
Large Linear Classification When Data Cannot Fit In
Memory

Hsiang-Fu Yu
Dept. of Computer Science
National Taiwan University

Taipei 106, Taiwan
b93107@csie.ntu.edu.tw

Cho-Jui Hsieh
Dept. of Computer Science
National Taiwan University

Taipei 106, Taiwan
b92085@csie.ntu.edu.tw

Kai-Wei Chang
Dept. of Computer Science
National Taiwan University

Taipei 106, Taiwan
b92084@csie.ntu.edu.tw

Chih-Jen Lin
Dept. of Computer Science
National Taiwan University

Taipei 106, Taiwan
cjlin@csie.ntu.edu.tw

ABSTRACT

Recent advances in linear classification have shown that for
applications such as document classification, the training
can be extremely efficient. However, most of the existing
training methods are designed by assuming that data can
be stored in the computer memory. These methods cannot
be easily applied to data larger than the memory capacity
due to the random access to the disk. We propose and an-
alyze a block minimization framework for data larger than
the memory size. At each step a block of data is loaded
from the disk and handled by certain learning methods. We
investigate two implementations of the proposed framework
for primal and dual SVMs, respectively. As data cannot fit
in memory, many design considerations are very different
from those for traditional algorithms. Experiments using
data sets 20 times larger than the memory demonstrate the
effectiveness of the proposed method.

Categories and Subject Descriptors

I.5.2 [Pattern Recognition]: Design Methodology—Clas-

sifier design and evaluation

General Terms

Algorithms, Performance, Experimentation

1. INTRODUCTION
Linear classification1 is useful in many applications, but

training large-scale data remains an important research is-
sue. For example, a category of of PASCAL Large Scale

1By linear classification we mean that data remain in the
input space and kernel methods are not used.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’10, July 25–28, 2010, Washington, DC, USA.
Copyright 2010 ACM 978-1-4503-0055-1/10/07 ...$10.00.

Figure 1: Data size versus training time on a machine with
1GB memory.

Learning Challenge2 at ICML 2008 compares linear SVM
implementations. The competition evaluates the time af-
ter data have been loaded into the memory, but many par-
ticipants find that loading time costs more. Thus some
have concerns about the evaluation.3 This result indicates
a landscape shift in large-scale linear classification because
time spent on reading/writing between memory and disk
becomes the bottleneck. Existing training algorithms often
need to iteratively access data, so without enough memory,
the training time will be huge. To see how serious the situ-
ation is, Figure 1 presents the running time by applying an
efficient linear classification package LIBLINEAR [1] to train
data with different scales on a computer with 1 GB memory.
Clearly, the time grows sharply when the data size is beyond
the memory capacity.

We model the training time to contain two parts:

training time = time to run data in memory +

time to access data from disk.
(1)

Traditional training algorithms, assuming that the second
part is negligible, focus on the first part by minimizing the

2http://largescale.first.fraunhofer.de/workshop
3http://hunch.net/?p=330

833



number of CPU operations. Linear classification, especially
when applied to document classification, is in a situation
that the second part may be more significant. Recent ad-
vances on linear classification (e.g., [2, 3, 4, 5]) have shown
that training one million instances takes only a few seconds
(without counting the loading time). Therefore, some have
said that linear classification is essentially a solved problem
if the memory is enough. However, handling data beyond
the memory capacity remains a challenging research issue.
According to [6], existing approaches to handle large data

can be roughly categorized to two types. The first approach
solves problems in distributed systems by parallelizing batch
training algorithms (e.g., [7, 8]). However, not only writing
programs on a distributed system is difficult, but also the
data communication/synchronization may cause significant
overheads. The second approach considers online learning
algorithms. Since data may be used only once, this type of
approaches can effectively handle the memory issue. How-
ever, even with an online setting, an implementation over a
distributed environment is still complicated; see the discus-
sion in Section 2.1 of [9]. Existing implementations (includ-
ing those in large Internet companies) may lack important
functions such as evaluations by different criteria, parameter
selection, or feature selection.
This paper aims to construct large linear classifiers for

ordinary users. We consider one assumption and one re-
quirement:

• Assumption: Data cannot be stored in memory, but
can be stored in the disk of one computer. Moreover,
sub-sampling data to fit in memory causes lower accu-
racy.

• Requirement: The method must be simple so that sup-
port for multi-class classification, parameter selection
and other functions can be easily done.

If sub-sampling does not downgrade the accuracy, some (e.g.,
[10]) have proposed approaches to select important instances
by reading data from disk only once.
In this work, we discuss a simple and effective block mini-

mization framework for applications satisfying the above as-
sumption. We focus on batch learning though extensions to
online or incremental/decremental learning are straightfor-
ward. While many existing online learning studies claim to
handle data beyond the memory capacity, most of them con-
duct simulations with enough memory and check the number
of passes to access data (e.g., [3, 4]). In contrast, we conduct
experiments in a real environment without enough memory.
This paper is organized as follows. In Section 2, we con-

sider SVM as our linear classifier and propose a block mini-
mization framework. Two implementations of the proposed
framework for primal and dual SVM problems are respec-
tively in Sections 3 and 4. Techniques to minimize the train-
ing time modeled in (1) are in Section 5. Section 6 discusses
the implementation of cross validation, multi-class classi-
fication, and incremental/decremental settings. We show
experiments in Section 7 and give conclusions in Section 8.

2. BLOCK MINIMIZATION FOR LINEAR

SVMS
We consider linear SVM in this work because it is one of

the most used linear classifiers. Given a data set {(xi, yi)}li=1,

Algorithm 1 A block minimization framework for linear
SVM

1. Split {1, . . . , l} to B1, . . . , Bm and store data into m
files accordingly.

2. Set initial α or w
3. For k = 1, 2, . . . (outer iteration)

For j = 1, . . . ,m (inner iteration)
3.1. Read xr, ∀r ∈ Bj from disk
3.2. Conduct operations on {xr | r ∈ Bj}
3.3. Update α or w

xi ∈ Rn, yi ∈ {−1,+1}, SVM solves the following uncon-
strained optimization problem:4

min
w

1

2
w

T
w + C

l
∑

i=1

max(1− yiw
T
xi, 0), (2)

where C > 0 is a penalty parameter. This formulation con-
siders L1 loss, though our approach can be easily extended
to L2 loss. Problem (2) is often referred to as the primal
form of SVM. One may instead solve its dual problem:

min
α

f(α) =
1

2
α

TQα− e
T
α

subject to 0 ≤ αi ≤ C, i = 1, . . . , l, (3)

where e = [1, . . . , 1]T and Qij = yiyjx
T
i xj .

As data cannot fit in memory, the training method must
avoid random accesses of data. In Figure 1, LIBLINEAR

randomly accesses one instance at a time, so frequent moves
of the disk head result in lengthy running time. A viable
method must satisfy the following conditions:

1. Each optimization step reads a continuous chunk of
training data.

2. The optimization procedure converges toward the op-
timum even though each step uses only a subset of
training data.

3. The number of optimization steps (iterations) should
not be too large. Otherwise, the same data point may
be accessed from the disk too many times.

Obtaining a method having all these properties is not easy.
We will propose methods to achieve them to a certain degree.

In unconstrained optimization, block minimization is a
classical method (e.g., [11, Chapter 2.7]). Each step of this
method updates a block of variables, but here we need a
connection to data. Let {B1, . . . , Bm} be a partition of all
data indices {1, . . . , l}. According to the memory capacity,
we can decide the block size so that instances associated
with Bj can fit in memory. These m blocks, stored as m
files, are loaded when needed. Then at each step, we conduct
some operations using one block of data, and update w or α
according to if the primal or the dual problem is considered.
We assume that w or α can be stored in memory. The
block minimization framework is summarized in Algorithm
1. We refer to the step of working on a single block as an
inner iteration, while the m steps of going over all blocks
as an outer iteration. Algorithm 1 can be applied on both

4The standard SVM comes with a bias term b. Here we do
not consider this term for the simplicity.

834



the primal form (2) and the dual form (3). We show two
implementations in Sections 3 and 4, respectively.
We discuss some implementation considerations for Algo-

rithm 1. For the convenience, assume B1, . . . , Bm have a
similar size |B| = l/m. The total cost of Algorithm 1 is

(Tm(|B|) + Td(|B|))×
l

|B| ×#outer-iters, (4)

where

• Tm(|B|) is the cost of operations at each inner itera-
tion, and

• Td(|B|) is the cost to read a block of data from disk.

These two terms respectively correspond to the two parts in
(1) for modeling the training time.
Many studies have applied block minimization to train

SVM or other machine learning problems, but we might be
the first to consider it in the disk level. Indeed the major
approach to train nonlinear SVM (i.e., SVM with nonlinear
kernels) has been block minimization, which is often called
decomposition methods in the SVM community. We dis-
cuss the difference between ours and existing studies in two
aspects:

• variable selection for each block, and

• block size.

Existing SVM packages assume data in memory, so they
can use flexible ways to select each Bj . They do not restrict
B1, . . . , Bm to be a split of {1, . . . , l}. Moreover, to decide
indices of one single Bj , they may access the whole set, an
impossible situation for us. We are more confined here as
data associated with each Bj must be pre-stored in a file
before running Algorithm 1.
Regarding the block size, we now go back to analyze (4).

If data are all in memory, Td(|B|) = 0. For Tm(|B|), people
observe that if |B| linearly increases, then

|B| ր, Tm(|B|)ր, and #outer-itersց . (5)

Tm(|B|) is generally more than linear to |B|, so Tm(|B|) ×
l/|B| is increasing along with |B|. In contrast, the #outer-
iters may not decrease as quick. Therefore, nearly all exist-
ing SVM packages use a small |B|. For example, |B| = 2
in LIBSVM [12] and 10 in SVMlight [13]. With Td(|B|) > 0,
the situation is now very different. At each outer iteration,
the cost is

Tm(|B|)× l

|B| + Td(|B|)×
l

|B| . (6)

The second term is for reading l instances. As reading each
block of data takes some initial time, a smaller number of
blocks reduces the cost. Hence the second term in (6) is a
decreasing function of |B|. While the first term is increasing
following the earlier discussion, as reading data from the disk
is slow, the second term is likely to dominate. Therefore,
contrary to existing SVM software, in our case the block
size should not be too small. We will investigate this issue
by experiments in Section 7.
The remaining issue is to decide operations at each inner

iteration. The second and the third conditions mentioned
earlier in this section should be considered. We discuss two
implementations in the next two sections.

Algorithm 2 An implementation of Algorithm 1 for solving
dual SVM
We only show details of steps 3.2 and 3.3:

3.2 Exactly or approximately solve the sub-problem
(7) to obtain d

∗
Bj

3.3 αBj
← αBj

+ d
∗
Bj

Update w by (10)

3. SOLVING DUAL SVM BY LIBLINEAR

FOR EACH BLOCK
A nice property of the SVM dual problem (3) is that each

variable corresponds to a training instance. Thus we can
easily devise an implementation of Algorithm 1 by updating
a block of variables at a time. Assume B̄j = {1, . . . , l}\Bj ,
at each inner iteration we solve the following sub-problem.

min
dBj

f(α+ d) (7)

subject to dB̄j
= 0 and 0 ≤ αi + di ≤ C, ∀i ∈ Bj .

That is, we change αBj
, while fix αB̄j

. We then update αBj

using the solution of (7). Then Algorithm 1 reduces to the
standard block minimization procedure, so the convergence
to the optimal function value of (3) holds [11, Proposition
2.7.1].

We must ensure that at each inner iteration, only one
block of data is needed. With the constraint dB̄j

= 0 in (7),

f(α+ d) =
1

2
d
T
Bj

QBjBj
dBj

+ (QBj ,:α− eBj
)TdBj

+ f(α),

(8)
where QBj ,: is a sub-matrix of Q including elements Qri,
r ∈ Bj , i = 1, . . . , l. Clearly, QBj ,: in (8) involves all training
data, a situation violating the requirement in Algorithm 1.
Fortunately, by maintaining

w =

l
∑

i=1

αiyixi, (9)

we have

Qr,:α− 1 = yrw
T
xr − 1, ∀r ∈ Bj .

Therefore, if w is available in memory, only instances asso-
ciated with the block Bj are needed. To maintain w, if d∗

Bj

is an optimal solution of (7), we consider (9) and use

w ← w +
∑

r∈Bj

d∗ryrxr. (10)

This operation again needs only the block Bj . The proce-
dure is summarized in Algorithm 2.

For solving the sub-problem (7), as all the information is
available in the memory, any bound-constrained optimiza-
tion method can be applied. We consider LIBLINEAR [1],
which implements a coordinate descent method (i.e., block
minimization with a single element in each block). Then Al-
gorithm 2 becomes a two-level block minimization method.
The two-level setting had been used before for SVM or other
applications (e.g., [14, 15, 16]), but ours might be the first
to associate the inner level with memory and the outer level
with disk.

Algorithm 2 converges if each sub-problem is exactly solved.
Practically we often obtain an approximate solution by im-
posing a stopping criterion. We then address two issues:

835



1. The stopping criterion for solving the sub-problemmust
be satisfied after a finite number of operations, so we
can move on to the next sub-problem.

2. We need to prove the convergence.

Next we show that these two issues can be resolved if using
LIBLINEAR for solving the sub-problem. Let {αk} be the
sequence generated by Algorithm 2, where k is the index of
outer iterations. As each outer iteration contains m inner
iterations, we can further consider a sequence

{αk,j}∞,m+1

k=1,j=1 with α
k,1 = α

k and α
k,m+1 = α

k+1.

From α
k,j to α

k,j+1, LIBLINEAR coordinate-wisely updates
variables in Bj to approximately solve the sub-problem (7)
and we let tk,j be the number of updates.
If the coordinate descent updates satisfy certain condi-

tions, we can prove the convergence of {αk,j}:

Theorem 1

If applying a coordinate descent method to solve (7) with

the following properties:

1. each αi, i ∈ Bj is updated at least once, and

2. {tk,j} is uniformly bounded,

then {αk,j} generated by Algorithm 2 globally converges to

an optimal solution α
∗. The convergence rate is at least

linear: there are 0 < µ < 1 and an iteration k0 such that

f(αk+1)− f(α∗) ≤ µ
(

f(αk)− f(α∗)
)

, ∀k ≥ k0.

The proof is in appendix. With Theorem 1, the condition
2 mentioned in the beginning of Section 2 holds. For con-
dition 3 on the convergence speed, block minimization does
have fast convergence rates. However, for problems like doc-
ument classification, some (e.g., [5]) have shown that we do
not need many iterations to get a reasonable model. Though
[5] differs from us by restricting |B| = 1, we hope to enjoy
the same property of not needing many iterations. Exper-
iments in Section 7 confirm that for some document data
this property holds.
Next we discuss various ways to fulfill the two properties

in Theorem 1.

3.1 Loosely Solving the Sub-problem
A simple setting to satisfy Theorem 1’s two properties is to

go through all variables in Bj a fixed number of times. Then
not only tkj is uniformly bounded, but also the finite termi-
nation for solving each sub-problem holds. A small number
of passes to go through Bj means that we very loosely solve
the sub-problem (7). While the cost per block is cheaper,
the number of outer iterations may be large. Through ex-
periments in Section 7, we discuss how the number of passes
affects the running time. A special case is to go through all
αi, i ∈ Bj exactly once. Then Algorithm 2 becomes a stan-
dard (one-level) coordinate descent method, though data are
loaded by a block-wise setting.
For each pass to go through data in one block, we can

sequentially update variables in Bj . However, using a ran-
dom permutations of Bj ’s elements as the order for update
usually leads to faster convergence in practice.

3.2 Accurately Solving the Sub-problem
Alternatively, we can accurately solve the sub-problem.

The cost per inner iteration is higher, but the number of
outer iterations may be reduced. As an upper bound on the
number of iterations does not reveal how accurate the solu-
tion is, most optimization software consider the gradient in-
formation. We check the setting in LIBLINEAR. Its gradient-
based stopping condition (details shown in appendix) guar-
antees the finite termination in solving each sub-problem (7).
Thus the procedure can move on to the next sub-problem
without problem. Regarding the convergence, to use Theo-
rem 1, we must show that {tk,j} is uniformly bounded:

Theorem 2

If coordinate descent steps with LIBLINEAR’s stopping con-

dition are used to solve (7), then Algorithm 2 either termi-

nates in a finite number of outer iterations or

tk,j ≤ 2|Bj | ∀j after k is large enough.

Therefore, if LIBLINEAR is used to solve (7), then Theorem
1 implies the convergence.

4. SOLVING PRIMAL SVM BY PEGASOS

FOR EACH BLOCK
Instead of solving the dual problem, in this section we

check if the framework in Algorithm 1 can be used to solve
the primal problem. Since the primal variable w does not
correspond to data instances, we cannot use a standard block
minimization setting to have a sub-problem like (7). In con-
trast, existing stochastic gradient descent methods possess
a nice property that at each step only certain data are used.
In this section, we study how Pegasos [3] can by used for
implementing an Algorithm 1.

Pegasos considers a scaled form of the primal SVM prob-
lem:

min
w

1

2lC
w

T
w +

1

l

l
∑

i=1

max(1− yiw
T
xi, 0),

At the tth update, Pegasos chooses a block of data B and up-
dates the primal variable w by a stochastic gradient descent
step:

w̄ = w − ηt∇t, (11)

where ηt = lC/t is the learning rate, ∇t is the sub-gradient

∇t =
1

lC
w − 1

|B|
∑

i∈B+

yixi, (12)

and B+ ≡ {i ∈ B | yiwT
xi < 1}. Then Pegasos obtains w

by scaling w̄:

w ← min(1,

√
lC

‖w̄‖ )w̄. (13)

Clearly we can directly consider Bj in Algorithm 1 as the
set B in the above update. Alternatively, we can conduct
several Pegasos updates on a partition of Bj . Algorithm 3
gives details of the procedure. Here we consider two settings
for an inner iteration:

1. Using one Pegasos update on the whole block Bj .

2. Splitting Bj to |Bj | sets, where each one contains an
element in Bj and then conducting |Bj | Pegasos up-
dates.

836



Algorithm 3 An implementation of Algorithm 1 for solving
primal SVM. Each inner iteration is by Pegasos

1. Split {1, . . . , l} to B1, . . . , Bm and store data into m
files accordingly.

2. t = 0 and initial w = 0.
3. For k = 1, 2, . . .

For j = 1, . . . ,m
3.1. Find a partition of Bj : B

1
j , . . . , B

r̄
j .

3.2. For r = 1, . . . , r̄
• Use Br

j as B to conduct the update (11)-
(13).
• t← t+ 1

For the convergence, though Algorithm 3 is a special case of
Pegasos, we cannot apply its convergence proof [3, Corollary
1], which requires that all data {x1, . . . ,xl} are used at each
update. However, empirically we observe that Algorithm 3
converges without problems.

5. TECHNIQUES TO REDUCE THE TRAIN-

ING TIME
Many techniques have been proposed to make block mini-

mization faster. However, these techniques may not be suit-
able here as they are designed by assuming that all data
are in memory. Based on the complexity analysis in (6), in
this section we propose three techniques to speed up Algo-
rithm 1. One technique effectively shortens Td(|B|), while
the other two aim at reducing the number of iterations.

5.1 Data Compression
The loading time Td(|B|) is a bottleneck of Algorithm 1

due to the slow disk access. Except some initial cost, Td(|B|)
is proportional to the length of data. Hence we can con-
sider a compression strategy to reduce the loading time of
each block. However, this strategy introduces two additional
costs: the compression time in the beginning of Algorithm
1 and the decompression time when a block is loaded. The
former is minor as we only do it once. For the latter, we
must ensure that the loading time saved is more than the de-
compression time. The balance between compression speed
and ratio has been well studied in the area of backup and
networking tools [17]. We choose a widely used compression
library zlib for our implementation.5 Experiments in Section
7 show that the compression strategy effectively reduces the
training time.
Because of using compression techniques, all blocks are

stored in a binary format instead of a plain text form.

5.2 Random Permutation of Sub-problems
In Algorithm 1, we sequentially work on blocks B1, B2, . . .,

Bm. We can consider other ways such as a permutation of
blocks to decide the order of sub-problems. In LIBLINEAR’s
coordinate descent implementation, the authors randomly
permute all variables at each iteration and report faster con-
vergence. We adopt a permutation strategy here as the load-
ing time is similar regardless of the order of sub-problems.

5.3 Split of Data
An important step of Algorithm 1 is to split training data

to m files. We need a careful design as data cannot be

5http://www.zlib.net

Algorithm 4 Splitting data into blocks

• Decide m and create m empty files.
• For i = 1, . . .

1. Convert xi to a binary format x̄i.
2. Randomly choose a number j ∈ {1, . . . ,m}.
3. Append x̄i into the end of the jth file.

loaded into memory. To begin, we find the size of data and
decide the valuem based on the memory size. This step does
not have to go through the whole data set as the operating
system provides information such as file sizes. Then we can
sequentially read data instances and save them to m files.
However, data in the same class are often stored together in
the training set, so we may get a block of data with the same
label. This situation clearly causes slow convergence. Thus
for each instance being read, we randomly decide which file it
should be saved to. Algorithm 4 summarizes our procedure.
It goes through data only once.

6. OTHER FUNCTIONALITY
A learning system only able to solve an optimization prob-

lem (3) is not practically useful. Other functions such as
cross validation (for parameter selection) or multi-class clas-
sification are very important. We discuss how to implement
these functions based on the design in Section 2.

6.1 Cross Validation
Assume we conduct v-fold cross validation. Due to the use

of m blocks, a straightforward implementation is to split m
blocks to v groups. Each time one group of blocks is used for
validation, while all remaining groups are for training. How-
ever, the loading time is v times more than training a single
model. To save the disk accessing time, a more complicated
implementation is to train v models together. For exam-
ple, if v = 3, we split each block Bj to three parts B1

j , B
2
j ,

and B3
j . Then ∪m

j=1(B
1
j ∪B2

j ) is the training set to validate

∪m
j=1B

3
j . We maintain three vectors w

1,w2, and w
3. Each

time when Bj is loaded, we solve three sub-problems to up-
date w vectors. This implementation effectively saves the
data loading time, but the memory must be enough to store
v vectors w1, . . . ,wv.

6.2 Multi-class Classification
Existing multi-class approaches either train several two-

class problems (e.g., one-against-one and one-against-the rest)
or solve one single optimization problem (e.g., [18]). Take
one-against-the rest for a K-class problem as an example.
We train K classifiers, where each one separates a class from
the rest. Similar to the situation in cross validation, the disk
access time is K times more if we sequentially train K mod-
els. Using the same technique, we split each blocks Bj to
B1

j , . . . , B
K
j according to the class information, Then K sub-

problems are solved to update vectors w
1, . . . ,wK . Finally

we obtain K models simultaneously. The one-against-one
approach is less suitable as it needs K(K − 1)/2 vectors for
w, which may consume too much memory. For one-against-
the rest and the approach in [18], they both need K vectors.

6.3 Incremental/ Decremental Setting
Many practical applications retrain a model after collect-

ing enough new data. Our approach can be extended to this

837



Table 1: Data statistics: We assume a sparse storage. Each non-zero feature value needs 12 bytes (4 bytes for the feature
index, and 8 bytes for the value). However, this 12-byte structure consumes 16 bytes on a 64-bit machine due to data structure
alignment.

Data set l n #nonzeros Memory (Bytes)
yahoo-korea 460,554 3,052,939 156,436,656 2,502,986,496
webspam 350,000 16,609,143 1,304,697,446 20,875,159,136
epsilon 500,000 2,000 1,000,000,000 16,000,000,000

scenario. We make a reasonable assumption that each time
several blocks are added or removed. Using LIBLINEAR to
solve the dual form as an example, to possibly save the num-
ber of iterations, we can reuse the vector w obtained earlier.
Algorithm 2 maintains w =

∑l

i=1
yiαixi, so the new initial

w can be

w ← w +
∑

i:xi being added

yiαixi −
∑

i:xi being removed

yiαixi.

(14)
For data being added, αi is simply set to zero, but for data
being removed, their corresponding αi are not available. To
use (14), we must store α. That is, before and after solving
each sub-problem, Algorithm 2 reads and saves α from/to
disk.
If solving the primal problem by Pegasos for each block,

Algorithm 3 can be directly applied for incremental or decre-
mental settings.

7. EXPERIMENTS
In this section, we conduct experiments to analyze the

performance of the proposed approach. We also investigate
several implementation issues discussed in Section 5.

7.1 Data and Experimental Environment
We consider two document data sets yahoo-korea6 and

webspam, and an artificial data epsilon.7 Table 1 summa-
rizes the data statistics.
We randomly split 4/5 data for training and 1/5 for test-

ing. All feature vectors are instance-wisely scaled to unit-
length (i.e., ‖xi‖ = 1, ∀i). For epsilon, each feature of the
training set is normalized to have mean zero and variance
one, and the testing set is modified according to the same
scaling factors. This feature-wise scaling is conducted before
the instance-wise scaling. The value C in (2) is set to one.
We conduct experiments on a 64-bit machine with 1GB

RAM. Due to the space consumed by the operating system,
the real memory capacity we can use is 895MB.

7.2 A Related Method
For the comparison we include another method StreamSVM

[19], which performs only a single pass over data. The
method initiates with a single data point. When a new data
point is read, it checks whether the point is contained in
a ball enclosing past data. If so, it continues to next data
point. If not, it updates the center and radius of the ball to
cover the point. Because this method is very different from
our approach, we omit its details here.

7.3 Training Time and Testing Accuracy
We compare the following methods:

6This data set is not publicly available
7webspam and epsilon can be downloaded at http://
largescale.first.fraunhofer.de/instructions/

• BLOCK-L-N : Algorithm 2 with LIBLINEAR to solve
each sub-problem. LIBLINEAR goes through the block
of data N rounds, where we consider N = 1, 10, and
20.

• BLOCK-L-D: Algorithm 2 with LIBLINEAR to solve
each sub-problem. LIBLINEAR’s default stopping con-
dition is adopted.

• BLOCK-P-B: Algorithm 3 with r̄ = 1. That is, we
apply one Pegasos update on the whole block.

• BLOCK-P-I: Algorithm 3 with r̄ = |Bj |. That is, we
apply |Bj | Pegasos updates, each of which uses an in-
dividual data instance.

• LIBLINEAR: The standard LIBLINEAR without any
modification to handle the situation if data cannot fit
in memory.

• StreamSVM

For all methods under the framework of Algorithms 1, the
number of blocks is 5 for yahoo-korea, 40 for webspam and
30 for epsilon. We make sure that no other jobs are running
on the same machine and report wall clock time in all exper-
iments. We include all data loading time and, for Algorithm
1, the initial time to split and compress data into blocks.
It takes around 228 seconds to split yahoo-korea, 1,594 sec-
onds to split webspam and 1,237 seconds to split epsilon. For
LIBLINEAR, the loading time for yahoo-korea is 103 seconds,
829 seconds for webspam and 560 seconds for epsilon.

Figure 2 presents two results:

1. Training time versus the relative difference to the op-
timum

∣

∣

∣

∣

fP (w)− fP (w∗)

fP (w∗)

∣

∣

∣

∣

,

where fP is the primal objective function in (2) and
w

∗ is the optimal solution. Sincew∗ is not really avail-
able, we spend enough training time to get a reference
solution.

2. Training time versus the difference to the best testing
accuracy

(acc∗ − acc(w))× 100%,

where acc(w) is the testing accuracy using the model
w and acc∗ is the best testing accuracy among all
methods.

Clearly, LIBLINEAR suffers from slow disk swapping due to
the random access of data. For Algorithm 1-based methods,
BLOCK-L-∗ methods (using LIBLINEAR) are faster than
BLOCK-P-∗ (using Pegasos) methods. The reason seems
to be that for BLOCK-P-∗, the information of each block is

838



(a) yahoo-korea: Relative difference to optimum. (b) yahoo-korea: Difference to the best accuracy.

(c) webspam: Relative difference to optimum. (d) webspam: Difference to the best accuracy.

(e) epsilon: Relative difference to optimum. (f) epsilon: Difference to the best accuracy.

Figure 2: This table shows the relative function value difference to the minimum and the accuracy difference to the best
testing accuracy. Time (in seconds) is log scaled. The blue dotted vertical line indicates time spent by Algorithms 1-based
methods for the initial split of data to blocks. StreamSVM goes through data only once, so we present only one accuracy
value. Note that in Figure 2(f), the curve of BLOCK-L-D is not connected, where the missing point corresponds to the best
accuracy.

839



Figure 3: Effectiveness of two implementation tech-
niques: raw: no random assignment in the initial data
splitting. perm: a random order of blocks at each outer
iteration. BLOCK-L-D is used.

Figure 4: Convergence speed of using different m (num-
ber of blocks). BLOCK-L-D is used.

underutilized. In particular, BLOCK-P-B suffers from very
slow convergence as for each block it conducts only one very
simple update. However, it may not be always needed to
use the block of data in an exhaustive way. For example,
in Figure 2(a), BLOCK-L-1 (for each block LIBLINEAR goes
through all data only once) is slightly faster than BLOCK-L-
D (for each block running LIBLINEAR with the default stop-
ping condition). Nevertheless, as reading each block from
the disk is expensive, in general we should make proper ef-
forts to use it. For StreamSVM, because of passing data only
once, its accuracy is lower than others.
Note that the objective values of BLOCK-P-∗ methods

may not be decreasing as Pegasos does not have this prop-
erty. All BLOCK-∗ methods except BLOCK-P-B needs
around four iterations to achieve reasonable accuracy val-
ues. This number of iterations is small, so we do not need
to read the training set many times.

7.4 Initial Block Split and Random Permuta-
tion of Sub-problems

Section 5 proposes randomly assigning data to blocks in
the beginning of Algorithm 1. It also suggests that a ran-
dom order of B1, . . . , Bm at each iteration is useful. We are
interested in their effectiveness. Figure 3 presents the result
of running BLOCK-L-D on webspam. We assume the worst
situation that data of the same class are grouped together
in the input file. If data are not randomly split to blocks,
clearly the convergence is very slow. Further, the random
permutation of blocks at each iteration slightly improves the
training time.

7.5 Block Size
In Figure 4, we present the training speed of BLOCK-

L-D by using various block sizes (equivalently, numbers of
blocks). The data webspam is considered. The training time
of using m = 40 blocks is smaller than that of m = 400
or 1000. This result is consistent with the discussion in
Section 2. When the number of blocks is smaller (i.e., larger
block size), from (5), the cost of operations on each block
increases. However, as we read less files, the total time is

shorter. Furthermore, the initial split time is longer as m
increases. Therefore, contrary to traditional SVM software
which use small block sizes, now for each inner iteration we
should consider a large block. We do not check m = 20
because the memory is not enough to load a block of data.

7.6 Data Compression
We check if compressing each block saves time. By run-

ning 10 outer iterations of BLOCK-L-D on the training set
of webspam with m = 40, the implementation with com-
pression takes 3,230 seconds, but without compression needs
4,660 seconds. Thus the compression technique is very use-
ful.

8. DISCUSSION AND CONCLUSIONS
The discussion in Section 6 shows that implementing cross

validation or multi-class classification may require extra mem-
ory space and some modifications of Algorithm 1. Thus
constructing a complete learning tool is certainly more com-
plicated than implementing Algorithm 1. There are many
new and challenging future research issues.

In summary, we propose and analyze a block minimization
method for large linear classification when data cannot fit
in memory. Experiments show that the proposed method
can effectively handle data 20 times larger than the memory
size.

Our code is available at
http://www.csie.ntu.edu.tw/~cjlin/liblinear/exp.html

9. REFERENCES
[1] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang,

and C.-J. Lin, “LIBLINEAR: A library for large linear
classification,” JMLR, vol. 9, pp. 1871–1874, 2008.

[2] T. Joachims, “Training linear SVMs in linear time,” in
ACM KDD, 2006.

[3] S. Shalev-Shwartz, Y. Singer, and N. Srebro, “Pegasos:
primal estimated sub-gradient solver for SVM,” in
ICML, 2007.

[4] L. Bottou, “Stochastic gradient descent examples,”
2007. http://leon.bottou.org/projects/sgd.

840



[5] C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. S. Keerthi,
and S. Sundararajan, “A dual coordinate descent
method for large-scale linear SVM,” in ICML, 2008.

[6] J. Langford, L. Li, and T. Zhang, “Sparse online
learning via truncated gradient,” JMLR, vol. 10,
pp. 771–801, 2009.

[7] E. Chang, K. Zhu, H. Wang, H. Bai, J. Li, Z. Qiu, and
H. Cui, “Parallelizing support vector machines on
distributed computers,” in NIPS 21, 2007.

[8] Z. A. Zhu, W. Chen, G. Wang, C. Zhu, and Z. Chen,
“P-packSVM: Parallel primal gradient descent kernel
SVM,” in ICDM, 2009.

[9] J. Langford, A. J. Smola, and M. Zinkevich, “Slow
learners are fast,” in NIPS, 2009.

[10] H. Yu, J. Yang, and J. Han, “Classifying large data
sets using SVMs with hierarchical clusters,” in ACM

KDD, 2003.

[11] D. P. Bertsekas, Nonlinear Programming. Belmont,
MA 02178-9998: Athena Scientific, second ed., 1999.

[12] C.-C. Chang and C.-J. Lin, LIBSVM: a library for

support vector machines, 2001. Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[13] T. Joachims, “Making large-scale SVM learning
practical,” in Advances in Kernel Methods - Support

Vector Learning, MIT Press, 1998.

[14] R. Memisevic, “Dual optimization of conditional
probability models,” tech. rep., Department of
Computer Science, University of Toronto, 2006.

[15] F. Pérez-Cruz, A. R. Figueiras-Vidal, and
A. Artés-Rodŕıguez, “Double chunking for solving
SVMs for very large datasets,” in Proceedings of

Learning 2004, Spain, 2004.

[16] S. Rüping, “mySVM - another one of those support
vector machines,” 2000. Software available at
http://www-ai.cs.uni-

dortmund.de/SOFTWARE/MYSVM/.

[17] K. G. Morse, Jr., “Compression tools compared,”
Linux Journal, 2005.

[18] K. Crammer and Y. Singer, “On the learnability and
design of output codes for multiclass problems,” in
COLT, 2000.

[19] P. Rai, H. Daumé III, and S. Venkatasubramanian,
“Streamed learning: One-pass SVMs,” in IJCAI, 2009.

[20] Z.-Q. Luo and P. Tseng, “On the convergence of
coordinate descent method for convex differentiable
minimization,” J. Optim. Theory Appl., vol. 72, no. 1,
pp. 7–35, 1992.

APPENDIX

Proof of Theorem 1

If each sub-problem involves a finite number of coordinate
descent updates, then Algorithm 1 can be regarded as a
coordinate descent method. We apply Theorem 2.1 of [20]
to obtain the convergence results. The theorem requires that
(3) satisfies certain conditions and in the coordinate descent
method there is an integer t such that every αi is iterated
at least once every t successive updates (called almost cyclic
rule in [20]). Following the same analysis in the proof of [5,
Theorem 1], (3) satisfies the required conditions. Moreover,

the two properties on tj,k imply the almost cyclic rule. Hence
both global and linear convergence results are obtained.

Proof of Theorem 2

To begin, we discuss the stopping condition of LIBLINEAR.
Each run of LIBLINEAR to solve a sub-problem generates
{αk,j,v | v = 1, . . . , tk,j + 1} with

α
k,j = α

k,j,1 and α
k,j+1 = α

k,j,tk,j+1.

We further let ij,v denote the index of the variable being up-
dated by α

k,j,v+1 = α
k,j,v+d∗eij,v , where d

∗ is the optimal
solution of

min
d

f(αk,j,v + deij,v ) subject to 0 ≤ αk,j,v
ij,v

+ d ≤ C, (15)

and eij,v is an indicator vector for the (ij,v)th element.
All tk,j updates can be further separated to several rounds,
where each one goes through all elements in Bj . LIBLINEAR
checks the following stopping condition in the end of each
round:

max
v∈a round

∇P
ij,v

f(αk,j,v)− min
v∈a round

∇P
ij,v

f(αk,j,v) ≤ ǫ, (16)

where ǫ is a tolerance and ∇P f(α) is the projected gradient:

∇P
i f(α) =











∇if(α) if 0 < αi < C,

max(0,∇if(α)) if αi = C,

min(0,∇if(α)) if αi = 0.

(17)

The reason that LIBLINEAR considers (16) is that from the
optimality condition, α∗ is optimal if and only if∇P f(α∗) =
0.

Next we prove the theorem by showing that for all j =
1, . . . ,m there exists kj such that

∀k ≥ kj , tk,j ≤ 2|Bj |. (18)

Suppose that (18) does not hold. We can find a j and a
sub-sequence R ⊂ {1, 2, . . .} such that

tk,j > 2|Bj |, ∀k ∈ R. (19)

Since {αk,j | k ∈ R} are in a compact set, we further con-
sider a sub-sequence M ⊂ R such that {αk,j | k ∈ M}
converges to a limit point ᾱ.

Let σ ≡ mini Qii. Following the explanation in [5, Theo-
rem 1], we only need to analyze indices with Qii > 0. There-
fore, σ > 0. Lemma 2 of [5] shows that

f(αk,j,v)− f(αk,j,v+1) ≥ σ

2
‖αk,j,v −α

k,j,v+1‖2,

∀v = 1, . . . , 2|Bj |.
(20)

The sequence {f(αk) | k = 1, . . .} is decreasing and bounded
below as the feasible region is compact. Hence

lim
k→∞

f(αk,j,v)− f(αk,j,v+1) = 0,

∀v = 1, . . . , 2|Bj |.
(21)

Using (21) and taking the limit on both sides of (20), we
have

lim
k∈M,k→∞

α
k,j,2|Bj |+1 = lim

k∈M,k→∞
α

k,j,2|Bj | = · · ·

= lim
k∈M,k→∞

α
k,j,1 = ᾱ.

(22)

841



From the continuity of ∇f(α) and (22), we have

lim
k∈M,k→∞

∇f(αk,j,v) = ∇f(ᾱ), ∀v = 1, . . . , 2|Bj |.

Hence there are ǫ and k̄ such that ∀k ∈M with k ≥ k̄

|∇if(α
k,j,v)| ≤ ǫ

4
if ∇if(ᾱ) = 0, (23)

∇if(α
k,j,v) ≥ 3ǫ

4
if ∇if(ᾱ) > 0, (24)

∇if(α
k,j,v) ≤ −3ǫ

4
if ∇if(ᾱ) < 0, (25)

for any i ∈ Bj , v ≤ 2|Bj |.
When we update α

k,j,v to α
k,j,v+1 by changing the ith

element (i.e., i = ij,v) in the first round, the optimality
condition for (15) implies that one of the following three
situations occurs:

∇if(α
k,j,v+1) = 0, (26)

∇if(α
k,j,v+1) > 0 and αk,j,v+1

i = 0, (27)

∇if(α
k,j,v+1) < 0 and αk,j,v+1

i = C. (28)

From (23)-(25), we have that

i satisfies











(26)

(27)

(28)

⇒











∇if(ᾱ) = 0

∇if(ᾱ) ≥ 0

∇if(ᾱ) ≤ 0

. (29)

In the second round, assume αi is not changed again until
the v′th update. From (29) and (23)-(25), we have

|∇if(α
k,j,v′

)| ≤ ǫ

4
, (30)

or

∇if(α
k,j,v′

) ≥ − ǫ

4
and αk,j,v′

i = 0, (31)

or

∇if(α
k,j,v′

) ≤ ǫ

4
and αk,j,v′

i = C. (32)

Using (30)-(32), the projected gradient defined in (17) sat-
isfies

|∇P
i (α

k,j,v′

)| ≤ ǫ

4
.

This result holds for all i ∈ Bj . Therefore,

max
v∈2nd round

∇P
ij,v

(αk,j,v)− min
v∈2nd round

∇P
ij,v

(αk,j,v)

≤ ǫ

4
− (− ǫ

4
) =

ǫ

2
< ǫ.

Thus (16) is valid in the second round. Then tk,j = 2|Bj |
violates (19). Hence (18) holds and the theorem is obtained.

842


