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Abstract—This paper is concerned with the stability analysis
for T-S fuzzy control systems. By exploiting the property of the
structure of fuzzy inference engine, an equivalence relation on
index set of the product of fuzzy rule weights is defined. Further,
a new stability criterion is proposed by using the equivalence
relation, and formulated into progressively less conservative
sets of linear matrix inequalities. By using an extension of
Polya’s Theorem, the new criterion is proved to be with no
conservatism for quadratic stability analysis of T-S fuzzy control
systems with a product inference engine and any possible fuzzy
membership functions. A numerical example is given to illustrate
the effectiveness of the proposed method.

Index Terms—T-S fuzzy control systems, stability analysis,
equivalence class, set theory, linear matrix inequalities (LMIs).

I. INTRODUCTION

INCE the terminology of the fuzzy set was proposed

by Zadeh in 1965 [35], it has been found extensive
applications in the areas of industrial and economical systems
and so on. In particular, by constructing Takagi-Sugeno (T-S)
fuzzy models of nonlinear control systems, various systematic
mathematical techniques are successfully developed for guar-
anteeing the stability and performance of nonlinear systems.
T-S fuzzy systems can be viewed as some locally linear time-
invariant systems connected by IF-THEN rules. As a result, the
conventional linear system theory can be applied for nonlinear
control systems.

In recent years, stability analysis and synthesis of T-S
fuzzy systems have been well studied [31], [6], [5], [32],
[4], [34], [30], [37], [21], where quadratic Lyapunov function
approaches [20], [9], [28], [18] are widely employed. Since a
common Lyapunov matrix is used for all local models of fuzzy
systems, the quadratic Lyapunov function approach often leads
to conservative results. Then parameter dependent Lyapunov
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functions (or called fuzzy Lyapunov functions) [24], [11],
[19], [17], [36], piecewise Lyapunov functions [13], [23] and
k-sample variation Lyapunov functions [16] are respectively
proposed for reducing the conservatism introduced by using
quadratic Lyapunov functions. On the other hand, by sharing
the same fuzzy rules with the fuzzy models, parallel distributed
compensation (PDC) control schemes [29] are often used for
designing fuzzy controllers in the existing literature. In addi-
tion, a number of alternative control schemes are also proposed
for less conservative design, such as non-PDC control schemes
[11], [33], switching constant controller gain schemes [10],
local nonlinear feedback control schemes [7] and so on.

The above-mentioned results have made significant progress
in stability analysis and synthesis of T-S fuzzy control systems,
and they are applicable for the T-S fuzzy systems with any
membership function and any fuzzy inference engine, which
implies that they are independent of the actual membership
shape and the choice of fuzzy inference engines. Hence, they
might be conservative if specific knowledge of the fuzzy
membership or fuzzy inference is available, then the properties
of fuzzy membership shapes or fuzzy inference engines are
exploited by many researchers, and some less conservative
conditions for the stability analysis and synthesis of T-S
fuzzy control systems are presented. For example, by incor-
porating shape information in the form of polynomial con-
straints, a stability and performance condition for polynomial-
in-membership Takagi-Sugeno fuzzy systems is proposed in
[27]. A stability analysis condition based on some inequalities
in the form of a p-dimensional fuzzy summation is given in
[25]. By using the property of pseudotrapezoid membership
functions, a class of Lyapunov functions and fuzzy control
schemes depending on dominant fuzzy membership functions
are presented in [8]. By constructing tensor product T-S
fuzzy models and using the property of the tensor product
of membership functions, modelling and control based on
a recursive algorithm are given in [2] and [1], respectively.
By utilizing the extreme points in each partition to address
the constraints of the fuzzy weights and their derivatives, a
switching control law based on the partition is achieved in
[15].

Motivated by the above works, where the properties about
the shape of membership functions or the structure of fuzzy
rule weights are exploited for less conservative conditions,
we will further study the stability analysis problem for T-S
fuzzy control systems by using some new properties of rule
weights with a fuzzy product inference engine. By partitioning
index set of the product of rule weights with the aid of an
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equivalence relation on the index set, a new stability analysis
criterion is acquired and the new criterion is composed of
a family of linear matrix inequalities with progressively less
conservatism. In particular, by using an extension of the
Pélya’s Theorem, it is shown that the criterion is with no
conservatism for quadratic stability analysis of T-S fuzzy
control systems with a product inference engine and any
possible fuzzy membership functions. Moreover, it is proved
that the class of new approaches are not only with less
conservatism but also with a lighter computational burden
than the existing approaches in [20]. The comparisons with
the existing approaches in [29], [20], [9], [24], [28] by a
numerical example further illustrate that the new conditions
have the potential to give less conservative results.

The rest of this paper is organized as follows. Section II
gives some necessary preliminaries on set theory. T-S fuzzy
models are given in Section III. By defining an equivalence
relation on index set of the product of rule weights and using
the equivalence relation, a new stability analysis condition is
proposed in Section IV. In Section V, a numerical example is
given to illustrate the effectiveness of the proposed methods.
Section VI concludes the paper.

II. PRELIMINARIES AND TECHNICAL LEMMAS

Set theory is one of the most fundamental branches of
mathematics. In this section, some related notations and termi-
nologies of elementary set theory are recalled. Further, some
new technical lemmas are proposed, which are useful for
obtaining a stability analysis criterion of T-S fuzzy control
systems.

A. Notation, conception and some existing lemmas

Z4 denotes the positive integer set.

() denotes empty set.

|X]| denotes the number of elements (cardinality) of a set X.
Xy, X, -, X, are sets,

ﬁXi:X1x~~xXn
i=1

:{(X17 R

where (x1,Xsg, - ,X,) is an ordered n-tuple, A represents a
classic logical operator “conjunction”.
We also use the permutation x = x1Xs - - - X,, to denote the
ordered n-tuple (x1,X2,---,X,). Use x; to represent the i-
p

Xn): x1 EXI A AX, €X,) 0 (D)

th element of x, i.e., an element 7 belongs to [] X, which

j=
means that 7 = 7 79 - - - T(p) and 75 € Xy, j=1,--- | p.

For 0 = o109 © O(hy4-thy] € Hi):l S?‘, where h;,
i = 1,---,p are positive integers, we define two maps as
follows:

p
; h;
v I8 — sy,

i=1

P P
0 : HS?‘ — HSi,
i=1 i=1

g =min{h; : 1 <i<p}

fOI‘j:l,"',p

fOI‘j:l,"',g,

with
x1(0) = 01109 " O(hy)

xz2(0) = O(h1+1]0(h1+2] """ O(h1+ha)>

Xp(0) =
Olhytethy 1410 (ha+thy 142 " O(hy+-thy_1+hy]s (2)
01(0) = OOy 410 (hy+ho+1] " Olhatrthyp_1+1]

02(0) = 0210 (hy 420 (hy+ha+2] " Olhatrthyp1+2]

0g(0) = 0(g]9(h1+g]9(h1+ha+tg] """ O(h1+-+hp_1+g]
and denote x, (o) by oX¢, g;(0) by 2.
For function y;; (v;(t)), 1 <i <p, j € S; C Z4, we define

p hy
pr =p-(v(t)) = (s (7)) @ (03 (1))
1

j=11=
Hj(rxiy g (05 () 3)
where 7 € T[7_, St.

B. Equivalence class and inequality

In this subsection, a relation on index set is defined, and it
is proved to be an equivalence relation. By using the equiv-
alence relation, a new condition is proposed for converting
a parameter dependent inequality into parameter independent
inequalities.

Let a set Sg C Z4 with [So| < oo (|So| denotes the
cardinality of the set Sp). If (i1,i2, -+ ,ip,) € Sg’o, we
can view the element (i1,i2,- - ,ip,) Of Sgo as an hg-ary
pe}:rmutation ivig- - -ip,. We define a map st(e) from S}° to
Sp°

st(irde - iny) = lila -+ - ln, “4)

as an arrangement of the permutation 4142 - - - 9, With {3 <
lo <o <y

Based on the mapping st(e), we define a binary relation on
Sko as follows:

Ropn, =

{(iliQ o ihoajle o 'jh/o) : St(jle e 'jh/o) = St(iliQ o iho)}

Q)
From the definition of the relation Rgp,, we can easily verify
that Rop,, is reflexive, symmetric, and transitive, i.e., Rop, is
an equivalent relation over the set Sp°.

Denote S /Ron, as the quotient of the equivalent relation
Rop,, 1.€. SgO/ROhU is formed of all equivalence classes of
Ron,. By Lemma 7 (see Appendix), we have the quotient set
Sg’o /Ron, is a partition of the set Sho e,

Sgo = U 30

h
$0€S00/R0h0

with for all x #y € S§° /Rony» x(y = 0.
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For example, X = {11,12,21,22}, then Y M, = My; +
ex
Mo + Msy + Mas. Definite a binary relati(T)n on X as

R = {(i142, j1J2) : st(j1j2) = st(i1iz)}

where st(-) is the same as in (4).
Then the quotient set

with all the equivalence classes of Rgp, as follows:

[1]s ={11}
[12] ={12,21} = [21]x
[22]r ={22}

The following fact can easily be obtained

U so= 110 JI2]e | JI22]x = x

s0€X/R

which further validates Lemma 7, i.e., X/R is a partition of
X.

Then
)P SVASD SFTAD SRS S T2
s€X/R TES Te[11]r Te[12]r Te[22]r
:M11+M12+M21+M22:ZMT
7eX

Lemma 1: Let S; C Z; with [S;] < oo, 1 <1 < p, then
St /Rip, % Sh2 /Ropy X - -+ % SZP/Rph,, is a partition of S x

h,
Sh2 x ... x S,*, where

Rin, ={(iriz - in,, Jrjz - Jny)l

St(jle"'jh[) :St(iliQ"'ih,l)}7 1 S l Sp (6)

and st(-) is the same as in (4).

Proof: See Appendix. ]
Based on Lemma 1, the following useful lemma can be
obtained

Lemma 2: Let S; C Z; with [S;] < 00, 1 <1 < p, and

pii, (v (1) >0, and Y pji (v;(t)) = 1, fori; € S,

ijESj
if
P
> M, <0, fors e [[(S!/Rin,) (8)
ocs =1
then

>

cell? shi

i=1%1

po My <0 ©)

where i, and R;p,, are the same as in (3) and (6), respectively.
Proof: See Appendix. ]

ITII. SYSTEM DESCRIPTION
1-S fuzzy system

The nonlinear system under consideration is described by
the following fuzzy system model:

Plant Rule (i1ia---ip):
IF v1(t) is Mys, and va(t) is Mag,,- -+, vp(t) is My,
THEN J,‘(t) = Ailw...ip.l?(t) + B¢1¢2...ipu(lf) (10)

x(t) € R™ is the state vector, u(t) € R™ is the control
input vector, v(t) = [vi(t) va(t) --- v(t) |7 € RP, v;(2),
i = 1,---,p are the premise variables and assumed to be
measurable, Mj;., j = 1,---,p, i; = 1,---,7r; denotes an
v;(t)-based fuzzy set and they are linguistic terms character-
ized by fuzzy membership functions Mj;; (v;(t)), where r;

is the number of v;(¢)-based fuzzy sets. Then, the fuzzy rule
p
base consists of » = [[ r; IF-THEN rules.

i=1
By using a singleton fuzzifier, a product inference engine
and a center average defuzzifier, the T-S fuzzy model is
obtained as: Let
M, (v;(t))
wii; (03 (8)) = =,

> forlgjgp,lgijgrj
X Myt (o)
(12)

Combining it and (11), the fuzzy system can be written as
follows:

=33

i1=11i2=1 ip=1

H iy (v;(t)) | x

(Ailiz...ipx(t) —+ Biliz...ipu(t)) (13)
From (12), it is resulted that
T
> i (i) =1, for1<j<p (14)
By using set theory, (13) can be rewritten as follows:
Bt)= > pe(Ara(t) + Brult) (15)
TEH?:l S
where p is the same as in (3) and
Si:{172a"'ari}a 221,2,]7 (16)

Fuzzy controller

In the existing literature, there are many fuzzy control
schemes for T-S fuzzy systems, for example, parallel dis-
tributed compensation (PDC) control schemes [29], non-PDC
control schemes [11], switching constant gain control schemes
[10], dominant dependent fuzzy control schemes [8] and so
on. This paper focuses on how to use the property of the
product of rule weights based on the equivalence class in set
theory for obtaining a better stability analysis condition, and
any control scheme is applicable in this paper. In particular,
the PDC controller is adopted in this paper as follows:

Control Rule (iyiz---ip):
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1

25y

11=11i2=1 ip=1

(H M, (v; (¢ ))) (Aw..ipx(t) + Bm...%u(w)

() =

11

SR> HMﬂ,(vg())

’Ll 112 1

IF v (t) is My;, and va(t) is Ma,, -,
THEN u(t) = Kilig~~~ipx(t)

vp(t) is Mp;,

By using a singleton fuzzifier, a product inference engine
and a center average defuzzifier, the final output of the fuzzy
controller is inferred as follows:

N=3"3 3 L (0s()E

ivigi,(t)  (17)
i1=1143=1 ip=1j=1
Its substitutional description based on set theory is
ut) = > pKa(t) (18)

T[T~ Si

where u, and S; are the same as in (3) and (16), respectively.

Closed-loop fuzzy system

Now we substitute (18) into (15), then we have

i)=Y peAsu(t)
o€lli—; S
+ Z MUBU Z NnKnx(t) (19)
oelTh_1S; n€lli— Si

where the definitions of (5, p, refer to (3), S; = {1,2,---,
Ti},izla 2, o, P
Combining (14) and (19), it follows that

S Y sl + BaKy)a(t)

o€lTi=, Sinelli_, S

(t) =

i.e.,
z(t) = Z Mgm pee2 (Ager + Beer Keeo )z(t) (20)
eIl S
where the relation of £ and £2* (or £92) is given in (2).
Let
AE = AEQl + BEQl KEQ2 2n
then the closed-loop system (20) can be rewritten as:
pt)= Y g s Acz(t) (22)

¢elli=, S

ip=1j5=1

Description of fuzzy system by using fuzzy basis functions

(13) can be further re-described by fuzzy basis functions

ﬁM@@@)

Hiqig- iy (U(f’)) o T, P
El El 421 1;[ sz (UJ( ))

H/L]“ 1}] , ilig"'iPEHSi
j=1 i=1

as follows:
= Z Z > figigei, (0(E)) X
i1=11i2=1 ip=1
( i1dgrip L + B, zpu(t))
S (A 2(t) + Bult))  (23)

e[} Si
where . is the same as in (3) and v(t) = [v1(t) va(t) ---
()]

Because S;, 1 < [ < p is a set with finite elements (r;
elements), [5_; S; also consists of finite elements ([]7_, r;
elements), which implies that the cardinality of the set [[?_; S
is [I%_,r. Let » = []\_, r;, then from the definition of
cardinality of set [26], there exists a 1 — 1 mapping

p
q:HSi—>{172a"'a

i=1

r} (24)

with | T2, Si| = 7.
By virtue of the lexicographic order of the element
. » .
T(1]T(2] - - - T(p) in the set [[;_; S;, a particular ¢ can be chosen
as follows:

q(1) =1+ (1) — )r1 + (131 — D)raira + (7ga) — 1)rirars

p—1
ot (g = D [T
j=1

p 1—1
=+ >[I i = 1)
i=2 j=1
ie.,
p i—1
T T = T+ Y [ [ -1 @29)
i=2 j=1
Let
Oéq(T)( = Hr = HM]TU 1)] Aq(r) = A‘rv
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Byr) = Br, Kyr) = K (26)

then the closed-loop system (23) can be rewritten as follows:

> g @) (Agryz(t) + Bygryult))
Te[T7—: S

#(t) =
which is equivalent to

=3 ailw(t) (Aia(t) + Biu(t)) 27)

Along the lines of the above technique, the fuzzy controller
(17) can also be rewritten as follows:

u(t) = Z a;(v(t))K;x(t)

Moreover, we can easily obtain 0 < o;(v(t)) < 1,i=1, -,
T, Yo ai(v(t) = 1.

The fuzzy system description (27) with (28) is widely used
in the existing literature, and there are various stability analysis
conditions based on the description, see [29], [20], [28], and
the reference therein, where the condition in [29] is with
the least computational complexity based on LMlIs, and the
condition in [28] is asymptotically necessary and sufficient
for quadratic stability analysis of T-S fuzzy control systems
with any possible membership function and inference engine.
In order to give the comparisons with the existing methods
by theoretical proof, some existing conditions are recalled as
follows:

Lemma 3: [29] If there exists a matrix P =
satisfying

(28)

PT > 0

He(PGij+J5Gji)<0, for1 <i<j<r (29)

where
Gij = A; + B; K

then the fuzzy system (27) with (28) is asymptotically stable.
Lemma 4: [20] If there exist matrices P = PT > 0, Yw’
1 <i < j < r satisfying

He(PG” + PG]Z)
[Yij] <0

+ (Vi) for 1 <i<j<r (30)
(1)

then the fuzzy system (27) with (28) is asymptotically stable.

Lemma 5: [24] Assume that ¢&;(v(t)) < ¢, 1 <@ <, if
there exist matrices X = X7, P, = PZ-T, 1 <4 < r, satisfying
the following LMIs

P,+X >0, 1<i<r
~ 1
P¢+§He(PzGij+PlGji)<07 1<i<i<r, 1<j<r

where P, = i1 (P + X), ¢; are scalars, then the fuzzy
system (27) with (28) is asymptotically stable.

IV. STABILITY CRITERION

In this section, a new stability analysis criterion for T-
S fuzzy systems is proposed with progressively less con-
servatism. It is proved that the new criterion is with less
conservatism and complexity than Lemma 4. Moreover, by
using an extension of Poélya’s Theorem, it is shown that
the criterion is with no conservatism for quadratic stability
analysis of T-S fuzzy control systems with a product inference
engine and any possible fuzzy membership functions. Before
main results are presented, some propaedeutics are given as
follows:

Since S;, i = 1 -, p, are with finite elements, and |S;| =
r;, then | H p 1 rh’ Further, we can definea 1—1
mapping froim the set Hi: Si“ to the set {1,2,- -, 7}, where
F=11, i

A particular ¢ can be chosen as

hi+ha
) =1+ Z () = D D (g — D™
i1=1 i271+ITL1
E1+E,2+E3
SR SRIUAESD) S
i3:1+7l1+h2
=1 fom p=1 _
+ > O[] e (32)
ip=14hi+-+hp_1 Jj=1
Let
Og(r) (v(t)) =pr (v(1))
p ;”.7 p _
=TT TI 50y (05(8)), for 7 € T[S (33)
j=11=1 i=1
Denote &g+ (v(t)) as ag(r), then
7
> ai= Z fir (34)
=1 e[}, S;
From (14), we have
P hs
= Z /‘I’J"J Vj
J=1 \i;€8;
p hy
=2 2 2 HIHeu @)
168'}1 TQES;LZ rpes’”’ j=1i=1

Z H Hﬂj(TXj)m (v;(t))

11=1
TelTi_, 71J

= >

o
Telli_, §;*

Combining it and (34), then we have

iai:L 0<a <1
=1

(35)
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For o € [[V_, S2", define = Z Lhobr fhots Yo
€M, s;
o = 0(1]9(2] """ O(h1]9(2h1+1]9(2h1+2] * " T(2h1+ho) 7 ! v
Teyr ht1] %@ hit2] T T2 0 hithy) B HZ o
UE T 7
o’ = O(h1+1]9(R1+2] " " 9(2R1]9 (2h1 +ha+1]9 (2h1 +ha+2] <0 '
Oros=2 71 Oroepe1i 7 o110 0p-17 L7
(232521 hil 238 hithp+1]9 (2 P2 hibhpt2 L )
v @ P2 2 Rty Combining it and (40), we can obtain
T(25°7_, hi (36)
B oMy < 0 41
then 0% and o2 belong to [[7_, SI. ae]‘[z N
Theorem 1: Given h; € 2Z, (27Z denotes even set) with o . =18
hj > 2, j = 1,---,p, binary relations R;;, over Sf”, | = Wwhich is equivalent to
1,---,p, which are the same as in Lemma 2. If there exist
n;atricves P=P">0,Y,0€c[]l, St, with Y, = (V)T Z " fioHe(PAger + PByei Koe2) <0 (42)
for o/t = P2, oP2 = 5P1, satisfying the following LMIs o€lli-: §;

Choose a quadratic Lyapunov function

ZM < ZY‘T’ for § € H (S¥ /Ria,) (37) V(t) = 2T (t)Pa(t)

ocs oES
[Hi;] <0 (38) then it follows from (20) that
where V(t) =227 (t) Pi(t)
p :2$T(t)P Z ‘Ll,o-m Mooz (Ao-gl + Bo-gl Ko-gz )(E(t)
M, =PA, + AL P, for o € [[ Sk (39) eIt , S2
=1 :J)T (t) Z /,1/0-91 Hoe2 He(PAael + PBael KUQQ)
and A, is the same as in (21), Hy(,51)4(082) = Yo, q(-) is the o€l S
same as in .(32), then the continuous time fuzzy system (13) x z(t) (43)
is asymptotically stable.
Proof: Applying Lemma 2 to (37), then we have Consider
hj—2
h:—2 J
Z uaMa < Z uaYg (40) d
i i ST tow@i@®) = D2 mi; (v (1)) :
i=15; i=15; ES’LJ?z 1—1 ij €S,
Let h; = 2h;, and deﬁne q(:) and o;, i =1,--- ,7 by (32) for1<j<p
and (33). It can be obtained from (38) that
T Combining it and (14), we have
ai Hy Hiz -+ Hip| [ o
Qo Ho1 Hayy -+ Hor| |2 . .
: S]] =0 2 I moats) =1 for1<j<p
: : : I : ses)i 2 1=1
Qi Hiz Hpp -+ Hpr] |7
) From it and (43), we can obtain
ie.,
. F p h,J—Q
Z Zdi@jHij <0 V() =2"() H Z H Hio (i) | | <
i=1 j=1 I=1 \peshi™? =1

Combining it and the definition of ¢(+), it yields that
Z ‘Ll,o-m Mo-gz He(PA[,gl —+ PBo-m Ko-gz) fE(t)

T T EH
P h1—2
7 7 = .T/'T(t) Z ( H //[/1(0-)(1)(,] (Ul(t))> X
_ =1

Do D Aer) Qe Hotornyg(om) selTr, sti™>

(I(aﬁi):M(aﬁf):l ho—2 hp—2

) DI DR (Huzwxzm(vz@)))-- IT st (8
(o (o 7 =1 =1

a(cP1)=1q(c?2)=1

= Z Z HaB1 hgB2 YU’ X Z Mo’gl ugnge(PA,,gl +PBo—Ql Ko-gz) l’(t)

. h; h;
oP1elTi, S oP2€li_, S;° o€l S
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=2"t) > e Y e figesHe(PAyor
rellf_, shi™?  o€lli; S

+ PByoi Kyeo )a(t)

=27 (t) Z u,,He(PAael + PBgei Kyeo)x(t)
oellf_;S;

=2"(t) Y poHe(PA,)x(t) (44)
oelIr_, sl

From it and (42), we have that
V(t) <0, for z(t) # 0

then by virtue of Lyapunov theory, it follows that the contin-
uous time fuzzy system (13) is asymptotically stable. ]
Based on Theorem 1, the following corollary can easily be
obtained.

Corollary 1: Given positive integers h; > 2, binary rela-
tions R;p,, over S;-LJ, 73 =1,2,---p, if there exists a matrix
P = PT > 0 satisfying the following LMIs

> M, <o, for$€HSh/th

gES

(45)

where M, and A, are respectively the same as in (39) and
(21), then the fuzzy system (13) is asymptotically stable.

Proof: The proof is easily obtained from Theorem 1 and
omitted. ]
Note that the condition (38) in Theorem 1 is dependent on
the mapping ¢(-), however, the choice of the mapping ¢(-)
does not affect the stability analysis results of Theorem 1, see
Lemma 10 in Appendix. Moreover, the value of h;, 1 < i <p
of Theorem 1 is given in advance, if we increase the value
of the positive integer h;, 1 < i < p, the conservatism
of Theorem 1 will decrease. The fact is illustrated by the
following theorem.

Theorem 2: If the condition of Theorem 1 holds for h; =
2d; € 274, 1 < i < p, then the condition of Theorem 1 also
holds for h; = 2d; € 27, with d; > d;, 1 <i < p.

Proof: If the condition of Theorem 1 holds for h; = 2d;,

i=1,2,---,p. then there exists a scalar ¢ > 0, such that
[H'L'j] +el <0 (46)
Choose
~ H s 8oy + €1 oft = gh2
i — q(o”1)q(c”2) ’ 47
q(cf1)q(oP2) { H (581)q(oP2)5 others “47)

where o € Hle S?d" and 01, 672 are the same as in (36).
Then (46) can be written as

[H;] <0 (48)

Let S201+2 [, Sfd is obtained from S? and []?_, S

by the following mapping,

U(7,0) = 0] O(hy) T TO (i +1] " " O lhy+othy)
p
€St x [ s
1=2

where 7 € S7 and o € [[F_, 7.

Let 6 = ¥(7,0), and
H (561 )q(552) = I?q(051>q(052) —el, Ty =T(g,0M =0
(I(U 1)(1(0 2) Hq(aﬁl)q(aBZ); Others
(49)

Choose Yy = Hq(gﬁl)q(gﬁz)s then

Yo = Hy551)q(5P2)

Hy(om)yq(oo2) = €I, T(1) = T2, 07 = 02

=91 Hayg(or2), T # T2, 07 = 0P
Hy(581)q(002) others
Hq(g/h)q(gﬁz), T(l] = 7'(2],0’61 — 0—52

= Hq(o'ﬁl)q(g—ﬁz) -+ EI, T(l] # T(Q],O'Bl — O.ﬁg
Hy(501)q(002); others
Yo—, ’7'(1] = 7—<2]70—61 — 0.62

=4 Yotel, i #7,0" =0 (50)
Yo, others

For arbitrary 7"1 Hz . 17: = 7-dimension vector z = [21 22
27T # 0, pre- and post-multiplying [H;;] by 27 and 2,

then it follows that

ZT[E[ij]Z
= Z Z ZiZjHij
=1 j=1
>

581 s T,

>

S i —ﬁQGSdH—lXH

Zq(aP1)Zq(5P2) X

L2”L

Z Z Z Zg(o10m1)Zg(o20m2) X

gdi T1ES1 T2E€S8)
i

Hyam1)q(5%2)
o€l 7'i o2€lT0,
a

q(o1071)q(02072) (51
where oot = 0(110(2] """ 9(d1]TO (d1+1]
S < 10, S with o € [[2_,
From (49) and (51), we have that
ZT[Hij]Z
a1 €[Ti—, S;h o2€T7_, S
Hq(171<>7'1)(](172<>7'2)

= Z Z Z Z Zq(o1071)?q(o20T2) X

UIEI_L 1 7 di U2€Hp di T1€S1 T2€S8;
Z 2
Hq(al)q(gz) B Z Z Zq(cro-r)el
oell?_, S‘jl TES:
Note that z # 0 means that

| 2 HQZ Z 23(&) =

_ d 1
Fesit e, st

O(di+2] " O(P_ di] €
Sgi and 7 € S4.

Z Z Z Zg(a10m1)Zq(o20m2) X

di T1€S1 T2€S8;
i

(52)

Yo D eon #0

oell?_, S;’L TESL
Combining it and (52), yields that
ZT[E[ij]Z

< Z

or€lTl, 87 oaelll,

Z Z Z Zq(a10m1)Zq(oa0T2) X

di 71E€81 T2€Sy
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He(o1)q(02)

= Z Z (Z Z ZQ(UloTl)zq(@Om)) X

o1€lTi—, S? o€l S? 715 T2€5

Heyo1)q(02)

- Y Y (X )

d; d;
o1€]T7_, S;* o2€l1}_, S;* T8

< > Zq<az<>rz>> Hey(o1)q(02)

T2€S1

(53)

Let Zy(o) = D res, Zq(oor) and [TV, 7% =, then from (53),

we have that
> X

o1 EHle Sfl g2 EHle Sfl

ZT[Hij]Z < Zq(m)Zq(az)ﬁq(m)q(Gz)

= D> > ZatonZatony Hotor)a(on)

q(01)=14q(o2)=1

7

=3 zz;H;

i=1 j—1
N . .

Z Hyy Hip Hiw| | Zy

Z> Hyy Hy -+ Ho| |22

Zy ﬁm f{m ﬁﬁ Zy

Combining it and (48), it follows that

ZT[E[ij]Z <0
which implies that [H;;] < 0 for z # 0. Further, we have
that (38) with (50) holds for hy = 2dy + 2, h; = 2d;, d;,
1=2,3,---,p.

On the other hand, let s; is an equivalence class of
with the equivalence relation R1(2d1+2), and 8;,7=2,3, ---,
p are respectively the equivalence class of S?d", 1= 2, 3,

-+, p with the equivalence relation R;(24,), where Ry, is the
same as in (6). Further, we define a relation over the set $; as
follows:

2d1+2
Sl

Rl = {(7}7 ’7') : St(77<1]77<2] N n(le]) — 5t(7—<1]7—<2] e T<2d1])7
M(2dy+1] = T(2dy+1]> T(2dy+2] = T(2d,+2] 7, T € sl}

It is easily obtained that R, is an equivalenceﬁrelation on the
set s1, then it follows from Lemma 9 that s1 /R, is a partition
of the set s, which implies that

Z (MT_YF) = Z Z (MT_YF)
TES] XH?:Q 85 ,5”1€$1/]R1 ‘reylxl_[f:2 85
(54)
where
Y, =Y,

(1]"°T(2d1]T(2d1+3] """ T(2d1 +2+4---+2dp]’
T =T " T(2d1])T(2d1+1] T(2d1+2) T(2d1+3] * " T(2d1+2+---+2d,]
es C S?d1+2

It follows from (37), (50) and (54) that

Z M, < Z Y5, for & € (S7" 2 /Ry (94, 12)) X

GES GES
P
H(S?di/Ri(zdi))
i=2

i.e., (37) holds for h; = 2d1+2, h; = 2d;, d;, 1 =2,3,--- ,p.
We have proved that if the condition of Theorem 1 holds
for h; = 2d;,1=1,2,---,p, then the condition of Theorem 1
also holds for hy = 2dy + 2, h; = 2d;, i = 2,--- , p. Further,
it is easily obtained that the condition of Theorem 1 also holds
for hy = 2d; > 2dy, hy = 2d;, i =2,--- ,p.
Adopt the same technique for only h; increasing for i =

2,---, p. Finally, we can obtain that the condition of Theorem
1 holds for h; = 2d; > 2d;, + = 1,--- ,p. Thus the proof is
complete. [ ]

Remark 1: Theorem 1 collects the interactions of the prod-
uct of membership functions in a single matrix. The similar
technique for dealing with the interactions of the fuzzy rule
weights has been proposed in [20]. What it follows, it is proved
that the condition of Theorem 1 is more relaxed than Lemma
4 and with a lighter computational burden, see the following
theorem and Remark 2.

Theorem 3: If the condition of Lemma 4 holds, then the
condition of Theorem 1 holds.

Proof: If there exists a matrix P = PT > 0, satisfying
(30) and (31), then we have that

He(PAggl + pBael KUQQ + pAOrQQ + pngz I_(Um)

P
<Y, + (Y,)T, foro e [[S?

i=1

(55)

[Hij) < 0 (56)

where % ¢ and %¢2 are the same as in (2), Hyye1)q(oe2) =
Y, = Yy(oe1)q(oe2)» q(-) is defined in (25).
Define a binary relation R over the set [P s €
P (S?/R;2), where R is given as follows:

R = {(77,19) D (w9 =992 and 79 = 9 )or(m = 1),

P
W,ﬂEHSi}
i=1

It is easily obtained that the relation R is reflexive, symmetric,
and transitive, i.e, it is an eguivalence relation. Further, we
have that the set ( %1 $;)/R={[V]g:9 €[l s} isa
partition of the set [];_, ;.

Therefore,

>

oelTf_; s

PBoos Kyer — Y,)
= Z ZHe(pAael + pngl RUQQ + pAggz—f—

se(Ti—, #:)/R 7€8

PBoes Kper — )

(57)

He(PAael + pBgm RULQ + pAng +

(58)
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On the other hand, if 8 € ([]%_, $;)/R, for any 9,7 € S, we
have that 991 = 722, 992 = 7@ or ¥ = 7, which implies that
S| =1 or 2.

For all S, assume some ¢ € S, from S C [’ ;s C

P_,S?, we have that ¥ € [[?_, S?. For the ¥, by virtue
of (55), we can obtain

He(PAﬁel + PB19.91 KﬁQQ + PAﬁ.QQ + PBﬁQQ Kﬁm — Yo’)

<0

which implies that

p

S He(PAger + PBye Kpen) < Y Yy, for s € ([ s:)/R

ves ves i—1
then
> Mo= > > M,
o€lTi_ % se([T%_, s:)/ROES
< D D= Y Y. ()

se([T7, s:) /R 7€S o€l s

Combining it and (56), we have that (37) and (38) hold for
hi = ha = --- = h, = 2. Further, by virtue of Theorem
2, we have that the condition of Theorem 1 with h; > 2,
i=1,2,---,p holds. Thus, the proof is complete. [ |

Remark 2: Note that Theorem 3 shows that the condi-
tion of Theorem 1 is more relaxed than one of Lemma
4. In particular, the number of LMIs in Theorem 1 is

v e 1) + 2 (see Theorem 3.5.1 in [3], i,
computing formula of combinatorial numbers for multiple set)
L+ TT,

5 +2.

For the case of h; = 2, the number of LMIs in The-
1 + T
2

S ]. =+ I—g):l T

and the number of LMIs in Lemma 4 is

orem 1 is [V, + 2 and we can prove that

D 1 “+7r;
i=1 2
which 1mplies that the number of LMIs of Theorem 1 is
smaller than Lemma 4. On the other hand, the number and
size of variables in Theorem 1 with h; = 2 are the same in
Lemma 4, therefore, Theorem 1 with h; = 2 is with a lighter

computational burden than Lemma 4.

Note that we have shown that the conservatism of Theorem
1 becomes less along with increasing h;, ¢ = 1,--- , p. In fact,
if the h; is sufficiently large, the conditions of Theoreml is
with no conservatism for any possible membership. The fact
will be illustrated in Theorem 4. In order to obtain the proof of
Theorem 4, the useful knowledge about standard r,-simplex
is necessary.

We write A, for the standard r,-simplex

(see Lemma 8 (ii)),

Ay =

Tq

{[,u'qlvuq%"' 7Mqrq] € R : Z/ffqi = ].,OS/J,qi < 1};
=1

fOI'q:l,"' D

The following Lemma is an extension as the Pélya’s Theorem.

9

Lemma 6: [14] Let M () = M (pa1, pra2, ==+ » firy» f21,
H225 * s H2rys <y fpls Mp2s ** s Mpr,) iS @ homogeneous
matrix-valued polynomial on A, x A,, x --- x A, , then

M(p) >0 for p € Ay, X Ay, x---x A, if and only if there
exists a sufficiently large positive integer d, such that

d
p Tj
I > wi| M
i=1 \ j=1

has all its coefficients positive.
Based on Lemma 6, we can obtain the following theorem.
Theorem 4: For arbitrary possible membership function

fji; (0; ), G =1, pij =1, 1

Mp) = >

UEHle S?

oMy <0

if and only if there exists a sufficiently large positive integer
d, such that

p
ZMO' <0, for s € H(Szd+2/Ri(d+2))
i=1

gES

Proof: If we consider the membership functions pj;;, j =

1,---,p,1;=1,---, r;, as the variables of the matrix-value
polynomial
Mp)y= > poM,
oellh_, §?

where M, are matrices, and u, is the same as in (3) and
from the property of membership function, we have that i, €
AZ x A2 x-- X A? is a monomial with variables jijo .,
Hio 2 € Ar]v j=12,---,p.
From (14), it follows that
d

1°

>

cell?_, s{t?

[

s Mz

(60)

Note that the like terms in (60) are not collected, in
fact, if the term usM5 and the term p, M, are like terms,
which implies that yi5 = p,,. Because J[5_; (S{T2/Rigay2))
is a partition of [[Y_, Sf” by Lemma 1, there exists § €

P (S¥?/Ry(442)) such that & € §. From the definition of
the equivalence relations R;;,, we have that n € §. On the
other hand, if some element w € §, it follows that p, = us,

therefore, the coefficients of like terms of s is Y. M,. By
oES

virtue of Lemma 6, —M (u) = — EgenpﬂSg oMy > 0 if

and only if there exists a sufficiently large positive integer d,

such that — > M, > 0, for § € Hle(SfH/Ri(dH)). Thus,

S
the proof is co?nplete. [ ]
Remark 3: From Theorem 4, it follows that if h;, i =
1,2-..  p are sufficiently large, the condition of Theorem 1

is sufficient and necessary for quadratic stability analysis of T-
S fuzzy control systems with a product inference engine and
any possible fuzzy membership functions. We should point
out that if the properties of the shape of membership function
or the firing probability of fuzzy rules are considered, then
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less conservative results can be obtained, however this paper
focuses on how to use the property of fuzzy product inference
engine for less conservative and lighter computational burden
conditions, then these properties about the shape and the firing
probability are not used in this paper.

V. EXAMPLE

In this section, a numerical example is given, the conditions
of Theorem 1, Corollary 1 and the ones in [29], [20], [9], [28]
are applied for illustrating the effectiveness of the new method-
s. All experiments are implemented in MATLAB, version 7.0.0
(R14) using the packages Yalmip [22] and SeDuMi 1.1R3.
The computer used is an Intel (R) Core (TM)2 Quad CPU
Q9400 (2.66 GHz), 3.5GB RAM, Windows XP Professional
2002 SP3.

Consider a continuous-time T-S fuzzy system (10) with p =
2, 71 = ro = 2, where

(a —10 (2 —10 2 —10
A11:_1 O]’ A12:_1 2} Az1_{1 1}7
(2 —10 [2 1
Aoy = 10 ] B = _0} ; B = [_0 1] ;

(b [ 1
By = _0] , By = _0.1]

The local feedback gains K., 7 € {(11), (12),(21),(22)} are
determined by selecting [—2, —2] as the eigenvalues of the
subsystems in the PDC controller (17). Figs. 1-10 show the
feasible areas of a and b satisfying the conditions of Lemmas
3 and 4 in this paper, Theorem 5 in [9], Theorem 5 in [28] and
Lemma 5 with A; = Aq1, Ay = Aqa, As = Asq, Ay = Aso,
Bl = Bll, B2 = Blg, B3 = Bgl, B4 = BQQ, Theorem 1
with h; = hy = 2,4, Corollary 1 with hy = he = 2,3,4,
respectively.

It can be seen from Figs. 8 and 9 that the condition of
Theorem 1 becomes more relaxed along with increasing hq,
hs, which verifies Theorem 2. Note that Lemma 5 is based on
fuzzy Lyapunov functions, and Fig. 10 shows the stability area
obtained by Lemma 5 with the assumption of ¢&; (v(t)) < 0.85,
1 <4 < 4. Comparing Figs. 2-4, 8, 9 with Fig. 10, it can
be seen that the stability areas obtained by Theorem 1 and
Corollary 1 are larger than the one by Lemma 5, though
Theorem 1 and Corollary 1 are based on a single Lyapunov
function. The numerical complexity of LMI conditions is
closely related to the number of lines £ and decision variables
D in the LMISs to be solved, and LMI conditions can be solved
in polynomial time with complexity proportional C = D3,
[7]. The numerical values of £, D, C and the CPU time of the
different methods are collected in Table I for illustrating the
numerical complexity of different LMI conditions.

From Table I, it can be seen that the condition in Corollary 1
with hy = he = 2 is of the least numerical complexity among
these methods and has larger feasible area than Lemma 3.
For 7 < a < 10, b = 3.4, the conditions of Lemmas 3,
4, 5, Theorem 5 in [9], Theorem 5 in [28] are unfeasible,
however, the condition of Corollary 1 is feasible. It implies
that the condition of Corollary 1 may give less conservative

10

55

4.5

35r

25

15F

= :
KKK KKK
KK KKK
kKKK
[
PR,
KAk KR
kK HF
¥k kK
e
kKKK F
* KKK F
kA F
e e
btk ko
kK kA

]
0.5

i i i i
20 25 30 35
a
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o

Fig. 1: Stability area by Lemma 3

6
55

4.5
3.5,
2.5

1.5,

N
A KK KKK KKK KK
KK K KKK K K RO K
HK kK kK KKK KKK KKK
btk ok %k %k K kK ok K K %
Sk KK KKK K KRR K
Hk kK kKKK KK KR
kK KR Kk KRRk Kk Kk
KRR KR KRRk K
b Sk o S ok o ok ok ok ok ok
KK KKK KRR KK
KRR KKK KK
KRR KRR KK
KoKk kKKK KRR KK
Sk kK Kk Kk Rk
ok ok kKR K kK KRk K
Kok ok K kK kK kKKK
KKK K KRR K
kK ok Rk K kK KRR R
b Sk ok ko ok kK kK ok %
F oKk K kKR K KKK
ok kKR K kK kR OR
FHokHok Rk Kk

0.5

i i i
25 30 35

(5]
5
=
3

a

Fig. 2: Stability area by Corollary 1 with hy = hy = 2

results than the existing conditions and with less numerical
complexity.

Moreover, it can also be seen that the condition of Theorem
1 are with larger feasible area than the existing conditions and
Corollary 1, which implies that the condition of Theorem 1 is
more relaxed than the existing ones.

Compare Fig. 2 with Fig. 8, Fig. 4 with Fig. 9, it can be
found that the feasible area of Corollary 1 is smaller than one
of Theorem 1 for the same h;, which implies that Theorem 1
can effectively reduce conservatism than Corollary 1.

VI. CONCLUSION

In this paper, we have addressed the problem of the stability
analysis for T-S fuzzy control systems. By constructing an
equivalence relation on the index set of the product of fuzzy
rule weights, a new stability analysis criterion of T-S fuzzy
systems is proposed based on equivalence classes in set
theory and the new criterion is stated as progressively less
conservative sets of linear matrix inequalities. Further, it is
proved that the new criterion is with no conservatism for
quadratic stability analysis of T-S fuzzy control systems with a
product inference engine and any possible fuzzy membership
functions. A numerical example has been given to illustrate
the effectiveness of the proposed method. Dynamic output
feedback control problem of T-S fuzzy control systems will
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TABLE I: £, D and C = D3

Corollary 1 with

Corollary 1 with

Corollary 1 with

Methods Lemma 3
h1 =hg =2 h1 =hy =3 h1 =ho =4
L 22 20 34 52
D 3 3 3 3
C 594 540 918 1404
CPU time 0.0469 0.0313 0.0625 0.0938
Lemma 5 with . Theorem 5 in [28 Theorem 1 with Theorem 1 with
Methods Lemma 4 Theorem 5 in [9] . 28]
¢; =0.85 with n =4 h1=ho =2 hi=hys =3
L 30 96 74 182 28 84
D 39 15 147 2051 39 175
C 1779570 324000 235062702 1.5702 x 1012 1660932 450187500
CPU time 0.1250 0.0938 0.1406 1.7344 0.1094 0.9375
6 6
55 55
5 5
4.5 %k % 4.5
[
SEFEEE R AR 4
FRE Kk A KA K
FoR K K KK K K
B o o o kK Kk KKk 35
FREEE KRR KKK RA KK KK
g R XK KR R KO KR KRR K a 4
A H KKK KKK R KRR KK xRk
FrkRAEEFRERRE KR KRR EF R R TS
SRR RN NN e 25
PR SRR A LRSS L LSS L S Puiadada it A S5 5 5SS S S S S S
FAFEFAF XX XREF AT X R Ao x %
RIS R ORI ORI R R
15 H o F F KK H K KKK KRR F KKk HE ok E WocSododedodeReboboodoioRs FoboboodoiodoRe Bobebonol
. ¥¥ SERXFXFAFRF XK K FF R F A K R A F A F
AR KA KK RAE KKK K AR K KRR KA RS ool iolololoiol ol ool ol ool
Ak rkk kR KRRk KRR KKK KR AKX F
L RO O S B O ROROSI S B S E BRI B
R
KKk K ok ok K ROR KK KKK KKK KKK K X K FEFFFFFKKARERKRARRFF KKK FF
05K s % o o o+ K F Ak K K K KA KK KA A F [cdeogegegeieboioiogoi B Rebolngoolo B RubReRl
5 10 15 20 25 30 35 5 10 15 20 25 30 35

»

Fig. 3: Stability area by Corollary 1 with hy = ho = 3

»

Fig. 5: Stability area by Lemma 4

55 55
5 5
* k%
A5FF Kk KKK 45
ok ok o ok ko
SERERA KK A Xk 4
kKR Rk Ok K
KKK KR KOR KKK KK
3533k sk Sk Sk sk sk sk e sk ke 35
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Fig. 4: Stability area by Corollary 1 with hy = hy =4

be exploited by using set theory in the future. We also plan
to apply set theory to fuzzy fault tolerant control problems.

APPENDIX

Definition 1: [12], [26],

o A n-ary relation R is a set of ordered n-tuples, denoted
by (x1,- - ,Xy) is the ordered collection of elements that
has x; as its first element, x5 as its second element,. ..,
and x, as its nth element. Two n-tuples are equal, if
each corresponding pair of their elements is equal. R is
a n-ary relation on X if R C X", It is customary to

Fig. 6: Stability area by Theorem 5 in [9]

write R(x1, -+, X,) instead of (x1, -+ ,%,) € R and in
case that R is binary, then we also use xRy instead of
(x,y) €R.

o A binary relation R on X is reflexive if xRx for every
element x of X, i.e.,

R is reflexive <= Vx(x € X — xRx)

o A binary relation on X is symmetric, if xRy, then yRx,
ie.,

R is symmetric <=
VxVy(x € XAy € XA xRy — yRx)
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Fig. 9: Stability area by Theorem 1 with h;
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Multiplying both sides of the above inequality by +T’“+ L, it
follows that

k+1 k

H].-;T'rbg 1+I—£i=1rll+;'k+1 (63)

i=1
Let a = [[_, i, b = rip1, from (i), it yields that

L+TIE  ril 4 (L+a)(1+0)
2 2 4
_ltab _ 1+fﬁ“
- 2
Combining it and (63), then (62) holds for p = k + 1. Thus,
by virtue of mathematical induction, the proof is complete. H

Lemma 9: Let S <C Z; with [S] < oo,
[€lg is an equivalence class of St with
R = {(iad2-dng1, 102 o) [st(ige - gn) =
st(iia---ip,)} , where st(-) is the same as in (4). For

the set [¢]gr, we define a binary relation as

R= {(771772 S Mgl Y12 Yhtl) € (Sh+1)2|
st(mmz - mn) = st(y 12 Vh)s MTha1 = Yhai1)

Then the relation R is an equivalence relation and [¢]r /R is
a partition of the set [¢]g.
Proof: The proof is easily obtained and omitted. ]
The proof of Lemma 1
Proof: For any element (41,12, -+ ,ip) € S}fl X S’QL2 X
- X Sh”, we have i; € S, 1 < [ < p. Because S;”/thl
is a partition of set Shl then there exists an equivalence class
[i1]®,,, such that i; € [[zl]]R”L Therefore, (i1,i2,- -+ ,ip) €
[[z'l]}Rwl X [[ZQH]RZ}Lz X oo X [[zp]]Rp,L So we have

hi o, qhe h
STt X S5% x - x SpP

U [[ilﬂR1;L1 X [[iQHthz X

liley,, esh /Ryp,

N

X [[ip]]Rph,,

liplepny esh» /Rphy,
(64)
Since [[z'l]}thl C Sf”, 1<i<p,
St x S§2 x - - x She

U [[hﬂﬂ{alhl X [[igﬂ]R%Z e

lirlwyy,, esht /Ryp,

V)

X [[ip]]]Rph,p

[[ipﬂﬁph,p E.Shp /Rphp
Combining it and (64), it follows that
St she .. XSZP

= U [[ilﬂR1;L1 X [[iQHthz X

lirlwyy, esht /Ryp,

X [[ip]]Rph,,

Linle, s, €5"% /Rpn,
(65)

13

On the other hand, note that [ii]g,, and [ji]r,, are

both equivalence classes on S[, then lilr,,, = Litlr,, or

[[ZZHRHL, N [[jlﬂRm, =0.
There are the followmg two possible cases for sets

[[Zlﬂlthl X [[ZQH]R%,Q XX [[ZPH]Rphp and [[jlﬂ]thl X H]QHR%Q X
- X [[jp]]]Rph,p'
o Case I: If there exits some [ satisfying [ii]r,, N
[[jl]]]Rl,hl =0, then

ﬂilﬂRlM X [[Z‘QH]R2}”2 N
[[jlﬂ]thl X [[jQ]]]R%Q X
o Case 2: If there doesn’t exit [ satisfying [i]r,, N

X [[ip]]]Rph,p N

- X [[jpﬂlRphp =0

[i]®.,, = 0 . which implies that [i;]r,, = [jir,, for
all [, 1 <1 < p. It means that
[[il]]RuLl X [[iQHRz;Lz X X [[ip]]Rp;Lp

:[[jlﬂle X [[jQ]]thz X X [[jpﬂRphp

Therefore, it follows from the Cases 1 and 2 that [i1]g,, %
[[iQHthz X [[ZPHRP;L m[[jlﬂle X [[JQHRz;Lz X [[jI?HRphp =
(Z) or [[Zlﬂ]Ru X [[ZQ]]RMQ "X [[Z;D]]Rph,, [[jlﬂRwl X [[.72]]]1%%2 X

- X [[],,]}Rphp From the fact and (65), we can obtain that set

. . . . h
{[[Zlﬂle X [[ZQHR%Q XX [[Z;D]]Rph,, : [[Zlﬂthl - 81”7 1<1<
p} is a partition of the set I x Sh? x ... x S;,Lp. Thus, the
proof is complete. u

The proof of Lemma 2

Proof: From Lemma 1, it follows that

> > Sw,

o€lli= S Se[7_, (S;" /Rin;) 75

Ho M, = (66)

where § = [[V_, s; with s; € S /Ry, .

From the property of equivalence class in set theory, we
can choose an arbitrary element in the equivalence class as its
representative element. Let ; € s;, then we choose ¢; as the
representative element of the equivalence class s;, and denote
$; as [[gj]]]Rth. Further, it follows from the definition of the
equivalence relation R;y,, that

h; h;
H Pireiy = H Mjgj(ij]’

ij=1 ij=1

forall 7 € s; = [¢;]r

J h.‘7

Then for o € § = [[7_, s,

Z to My
oes=[{_, s
= Z Mo’MU

oes=[1"_, (Hgiﬂkihi )

2

h

Il

/J’J<7<L

ces=[]Y_ 1([[57]]R7h )i=Li;j=1
p hj
= H H :LLJCJ(7 ] Z My
j=1li;=1 UE$=H?=1([[§73]]R7:M)
s Z M, ©7)
S
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P

p
Pisi 0 With § = Hl& = [[lsile.,., 68
1=

i=1
From (66) and (67), yields that

D

o€l S?L

=X

fiGHf:l(Sf"’ /Rihi) ocs

= X m)M

genle(g?/i/Rihi) ocs

po Mo

Combining it and (7), (8), it follows that (9) holds. Thus, the
proof is complete. ]

Lemma 10: If the 1-1 mapping ¢(-) in (32) is respectively
chosen as ¢, (-) and ¢,(-), then (38) in Theorem 1 respectively
becomes

[HE] <0, with H® s on) = Yo (69)

and

[H}] <0, with H) sy 50y = Yo (70)

then (69) is equivalent to (70).

Proof: Define a mapping w from the set {1,2,---,7} to
itself with w(-) = ¢ (q;1(~)). Since ¢,(-) and gp(-) are both
1-1 mappings, the inverse mapping of ¢, exists and w is also
a 1-1 mapping. From (69) and (70), we have that

He — HY

ij w (1)@ (f)

Then (69) can be rewritten as

b b b

Zz;(l)w(l) Zzbvu)w(z) Z?(”w(”

== Hee=e) =@=0)| oy
b b ’ ) b

Hw(r)w(l) Hw(r)w(Z) e Hw(r)w(r)

Since w is also a 1-1 mapping, there exists a permutation
matrix 1", such that

[@(l) @(2) w(r)|T=[1 2 - 7]
Let 7T =T ® I, xn,, then
HY  HY, Y,
Héﬁ I{é’z Héz o
oYy  HY, mp,
b b b
Hz;(l)w(l) Hz;(l)w@) Hz;(l)w(r)
_ |Tee=0 Feese) =@=0)| _
b b b
He ey Haprywe) He 1y )

14
which implies that

Hyy Hy, - Hy,

Hy H - HY

. . | =m] <0

Hpy Hp, Hy,

Then we have that (69) is equivalent to (70). |
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