
Ad-UDDI: An Active and Distributed Service Registry

Zongxia Du1, Jinpeng Huai1, Yunhao Liu2

1School of Computer Science
Beihang University, Beijing, P. R. China

duzx@act.buaa.edu.cn,
2Dept. of Computer Science

Hong Kong Univ. of Science and Technology, Hong Kong
liu@cs.ust.hk

Abstract. In SOA (Service Oriented Architecture), web service providers use
service registries to publish services and requestors use registries to find them.
The major current service registry specifications, UDDI (Universal Description,
Discovery and Integration), has the following drawbacks. First, it replicates all
public service publications in all UBR (Universal Business Registry) nodes,
which is not scalable and efficient, and second, it collects service information
in a passive manner, which means it waits for service publication, updating or
discovery request passively and thus cannot guarantee the real-time validity of
the services information. In this paper, we propose an active and distributed
UDDI architecture called Ad-UDDI, which extends and organizes the private or
semi-private UDDIs based on industry classifications. Further, Ad-UDDI
adopts an active monitoring mechanism, so that service information can be up-
dated automatically and the service requestors may find the latest service in-
formation conveniently. We evaluate Ad-UDDI by comprehensive simulations
and experimental results show that it outperforms existing approaches signifi-
cantly.

1 Introduction
 Web services based on service-oriented architecture (SOA) provide a suitable tech-
nical foundation for interoperability and integration of applications [1, 2]. To make
the web services accessible to users, service providers describe their interfaces with
WSDL [3] and publish the description to service registries, so that service requestors
may find them conveniently[4]. As a result, service registries play an important role
in SOA. Most today’s service registries comply with UDDI [5] (Universal Descrip-
tion, Discovery and Integration) specifications, whose initial focus was geared to
working as UBR (Universal Business Registry), a master directory for all public web
services. However, Su Myeon Kim et. al. showed their observations on public web
services [6] on the monitoring result about UBR, in which only 34% of the Web Ser-
vice (WS) are valid. Here a ‘valid’ WS (Web Service) means a WS with a URL
where a WSDL file is retrievable. Furthermore, a large portion of the downloaded
WSDL files are invalid due to syntax errors. On the other side, very few organiza-
tions update their service information after their first publication.

We have following observation on current UDDI service registry in SOA. First, it
replicates all web service publications in all UBR nodes, which is not suitable for the

large number of services. Second, it collects service information in a passive manner,
which means it waits for service publication, updating or discovery request passively.
Consequently, the real-time validity of the service information is not guaranteed.

In this paper, we propose an active and distributed UDDI architecture called Ad-
UDDI, which extends and organizes the private or semi-private UDDIs based on
industry classifications. Further, Ad-UDDI adopts an active monitoring mechanism,
so that service information can be updated automatically and the service requestors
may find the latest service information conveniently. We evaluate Ad-UDDI by com-
prehensive simulations and experimental results show that it outperforms existing
approaches significantly.

The rest of this paper is organized as follows. Section 2 presents an overview of
related works. Section 3 introduces the design of Ad-UDDI. We show our experi-
mental results in Section 4 and conclude this work in Section 5.

2. Related work
Flexible resource management is a key point for the collaboration between partners.
Traditional centralized resource management framework have limitations both in their
failure tolerance and scalability[7]. Recent years, there are more and more attention
changed to the distributed framework[8, 9] for scalability and flexibility.

UDDI v3.0.2 released in 2004 recognizes the needs for multiple registries, as well
as the interactions among registries [5]. Due to the large number of registries focusing
on various interests, service publication and discovery becomes challenging. In addi-
tion, UDDI v3 provides subscription mechanisms to enable affiliate registry to obtain
change information of a root registry, but there is no approach to get the real status of
the services except waiting passively for the updating requests from providers.

In ADS (Advertisement and Discovery of Service Protocol) issued by IBM[10],
service descriptions are collected by UDDI crawler rather than being manually pub-
lished by providers. The design of crawler borrows the idea from the web search
engine and sets the file, svcsadvt.xml, to the root of Web Server. When a crawler
finds such a file, it collects the corresponding service information of the web site.
However, when the web crawler goes ahead according to the hyperlink in the web
page, there is no hyperlink information in the web service description. Therefore, the
diffusing of crawler is much difficult. UDDIe [11] is an extended registry for web
services, which exploits the lease time of each service to ensure the availability of
service information in registries. However, the lease time and availability of service is
dependent on the relationship established in advance between UDDIe and the service
providers, and there is no method for checking the real availability of services.

MSWSDI [12] is a part of the ongoing METEOR-S [13] project. It is a scalable
P2P registry infrastructure for semantic publication and discovery of web services. It
employs an ontology-based approach to organize the registries and enable domain-
based semantic classifications for all web services. Each of these registries supports
semantic discovery of the web services. In MSWSDI, the relationship among the
registries is managed based on a Registries Ontology. Because the Registries Ontol-
ogy needs specific management and maintenance, the organization of the registries is
not trivial. Authors in [14] proposed a federated architecture for P2P web-services, in
which a federation for UDDI-enabled peer registries is employed in a decentralized

fashion. Service providers publish their services on a centralized UDDI and then join
service syndication. Obviously, a single point of failure cannot be avoided. Also, no
mechanism is designed for getting real status of services.

3. Design of Ad-UDDI
In this section, we introduce Ad-UDDI active monitoring mechanism and its dis-

tributed architecture.

3.1 Design of Active Monitoring

The validity of service information in registries is of great importance. However,
due to the fact that few organizations update their published information in registries
on time [6], a certain mechanism has to be applied to monitor the service status and
update the information in registries automatically.

In this design, a registry server, called Ad-UDDI server, checks the real time status
of services and collects the service information periodically. The state chart of the
Ad-UDDI server, as shown in Fig.1, consists of three states, Normal, Update, and
Monitor. In the Normal state, the Ad-UDDI server waits for periodically monitoring
triggers or incoming requests. In the Monitor state, the Ad-UDDI server initiates a
monitoring request to the service provider. In Update state, the Ad-UDDI server
updates the service information in it based on the returned messages from providers.

Once triggered by a timer, the Ad-UDDI transfers from the Normal to the Monitor
state and starts checking the real status of services. If the monitored service has not
been updated yet, the Ad-UDDI returns to the Normal state triggered by a ‘nonUp-
date’ message. If the monitored service is updated, the Ad-UDDI transfers from the
Monitor state to the Update state, executes the information updating process. After
that, the Ad-UDDI returns to the Normal state again. Another way, the Ad-UDDI in a
Normal state transfers into the Update state if it is requested by the providers.

Figure 2 illustrates the interaction process of the active monitoring mechanism.
The Ad-UDDI server sends a ‘Monitor’ message to a service provider periodically,
containing the registered service name, service key and service version. The service
provider checks each item in the ‘Monitor’ message with its own. To simplify the
handling process and reduce the load, only service name, key and version are com-
pared. If they are identical, a message of ‘nonUpdate’ is returned. Otherwise, new
service information is sent to the Ad-UDDI server via a ‘save_Service’ message. On
receiving a ‘nonUpdate’ message, the Ad-UDDI server terminates the present moni-
tor thread. On receiving a ‘save_Service’ message, the Ad-UDDI server conducts the
service updating process. If there is no message returned within given time period, the
service is considered to be unavailable and the Ad-UDDI server will step into ‘Up-
date’, claiming the unavailability of the service.

MonitorUpdate

Triggered by
Timer

Triggered by Update
Info

Triggered by
Update
Request

Update
finished

Normal

No update

Fig.1. The statechart of Ad-UDDI

Monitor(serviceKey,
serviceVersion,...)

Check if service is
updated

No

Yes

Check the Received
Message (RM)

No
response
message

nonUpdate

Save_service
（newServiceInfo）

’nonUpdate’

Updated
service Inf.

Ad-UDDI Service
Provider

Update Availability
to ‘false’

Update ServiceInfo
to newServiceInfo

Fig.2. The interaction process of active monitoring

It is noteworthy that an unavailable service might be caused by a network failure,
a temporal invalidation of the provider’s server, or the undeployed service. Therefore,
we should deal with the unavailable service based on the service monitoring strate-
gies, instead of a simple deletion. In our implementation, monitoring strategy is often
as follows: 1) service information is to be cancelled after 10 times of monitoring
without any returned message; 2) on receiving a returned message, the Ad-UDDI
updates the service information accordingly and resets the service as available; 3) on
receiving a service discovery request, the Ad-UDDI server searches in available ser-
vices only.

3.2 Design of Distributed Architecture

The Ad-UDDI adopts a three-layered structure of distributed service registry, as
Fig. 3. The top layer is the root registry layer, in charge of managing the Ad-UDDI
service information. The root is a special Ad-UDDI server, in which every Ad-UDDI
server in the middle layer publishes its own information as a web service. In addition,
we do not let this layer publish and monitor business services so as to reduce its work
load. The middle layer is the business service registry layer, in which all Ad-UDDI
servers are initiated following GICS (Global Industry Classification Standard) [15].
Normally, the business services belonging to a classification are registered in corre-
sponding Ad-UDDIs and multiple industry classification services may be registered
in one Ad-UDDI. The bottom is the service layer, in which every service publishes
their information to one or more Ad-UDDI based on to their service type and industry
classification.

The solids in Fig. 3 show the publishing relationship, such as business services
publish their information to the corresponding Ad-UDDI and Ad-UDDIs publish
their information to the root. The dash lines in the middle layer denote the neighbor-
ing relationship, such as Ad-UDDI 1, 2 and 4 have established the neighboring rela-
tionship according to their classification (Transportation). The dash lines in the bot-
tom layer show the interaction relationship between services.

There are mainly five operations in such distributed architecture, including adding
and closing of an Ad-UDDI, Ad-UDDI neighbor maintenance, service querying, and
service updating.

Root

Ad-UDDI-1
（Transportation）

Ad-UDDI-3
（CustomerServices）

Ad-UDDI-5
（CustomerSe

rvices）
Ad-UDDI-2

（Transportation）
Ad-UDDI-4

（CustomerServices/
Transportation）

Root Registry Layer

Business Service
Registry Layer

Service Layer

Fig.3. The distributed architecture

a) Adding a new Ad-UDDI
In case of adding a new Ad-UDDI, it sends its basic information to the root regis-

try, and search in the root registry for other Ad-UDDIs in the same industry classifi-
cation. The new Ad-UDDI then requests to establish neighboring relationship with
existing same category Ad-UDDIs. When a request is granted, the two Ad-UDDIs
record the other side’s information. Finally, once the neighboring relationship is set
up, the publishing and discovering of services are performed within the middle layer
without accessing to the root. Therefore, while the root is a single point of failure, it
does not impact the publishing and discovery of web services. In that case, only add-
ing a new Ad-UDDI will be fail. The related interaction protocol is shown in Fig. 4.
b) Closing an Ad-UDDI

In case of closing an Ad-UDDI, the following four modes are possible in this de-
sign: 1) to close an Ad-UDDI directly, discarding all service stored without contact-
ing the root registry; 2) discard all service information but inform the root registry of
its unavailability; 3) transfer all service information to its neighbors before leaving
without informing the root; 4) move all service information to neighbors, sends a
closing request to the root registry, and waits for permission. Obviously, the com-
plexities of above four modes increase in order. In our design, an Ad-UDDI might be
closed by anyone of them. Although the fourth one is usually encouraged, the first
mode is used when an Ad-UDDI fails to connect with the root registry center due to
the network failure. Figure 5 illustrates the fourth mode interaction protocol.

New Ad-UDDI Root
Other Ad-UDDI in
The same industry

"Publish" as service

Successful Ack

Resultset

"Ping"

"Pong"

Neighoring
relationship
esteblished

"Query" Ad-UDDIs with the same industry

Closing Ad-UDDI Neighbor Service Provider

Request for relegate

The Number of taking over

Request for agree relegating

Agree

Relegated Service Infomation

Acknowledge

Notify relegated

Fig.4. The interaction protocol of adding

an Ad-UDDI
Fig.5. The interaction protocol of clos-

ing an Ad-UDDI

c) Neighbor Maintenance
Neighboring relationship among the Ad-UDDIs is established when a new mem-

ber joins. When an existing member leaves, it is possible that it does inform its
neighbors. In this design, we require the root registry center monitors the status of all
Ad-UDDIs and broadcasts the updated information to all Ad-UDDIs in the same
category using the subscription method in UDDI v3.
d) Service Querying

Each Ad-UDDI maintains the service information published in it and deals with the
service query from service requestors. To improve the service querying efficiency,
each Ad-UDDI caches the recent searching results. On receiving a service query, an
Ad-UDDI looks up its cache repository. If the desired service is found, the Ad-UDDI
returns the result to the requestor and terminates the query. If there is no target found,
the Ad-UDDI goes on querying in local and neighboring repositories, and then stores
the querying results into local cache after returning the results to the requestor.
e) Diffused Updating of Service Information

In this distributed structure, the updating of the service information is extended to
all neighboring Ad-UDDIs whose local caches have cached related service informa-
tion. This procedure is called the diffused updating of the service information.

With both the diffusing updating and the active monitoring mechanism, the state-
chart of the Ad-UDDI in Fig. 2 is extended into the one shown in Fig. 6. Having
updated the service information locally, the Ad-UDDI broadcasts an updating mes-
sage to its neighbors, so that the neighboring Ad-UDDIs can update corresponding
information in their caches.

3.3 Implementation Experiences

The implementation of Ad-UDDI prototype server contains four repositories, i.e.
the Local Service Information Repository (LSIR), the Local User Information Re-
pository (LUIR), the Neighbor Ad-UDDI Information Repository (NAIR) and the
Cached Service Information Repository (CSIR), as illustrated in Fig. 7. The LSIR and
the LUIR are similar with those in UDDI servers. The NAIR and the CSIR are im-
plemented purposely for the Ad-UDDI. The NAIR holds the information of neighbor-
ing Ad-UDDIs. The NAIR stores the neighbor’s name, its access point, its industry
classification, etc. The CSIR caches the service information which has been queried
by requestors before. The major functional blocks to manage the information in the
repositories are as follows.

MonitorUpdate

Triggered by
Timer

Triggered by Update
Info

Triggered
by Update
Request

Update
finished

Normal

No update

Broadcast
updating

Broadcast
finished

Fig.6. The extended statechart of Ad-UDDI

Local service Inf.
Manager

User
Manager

Cached Service Inf.
Manager

Active Monitor

Diffusing
Updater

LSIR

CSIR

LUIR

Ad-UDDI
server

Scheduler

Diffusing
Querier

NAIR

Fig.7. The architecture of Ad-UDDI server

User Manager manages the information of the service providers and requestors
registered in current Ad-UDDI. It accepts registration requests from new users, up-
dates the information for registered users, and implements access control.

Scheduler invokes managers according to requests (such as publishing / querying).
Local Service Information Manager publishes the service information to the local

service repository, queries the service information in local repository and updates
information in local repository.

Active Monitor connects the service providers who published their services in this
Ad-UDDI, monitors the real-time service status, and updates the service information.

Cached Service Information Manager manages and maintains the CSIR, and
caches the returned queries. On receiving a query requests, it searches in the CSIR for
the matched service. It also guarantees the synchronization of the information. At last,
it manages the cache size. When too much information is cached, the least recently
requested ones will be deleted.

Diffusing Updater performs the information synchronization among the Ad-
UDDIs. When the information of LSIR is changed, it propagates the information to
the neighbors according to the information in the NAIR to update the cached service
information of other Ad-UDDI servers. When updating requests come, it forwards the
request to the Cached Service Information Manager for updating.

Diffusing Querier propagates the service querying requests to neighbors.

4. Performance Evaluation
To evaluate the performance of the Ad-UDDI approach, we coded a simulator us-

ing Java, in which a certain number of Ad-UDDIs, service providers and requestors
are connected to form a mesh network to simulate the situation of Internet.

We use BRITE [16] to generate topologies up to 2,000 nodes with random con-
nection. The network delay between every two nodes is calculated according to the
shortest path along the physical network topology. Each service is remarked by its
name, key, version, type, access point, etc. In each run, a number of services with
diversified types are deployed into the network.

Each Ad-UDDI in the simulation is able to register the service information in sev-
eral industries, while every industry classification can be registered into several Ad-
UDDIs. We distribute the Ad-UDDIs into finite industries and publish the services
into Ad-UDDIs based on their types. The root is a special Ad-UDDI node, which
only registers the information of the Ad-UDDI services without receiving the publica-
tion of business services. On the other hand, we simulate UDDI as a centralized regis-
try without active monitoring method and all services publish their information to it.
In this section, we introduce our performance metrics, and then the simulation results.

4.1 Performance Metrics

The basic function of the Ad-UDDI is to find available web services matching re-
questors’ demands. To better evaluate the Ad-UDDI design, we use the following
metrics: available rate, success rate, average response time, and total traffic cost.

The Available Rate is defined as the ratio of the requests which successfully find
desired and available services at the first return out of all requests. In real B2B envi-
ronment, the service requestor tends to use the service information directly from the
service registry, so the invalidity of discovered service information is very likely to
cause the crash of B2B applications. Therefore, the available rate is an important
metrics in B2B applications.

The Success Rate is defined as the ratio of the requests which successfully find
desired and available services out of all requests.

The Average Response Time is defined as the average time elapsed from the issu-
ance of a query till a desired and available service is found. If no appropriate service
is found, the query ends after searching all candidate services which have the same
service type with the request.

The Total Traffic Cost is defined as the traffic of messages incurred by queries
and responses. The traffic of monitoring and updating for the Ad-UDDI is also con-
sidered.

4.2 Results

In the first simulation, we apply the active monitoring mechanism, where 1,000
services are distributed into randomly selected nodes. We set 10 Ad-UDDIs as the
registries with 5 industry classifications. We generate 10,000 requests every 3 days to
trace the evolution of the available rate of the queries. The results in Fig. 8 show that
the available rate of information in the registry without active monitoring mechanism
drops to a very low level after 30 days. With the help of AD-UDDI, the available rate
stays in a relatively high level.

0 5 10 15 20 25 30

20

40

60

80

100

Av
ai

la
bl

e
Ra

te
 (%

)

Time (Day)

 UDDI
 Ad-UDDI(Interval = 1)
 Ad-UDDI(Interval = 7)

1.3 1.6 1.9 2.2 2.5 2.8 3.1 3.4 3.7
0

20

40

60

80

100

Query Time (Second)

Su
cc

es
s R

at
e

(%
)

 UDDI
 Ad-UDDI(Interval=1)
 Ad-UDDI(Interval=7)

200 400 600 800 1000
1.75

2.00

2.25

2.50

Av
er

ag
e

Re
sp

on
se

 T
im

e
(S

ec
.)

Number of Nodes

 UDDI
 Ad-UDDI(Interval = 7)

Fig.8. Available rate v.s.
time with 1000 services

Fig.9. Success rate v.s.
Query Time

Fig.10. Response time v.s.
number of services

200 400 600 800 1000
90

95

100

105

110

115
To

ta
l T

ra
ffi

c
C

os
t (

G
B/

30
da

ys
)

Number of Services

 (Ad-UDDI (interval=7))
 (UDDI)

1 7 14 21 28
90

95

100

105

110

115
 Service Number = 100
 Service Number = 1,000

To
ta

l T
ra

ffi
c

C
os

t (
G

B/
30

D
ay

s)

Interval (Day)
Fig.11. Total traffic cost v.s. number of ser-

vices
Fig.12. Total traffic cost v.s. inter-

val
We implement the second simulation to analyze the response time distribution of

the requests. The service number and the Ad-UDDIs number are the same as in the
first simulation. We disperse 10,000 requests in 30 days and record their response
time. Figure 9 plots the success rate against average response time. With an interval
of active monitoring is 1 day, 96% requests get available services within 1.9 seconds.
Without Ad-UDDI design, only 69% requests can get the available ones within such
time period, and more than 15% requests never find available ones. Larger monitor-
ing interval leads to longer response time, but smaller query overhead. Figure 10 plots
the response time against system size. The results show Ad-UDDI design is scalable
when the number of nodes increases.

We then explore the total traffic cost with different service numbers by recording
the cost in 30 days with 10,000 requests. According to Fig. 11, the total traffic cost is
slightly increased with larger number of services. With the same number of services,
the query traffic with Ad-UDDI is much smaller than without active monitoring. In
Fig. 12, we show the relationship between the total traffic cost and the monitoring
interval with 100 and 1,000 services involved respectively. If we set the monitoring
interval as 1 day, there will be a lot of monitoring cost. On the other side, without
monitoring, we save the monitoring messages but more services have to be checked
in order to find an available service, which means the traffic cost of queries will in-
crease. There is an obvious trade-off between monitoring and query traffic.

Combined with Fig. 8, shorter interval between two monitoring process leads to
higher available rate, but brings larger monitoring traffic cost, as shown in Fig. 12.
We can conclude that the weekly monitoring is a good balance between available rate
and the traffic cost.

5. Conclusion
Aiming at resolving the low validity of the public UDDI, we propose an active

and distributed registry, Ad-UDDI, to provide available service information. In this
design, the service information is distributed among multiple registries and thus the
single point of failure and bottleneck in one public UDDI is reduced. In our approach,
the root registry takes charge of managing the Ad-UDDI services without any busi-
ness services, so the burden of root registry is lightened. The distributed architecture
of Ad-UDDI may serve as a basic method of connecting the private or semi-private
UDDIs. With the active monitoring mechanism, the real-time availability of the ser-
vice information in the Ad-UDDI is significantly improved.

∞

(UDDI)

6. Acknowledgement
We thank the anonymous referees for their constructive comments. This work was

supported in part by China NSFC 90412011, by Hong Kong RGC Grants DAG 04/05
EG01, and by Microsoft Research Asia.

References
1. M. Luo, M. Endrei, P. Comte, P. Krogdahl, J. Ang, and T. Newling. Patterns: Service_

Oriented Architecture and Web Services. http://publib-b.boulder.ibm.com/Redbooks.nsf/
RedbookAbstracts/sg246303.html. 2004.

2. D. Booth, H. Haas, and F. McCabe. Web Services Architecture. http://www.w3.org/TR/
ws-arch/. 2004.

3. E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services Description
Language(WSDL) 1.1. http://www.w3.org/TR/wsdl. 2001.

4. Z. Du, J. Huai, Y. Liu, C. Hu, and L. Lei. IPR: Automated Interaction Process Reconcilia-
tion. in Proceedings of the International Conference on Web Intelligence (WI 2005). 2005.

5. L. Clement, A. Hately, C.v. Riegen, and T. Rogers. Universal Description Discovery &
Integration (UDDI) 3.0.2. http://uddi.org/pubs/uddi_v3.htm. 2004.

6. S.M. Kim and M.-C. Rosu. A Survey of Public Web Services. in Proceedings of the 13th
International Conference on the World Wide Web (WWW'04). 2004.

7. M. Cai and M. Frank. RDFPeers: A Scalable Distributed RDF Repository based on A
Structured Peer-to-Peer Network. in Proceedings of the 13th International Conference on
World Wide Web (WWW'04). 2004.

8. W. Hong, M. Lim, E. Kim, J. Lee, and H. Park. GAIS: Grid Advanced Information Service
based on P2P Mechanism. in Proceedings of IEEE International Symposium on High Per-
formance Distributed Computing 2004 (HPDC 2004). 2004.

9. L. Xiao, X. Zhang, and Z. Xu. On Reliable and Scalable Peer-to-Peer Web Document
Sharing. in Proceedings of the 16th International Parallel and Distributed Processing Sym-
posium (IPDPS 2002). 2002.

10. W. Nagy, F. Curbera, and S. Weerawaranna. The Advertisement and Discovery of Services
(ADS) protocol for Web services. http://www-128.ibm.com/developerworks/library/ws-
ads.html?dwzone=ws. 2000.

11. A. ShaikhAli, O.F. Rana, R.J. Al-Ali, and D.W. Walker. UDDIe: An Extended Registry for
Web Service. in Proceedings of Symposium on Applications and the Internet Workshops
(SAINT Workshops 2003). 2003.

12. K. Verma, K. Sivashanmugam, A. Sheth, A. Patil, S. Oundhakar, and J. Miller, METEOR–
S WSDI: A Scalable P2P Infrastructure of Registries for Semantic Publication and Discov-
ery of Web Services. Journal of Information Technology and Management, 2005.

13. A.A. Patil, S.A. Oundhakar, A.P. Sheth, and K. Verma. Meteor-s: Web Service Annotation
Framework. in Proceedings of the 13th International Conference on World Wide Web
(WWW 2004). 2004.

14. M.P. Papazoglou, B.J. Kramer, and J. Yang. Leveraging Web-Services and Peer-to-Peer
Networks. in Proceedings of the 15th International Conference on Advanced Information
Systems Engineering (CAiSE2003). 2003.

15. GICS Structure and Sub-Industry Definitions. http://www.msci.com/equity/
GICS_map2005.xls. 2005.

16. A. Medina, A. Lakhina, I. Matta, and J.W. Byers. BRITE: An Approach to Universal To-
pology Generation. in Proceedings of the 9th International Workshop on Modeling, Analy-
sis, and Simulation of Computer and Telecommunication Systems (MASCOTS'01). 2001.

