to learn a good
classifier. Most training data include some redundant
examples or less useful examples. This may lead to
performance degradation or long training time. Examples
in the imbalanced data may exist redundantly, or some of
them may be less useful.

In this paper, we propose a novel scheme to solve the
imbalanced data problem, ensemble learning based on active
example selection (EAES). The main part of our proposed
scheme is the Active Example Selection (AES) method. AES
builds a classifier by starting from a small balanced subset of
training data and training a classifier iteratively through
adding useful examples into the current training set. Even
though AES performs well for improving imbalanced
classification performances, AES also has weaknesses. Its
iteration of model training and example selection steps
requires lots of computation cycles, and thus the cost of using
this method is high. Also, its output classifiers can vary
depending on the initial training examples.

To address AES’s high computational cost from the
iterative model training and avoid possible a biased decision
of AES, we improve the AES method with an incremental
learning algorithm and an ensemble learning method. For
the proposed EAES, we use the incremental naı̈ve Bayes
algorithm as a base classifier of AES instead of the iterative
batch one. As a result, we make the training time of AES
shorter than the time of the iterative batch learning
algorithm. Additionally, we build an ensemble model by
connecting various classifiers from different initial training
examples to reduce the variance of classification models
derived from AES and to get a robust output classifier. By
integrating the different predictions from individual classi-
fiers, the ensemble model can increase classification perfor-
mance along with avoiding biased decisions.
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This paper is organized as follows: in Section 2, we
present related works. We present our AES technique that is
the basis of the proposed EAES in Section 3. The overall
EAES scheme is presented in Section 4. In Section 5, we
show our empirical experiments and evaluate the results.
We conclude in Section 6.

2 RELATED WORKS

Recent research on the imbalanced data problem has been
focused on several major groups of techniques. The
popular method to solve imbalanced data problem
balances the number of training examples among classes
via the resampling examples. To balance the number of
training examples among classes, the random under
sampling (RUS) randomly discards examples of a majority
class, while the random over sampling (ROS) duplicates
examples in a minority class. We can combine these two
techniques to apply oversampling for the minority class
and under sampling for the majority class, respectively.
These random resampling techniques are easy to apply
and improve the performance of classifiers by compensat-
ing for the imbalanced class distribution. However, they
also produce unwanted effects such as overfitting or
information loss by duplicating or deleting examples from
the training sets using the techniques. To overcome these
imbalanced data problems of random resampling, several
new techniques have been introduced using the intelligent
approaches (e.g., creating new examples for the minority
class that is inferred from existing examples [5] and
removing noise or duplicated examples from the majority
class [6]). However, according to comparative studies of
various resampling techniques, rather simple RUS or ROS
generally performs better than new intelligent techniques
mentioned above [7], [8].

There are several methods proposed to solve the imbal-
anced data problem using the ensemble of undersampled
classifiers [9], [10]. These methods are usually based on the
bagging, and we draw almost the same numbers of majority
and minority examples for the sampled subset data. They
fully utilize the minority and majority examples.

Among such methods, there is an active learning approach
based on the support vector machine algorithm to solve
imbalanced data problem. Typically, the class imbalance
ratio of examples that are close to the decision boundary is
lower than the imbalance ratio in the complete data set.
Therefore, the active learning approach provides more
balanced training examples because it selects examples that
lie closest to the separating hyperplane using the support
vector machine algorithm [11], [12]. However, the method is
designed based on the characteristics of the support vector
machine algorithm; thus, the method cannot be applied to
other classification algorithms. In addition, the study is
limited to binary problems that are simple enough to analyze,
because the method selects examples that lie closest to the
decision boundary.

Biomedical domain is our main focus of application in
this paper. Here are some recent important studies about
handling imbalanced biomedical data problem: one fre-
quently used method is dividing the original data set into a
balanced data set for training and an imbalanced data set

for testing. We can avoid the imbalanced data problem by
using a balanced data set for training. The method is used to
diagnose myocardial perfusion using cardiac Single Proton
Emission Computed Tomography (SPECT) images [13] and
to predict polyadenylation signals in human sequences [14].

For imbalanced biomedical data, RUS techniques can
also be easily applied. To discriminate deleterious nsSNPs
(nonsynonymous single nucleotide polymorphisms) from
neutral nsSNPs with an imbalanced training data set,
prediction performances are improved by applying the
RUS method combined with a decision tree algorithm [15].
Moreover, classifiers from the RUS method can be
combined together into an ensemble machine (ERUS). An
ensemble of undersampled classifiers is constructed for
predicting the activity of drug molecules based on the
structural characteristics of compounds [16] and for pre-
dicting glycosylation sites in genomic sequences [17].

3 ACTIVE EXAMPLE SELECTION

To address the imbalanced data problem, AES iteratively
collects useful training examples from the entire training
data and excludes redundant or less useful examples. AES
starts with randomly selected small number of examples
that are balanced among classes and trains a classifier by
incrementally adding useful examples [18]. By doing so as
well as learning a classifier using informative examples,
AES can efficiently solve the performance degradation
problem that is caused by the imbalanced data. In this
section, we describe how to derive a measure of usefulness
to evaluate candidate examples in the AES procedure and
overall learning procedure of AES.

3.1 A Measure of Usefulness

AES trains a classifier by adding useful examples itera-
tively. Thus, we first need to define the measure of
usefulness of an example. The criterion for selecting useful
examples for AES can be derived as follows:

First, let’s assume that a base classification algorithm of
AES is determined. Then, the training set of input-output
pairs is given:

DN ¼ fðx1; y1Þ; . . . ; ðxN; yNÞg: ð1Þ

To achieve good generalization performance, the objec-
tive functions of most machine learning algorithms are
designed to directly minimize the additive error function on
the data set DN :

EðDN j��Þ ¼
XN
p¼1

Eðypjxp; ��Þ: ð2Þ

However, our AES does not directly train a classifier using
the entire training set of size N . Rather, AES starts the
learning with a small subset of size N0 < N of given
examples and increases the training set incrementally. In
other words, we try to minimize the sequence of objective
functions as follows:

EðDN0
j��0Þ; EðDN1

j��1Þ; . . . ; EðDNs
j��sÞ; ð3Þ

where Ni is the ith size of the training set satisfying the
relation N0 < N1 < � � � < Ns ¼ N .
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Second, let’s assume that we have trained a classifier on
the data set DN . The classifier can be viewed as a function of
the model parameter ��:

PNð��Þ ¼ P ðDN j��Þ ¼
YN
p¼1

P ðypjxp; ��Þ; ð4Þ

where

P ðypjxp; ��Þ ¼
expð��Eðypjxp; ��ÞÞ

Zð�Þ : ð5Þ

Here, � is a positive constant that determines the
sensitivity of the probability to the error value, and Zð�Þ
is a normalizing constant that is given by

Zð�Þ ¼
Z

expð��Eðypjxp; ��ÞÞdy: ð6Þ

To improve the performance of the current classifier,
AES incrementally expends the training data set by
maximizing information gain of the classifier. The useful-
ness of a new example ðxiþ1; yiþ1Þ can be determined by
measuring the information gain of the classifier when we
add the new example to the training data Di. Let Pið��Þ and
Piþ1ð��Þ be the probability distributions of the parameters
before and after receiving the example, respectively.
According to the information theory, the difference between
Pið��Þ and Piþ1ð��Þ is given by

IðPiþ1; PiÞ ¼
Z
Piþ1ð��Þ ln

Piþ1ð��Þ
Pið��Þ

d��: ð7Þ

The greater value of IðPiþ1; PiÞ means less resemblance
between the two distributions and more information gain
about ��. Thus, for the given fixed distribution Pið��Þ, the
maximum information gain is achieved by maximizing the
difference between Piþ1ð��Þ and Pið��Þ.

Considering the relation between (4) and (5), we can
maximize this IðPiþ1; PiÞ by selecting the example with
which we can have the greatest EðDiþ1j��Þ to the current
parameters �� when we add it to Di. Hence, the example
that maximizes

�Eiþ1 ¼ EðDiþ1j��Þ � EðDij��Þ ð8Þ

is useful to improve the performance of the current
classifier. Also, the training method should be able to
reduce the error to the level of desired accuracy.

We can find the most useful example by inputting the
rest of total training examples to the partially trained
classifier, computing their errors Eðypjxp; ��Þ, and selecting
the kth example satisfying

Eðykjxk; ��Þ ¼ max
p
fEðypjxp; ��Þg: ð9Þ

As an error function Eðypjxp; ��Þ, we can use the sum of
squared errors between the desired output yp and the actual
output fðxp; ��Þ of the trained classifier. Therefore, we can
define the usefulness of an example ðxp; ypÞ as

e�ðxpÞ ¼
Eðypjxp; ��Þ

dimðypÞ
¼ 1

m

Xm
i¼1

ðypi � fiðxp; ��ÞÞ2; ð10Þ

where m indicates the number of target classes and fi
denotes the output prediction value of the ith target class.

According to the definitions we made in (9) and (10), an
example is the most useful if it causes the largest error on

the current classifier.

3.2 Learning by Active Example Selection

AES is an active and incremental learning method to solve the
imbalanced data problem. Fig. 1 depicts the overview of the

AES process. Training setD is defined to be the set of data that
are currently used to train a classifier. The rest of given

examples is called the validation setV .D andV are initialized

with a small set of randomly chosen seed examples and the
rest of the given training examples, respectively.

The AES process is an iterative procedure that includes a

training phase and an example selection phase. In the

training phase, the model parameter �� is updated using
only the examples in the training set D. In the example

selection phase, the examples in the current validation set V
are tested by computing the usefulness e��ðxpÞ of the

examples (10) with respect to the current model ��. If

jV j > �, then � numbers of the most useful examples ðxq; yqÞ
are selected from the validation set V and are moved to the

training set D. Otherwise, all examples in V are selected
into D. Using the updated training set D and validation set

V , the next cycle of training and selection is done. AES will
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Fig. 1. An overview of the active example selection process.



terminate training when the specified performance level is
achieved or the validation set V is empty. Note that the
classifier has been generalized correctly to the validation set
V if the algorithm halts with nonempty V .

Fig. 2 illustrates an example of AES in the binary and
linearly separable classification problem. We set the para-
meters as the number of initial training example per class¼ 1
and the number of incremental chunk size ð�Þ ¼ 2. In this
figure, circles and triangles represent examples in the
majority class and the minority class, respectively. Also, solid
rectangles and empty rectangles represent examples in the
current training set D and examples in the validation set V ,
respectively. Among the validation set V , shaded rectangles
represent selected useful examples. In Fig. 2, we set an initial
training example from each class (a solid circle and solid
triangle). Then, we build a classifier using two initially
selected examples and iteratively selected two examples (two
shaded circles) based on (10) from the validation set V ½t ¼ 1�.
After t ¼ 1 stage, we update the classifier with the recently
selected examples, validate the current classifier with the
validation set V , and select the next two examples (two
shaded triangles) ½t ¼ 2�. We iterate this procedure until the
terminate criteria is satisfied.

4 ENSEMBLE LEARNING BASED ON ACTIVE

EXAMPLE SELECTION (EAES)

In this section, we describe EAES and the incremental naı̈ve
Bayes classifier that is a base learner of EAES in detail. We
combine the ensemble learning method with AES to avoid
biased decisions to address possible variations of the
resulting model that is caused by the composition of
selected examples.

4.1 The Proposed Method: EAES

AES resolves the imbalanced data problem nicely by
iteratively selecting useful examples and updating a current
classifier. An output classifier is resulted from the initial
training examples that are just a small part of the entire
training data. However, since used examples cover a part of
sample space, slight changes to the initial training data may
easily lead to changes in the output model. Therefore, we
improve the classification performance of AES by using the
ensemble learning method (EAES). Ensemble learning
methods combine multiple models and use them as a
committee for decision making. While doing so, the

ensemble learning method increases memory and computa-
tional cost. Nevertheless, the ensemble learning method
mostly increases prediction performance over a single
model, because it reduces the variance of prediction errors
and avoids biased decisions [19].

EAES builds an ensemble of component classifiers
learned with different composition of training data that is
derived from AES. Since each component classifier is
trained with different compositions of initial training
examples, diverse subsets of the original training data are
used for training each component classifier. Each of the
component classifiers covers a different part of sample
space. Thus, the resulting ensemble model can improve
generalized prediction performance.

EAES works similarly to bagging that is a popular
ensemble learning method that uses different subsets of
training data with a single learning method. However, there
are two differences between EAES and bagging. EAES uses
training subsets that are derived from AES with different
compositions of the initial training examples. On the other
hand, bagging uses randomly selected examples with
replacement until the number of the selected examples is
equal to the number of the original training set. Also, since
the selected examples from AES are the strict subset of the
original training data, they do not contain duplicates of the
original training set. On the other hand, bagging generates a
training set that contains some redundant examples.

For making the final decision, we use the weighted
voting policy in EAES. In detail, EAES computes the final
decision using the weighted sum of classification results
with prediction probability distribution and weights de-
rived from classifiers’ training performance.

The EAES algorithm can be pseudocoded as shown in
Fig. 3. As depicted, EAES trains K component classifiers
based on AES using randomly selected initial training
data. In this paper, we use the incremental naı̈ve Bayes
classifier as a base learner of AES (we describe this in the
following section).

After that, EAES binds K component classifiers from
K different training subsets to make a final classification
result. EAES calculates the prediction result using weighted
voting.

Let x be a query example, and ��iði ¼ 1; . . . ; KÞ be a
parameter vector of the ith component classifier from AES.
To get the target class of the query example x, we can
calculate it as follows:
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Fig. 2. An illustrative example of incremental growth of the training set D
and changes of a trained model (depicted as a curve between two
groups) in the binary and linearly separable classification problem.

Fig. 3. Pseudocoded EAES algorithm.



fðxÞ ¼ arg max
c2C

XK
i¼1

�iPiðcjx; ��iÞ; ð11Þ

where �i is calculated based on the training error rate "i of
the ith component classifier of the form

�i ¼
expð�"iÞPK
i¼1 expð�"iÞ

: ð12Þ

4.2 Base Learner: Incremental Naı̈ve Bayes
Classifier

The AES can be applied as a wrapper learner of classifica-
tion algorithms that produces a predicted class with a
confidence value. The AES performs well with classification
algorithms which have a small number of parameters and
takes a short training time. Since AES expands the training
data by the iterative procedures of training and validating a
classifier, classification algorithms that can be implemented
using an incremental learning procedure are very suitable
as a base learner for AES. We define that a learning task is
incremental if the training examples become available over
time and are usually used one at the time. We also define
that a learning algorithm is incremental if, for any given
training sample x1; . . . ; xn, it produces a sequence of
hypotheses h0; h1; . . . ; hn, such that hiþ1 depends only on
hi and the current example xi [20]. In this paper, we use the
incremental naı̈ve Bayes classifier as a base learner of AES.

The naı̈ve Bayes classifier is a simple probabilistic
classifier based on Bayes’ theorem. In particular, the naı̈ve
Bayes classifier assumes that the predictive attributes are
conditionally independent of the given class and it
hypothesizes that no hidden or latent attributes influence
the prediction process [21]. These assumptions make the
classification algorithm efficient. Let c be the random
variable denoting the class of an example and let x be an
observed example. Also, let xi represent the ith attribute of
x. The naı̈ve Bayes classifier selects the class label c� with
the maximum probability that is calculated according to the
following equation:

c� ¼ arg max
c2C

P ðcjxÞ: ð13Þ

Using Bayes’ theorem, we can rewrite this equation as

c� ¼ arg max
c2C

P ðcÞP ðxjcÞ
P ðxÞ : ð14Þ

Since the denominator P ðxÞ is the same for all classes and
does not affect the relative values of their probabilities, we
can ignore it. Then, we can have

c� ¼ arg max
c2C

P ðcÞP ðxjcÞ: ð15Þ

P ðxjcÞ can be decomposed into the product of
P ðx1jcÞ; . . . ; P ðxajcÞ, since we assume the conditional inde-
pendency among attributes x1 through xa given the class.
Therefore, we can get the final formula for the Naı̈ve Bayes
classifier as

c� ¼ arg max
c2C

P ðcÞ
Y
j

P ðxjjcÞ: ð16Þ

The final MAP (Maximum a Posteriori) decision rule (16)
predicts the most probable class of a given example x. All

class priors P ðcÞ and attribute conditional probability
distributions P ðxjjcÞ can be approximated using the relative
frequencies in training data. Each of the P ðcÞ can be
estimated by counting the frequency of each target value c
in the training data. To compute the conditional probability
in the case of nominal attributes, we only need to maintain a
counter for each attribute value and for each class. In the
case of continuous attributes, we can assume a particular
distribution for the values of attribute or discretize the
attribute in a preprocessing phase.

Despite its naı̈ve design and oversimplified assumptions,
the naı̈ve Bayes classifier shows good performances in many
complex real-world problems. Moreover, the naı̈ve Bayes
classifier requires a small amount of training data for
parameter estimation. Since independent attributes are
assumed, only the variances of the attributes of each class
need to be determined and not the entire covariance matrix.
All the probabilities required to solve (16) can be computed
from the training data with one step. As a result, it leads to low
computational cost and relatively low memory consumption.

Another interesting aspect of the algorithm is its easy
implementation in an incremental fashion because only
counters are used. The naı̈ve Bayes classifier builds a table
for each attribute. The table reflects the distribution on the
training data of the attribute values over the classes. The
incremental naı̈ve Bayes classifier is initialized with zero
training examples. Then, it can learn incrementally using
one example at a time by updating the tables. The trained
incremental naı̈ve Bayes classifier can be utilized by
calculating the class membership probabilities for the given
test example based on the tables.

AES works well with the incremental naı̈ve Bayes
classifier because it has a small number of parameters to
be tuned and spends a short training time. In addition,
incremental learning algorithms [20] are very suitable for
being incorporated with iterative procedure of AES.

5 EVALUATIONS

In this section, we present the empirical results that show the
performance of AES and EAES with imbalanced biomedical
data. We also analyze the experimental results here.

5.1 Data Sets and Experimental Setup

We perform empirical experiments using six real-world
biomedical benchmark data sets: hepatitis clinical data
(Hepatitis) [24], [25], voice data of Parkinson’s disease
(Parkinson) [26], diabetes clinical data (Diabetes) [27],
image data of prognostic breast cancer (WPBC) [28], image
data of cardiac disease (SPECT) [13] from UCI machine
learning repository [22], and public leukemia microarray
data (Leukemia) [23].

We focus on the binary classification problems in this
paper. The overview of the used data sets for the experiments
is given in Table 1. As the data preprocessing steps continue, a
range of numeric attributes in the data set is discretized into
nominal attributes for the naı̈ve Bayes classifier.

To investigate the performances of the proposed AES
and EAES, we conducted experiments to compare

1. the naı̈ve Bayes classifier algorithm (NB),
2. NB with RUS,
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3. NB with AES,
4. ensemble of RUS (ERUS), and
5. ensemble of AES (EAES).

Since AES produces a subset of the training set, we compare
the performance of AES with that of RUS that produces a
randomly undersampled subset of the training set. We
choose RUS because it generally shows better performance
than new intelligent approaches [7]. EAES is an ensemble
method based on AES; thus, we compare the performance of
EAES with that of ERUS that is an ensemble method based
on RUS. ERUS is chosen because it was used to solve many
biomedical imbalanced data problems [16], [17]. RUS and
ERUS are incorporated with the naı̈ve Bayes classifier. To
shorten training time, AES and EAES are incorporated with
the incremental version of the naı̈ve Bayes classifier.

The parameters of the AES procedures are set for all data

as follows: the number of initial training example per class

is 1 and the incremental example size is 2. In the ensemble

learning (i.e., ERUS and EAES), the number of component

classifiers is set to 15.
To evaluate the performance of classification methods,

AUC (Area under the ROC Curve), overall accuracy, and
true positive rate are used. When a data set is highly
skewed, the overall accuracy tends to be overwhelmed by
the prediction power of the majority class. In this case, the
comparison of the overall accuracy is very much mislead-
ing. Because of this, we used the AUC that gives balanced
evaluation by measuring both positive and negative classes
with equal weights. For the imbalanced data problem, the
AUC has been widely used as a performance evaluation
measure. In addition, we use the true positive rate (TPR) as
an evaluation measure which represents the classification
performance per class. The true positive rates are computed
by the ratio of correctly predicted examples of a class
among all available examples of the class during the test.

To estimate the general performances of AES and EAES,

10-fold cross validations were executed for each combination

of six data sets and five learning strategies. We averaged the

performance of the total runs for each combination with

standard deviation. The results are shown in Tables 2, 3, 4, 5,

6, and 7.

5.2 Evaluation of the Results

In this section, we examine how AES works in imbalanced

biomedical data sets and evaluate the performance of AES

and EAES by comparing them with other methods.
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TABLE 1
Overview of Data Sets

TABLE 2
The Data Efficiency of AES Training

TABLE 3
The Correlation Analysis between False Negative Rate and the

Number of Added Examples

TABLE 4
The Comparison of AUC



5.2.1 Characteristics of AES on Imbalanced Data

To characterize the learning procedure of AES, we

investigate learning curves of AES and patterns in selected

examples during training a classifier using AES.
Fig. 4 demonstrates examples of training, validation, and

test curves of AES. The plots show AUC performances of

each iteration step which are drawn with total training set

Dþ V , validation set V , and independent test set. These

curves are from one of 10 runs for each data set. In the early

stage of incremental learning, the first approximation may

be not satisfactory. However, the next set of useful

examples can be selected using this knowledge. The

selected examples may cause oscillations in learning curves.

However, the learning curves are improved steadily as
iterations go on. When the AES learning is terminated, the
validation AUC converges into 1. Even though the learned
classifier based on AES seems to be overfitted to the
validation set, as we can see in Fig. 4, the classifiers are not
overfitted to the total training set.

The iterative procedure of AES learning can be termi-
nated when the validation data are exhausted or there is no
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TABLE 5
The Comparison of Accuracy (Percent)

TABLE 6
The Comparison of True Positive Rate per Class (Percent)

TABLE 7
The Effects of Incremental Learning Strategy Execution Time (Seconds)

Fig. 4. The learning curves of AES with six real imbalanced biomedical data sets. Solid lines in graphs represent the validation performance with
validation sets ðV Þ, dashed lines represent the training performance with total training sets ðDþ V Þ, and dotted lines represent the test performance
with independent test sets.



misclassified example in the validation data. However, all
classifiers derived from 10-fold cross-validation with six
data sets are terminated in case with the absence of
misclassified examples in the validation set. Table 2 shows
data efficiency of AES training. Table 2 indicates the
average number of original training examples except test
examples as well as the average number of the used
examples for the last training iteration of AES in 10-fold
cross validation. The data efficiency percentages of AES
(i.e., the percentage of the number of used examples for
training to the number of original training examples) range
from 16.7 percent to 43.9 percent. By the active example
selection process, AES effectively excludes the less im-
portant or redundant training examples. Table 2 also
depicts changes of the imbalance ratios between the
original training data sets and used examples with the
AES method. Most methods to solve the imbalanced data
problem are balancing the training data distribution.
However, the AES method does not consider the balance
of class distribution but only consider the prediction
performances. Hence, the imbalance ratios of used exam-
ples in Table 2 are not always decreased.

The false negative rate indicates that the proportion of
positive examples was erroneously classified as negative.
If a class has a high false negative rate, then it indicates
that the training of the class has not been completed. To
characterize the AES operation for handling the imbal-
anced data problem, we conduct a correlation analysis
between the number of added examples and false negative
rate on an iterative AES learning process as shown in
Table 3. By investigating the correlation between the
number of added examples and false negative rate for
each class, we can verify whether the weakness of the
current classifier is reflected when the active example
selection incrementally expands training examples or not.
Note that the range of a number of added examples is
from 0 to 2 and the range of false negative rate is from 0 to
100. Even though the ranges of the two attributes are very
different, the correlation analysis results using Pearson’s
correlation coefficients show relatively high positive
correlations between them in most cases. The positive
correlations indicate that the AES procedure identifies the
weakness of the current classifier and adds useful
examples of a high error score to the current classifier
regardless of the original class distribution.

When we run the procedure of AES repeatedly, the
classifier is improved efficiently using an even small subset
of the training data set. As a consequence, AES resolves the
imbalanced data problem by selecting useful examples
based on information gain of the current classifier.

5.2.2 Discussions on Performance Comparisons

To show the effectiveness of the proposed AES and EAES
methods, we compare the prediction performances of five
methods (i.e., methods we describe in Section 5.1.2) with six
imbalanced biomedical data sets (i.e., data sets we describe
in Section 5.1.1).

From the experimental results, we find interesting
issues to discuss. First, we argue that our EAES and AES
mitigate the imbalanced data problem and achieve super-
ior classification performances compared to RUS and

ERUS. The improvement in AUC by 0:04-0:15 implies that
EAES effectively deals with the imbalanced data problem
(Table 4). The AUC of EAES is higher than that of AES,
and it indicates that the proposed EAES reduces the
possibility of distorting the data distribution. The distor-
tion is caused by training a model using a subset of total
data. Also, the improvement in accuracy by 3.3-14.6 percent
implies that EAES upgrades the general performance of
the output classifier by employing several classifiers as a
decision committee (Table 4).

Second, our empirical study shows that a real imbal-
anced data problem is not an imbalanced class distribution
but an imbalanced amount of information. In terms of true
positive rate per class, the majority class does not always
achieve higher prediction performance than the minority
class as shown in Table 6. In the Parkinson and SPECT data
sets, the true positive rate of the majority class is lower than
that of the minority class. When the true positive rate of a
majority class is not good, AES selects more examples of the
class regardless of balancing the training data distribution
(Table 2). By adding useful examples to the current
classifier, AES effectively strengthens the current existing
classifier and improves the prediction performance of each
class. In addition, we can achieve better prediction
performance in almost every case by combining ensemble
learning with AES.

Third, by adopting the incremental learning algorithm,
AES can simply update the current model with the selected
examples without training all the examples repeatedly. As a
result, we make the training time of AES shorter than the
time of the iterative batch learning algorithm (Table 7).
Since EAES includes several component classifiers that are
trained based on the iterative AES procedure, the overall
computational cost of EAES is strictly reduced by using the
incremental learning algorithm. When a data set has a large
number of attributes (e.g., microarray data—leukemia data
set in Table 7), the incremental version of the naı̈ve Bayes
classifier strictly shortens the execution time.

Finally, our proposed methods outperform RUS and
ERUS. They show slightly improved AUC by at most 0.03
(Table 4) and no improvement in the classification accuracy
(Table 5). In terms of true positive rates of RUS and ERUS,
the classification performance on the majority class is rather
decreased by �5:2-� 9:9 percent (Table 6). We presume that
performance degradation on the majority class may be
caused by the information loss by randomly discarding the
majority class examples.

As we listed above, we found several reasons to verify
that our proposed method outperforms the current imbal-
anced data problem solving methods by analyzing the
results of our experiments. Even though experimental data
sets are not covering every imbalanced data problem that
exists currently, we believe that the current experiments are
enough to show the effectiveness of our prosed methods.

6 CONCLUSION

In this paper, we described our AES and ensemble
learning method based on AES (EAES) to solve the
imbalanced data problem. Since some classes are not
trained well when data are imbalanced, the imbalanced
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data cause serious performance degradation for the
classification. Examples in the imbalanced data may
redundantly exist or some of them are less useful. Our
AES solves the imbalanced data problem by iteratively
collecting the useful training examples from the entire
training data as well as by excluding redundant or less
useful examples. By doing so and by learning a classifier
using informative examples, AES can effectively mitigate
the performance degradation caused due to the imbal-
anced data problem. To avoid biased decisions that may
come from the composition of selected training examples,
we introduce the ensemble learning method to AES
(EAES). For speeding up the iterative AES procedure, we
also adopt an incremental version of the naı̈ve Bayes
classifier algorithm.

To verify the effectiveness of our AES and EAES, we
experiment with six real-world biomedical data sets, and
the empirical results show that EAES and AES perform
better than RUS and ERUS that are currently the most
popular imbalanced data solving methods, and they strictly
improve prediction performance.

While we analyzed the results, we found that the most
important factor for improving classification performance is
not balancing the number of examples between classes, but
balancing amount of information which can be used in
training. In other words, it is important to select and utilize
informative examples when you have an imbalanced data
problem. In the results, we can see that AES and EAES
improve the prediction performance, while the imbalance
ratios of used examples are not always decreased.

We expect that our EAES and AES can be applied to
other real-world data mining applications, where we suffer
from the imbalanced data problem. Also, our EAES can be
used to identify discriminative or representative examples
of some classes by investigating selected training examples
that commonly appear among various AES runs.
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