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Abstract

The nature and origin of the temporal irregularity in the electrical
activity of cortical neurons in vivo are still not well understood. We
consider the hypothesis that this irregularity is due to a balance of
excitatory and inhibitory currents into the cortical cells. We study a
network model with excitatory and inhibitory populations of simple
binary units. The internal feedback is mediated by relatively large
synaptic strengths, so that the magnitude of the total excitatory as
well as inhibitory feedback is much larger than the neuronal threshold.
The connectivity is random and sparse. The mean number of connec-
tions per unit is large but small compared to the total number of cells
in the network. The network also receives a large, temporally regular
input from external sources. An analytical solution of the mean-field
theory of this model which is exact in the limit of large network size
is presented. This theory reveals a new cooperative stationary state
of large networks, which we term a balanced state. In this state, a
balance between the excitatory and inhibitory inputs emerges dynam-
ically for a wide range of parameters, resulting in a net input whose
temporal fluctuations are of the same order as its mean. The inter-
nal synaptic inputs act as a strong negative feedback, which linearizes
the population responses to the external drive despite the strong non-
linearity of the individual cells. This feedback also greatly stabilizes



the system’s state and enables it to track a time-dependent input on
time scales much shorter than the time constant of a single cell. The
spatio-temporal statistics of the balanced state is calculated. It is
shown that the auto-correlations decay on a short time scale yielding
an approximate Poissonian temporal statistics. The activity levels of
single cells are broadly distributed and their distribution exhibits a
skewed shape with a long power-law tail. The chaotic nature of the
balanced state is revealed by showing that the evolution of the micro-
scopic state of the network is extremely sensitive to to small deviations
in its initial conditions. The balanced state generated by the sparse
strong connections is an asynchronous chaotic state. It is accompanied
by weak spatial cross-correlations, the strength of which vanishes in
the limit of large network size. This is in contrast to the synchronized
chaotic states exhibited by more conventional network models with
high connectivity of weak synapses.

1 Introduction

The firing patterns of neurons in the cortex of intact animals often exhibit a
strong degree of temporal irregularity. This can be seen by the broad Inter-
Spike-Interval Histogram (ISI) of cortical neurons which are typically close to
those generated by a Poisson process with a short refractory period (Abeles,
1991, Bair et al. 1994, Burns and Webb 1976, Douglas et al. 1991, Softky
and Koch 1993). The irregular neuronal dynamics is also manifested in intra-
cellular recordings of the membrane potential which exhibit strong temporal
fluctuations. One of the long standing problems in cortical dynamics is un-
derstanding the origin of this irregularity and its computational implications
(Douglas and Martin 1991, Ferster and Jagadeesh 1992). In witro exper-
iments show that cortical neurons fire in a relatively regular fashion when
they are injected with a constant current. Thus the irregularity of the in vivo
neuronal activity must be due to fluctuations in their synaptic input (Holt
et al. 1996, Mainen and Sejnowski 1995). These fluctuations may be due
to variations in the intensity of the sensory stimuli or may result from the
stochastic action of synapses. However, since cortical cells have thousands of
synaptic contacts, one would expect that the summation of the synaptic in-
puts at the soma averages out most of the fluctuations in the synaptic input
and yields a membrane potential with only a small residual fluctuation. This



is a particularly difficult issue in conditions where the cortex is vigorously
active so that the cell receives many synaptic inputs within a single integra-
tion time constant (Holt et al. 1996, Softky and Koch 1993). One possible
resolution of this problem is to assume that the fluctuating synaptic inputs
are substantially correlated and therefore are not averaged out. Indeed, the
spike trains of pairs of neurons in cortex and in thalamus are often corre-
lated in a relatively narrow time scale (of the order of 10 msec) (Abeles 1991,
Gray and Singer 1989, Perkel et al. 1967a,b, Vaadia et al. 1995). However,
the observed size of these correlations indicates that in general only a small
fraction of the neuronal activity is tightly correlated. Another possibility,
which is addressed in this paper, is that although the inputs to a cell are
only weakly correlated, the cell is sensitive to the residual correlations in the
somatic potential.

Several mechanisms that generate enhanced sensitivity of a cell to small
fluctuations in its potential have been explored (Bell et al. 1994, Ermentrout
and Gutkin 1996, Gerstein and Mandelbrot 1964, Shadlen and Newsome
1994,1995, Softky 1995, Troyer and Miller 1996). One possibility is that the
excitatory and inhibitory inputs to a cortical cell are balanced in such a way
that leaves the cell’s average potential close to threshold and its firing pat-
tern is therefore susceptible to small fluctuations. An interesting question
then is what might be the mechanism that leads to this balance. An in-
teresting recent study (Tsodyks and Sejnowski 1995) explored the possible
involvement of local cortical dynamics in balancing excitation and inhibition.
This numerical study invoked a strong stochasticity in the synaptic action in
the form of a large failure probability. In a related study (Amit and Brunel
1996a,b), the variability in the network activity is at least partially due to
fluctuating external inputs to the local network. In addition, both studies do
not properly address important issues concerning the behavior of the models
and the robustness of their variability as the network size is scaled-up.

In this paper we investigate the hypothesis that the intrinsic deterministic
dynamics of local cortical networks is sufficient to generate strong variabil-
ity in the neuronal firing patterns. Neuronal dynamics is highly non-linear,
hence it may seem natural to expect that neuronal networks with deter-
ministic dynamics will exhibit chaotic behavior. However, studies of simple
models of large networks with a high degree of connectivity (Abbott and
Van Vreeswijk 1993, Gerstner and Van Hemmen 1993, Grannan et al. 1992,
Hansel et al. 1995, Van Vreeswijk 1996, Wilson and Cowan 1972) reveal
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that in the absence of external sources of strong stochastic noise they tend
to settle into temporally ordered states of tonic firing or oscillations. Recent
extensive numerical study (Bush and Douglas 1991, Hansel and Sompolin-
sky 1992,1996) of a model of local circuits in visual cortex with realistic
conductance-based dynamics has shown the existence of parameter regimes
in which these networks exhibit strongly irregular states, denoted as synchro-
nized chaotic states. These chaotic states are generated by the emergence
of strong synchrony in the fluctuating activity of different neurons, which in
turns generates self-consistently a strong fluctuating feedback to each cell.
Thus, this is a network realization of the scenario of correlated synaptic
inputs, mentioned above. The resulted patterns of activity show strongly
synchronized bursting patterns, tightly timed by the common inhibitory feed-
back. While bursting patterns are sometimes observed in cortical networks,
these synchronized chaotic states are hard to reconcile with the Poisson-like
weakly correlated firing patterns, as is commonly observed in cortex.

In this work we explore the possibility that local networks with intrinsic
dynamics evolve towards states that are characterized by strong chaos in con-
junction with weak cross-correlations, through the mechanism of balancing
between excitation and inhibition. This possibility raises several questions:
(I) What are the conditions under which a network evolves to a state in
which the excitatory and inhibitory inputs are balanced. (IT) What are the
characteristics of this balanced state? Does the balanced state represent a co-
operative state which is qualitatively distinct from the synchronized chaotic
state? (III) What are the functional advantages of the balanced state?

We study the above questions using a network model with the simplified
dynamics of binary elements. The architecture consists of excitatory and in-
hibitory populations connected by sparse random connections. An essential
ingredient of our model is the introduction of strong connections among the
units. A cell is connected, on the average, to K other cells and K is large.
However, the gap between the threshold of the cell and its resting potential
is only of the order of v/K excitatory inputs. Thus the network will saturate
unless a dynamically developed balance between the excitatory inputs and
the inhibitory inputs to a cell emerges. Indeed, our analytical solution of
the model in the limit of large network size shows that in a broad range of
parameters the network settles into a stable balanced state. An interesting
feature of the present theory is that it goes far beyond calculating the prop-
erties of the macroscopic order parameters. The theory yields a complete



statistical characterization of the balanced state. It shows that the balanced
state is associated with a strong Poisson-like firing pattern and also with a
broad inhomogeneity in the average rates of individual neurons. Finally, we
address the possible functional implications of the balanced state by show-
ing that the network is capable of fast tracking of temporal changes in the
external input to the network.

The outline of the paper is as follows: In Section 2 we present the model’s
dynamics and architecture. Section 3 presents the mean-field dynamic equa-
tions of the evolution in time of the two macroscopic order parameters which
are the rates of activity of the two subpopulations. The mean-field theory is
exact in the limit of large network size, N, and 1 < K < N. In Section 4
the behavior of the population rates in the balanced state is studied. Section
5 is devoted to the spatial and temporal distribution of activity within the
network. Section 6 addresses the stability of the balanced state. It shows
that there is a comfortable parameter regime where the balanced state is
stable. We also discuss what happens to the network when the balanced
fixed-point is unstable. Section 7 considers the effect of inhomogeneity in
the local thresholds. We show that in the presence of inhomogeneity the
distribution of rates acquires a characteristic skewed shape with a long tail,
qualitatively similar to the observed distribution of rates in populations of
neurons in the cortex of behaving monkeys. In Section 8, we evaluate the
sensitivity of the temporal fluctuations in the local instantaneous activities
to a small change in the initial condition. We conclude that a small change
in the initial condition leads rapidly to a complete loss of memory of the
unperturbered initial conditions. Thus, our network shows the main charac-
teristics of chaotic systems. Section 9 studies the dynamic response of the
system to dynamic changes in the external input, and shows the fast tracking
capabilities of the network. In Section 10 we discuss the results and some
open issues. Details of the theory are outlined in Appendix A and B.

A preliminary report on this work was published in Van Vreeswijk and
Sompolinsky (1996).

2 The Model

We consider a network of N; excitatory and N, inhibitory neurons. The
network also receives input from excitatory neurons outside of the network
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Figure 1: A schematic representation of the network architecture. Excitatory connections
are shown as open circles, inhibitory ones as filled circles.

(see Fig. 1). We will use either the subscript 1 or F to denote the excitatory
population and 2 or I for the inhibitory one. The pattern of connections
is random but fixed in time. The connection between the i-th postsynaptic
neuron of the k-th population and the j-th presynaptic neuron of the [-th
population, denoted J,i'{, is Ju/V K with probability K/N, and zero oth-
erwise. Here k,l = 1,2. The synaptic constants .J,; are positive and .J; o
negative. Thus, on average, K excitatory and K inhibitory neurons project
to each neuron. We will call K the connectivity index. The state of each
neuron is described by a binary variable 0. The value 0 = 0 (¢ = 1) cor-
responds to a quiescent (active) state. The network has an asynchronous
dynamics where only one neuron updates it state at any given time. The
updated state of the updating neuron at time ¢ is

oi(t) = O (ul (1)) (2.1)

where ©(x) is the Heaviside function, ©(z) = 0 for x < 0 and ©(z) = 1 for
x > 0. The total synaptic input, u% to the neuron, relative to the threshold,
0, at time t is

] 2 N; o
ui(t) = 33 o] (t) + uf — 6. (2.2)
1=1 j=1

where u) denotes the constant external input to the k-th population. As
explained in Appendix B the precise definition of the order of updates is not
essential. One model is a stochastic model in which each neuron updates its
state at time intervals which have Poisson statistics. This model is the sim-
plest to analyze. However, it has the drawback that it introduces a stochastic



element (the random choice of the updating neuron). An alternative model
is a fully deterministic one in which each neuron updates its state at equally
spaced times where the time between updates is different for each neuron.
We show in Appendix B that the two models have the same mean-field equa-
tions. In both cases, the mean intervals between consecutive updates of a
neuron of the k-th population is 7,. We will use time units such that 7, = 1
so that the only independent time parameter is 7 = 7;.

To make correspondence with point processes we define a spike as the
transition from the passive (0) to the active (1) state. Note that the firing
rate, ri, of neuron i in population k is different from the the average value,
mt(t), of o& because, before the cell can spike, it first has to update to the
passive state. However if neuron 7 of the kth population updates to the active
state in two consecutive updates, the synapses projecting from this cell stay
active after the second update, even though no new spike is emitted. However
if m%, which we will call the activity rate, is small, the probability of two
consecutive updates to the active state is low, and thus for small mi, the
activity rate and the firing rate are nearly equal. Indeed if we assume that at
each update the probability of being in the active state is m (which is very
nearly true in this model for low rates as shown in section 5.3), the firing
rate is given by ri = mi (1 — mL) /7.

An central ingredient of our model is the assumption that the total exci-
tatory feedback current and the total inhibitory current into a cell are large
compared to the neuronal threshold. We model this by choosing thresholds 6
that are of order 1 and by assuming that the strength of individual synapses
is of order 1/\/F, i.e., the coefficients Jy; are of order unity. Furthermore,
as will be seen later it is crucial that the excitatory inputs from the external
sources too are large compared to the threshold. This is modeled by denoting
these inputs as

ud = BymogVK  k=1,2 (2.3)

where Ej is of order unity and 0 < my < 1 represents the mean activity of
the external neurons. We will also use the notation

for the external input to the excitatory population and

By =1 (2.5)



for the external input to the inhibitory neurons. As noted above we assume
that the external input is temporally regular.

Since the model neurons are threshold elements, the absolute scale of u?
is irrelevant. We therefore set

']EE — JIE =1 (26)

so that the only connection parameters from the network are the inhibitory
and external ones, which we will denote as

JF;E*JE[ ;J[E*Jn (27)

where .][, JE > 0.

3 Mean-Field Equations for Population Rates

The dynamics of our model can be described by mean-field theory, which
is exact in the limit of large Ny. To define this limit we will assume that
N;/Ng is held fixed as the network size N = Ng + N; grows. The nature
of the mean-field theory depends on the assumed relationship between the
network size and the connectivity index. Conventional mean-field theory
assumes that the networks are fully connected, which is defined here to mean
that K/N is fixed as N — oc. Here we assume sparse connectivity defined by
assuming that K fixed as N grows. As explained in the Introduction, we are
primarily interested in temporal variability that is present in highly connected
networks. Highly connected networks are either fully connected or sparsely
connected with large connectivity index. Therefore we will focus on the case
of large K. Technically, we will first take the limit N — oo and then the
limit K — oo. In reality, networks have a large fixed size and connectivity so
that the distinction between full and sparse connectivity may be problematic.
Nevertheless, roughly speaking, the sparse limit is appropriate as long as

1< K<N,, k=12, (3.1)

The mean-field theory of our model for arbitrary fixed K is presented in
Appendix A. Taking the large K limit provides a substantial simplification
of the mean-field equations. In this limit most of the properties of the system
can be expressed in terms of the first and second moments of the neuronal



activity lavels as will be shown here and in the following sections. We first
consider the population-averaged firing rates of the excitatory and inhibitory
cells as

4 1 M
melt) = [0 ()] = - Do ok(t) . k=12 (3.2)
k=1
where [...] denotes a population average. In Appendix A we show that the

average activities satisfy in the large K limit

d —u
Ti —ymi(t) = —my(t) + H (\/a_];) (3.3)

Here H is the complementary error-function

< dx 2
H(z)z'z \/;n_ﬂe“’ /2

shown in Fig. 2. the quantities u(t) and ay(t) are

(3.4)

up(t) = VK (li Jumy(t) + B, m0> — 0, (3.5)

and
ay(t) = ; (Jua)? mu(t) (3.6)

respectively. Equation (3.5) denotes the population-average of the total input
to a neuron in the k-th population, relative to threshold. Equation (3.6)
denotes the variance of this input. Note that the external population does
not contribute to variance because we assumed that the input is the same
for all the neurons in a population.

In the case of a constant external input, namely, mq(t) = my, the network
settles into a state in which the average activities are constant, my(t) = my,
given by the stable fixed-points of Eq. (3.3),

my = H (\_/—Z_’;> (3.7)

where the mean inputs are

U = (Em() +mg — ,]Em[)\/? — QE, (38)
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Figure 2: Complementary error function H(z). The error function varies sigmoidally
from 1 for £ — —oc, to 0 at x — oc.

= (Img+mE — J[m[)\/?—gj. (39)

The variance of the inputs is

Equation (3.3) reflects the fact that the instantaneous input to each neu-
ron uf(t) fluctuates across the population of neurons, and these fluctuations
obey a Gaussian statistics in the large K limit. The expressions for the mean
and variance of the input to a cell can be derived in the large K limit, by
the following arguments. The population average inputs is

ug(t) = [ul(t Z Z | +uf — 6 (3.11)

=1 j=1

The population average [],Z] is equivalent to quenched average over the ran-
dom connectivity and is therefore equal to Ju VK /N, yielding Eq. (3.5).
Note that in the right hand side (RHS) of Eq. (3.11) we have neglected the
correlations between the random fluctuations in the activity of a cell and the
particular realization of its output connectivity. This is justified since such
correlations are weak in the large N limit. Similarly, the variance oy of the
input is

a(t) = [(duj(t) Z Z 8( i1 (1)))?] (3.12)

LU=1 jj'=1

where §X = X — [X]. Observing that [(J7 ol (1) = J2mi/N whereas
(2 ol (t)])? = J4m?K/N?* which is negligible, one obtains Eq. (3.6).
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4 Population Rates in the Balanced State

The balanced state is characterized as a state in which the temporal fluctu-
ations in the inputs are of the same order as the distance between the mean
input relative to threshold (even when K is large). To show this we need to
probe directly the network temporal properties. Here we study the necessary
consequences of the balanced state on the behavior of the population rates.
A necessary condition for a balanced state is that both the excitatory and the
inhibitory populations do not fire at their maximum rate, or are completely
silent, when we take the limit K — oc. In other words we look for solutions
with 0 < my < 1 in the large K limit.

To have equilibrium rates with my # 0,1 in the large K limit, both ug
and uy have to be finite in this limit. This means that the RHS of Egs. (3.8)-
(3.9) vanish to leading order. This leads to the following equations

]mo—i-mE—J[m[ :O(l/\/?) (42)
Thus, in the large K limit we obtain
JIE— Jgl

g = ————/—mg = Agmyg. 4.3
mg T — J; Mo EMg ( )

E—-1
my;=———my = A[m[], (44)

Jg — Jp

Since both Ap and A; have to be positive the coupling strengths have to
satisfy

E  Jg
— > —>1 4.5
77 (4.5)
or E J
E
— < —<1 4.6
<7 (4.6)

Besides this balanced solution we should also examine the possibility of un-
balanced solutions in which either my = 0 and uy, is of order /K and negative
or, my = 1 and wuy, is of order VK and positive. Equation (4.6) admits an
unbalanced solution in which mg = 0. In this solution m; is to leading order
given by m; = I'mg/J; (since the leading order in w; should vanish) so that

ug = VK(E = Jgl)J)mg < 0. (4.7)
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Furthermore if Jg < 1 and J; < 1 there exists a solution with mg =m; =1
even for my = 0. In this solution u; satisfies to leading order
u,=VvK(1—-J,) (k=E]I). (4.8)

So uy is of order /K and positive.
Thus if we require that there be no stationary solutions with myg = 0,1
or my; = 0,1 for small mg, the following constraints have to be satisfied

E Jg

— > —>1 4.9

777 (4.9)
Jg > 1. (4.10)

It is straightforward to show that these constraints eliminate all possible
unbalanced states.

Throughout the paper we will assume that Eqs. (4.9) and (4.10) are
satisfied, and that mg is small enough, so that Aymy < 1. Equations (4.3)-
(4.4) imply that the network activity rates grow linearly with the external
rate, my = Apmg, even though microscopic dynamics is highly nonlinear.
This is because the network dynamically finds an operating point at which
the net input in both populations is balanced. Thus, the linearity in the
network rates reflects the linearity of the synaptic summation underlying our
model.

4.1 The Net Input

The above equations determine the average rates of the populations, but
they must be consistent also with the general equilibrium results Eq. (3.7).
According to Eqs. (4.3) and (4.4) the leading O(v/K) contributions to wuy
cancel each other. Thus, the net value of u, is determined by subleading
contributions, such as corrections of order 1/vK to my. In fact, Eq. (3.7)
should be viewed as equations that determine the net synaptic inputs wuy
given the mean activity rates my, Eqs. (4.3)-(4.4). Tt is useful to denote by
h(m) the scaled input of m, defined as the solution of the equation

m = H(—h) (4.11)
Thus Eq. (3.7) reduces to
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The activity of neurons in cortex is usually much less than the saturation
rate. It is therefore useful to consider the limit where my < 1. In this regime
my < 1 and we can use the approximation

exp(—%/2)

Vo]
h(m) ~ —4/2|log m| (4.14)

Substituting this result in Eq. (4.12) yields

up ~ — /2 ag| log ag| (4.15)

This relation between m; and u; will be needed below in the calculation of
the rate distribution (Section 5.1).

H(x) ~ (4.13)

to obtain

4.2 Finite K Corrections

For finite K the residuals of order l/ﬁ in the rates are not negligible so
that Eqs. (4.3) and (4.4) no longer hold exactly. For finite K the equilibrium
activities satisfy my = Fj(mg, m;), with Fy given be Eq. (A.5). However,
as long as

my > K (4.16)

the Gaussian assumption of the input statistics is a good approximation,
hence Eqgs. (3.7) still hold. Thus, the leading finite K corrections can be
incorporated by resorting to the full mean-field equations Egs. (3.3)-(3.10).
In particular, the finite K equations for the fixed-point are

Img +mpg — Jrmy = (07 + Jarh(m;)) VK. (4.18)

As long as my is not small, the right hand sides of these equations are small
for large K hence the corrections to the linear solution, Eqs. (4.3)- (4.4) are
small. When mg becomes sufficiently small (i.e, of order 1/v/K or less) the
strong non-linearity in the single neuron dynamics reveals itself in a strong
non-linearity in the population response. In particular, the effect of the single
neuron threshold 6, becomes important. This is seen in Fig. 3 where the
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Figure 3: The mean activity of the excitatory population (thick solid line) and the
inhibitory population (thick dashed line) as a function of the input activity. For a network
in which cells receive input from, on average, 1000 cells in each population. For comparison
the activities in the large K limit are also shown, (thin solid line for the excitatory and
thin dashed line for the inhibitory population respectively). Parameter values: E = 1,
1= 08, JE = 2, J[ = 1.8, HE =1 and 9[ =0.7.

population rates are evaluated by the finite K equations, Eqs. (4.17)-(4.18)
with K = 1000. For comparison, we also show the straight lines predicted
by the large K limit. Since, as mentioned above, the steady state rates in
cortical networks are usually low, it is sometimes useful to incorporate the
leading finite K corrections. Whenever we refer in subsequent figures explicit
values for K we use Eqs. (4.17)-(4.18), unless otherwise stated. Except for
thresholding the population rates, the finite K corrections affect only the
quantitative results but not the qualitative predictions of the simple large K
theory.

5 Spatial and Temporal Variability

So far we have been concerned only with the population average rates my.
However the fact that the population averages are not saturated does not
necessarily imply that the system’s state exhibits strong temporal variations.
Specifically, a population average excitatory rate my, may be the outcome of
a fluctuating state where all the cells in the k-th population fire a fraction
my, of the time. However, it can also be achieved by a frozen state in which a
fraction my, of the cells fire every time these cells are updated, while all other
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cells never fire. In other words, the population average does not distinguish
between temporal and spatial fluctuations of activity levels.

Fortunately, the mean-field theory fully characterizes the statistics of both
the spatial and the temporal fluctuations in the activities in the balanced
state. This statistics can be expressed by writing the instantaneous activity
of a cell as threshold function of two random variables x; and y;(¢),

ol () = © (uk + /By mi+ \Jor — B yi(t)> (5.1)

The means uy are given by Eqs. (3.8)-(3.9). The parameter [ is given by

B = ar + Jiar (5.2)

The order parameter ¢; is defined as
ar =~ >_(my)*. (5.3)

where m/ is the time-averaged activity rate of the i-th cell,
mi =< oh(t) > (5.4)

The symbol < ... > denotes average over long time. Both z; and y;(¢) are
independent Gaussian variables with zero mean and unit variance.

Quenched Fluctuations of Synaptic Inputs: The term proportional to
x; represents a quenched random component of the synaptic input received by
different cells and thus represents a spatial inhomogeneity in the rates. The
origin of this inhomogeneity is two-fold. Since in our model the connectivity
is random, cells may differ in the number of synaptic inputs they have. This
component is given by

2 N .. .
o <ujy>=Y 3 81 mi). (5.5)

1=1 j=1

Here 6.J;7 = J3) —[J;J]. In addition, different neurons are connected to differ-
ent cells so that even if all the cells would have received the same number of
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inputs the system would evolve into a state with a self-consistently developed
spatial inhomogeneity. The second component can be written as

. 2 Nl .. .
by <up>=>_ Y Jyom] (5.6)
=1 j=1
where dm! = m! — m,. Adding the two contributions yields
) 2
[0 <up(t) >)) = Jaw = ae + Jiar = by (5.7)
=1

Thus, this variance represents the fluctuation in both the number and the
identity of input cells to the different cells.

Temporal Fluctuations of Synaptic Inputs: The term in eq. (5.1)
which is proportional to y;(¢) represents the stochastic component of the
inputs to a cell, namely a temporally fluctuating component which has a
short-time correlations. This can be written as

up(t)— <up >= 3> Ji (oi(t) —my) (5.8)
=1 j=1

from which one obtains

2
[(up(t)— < up>)? =Y Ja(my —a) = me — qe + Jy(mr — q1) = oy — By,
=1

(5.9)
Note that the variance of the temporal fluctuations in the inputs depends on
my — qr which in turn measures the temporal variability of the state.

5.1 Distribution of Time-Averaged Rates
The distribution of rates in the k-th population is defined as

pe(m) = Ny S 5(m — mb) (5.10)

i=1
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The statistics of the time average local rates can be derived by averaging Eq.
(5.1) over y;(t) (which is equivalent to average over time),

Uk VP T \/@x> (5.11)

Vo — By
Thus, the distribution of m¢ is fully determined by its first two moments.

Averaging this equation over x; yields Eq. (3.7). Similarly, squaring Eq.
(5.11) and averaging over z; yields

0 — /Dm [H (%)F (5.12)

Here we have used the Gaussian measure Dx = dxexp(—2%/2)/V27. In
general, g, satisfies (m)? < qx < my. The smaller g, the more homogeneous
the rate distribution. In a frozen state in which a fraction my, of the cells are
active every time they are updated, while all other cells are always quiescent,
qr is given by ¢z = my. On the other hand, if all cells in the population have
a probability m;, of being active each time they are updated, m¥ = my,, ¢, =
(my)?. Equations (5.12) have two solutions. There is a solution with gz = my,
corresponding to a frozen state, but this solution is unstable. The stable
solution has (my)? < g < my, which corresponds to a temporally fluctuating
state. Although the frozen solution is an unstable one—as mentioned above—
its existence highlights the fact that the temporal variability in our system
is purely of deterministic origin and is not induced by external stochastic
sources.
Generalizing Eq. (5.12), we can write

mi = my(z;) = H (

p(m) = /Dm(S(m — () (5.13)

In Appendix A.1 we analyze the properties of this distribution. A numerical
evaluation of pg(m) is shown in Fig. 4 which displays the rate distribution of
the excitatory activity for different values of myg. The distribution is plotted
against m/my. The synaptic couplings were kept constant, while the mean
rates were varied by adjusting the external rate mg. For high mean activity
levels the distribution has a pronounced skewed shape. Note however that
according to Eq. (5.11) the distribution of the time average inputs u¥ to the
cells is Gaussian, for all values of my.
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Figure 4: Distribution of the activity rates of the excitatory population for two different
values of the average rate in the large K limit: mpg = 0.01 (solid line), and mp = 0.1

(dashed line). The distributions are shown as a function of the local rate divided by the
mean rate. Parameter values as in Fig. 3.

In the low rate limit, my < 1, Eq. (5.12) can be solved using Eqs. (4.13)-
(4.15) yielding to leading order,

qr = m;, + O(mi|log my|). (5.14)

Thus, if the network evolves to a state with low average activity levels, m; <
1, g is slightly larger than m}. The fact that g, < my implies that the
balanced state is characterized by strong temporal fluctuations in the activity
of the individual cells. On the other hand, the fact that ¢, is not exactly
equal to m3, reflects the spatial inhomogeneity in the time-averaged rates
within a population, as discussed above. Equation (5.14) implies that when
the mean activity my decreases the width of the distribution is proportional
to (my)%?, i.e., it decreases faster than the mean my. Thus, for low mean
activity, pr(m) becomes narrowly peaked at m = my, as shown in Fig. 4.
The reason for the narrow peak is the fact that in our model the fluctuations
in the input is related to the fluctuations in the feedback from the network,
hence its variance becomes small as the activity in the network decreases (see

Eq. (5.2).)

5.2 Time-Delayed Autocorrelations

In order to complete the statistical characterization of the balanced state we
have to determine the statistics of the temporal fluctuations in the activities
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of single cells, or equivalently the temporal fluctuations in their input. We
have already stated that the temporal fluctuations in u*(t) obey Gaussian
statistics, with variance given by a; — (. To fully characterize its statistics
we have to evaluate its auto-correlations. Using arguments similar to those
outlined above, it is straightforward to show that the autocorrelation of the
input is linearly related to the autocorrelations in the local activities,

i

Bi(1) = [< 6ub(t) oul(t + 7) >] = qu(r) + Jiqi(7) (5.15)

where ¢, (7) is the time-delayed autocorrelations of the local activities,
N,
a (1) =N, ' Y < of(t)of(t+7) > (5.16)
i1

and as before < ... > denotes average over ¢t. Note that ¢z(0) = my whereas
gk (T — o0) = qg. Likewise, 0;(0) = oy whereas [;(7 — 00) = [. Using
this relation, the following self-consistent equation for gx(7) (with 7 > 0) is
obtained,

Tk dq;f_T) = —qx(T)

+ / — exp(—t/m) Jzz LH( N )J (5.17)

Note that the integral over ¢ in Eq. (5.17) results from averaging over the
distribution of update time intervals. The solution of this integral equation
yields a function gx(¢) which decays to its equilibrium value with a time
constant of the order of 7,. A numerical solution of Eq. (5.17) for gx(7) is
shown in Fig. 5. As can be seen, the autocorrelations are larger than those
predicted by Poisson statistics. This enhancement of short-time correlations
reflect the refractoriness in the activities of the cells that project the cell.

5.3 Numerical Realization of Synaptic Inputs to a Cell

In order to demonstrate the nature of the fluctuating synaptic inputs to a
single excitatory cell in the balanced state, we have generated numerically
samples of stochastic Gaussian processes which simulates the fluctuations of
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Figure 5: Population averaged autocorrelation for the excitatory population in the large
K limit (solid line). The dashed line shows the autocorrelation for a population of cells
with the same rate distribution, but Poissonian updating. Parameter values: 7 = 0.9,
mg = 0.1, and other parameters as in Fig. 3.

the synaptic inputs to a single excitatory cell. In order to show explicitly
the effect of balancing we have simulated separately the total excitatory and
inhibitory components of ui,(t). The time average of the total excitatory
(inhibitory) component is itself sampled from a Gaussian distribution with
a mean VK(mgp + Emg) (VKJgm;) , and a variance ¢r ( Jgqr) . The
time-dependent fluctuations of the total excitatory (inhibitory) input has
a time-delayed auto-correlation equal to ¢u(7) — qr (Ja(q:(7) — qr)). The
results are shown in Fig. 6, where we have used K = 1000. They demon-
strate that the total excitatory and inhibitory inputs are large compared to
the threshold and have fluctuations that are small compared to their mean.
Because the network is in the balanced state the net input is of the same
order as the threshold and the fluctuations bring the input above threshold
at irregular intervals. The lower part of the figure we show the output state
of the cell. This is evaluated by generating the sequence of update times and
thresholding the net input at these times. Note that, because of the update
rule, the cell does not switch from passive to active every time the net input
crosses the threshold.

In Fig. 7 we present the interspike interval histogram (ISI) of the cell.
Note that because the interval between spikes is a convolution of two random
events: first a transition from 1 to 0 and then a transition from 0 to 1, the ISI
vanishes at small intervals. Thus, the above definition of a spike does capture
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Figure 6: Temporal structure of the input to an excitatory cell. The upper panel shows
the total excitatory input, consisting of the external input and the excitatory feedback
(upper trace) the total inhibitory input (lower trace) as well as the net input (middle
trace). They are calculated by sampling from the time-correlated Gaussian statistics
predicted by the theory. Below the times when the cell switched to the active states are
indicated. Parameter values: mg = 0.04 and other parameters as in Fig. 5. K = 1000
was used to calculate the average input.

to some extent the refractoriness of real spikes. In fact, if we ignore the short-
time correlations in the activities, the ISI of the i-th ( say, excitatory) cell
with an average rate m; can be shown to be simply

I;(t) =

(exp(—myt/Tg) —exp(—(1 —m;)t/mr)) ,t> 0. (5.18)
This function rises linearly from zero and peaks at ¢t oc 7. For intervals of
the order of 75/m; or longer I(t) decays purely exponentially with a decay
constant m; /7 as in the IST of a single Poisson process with a rate m;/7p.
Comparison with Fig. 7 shows that this is indeed a very good approximation
of the IST of our model.

Finally, it should be noted that because of the sparsity of the connec-
tivity different cells receive input from different sub-populations, so that the
fluctuations in their input will be only very weakly correlated. As a result
the correlations in their activity will have a very small correlation.
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Figure 7: Interspike interval distribution for the cell shown in Fig. 5 (solid line). The
distribution was determined by measuring the time between consecutive switches from the
inactive to the active state until 5 x 10° intervals had been accumulated. The dashed line
shows the interspike interval distribution for Poissonian updating with m; = 0.06.

6 Stability of the Balanced State

To determine the stability of the balanced state we have to study the re-
sponse of the system to small perturbations in the population activity rates.
However, because of the nature of the balanced state, we have to distinguish
two scales of perturbations: local perturbations in which the deviations in
the rates are small compared to 1/\/?; and global perturbations in which
these deviations are large compared to l/ﬁ

6.1 Local Stability

Local stability of the balanced state requires that a sufficiently small pertur-
bation in the populations rates will decay to zero. In our case, a sufficiently
small perturbation means that it initially causes only a small disruption of
the balanced state. This means that the perturbations are small not only
compared to my but also compared to 1/\/? so that the perturbation of
the inputs to the cells are initially small. We therefore consider a solution
of Egs. (3.3) with an initial condition my(0) = my + dm(0) with a small
omy(0) where |0my(0)] < 1/vK. In this case the perturbation of the total
mean input u, is also small, hence we can linearize the dynamic equations
(3.3) around their fixed point. Thus, dmg(t) = mg(t) — my satisfy a linear
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equation of the form

d —
" [=1,2

Calculating fi; by partial differentiation of the RHS of Eq. (3.3), yields

exp(—ui /2ag) Jx

vV 27T(){k

Solving Eqs. (6.1) one obtains dmy(t) = dmyexp(Ait) + dmy o exp(Aat)
where the eigenvalues A\; and Ay of the 2 by 2 equations Egs. (6.1) are both
of order VK. Requiring that their real part be negative yields a condition
on 7 of the form

Jiw = (6.2)

T < T, (6.3)

where 77, is of order 1, its precise value depends on the system parameters.
It is important to note that since both A\; and X, are of order VK, if 7 < 7,
small perturbations will decay with extremely short time constant of order
1/\/f This is due to the strong negative feedback, of order K, generated
by the strong synaptic couplings.

6.2 Global Stability

The local stability condition Eq. (6.3) guarantees that a perturbation smaller
than O(1/v/K) will die out. It is therefore important to ask whether the bal-
anced state is stable also to perturbations that are large compared to this
order. However, such perturbation will generate a large disruption in the
inputs uy, of order K, hence linearization of the dynamic equations is in-
adequate. We therefore have to consider the nonlinear evolution of perturba-
tions in the rates under Eqs. (3.3). In fact, since the perturbation destroys
the balance between excitation and inhibition, H(—u/\/ay) of Eq. (3.3)
can be approximated by ©(uy), hence the evolution of the perturbations is
described by

d

These equations are piece-wise linear and therefore can be solved explicitly.
One finds that the solution of these equations decay to zero provided that
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Figure 8: Evolution to the stable fixed point. The average inhibitory rate is plotted
against the average excitatory rate. (A) shows the evolution of the rates when the rates
are initialized far from their steady state values. (B) shows a close-up view of the approach
to the fixed point. Parameters: 7 = 1.3. The other parameter values as in Fig. 3.

the inhibitory time constant satisfies
T < TG (6.5)

where

JE’I’I’LE(l — TTLE)7 mE’ 1-— mpg

Tymy(1 — 1
6 = Jp min{ J (U =my) my L= my } (6.6)

In conclusion, the global stability condition guarantees that, starting from
arbitrary initial values my(0) the population rates will eventually approach
the balanced regime characterized by local fields u; which are of order 1
and not VK. In other words, the rates will deviate from the values of the
balanced fixed point by at most O(1/vK) quantities. Whether they will
actually approach this fixed point or will converge to a limit cycle around
it depends on the local stability condition, Eq. (6.3). It should be pointed
out that depending on the system parameters 74 may be greater or smaller
than 7;,. Figure 8 shows the evolution of mg and m; in a network with
K = 1000, for 7 = 1.3, when the network starts far away from the balanced
state. The initial evolution is similar to the global dynamics. It converges
to the neighborhood of the balanced fixed point in an oscillatory manner
characteristic of the dynamics of Eq. (6.4). In Fig. 8B we show the late
portion of the dynamics which corresponds to the local dynamics, Egs. (6.1).
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Figure 9: Critical time constants 75 (solid line) and 71, (dashed line) as function of I/E.
The external rate was adjusted to keep the excitatory activity level constant at mp = 0.1.
I/E was varied from 0 to (J; — mg)/(Jr — mg). For this range of I/E, m; varies from
mpg/Jr to 1. Parameters: £ =1, Jg = 2.0, and J; = 1.8.

For the parameters used in this Figure the large K critical inhibitory time
constants are 77, = 1.61 and 7 = 1.50.

To illustrate the region of stability of the balanced state we have calcu-
lated the phase diagram of the network in terms of two parameters: The
inhibitory time-constant 7, and the ratio between the external input into the
inhibitory population, and the external input into the excitatory population.
We have chosen to scale mg so that the excitatory population rate is held
fixed. The results are shown in Fig. 9, where both the local and global sta-
bility lines are presented. Note that for these parameters 77, is always smaller
than 7.

6.3 Regimes of Instability

Stability of the balanced state requires that 7 be smaller than both 77, and
Tq. It is of interest to consider what happens if this condition is not fulfilled.

1. Unbalanced Limit Cycle: 7 > max{7, 7¢}. In this case Eqgs. (3.3)
possess a stable unbalanced limit cycle, namely, a stable oscillatory
solution with wuy(t) of order v/ K. This is shown in Fig. 10A.

2. Balanced Limit Cycle: 7;, < 7 < 7¢ . In this case, perturbations
that are of order 1 will decrease until they are of order 1/v/ K, while
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Figure 10: Different scenarios when the fixed point is unstable. (A) shows a case where
T is larger than both 74 and 77,. Here the rates evolve to the global limit cycle where the
amplitude of the oscillations is of order 1. The solid line shows the evolution when the
network is initiated outside the limit cycle, the dashed line corresponds to for initial rates
inside the limit cycle. Parameters as in Fig. 8, except 7 = 1.8. (B) Shows schematically
a case where 77, < 7 < 7. The network evolves to a limit cycle with the amplitude of
order K—'/2. The figure shows the evolution of the rates with initial conditions far from
the fixed point. The insert shows an expanded view of the area around the fixed point,
with the trajectory of rates starting outside the limit cycle (solid line) and the trajectory
of a network that was initiated close to the fixed point.

perturbations that are small compared to 1/\/F will increase until
they are of order 1/\/f Since there are no fixed points with dm,
of order 1/v/K this means that there has to be a stable limit cycle
with an amplitude of order 1/y/K. Thus, in this regime the system
converges to a limit cycle which maintains the approximate balance
between excitation and inhibition. This is described schematically in

Fig. 10B.

3. Balanced Fixed-Point with Shrinking Basin: 7o < 7 < 7. In
this case, perturbations of order 1 go to a global limit cycle, while per-
turbations much smaller than 1/\/f evolve to the fixed point. There
must be an unstable limit cycle with amplitude of order 1/v/K that
separates perturbations that go the global limit cycle and perturbations
that go to the fixed point.
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7 Inhomogeneous Thresholds

So far we have considered networks of identical neurons, except for their
connectivity. Real neuronal systems exhibit a substantial inhomogeneity in
single neuron properties. It is therefore important to consider how such in-
homogeneities affect the behavior of our system. We will model the inhomo-
geneity by a variability in the thresholds of the neurons. Inhomogeneities in
the local thresholds may have particularly strong effect in a balanced state
with low mean activity. The reason for this is that the intrinsic fluctua-
tions are all generated by feedback from the network activity. Hence they
decrease in amplitude as the mean activity in the network drops. In partic-
ular, under these conditions the intrinsic temporal fluctuations may not be
of sufficiently large amplitude to overcome the quenched dispersion of local
thresholds. Therefore, the important issue which we address here is: does
the balanced state remain temporally fluctuating in the limit of low mean
activity in the presence of inhomogeneous thresholds, or does it become a
frozen state. We will show that the answer to these questions depend not
only on the width of the threshold distribution but also on the form of its
tail.

We denote the local threshold of a neuron by Hf + 0, where 6, is the
population averaged threshold and 6% is a quenched random variable with
zero mean. We will call 0¥ the local threshold. The mean activity rate of
neurons in the k-th population that have a local threshold @ is

0 — Uk
k() = H . 7.7
)= (2] 1.7
and hence the population averaged rate is
/ dop (o) i [ L= (7.8)
my = / .
b p \/ O

where P(6) denotes the quenched distribution of 6, and u; and a4, are given
as before by Eqgs. (3.8), (3.9), and (3.10). Note that we have absorbed the
mean threshold, 6 in the definition of u, (see Eqgs. (3.8)-(3.9)).
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7.1 Distribution of Thresholds with Long Tails

We first consider a distribution with a long tail of low thresholds. A concrete

example is
P(6) = Aj% exp(— 5 (6/A)) (7.9)

In this case, the spatial fluctuations in the inputs (relative to thresholds)
consist of two Gaussian terms: one is induced by the random connectivity
and has a variance «; and the other induced by the thresholds and has a

variance A. The balance conditions which determines the population rates,
Eqs. (4.3)-(4.4), still holds. In addition,

my = H (%) (7.10)

which determines uy, and

oo fou[n(ZEE)

Now let us consider the limit of low mean rates, which is achieved by assuming
that mg is small. For fixed A, if the mean rates become sufficiently low so
that m; < A, the intrinsic variances «y and f; can be neglected compared
with A, hence one obtains

mk%qsz<Xk>. (7.12)

The fact that ¢, ~ my implies that the state is essentially a frozen state,
namely,

and consequently, the distribution of mean rates has a distinct bi-modal
shape,

pr(m) = (1 —my)d(m) + mpd(m — 1), my <1 (7.14)
as shown in Fig. 11A. Thus, an unbounded threshold distribution has a

relatively strong qualitative effect on the balance state, in the limit of low
mean rate.
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Figure 11: Distribution of the activities of the cells in the excitatory population in the
large K limit. (A) Distribution for a network of neurons with a Gaussian distribution of
thresholds. The distribution is shown for population averaged rates mg = 0.01 (solid line)
and mg = 0.1 (dashed line). The insert shows the divergence at m = 1 of the distribution
for mg = 0.01 with the density in arbitrary units. Parameter values D = 0.2 and other
values as in Fig. 3. (B) Distribution of activity levels of the cells in the excitatory
population in the large K limit for a network of neurons with a bounded distribution of
thresholds. The distribution is shown for mean rates mg = 0.01 (solid line) and mp = 0.1
(dashed line). Parameter values as in A. (C) Firing rate distribution for neurons in the
right prefrontal cortex of a monkey attending to a complex stimulus (light source and
sound) and executing a reaching movement. The rates were averaged over the duration of
events that showed a significant response. The average rates was 15.8 Hz.

29



7.2 Bounded Distribution

We next consider the case of a bounded distribution of thresholds. As an
example we take a distribution of # which is uniform between —A/2 and
+A/2, and zero otherwise. In this case, Eq.(7.8) yields

N /AA/; ( 7:/%_9> (7.15)

To assess the effect of A we analyze Eq. (7.15) in the low my limit. In this
case, the solution for wu, is

g+ AJ2 = O(/my) (7.16)

Thus, the population rates adjust themselves so that synaptic input is slightly
below the smallest threshold in the population, §;, — D/2, see Eq. (3.8). The
small gap between the mean synaptic input and the minimal threshold is
such that the temporal fluctuations of the network, with the low variance
ay, are sufficient to bring the neurons to threshold levels. Indeed, analyzing
the rate distribution for this case we find that it is a unimodal with width

/4 where
gk X A aZ/Q (7.17)

This means that the rate distribution is extremely broad and skewed. The
full shape of the rate-distribution is given by

HOCk/QAQ

pp(m) ~ ——ee m_<m<m, (7.18)
log ]

and zero otherwise. The bounds of m are:
m_ o exp(—A%/(204)) (7.19)

my x Aoy /|log(ag)] >> my. (7.20)

The above results show that in the case of a bounded threshold distribu-
tion, the temporal variability remains strong even in the limit of low mean
rates. However, the inhomogeneity does affect strongly the shape of the rate
distribution making it more skewed and broad. Figure 11B shows the results
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of numerical calculation of the rate distribution for the excitatory popula-
tion, with a uniform distribution of thresholds between —A/2 and A/2, for
different values of mean rates. Comparing Figs. 4, 11A and 11B we see
that for moderate mean rates m; = 0.1, A does not have a big effect on
the shape of the distribution. However, lowering the network mean activity
the distribution peak shifts to values which are much smaller then the mean
while its tail extends to rates which are of the order of \/mg. In contrast, in
the case of a homogeneous threshold, lowering the mean rates shifts the peak
towards the mean and decreases the width of p(m), see Fig. 4. In the case
of a Gaussian distribution, lowering the mean rates creates a pronounced
bi-modal distribution, characteristic of a frozen state, as seen in Fig. 11A.

In general, for small my, a threshold distribution P(6) will yield a rate
distribution p; for population k, that is given by

pr(m) = V2r P (—/ag(h(m) + hy)) "™/, (7.21)
where Ay, is determined by

/dm mpy(m) = my,. (7.22)

If P(f) has tails that fall off as slow as or slower than than a Gaussian, p; will
diverge for m = 0 and m = 1, while if P(0) falls of faster than a Gaussian, py
will be negligible for m < m_ and for m > m, with, for small m;, m_ << my
and my < m, < 1. In this case p; can be approximated by

(m)OCP(\/@( 2log(m) — hy))
PR my/log(m)

for m_ < m < mgy. Furthermore P (—\/O/_k( 2log(m) — i)k)) varies only
slowly with m for these rates.

Thus for a threshold distribution with a tail that falls off faster than a
Gaussian the distribution of the rates goes to 0 for m = 0 and m = 1 and
has a long power-law tail that extends up to a rate m that is much larger
than the average rate. In contrast if the tails of the distribution fall off as
slow as or slower than a Gaussian, the rate distribution will peak at m =0
and m =1 if the average rate is sufficiently low.

(7.23)
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7.3 Experimental Rate Distribution

The above results make a clear prediction about the shape of the rate distri-
bution in a local population of neurons that have low mean rates. It seems
reasonable to compare these predictions with the distribution of rates in
cortical neuronal pools of behaving animals. Figure 11C presents an experi-
mentally determined rate histogram of neurons in the right prefrontal cortex
of a monkey (Abeles et al. unpublished). The data was taken from periods
of time while the monkey was attending to a variety of stimuli (light sources
and sound) or was executing simple reaching movements. The average rate
(of the neurons that showed any activity during the time of measurement)
was 15.8 Hz. The observed histogram has a distinct unimodal skewed shape
with a tail extending up to 80 Hz. These results are consistent with the
theoretical predictions of Fig. 11B.

8 Chaotic Nature of the Balanced State

The strong temporal fluctuations of the neuronal activity in our model and
the resultant fast decay of temporal correlations strongly suggests that the
balanced state corresponds to a chaotic attractor. However, to justify charac-
terizing this state as chaotic we need to study the sensitivity of the dynamic
trajectory to small perturbations in the initial conditions. If the network
evolves to a chaotic attractor small perturbations in the state of the network
should grow at least exponentially. Therefore after some time the state of
the network is far from the state the network would have been in had it not
been perturbed. This definition of chaos is technically speaking inapplicable
to a system with discrete degrees of freedom such as ours, since in this case
the size of a perturbation of the system state is bounded by the discreteness
of the system’s state. In our case, the minimum perturbation is changing
the state of a single neuron. Nevertheless, in the limit of large network size
we can consider such a perturbation as infinitesimal, as described below. We
consider two copies of the network. In one copy, the states of the neurons
are given by o} ,(t); in the other they are given by o} ,(¢). Both networks
have the same connection matrices J,ZC{ and have the same update schedule.
The networks get the same constant input mg(t) = myg, and are assumed to
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have reached a balanced state with the same population rates,
1
kz<0pk >=my forp=12. (8.1)
=1

The distance between the network states at time ¢ is defined as

1 Mk

D) = = {(o1u(t) — ohs()’
Ny i=1

1

— N 2 {<0—%,k(t)> + <Ué7k(t)> —2 <(T%7k(t)()'é’k(t)>} (8.2)

Here the angular brackets do not mean average over time but average over
all initial conditions of the two networks subject to the constraints that each
individual network is at equilibrium (e.g., its my and g, have the equilibrium
values), and that the distance between the initial states of the two networks
equals a given Dy (0). If the network is in a chaotic state, the distance
Dg(t) of the cells in population k, defined by Eq. (8.2) should grow at least
exponentially for small Dy, The maximum Liapunov exponent \j, defined
by dDy,
_ 1

A= DIIICIBOD dt
should be positive. Note that in calculating Ay we will first take the large N
limit of Dy and then Dj — 0 limit. To write the dynamics of Dy, it is useful
to write Dy(t) as

(8.3)

Dy (t) = 2(my, — Qx(1)) (8.4)
where Q(t) denotes the overlap of the two trajectories. In Appendix A we
show that Q) (t) satisfies an equation similar to that of g(7), namely,

dQy
Th = —Qy
T[ (_Uk+ %(t)x)-l
+ / Da [H — | (8.5)

with u, and oy are as above, and ~,(¢) given by

=Y (Ju)? = Qu(t) + J;Q:(1). (8.6)

=1

33



It is easy to see that this equation has two stationary solutions. One is

Qr = my (8.7)

which corresponds to a fully locked trajectories. This solution is unstable, as
will be shown below. The stable fixed-point is

Qr = Gk (8.8)

which corresponds to a fully desynchronized trajectories so that at long times
the correlations between the two trajectories at the same time are the just
those induced by the time-independent average activities. Starting from any
nonidentical states, the two trajectories will eventually desynchronize them
completely. To find the initial rate of divergence, we expand Eq. (8.5) for
small Dy, and find that to leading order, the distances satisfy

dDy, 2 e /2

T dt’“ = e Vo — - (8.9)
Since oy — Y x Dy, Eq. (8.9) has a growing solution even if Dy (0) = 0. This
implies that the Liapunov exponent A is infinitely large in the balanced
state. Figure 12 shows the evolution of Dg. As can be seen Dpg increases
rapidly to the equilibrium value Dp = 2(mg — qg), for arbitrarily small
initial positive value. This should be contrasted with systems with finite
positive Liapunov exponents where the initial rate of growth depends on the
magnitude of the initial perturbation of the initial conditions. The divergence
of Az, in our system is related to the discreteness of the degrees of freedom,
which implies an infinitely high microscopic gain: a small change in the inputs
to a cell can cause a finite change in its state.

9 Tracking of Time Dependent Input

We have shown that for a large range of parameters, a network with synaptic
strengths of order 1/v/K will evolve to a balanced state and investigated
some of the characteristics of this state. But so far we have not addressed
the question of what the functional advantages of this state might be. Why
should a network generate an excitatory input that is much larger than the
threshold input and then counterbalances this with a nearly equally large
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Figure 12: Evolution of the distance Dy starting from a small initial distance in the
large K limit. Parameters as in Fig. 3 and 7 = 0.9.

inhibitory input? If we consider the metabolic costs of such large currents,
it seems clear that a biological system would not choose such a mechanism
unless it has some advantages over other mechanisms.

In this section we present one possible advantage of the balanced network.
We have already shown that perturbations in the network rates, which are
small compared to 1/\/f, die out in a time that is of the order of 1/\/f
Therefore the network is very stable against small fluctuations in the rates.
We now consider the consequences of this for the response of the system to
time-dependent change in the external driving force my.

If the external activity mgy changes suddenly by a small amount, of the
order of 1/\/?, the equilibrium rates will change by an amount that is of the
same order. So just after the change in external rate, the network rates differ
slightly from the equilibrium rate. They will approach the new equilibrium
rate on a time scale that is of the order 1/v/K, so the network rates adapt very
fast to a sudden change in mgy. This means that if mg changes continuously
with time, the network rates will track my very fast, provided that my doesn’t
change too rapidly. To quantify the speed of the tracking of a balanced
network, we compare the network rates with the rates of a hypothetical
network that tracks changes in the external rates instantaneously. In such
a network the rates m{° satisfy mg°(t) = my(mg(t)), where my(my) is the
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equilibrium rate for mq(t) = mg which are given by

m*(t) = H ( ui (1) ) | (9.1)

ag°(t)

with
2
up (t) = VK (Jromo(t) + > JumpP(t)) — Oy (9.2)
=1
and

o (1) = Y () mie(). (9.3)

1=1,2

Note that to leading order in K mp° satisfies the balance condition
mpC(t) = A mo(t) (9.4)

However, Eqgs. (9.1)-(9.3) take into account also the 1/v/ K corrections in
We now assume that

mi(t) = mE(t) + mh(t) VK (9.5)

namely, that the deviation from perfect tracking of the instantaneous is only
of order 1/v/K. The rates my, satisfy Eq. (3.3). To leading order in K this
is

dmse(t
Tk St( ) —mpe(t) + H (

o (t)

Using Eq. (9.4) we obtain

- 1
Ay, (Tk dn:;;(t) + mo(t)> = H (_Uk R Zi(i];lm[ (f)) k=1,2. (9.7)
aX(t

which determines the small deviations my(t)/v K as functions of the time-
dependent drive mq(t). Since H(x) is between 0 and 1 the above equations

have a solution only for 0 < my +Tk% < 1/Ag. This implies that the almost
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0.085

Figure 13: Reaction of the excitatory population to input that is increased by small steps.
The solid line shows the activity of a network that responds instantaneously. The dashed
line shows the probability Pg of updating to the active state for neurons that happen to
update. The dotted line represents the population averaged activity of the population in
a balanced network. Parameter values: K = 1000, 7 = 0.9. Other parameters as in Fig.
3.

perfect tracking occurs for rates of change of the external input which obeys
the following bounds
(9.8)

max —— < — < min — [ — — my

my dmo 1 < 1 )
k=12 Ty dt k=127, \ A '

To understand qualitatively these results, let us consider a system in the
balanced state with a fixed my where at time £ = t; mq is suddenly changed
to mg + dmg. We assume that dmg is much smaller than mg but dmgv K
is of order 1. This is shown in Fig. 13 where my is increased by a series of
small steps. Because the input is v/Kmg(t) the small change in my initially
causes a change of order 1 in the total input. Hence the probability P that
the cells in the k-th population, which are updated at time £y, will go to the
active state is initially increased by a large amount. This is denoted as AP,
namely, AP, is of order 1, as shown by the dashed curve in the figure. In fact,
this probability is given by the RHS of Eq. (9.4) which differs substantially
from the previous equilibrium probability, A;mg. This initial increase in the
number of active cells is causing a large inhibitory feedback, which causes
Py, to decrease fast to its new equilibrium value which only slightly increases
from its original equilibrium value, as seen in the figure. Thus, the initial
response is highly nonlinear due to the initial disruption of the balance in
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the inputs and the highly nonlinear dynamics of single cells. This initial
large response causes a fast rate of increase in the population rates, since
omy ~ T,;lthPk, implying that dmy reaches the value Apdmg in time of
order 7 /dmy ~ Tk/\/F, see the dotted line in the Figure. The final change
in the population rates follows linearly the change in the external input as
required to maintain the balance between excitation and inhibition.

The limitation on the change in the external rate is readily explained by
the maximum increase (decrease) in the network rate that the microscopic
dynamics allows. The fastest the network rates can increase (decrease), is
by putting all newly updated cells in the active (passive) state, i.e., P, = 1
(P, = 0), so that the change in the network rates is bounded by

dmk
—my, < Tp—— < 1 —my,. (99)

dt
If the external rates increase (decrease) faster than the bound Eqgs. (9.8) the
network will not stay in the balanced state during the rate change, so that
uy, is of order /K. Consequently, the input is above (below) the threshold
for all cells of the kth population that are updated, and all updated cells are

in the active (passive) state.

To compare the tracking capabilities of balanced networks with those of
an unbalanced network, we consider a network of threshold linear neurons
with synapses of strength Ji;/K for inter-network connections and Jy,o/K for
the strengths of the synapses projecting from the external population and
the thresholds T} chosen so that the equilibrium rates of this network is the
same as those for the balanced network. We choose the same neuronal time
constants as in the balanced network. In this network the rates satisfy

dmk ~
TkW = —My + (Jkomg — JkEmE =+ Jk[m[ =+ Tk)+, (910)
with (), = (z+|z])/2. If we set my(t) = mS°(mg(t)) +mj (), the difference
between the network rates and the rates of a perfectly tracking network,
my(t), satisfy

dm} dm
e = (Jgp — Vmjy + Jemp — moAp —= (9.11)
dt dt
dm} dm
Tl—df’ = Jrgmyp + (Jir — )m; — 11 A; d—fo (9.12)
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Figure 14: Population averaged activity of the excitatory cells for an input that varies
with time The input is constant from time t = 0 to ¢t = 1. Between t = 1 and ¢ = 2 the
input increases linearly. After ¢ = 2 the input is again constant. The solid line shows the
excitatory rate of a network that responds infinitely quickly, the dashed line shows the
response of the balanced network. Also shown is the response of an unbalanced network
of threshold linear neurons (dotted line). Parameters for the balanced network as in Fig.
13. For the unbalanced network see text.

e.i. my will be of order 1.

Thus in the unbalanced network the difference between the network rates
and the rates in a perfectly tracking network will be of order /K times larger
than in a balanced network.

Figures 14 and 15 show a comparison of the tracking capabilities of a
balanced network with K = 1000 and an unbalanced network with threshold
linear units. Between £ = 0 and ¢ = 1 the networks are at equilibrium. In
Fig. 14 the external activity is ramped between ¢ = 1 and t = 2,

mo(t) = mgy + T)Ot (913)

and after ¢ = 2 my is kept constant again. The graph shows m% and mpg for
both networks plotted against time. Clearly the balanced network is much
better in tracking the change in external rate than the unbalanced network.
Similar results are seen in the case of a sinusoidal external input, Fig. 15.
Finally, in Fig. 16 we plot the rate of change of mg vs. vy for the ramped
input case. The results of this as well as Figs. 14 and 15 are based on a
full finite K solution of the dynamics. We also show in Fig. 16 the large K
predictions according to which there is a sharp upper bound for fast tracking
at a value of vy given in Eq. (9.8).

39



0.20

2
=
53

Excitatory activity
o
S

0.05

Figure 15: Average rate of the excitatory population for a sinusoidally varying input.
The rates of the excitatory population in an instantaneously responding network (solid
line), a balanced network (dashed line), and an unbalanced network (dotted line) are
shown. Parameters as in Fig. 15

15 2
Vo

Figure 16: Rate vy with which the average excitatory rate changes as a function of
the rate of change vy of the external input. The solid line shows vg for a network with
K = 1000, the dashed line shows the same for the large K limit. Parameters as in Fig.
15.
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10 Discussion

10.1 Asynchronous and Synchronized Chaos

The purpose of our theory is to identify the different mechanisms by which
the deterministic dynamics generates strongly irregular states in large neural
networks, in which each cell receives input from many other cells. To un-
derstand these mechanisms from a theoretical point of view it is important
to study the network behavior in the limits of large system size N and large
connectivity index K. In a finite network with fluctuating dynamics there
will always be some degree of synchrony and some compensation between in-
hibition and excitation. It is thus impossible to single out balancing between
excitation and inhibition as a mechanism for variability which is separate
from synchronized chaos (Bush and Douglas 1991, Hansel and Sompolinsky
1992,1996). It is only in the limit of large N, where states with synchrony
that does not vanish in this limit can be distinguished from states where
the synchrony does vanish, that the different mechanisms become clearly
separate. Likewise, the importance of the limit of large K is that for fixed
finite K, network parameters may be tuned so that fluctuations in individual
synaptic inputs generate fluctuations in the membrane potential of the post-
synaptic cells. These fluctuations can be due to stochastic synaptic failures
or variability in the presynaptic cells from within or outside the network. In
other words, for a finite fixed K the issue of balancing between excitation and
inhibition is a quantitative issue. Only in the large K limit is there a clear
separation in the balanced state between the distance between the net input
from threshold and the corresponding distance of each of the excitatory and
inhibitory components.

The outcome of the present theory combined with our previous studies
is that chaotic states in large highly connected networks can be classified
as synchronized chaos and asynchronous chaos. Synchronized chaos is likely
to occur in fully connected networks, where K is proportional to N, yield-
ing a strong overlap between inputs to different neurons. In this case, the
chaotic state is characterized by cross-correlations between neuronal pairs
whose amplitude is of order 1 even in the limit of N — oo, thereby creating
strong fluctuations of the common feedback. Thus, synchronized chaos can
be viewed as resulting from an instability in the dynamics of the macroscopic
degrees of freedom that comprises the common fluctuating mean-field.
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Asynchronous chaotic states are distinguished by the weak cross-correlations.

In the present case this is due to the sparseness of the connections. More
specifically, in our networks the amplitude of the cross-correlations has a
broad distribution in the network due to inhomogeneity in the connectivity.
Most of the cross-correlations are of the order 1/N where N is the network
size. The maximal value of the cross-correlations occurs for pairs that are
directly connected and this cross-correlation is of the order of the strength of
the synapse, i.e., O(1/vK). Thus, chaos in this state is the result of insta-
bility in local degrees of freedom, similar to chaos in asymmetric spin-glasses
and neural networks.

10.2 Balanced State with Strong or Weak Synapses

The scaling of connection strength in our theory of the balanced state is
different from conventional mean-field theories of highly connected networks.
Most mean-field theories of large, highly connected neural networks assume
that each connection is scaled as the inverse of the mean number of inputs
to a neuron, K. In contrast, we scale the connections as 1/\/f This aspect,
together with the relative sparseness of the connections, and the asynchrony
of the dynamics yields a highly irregular dynamical state, despite the fact that
the single neuron dynamics in our model is the simple threshold updates of
binary units. The presence of relatively large connections is again analogous
to the scaling of connections in highly connected spin-glasses and random
neural networks, where the interactions have to scale as the inverse square
root of the connectivity index (Derrida et al. 1987, Sompolinsky et al. 1988).
In Sompolinsky et al. (1988) the network is a fully connected asymmetric
analog circuit with connections that are independent random variables with
zero mean. The connections posses a square-root scaling with the number
of inputs, as is natural for mean-field spin-glasses (Mezard et al. 1987). In
Derrida et al. (1987) the connectivity is randomly sparse as is in our model.
The connections store random memories so that in the limit of a large K (and
correspondingly large number of stored patterns) they are effectively random
in sign, and exhibit chaotic dynamics similar to the asymmetric spin-glass. In
contrast, in our case the connections are not random in sign but are organized
in an excitatory- inhibitory two-population architecture. Consequently, the
balance between excitation and inhibition which gives rise to the temporally
disordered state is entirely a dynamic effect. Our results should be contrasted
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Figure 17: Inputs to an excitatory cell in a network with synaptic strengths Jy; /K. The
total excitatory inpit (upper trace), the total inhibitory input (lower trace) and the net

input (middle trace) are shown in the upper panel. At the bottom, the times when the
cell switches from the passive to the active states are indicated. Parameters: K = 1000,
E=20,1=16,Jg=20,J,=1,8,0=1.0,0; =0.8, 7 = 0.9, and mo = 0.503.

with a conventional, fully connected network with with the same simple two-
population architecture with more conventional 1/K scaling of connections.
Such networks converges to either static states or globally coherent limit
cycles. (Abbott and Van Vreeswijk 1993, Gerstner and Van Hemmen 1993,
Grannan et al. 1992, Hansel et al. 1995, Van Vreeswijk 1996, Wilson and
Cowan 1972).

An important consequence of our assumption of relatively strong synaptic
connections is concerned with the size of the external input to the local
network. According to our theory, the balanced state is robust only when
the DC external input to the local network is large, i.e., of the same order as
the local excitatory and inhibitory feedback, and much larger than the net
synaptic input to a cell. In the notation of our model, the external input to
an excitatory cell is Fmgv/K whereas the net input to this cell, uy is smaller
than the external input by a factor of the order of 1/(mgVK), where my
is the rate of an input cell and is assumed to be much larger than 1/\/f
Figure 3 shows that lowering the strength of the external input i.e., reducing
my, will turn off the activity of the network. In fact, Eq. (3.3) implies that
to maintain the balanced activity in the case of an external input which is
only of order 1 requires the vanishing of the denominators in Egs. (4.3) and
(4.4) which means that the interaction strengths have to be fine tuned to a
Very narrow range.
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Because of the importance of the scaling of the synapses in our theory,
it is very informative to consider the behavior of our model if we use a
conventional scaling of synapses i.e, that each synapse scales as 1/K, the
weak synapses scenario. In this scenario, each component of the synaptic
inputs, including the total external input to a cell is of order 1. The solution
of this model (Van Vreeswijk and Sompolinsky unpublished) shows that when
K is not large, the network settles in a strongly disordered state. This is not
surprising given that the connectivity is randomly asymmetric and there is
no danger of averaging of the fluctuating inputs to a cell. However, the fate of
the temporal variability as K is increased is highly sensitive to the presence of
local inhomogeneity. If the neurons have the same threshold, the chaotic state
is maintained as K increases. In this case, the population rates adjust their
value so that the net input is close to the threshold level within a distance
of the order of 1/v/K. This is shown in Fig. 17. This figure displays the
time course of the various synaptic inputs to a cell, evaluated by simulating
a sample from the statistics predicted by the mean-field solution with the
weak-synapses scaling. The results of this figure should be contrasted with
the behavior of the strong synapses scenario, Fig. 6. In Fig. 17 the variability
is caused by the fact that the cell is always hovering close to its threshold.
In contrast, in the case of Fig. 6 the distance between the net input and
the threshold is not small compared to the distance between threshold and
rest. In this case, the variability is caused by the presence of excitatory and
inhibitory inputs each of which is much larger than the threshold.

Despite the difference in behavior between the two scenarios, the dynamic
mechanism for these balanced chaotic states is the same. In both cases, the
distance between the net input and the threshold is smaller (by a factor
of 1//K) from the distance to threshold of the excitatory and inhibitory
components. Thus, it would seem that choosing between these scenarios is
largely a matter of biological interpretation. However, there are some qual-
itative difference between the two scenarios. Since the synaptic inputs are
all of the same order as the threshold, it is harder to obtain states with low
mean rates in both the excitatory and inhibitory populations. To achieve
low rates, the ratio between the external inputs to the two populations (I/E
in the notation of Egs. (2.4)) and (2.5) has to be close to the ratio of their
thresholds 6;/0r. More importantly, the weak-synapses scenario of Fig. 17
breaks down in the presence of inhomogeneity in the local thresholds. In
this case the population rates are incapable of accommodating the different
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thresholds. As a result, in the case of inhomogeneous thresholds, when K
increases the network state becomes increasingly frozen; neurons with high
thresholds become inactive whereas neurons with low ones fire close to sat-
uration. This freezing occurs as soon as the width of the inhomogeneity in
threshold is larger than 1/4/K. In contrast, in the scenario of strong synapses
we assume, the state only becomes frozen when the inhomogeneity is large
compared to 1. Note that in the case of Fig. 17 the external input is of the
same order as the net input to the cell. Equally important is the fact that in
the weak scenario case and homogeneous networks, the collective time con-
stants are of order of the single cell time constant so that the network will
not exhibit the phenomenon of fast tracking predicted in our theory.

Finally the model can be generalized to a model with synaptic strengths
that scale as K¢, with 0 < a < 1. Of course these models can only be
distinguished from the present model in the large K limit. In this limit the
net average inputs into the populations scale as K'~%, while the quenched
and temporal fluctuation in the inputs scale as K'/2~¢. Therefore the leading
order in the inputs have to cancel, leading to the balance condition. For any
« this leads to asynchronous chaotic activity in a homogeneous network,
similar to the case a = 1/2. However if we introduce a distribution of the
threshold with width of order 1, we have to distinguish two regimes, apart
from o = 1/2 of our model. If & > 1/2 the fluctuations in the input decrease
with K so that the network goes to the frozen state in the large K limit. On
the other hand, if & < 1/2 the fluctuations grow with K, and therefore the
inhomogeneity in the threshold becomes negligible in the large K limit. Thus
a network with inhomogeneous threshold will act the same way as a network
with homogeneous thresholds. Specifically for low rates the rate distribution
will become narrow. Thus only for a network with synaptic strengths of order
1/V/K is there a nontrivial interaction between the fluctuation in the input,
and the threshold inhomogeneities.

10.3 Comparison with Other Network Models

Some of our results are consistent with those of the Integrate-and-Fire net-
work models of Tsodyks and Sejnowski (1995) and Amit and Brunel (1996a,b).
Although constructing an exact mean-field theory for the Integrate-and-Fire
dynamics similar to the one presented here for binary units is much more
difficult, we believe that most of the predictions of our mean-field theory
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are applicable to the Integrate-and-Fire dynamics as well, provided the the
same connectivity architecture and scaling of parameters with N and K are
used. However, a direct comparison between our theory and the results of
Tsodyks and Sejnowski (1995) and Amit and Brunel (1996a,b) is difficult,
because of their introduction of stochasticity in the network, the combina-
tion of mechanisms such as resetting potential close to threshold, and the
lack of full explicit specification of scaling of parameters with N and K.
Tsodyks and Sejnowski show numerically that their model is capable of ‘fast
switching’ in response to a fast change in the external stimulus. This may
be related to the fast tracking predicted in our model. The fact that our
model does not respond fast to a sudden switching of the stimulus (see Fig.
13) is probably a result of the dynamics of binary neurons. However, the
switching time constants observed in Tsodyks and Sejnowski (1995) is of the
same order as the single cell integration time constant, while the fast tracking
should occur on a much shorter time constant. In recent numerical simula-
tions of Integrate-and-Fire Networks Amit and Brunel (1996b) show that the
strength of the average cross-correlations decreases as N increases, (keeping
the connectivity index constant). However, they do not show whether as N
increases, the variability in the single cell remains the same. If this would
be the case then, their results are consistent with our predictions regarding
asynchronous chaotic state.

10.4 Biological Implications

With regards to the biological systems we should reemphasize that most
likely temporal irregularity is a result of several mechanisms including those
mentioned in the Introduction. Our discussion above makes it clear that
even with regards to deterministic network mechanism in a finite system
the temporally irregular state is likely to be at best intermediate between
the synchronized and the balanced chaotic states. As discussed above, an
important question is whether external input is large relative to net input
to a cortical cell. Recent experimental findings of Ferster et al. (1996)
in cat primary visual cortex suggest that the input from LGN to Layer 4
cortical cells are in fact a fraction of the net input. Stratford er al. (1996)
show that the total strength of the LGN synapses is about 2.5 to 3 times
smaller than the total strength of the excitatory feedback synapses from layer
4 cells, however this study does not measure the strength of the feedback
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from the inhibitory interneurons so it does not allow for the estimation of
the net feedback. Further experimental clarification of this issue is called
for. Measurements of the distribution of time-averaged rates within a local
population of neurons and the change in its shape when the over-all level of
response increases, similar to those of Fig. 11B, would be an interesting test
of the underlying statistical characteristics of the network spatio-temporal
fluctuations.

10.5 Future Work

On theoretical grounds our work raises several interesting issues that are
worth pursuing. First, it would be important to know whether the theory
of the balanced state applies also to networks with more interesting connec-
tivity architecture. Thus, it would be interesting to extend our theory to
networks that model associative memory or hypercolumns in visual cortex.
It is important to study the consequences of nonlinearities of synaptic sum-
mations, e.g., by treating synaptic inputs as conductance changes instead of
currents.

In considering the functional implications of our theory it is important
to distinguish between the sensitivity of a chaotic autonomous system to
changes in its initial condition and its ability to lock to a changing external
drive. The analysis of tracking capabilities of our network shows that the
macroscopic state of the network responds fast to a changing input. In the
case of a homogeneous input it can be shown that the microscopic state is
not tightly locked to the changing stimulus. On the other hand, preliminary
analysis (Van Vreeswijk and Sompolinsky unpublished) shows that in the
case of spatially inhomogeneous input fluctuations the microscopic state of
the network will tightly lock to the stimulus temporal variations. These
findings are consistent with recent findings that cortical cells respond highly
reliably to the fluctuations in the stimulus (Bair and Koch 1996, Britten et
al. 1994). Elucidation of the computational aspects of balanced states in
neuronal networks is a challenging issue.

Recently Markram and Tsodyks (1996) have shown that the synapses be-
tween cortical pyramidal cells show a marked degree of depression. It should
be investigated how such dynamical synapses affect the balanced state. If one
assumes synaptic depression between the excitatory-to-excitatory synapses
only, and facilitation between the synapses from the inhibitory to the ex-

47



citatory and from the excitatory to inhibitory populations (Thomson et al.
1995,1996), the equilibrium rates in the network decrease, relative to those in
a network without facilitation. This synaptic depression and facilitation also
has the effect that the constraints on the synaptic strengths Eqs. (4.9) and
(4.10) can be relaxed. Because the synaptic depression and facilitation only
become effective on a time scale that is as slow as or slower than the mem-
brane time constant, the response of such a network to an external input that
changes with time is more complicated that in the model studied here. If the
input is suddenly increased by a small amount, the network rates increase
to the rate the network would have in equilibrium if the synaptic strenghts
were not changed in a time of order 1/y/K and then, on a much slower time
scale the rates decrease due to the change in the synaptic strengths.

It should be noted that, since in the balanced state the finite K corrections
of the rates are determined by both the first and the second moment of
input, the change in rate due to synaptic depression/facilitation depends not
only the average change in the synaptic strength, but also its fluctuation.
Thus synaptic depression due to a change in the height of the EPSPs, but
without a change in the probability of release will affect the rates differently
from synaptic depression that leaves the height of the EPSPs unaffected but
decreases the probability of release, even if both mechanisms result in the
same average depression. An other effect of synaptic depression that will
have to be taken into account, is that it will decrease the fluctuations in
the input, since the effect of of the second spike in decreased if it follows
shortly after the first spike. This will give rise to negative correlations in the
input, even if the presynaptic cells fire Poissonian. This leads to decreased
fluctuations. Facilitation, on the other hand, will enhance the fluctuations.
These issues warrant further study.
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Appendix A: Derivation of the Mean-Field The-
ory
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A.1 Population Rates

We first consider the population-averaged activities mg(t) and m; () in the
limit of large Nr and N; and finite K. We first assume that each cell in the
k-th population is updated stochastically at a rate 7,. When a cell is updated
it moves to the active state if its total input is above threshold. Otherwise,
its updated state is 0. It is convenient to define a time-dependent local rate
variable,

mi(t) =< o(t) > (A.1)

Here, the symbol < ... > does not mean average over time, as in Eq. (5.4)
and thereafter. Instead, here it means average over all initial conditions that
are consistent with given values for my(0) and also over the random sequence
of update times. It is well known that the rate of a binary variable which
obeys the above update rule satisfies the following continuous time dynamics
(Ginzburg and Sompolinsky 1994, Glauber 1963)

d . .

2 (1) = —m (1) + O (ui (1)) (A-2)
where u}(t) is the total synaptic input into a cell 4 in the k-th population
relative to its threshold, and is given in our case by Eq. (2.2). If a cell receives
ng(t) and n;(t) excitatory and inhibitory feedback inputs, respectively, then
its input is

Tk

ul (t) = VK Jyomo + j“—%n,;(t) + %n;(t) — 6,
The main assumption underlying the mean-field theory is that the activities
of the different input cells to a given cell are uncorrelated. Technically, this
holds rigorously provided that K < log Ny (Derrida et al. 1987). Using
this assumption, the population average of Eq. (A.2) yields the following
mean-field equations for the population activities

d
T’ﬁm’“(t) = —my(t) + Fr(mg(t), m;(t)). (A.4)

(A.3)

where F}, denotes the probability that the updating cell at time ¢ will be in
an updated active state. It is given by

Fy(mpg, mp) = Z p1(n1)pa(n2)© (\/_]kgmg—l-z n;—9k> (A.5)

ni,n2=0
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where p;(n) is the probability that a cell receives n active inputs from the
[-th population.

For Ng, N; — oc the probability of s synapses of population [ projecting
to a cell is K*e % /sl. On average each of these synapses has a probability
my to be active, hence

> KS — S n S—n
p) = 5w (0 Y

sl

S=n

(le)n eile.
n!

(A.6)

Equations (A.4)-(A.6) define the mean-field equations for the population
activity levels for finite K. The average values of ng and n; satisty < ny, >=
my K. The standard deviations o(ng) and o(n;) are given by o(ny) = mi K.
In the large K limit the probability distributions py(n) can be replaced by
Gaussian distributions. According to Eq. (A.6), the means and variances of
this distribution are [ng] = [(dnx)?] = Kmy. Therefore, in the limit K — oo,
Fy(mg,my) is given by
—

Fy(mup, mr) / Dz O(uy + Jagz) = H (\/a_) . (A7)
where Dz = dx exp(—22/2)/+/27. From the above statistics of n;, one ob-
tains that the average input, relative to threshold, u; into a cell of population
k given by

Up = (Jkomo + Jkp'mp' + Jk[m[)\/f — 919 (AS)
and standard deviation of the input oy
oy = (Jeg)’me + (Jer)’my. (A.9)

from which Egs. (3.3)-(3.6) follow.

A.2 Auto-Correlations

We now extend the above analysis to evaluate the dynamics of the auto-
correlation function ¢x(7), Eqs. (5.16). Using similar arguments as for Eq.
(A.2), g () satisfies an equation of the following form

dq

W = )+ [T exp(—t /) Rl + ). (A0
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where

Fi = [(O(up(£)O(uj(t +1 + 7)) )] (A.11)

Here the averaging is also over absolute time ¢. The integral over time in
the RHS of the above equation takes into account the correlation between
the inputs to a cell that updates its state at time £ + 7 and its inputs at
the last update before time t. Thus, the time integral is an integral over the
exponential distribution of update interval of the last update before time
t. Separating the total number of active inputs into those that come from
sources in the k-th population that are active in both times (n;j ) and those
that are active only in one of the times (ny, and njy, respectively), one can
write

Jkl
Fk = nl,nl,nl)@< Kka + —(nl+nl)9k>><
Z 11, N2ty N3 \% 0Mo zz:\/? 1 2

1=1,2 Nkl
( ]komo + Z \/_ 7’1,1[ + 7’1,3[) — 9k> . (A12)

where

K™ _ K na2+ng
pi(n1,ng, ng) = (@)™ (i — a)K) e~ )k, (A.13)
774! ’I’I,Q!TLg!

In the large K limit this can be written as

Fk = /D.’El/D.’EQ/D.Z‘g@(Uk—F\/E.Z‘l—F\/Oék—ﬁkl‘Q—gk) X
(")(U]g + \/@l‘l +\/ap — ﬁkl‘g — gk)

_ / Da lH (0’“ ?/Z’;;_ﬁf’“x)r, (A.14)

with u; and a4 as above, and 3 given by

Br(T) = Z (Jr)?qu(T). (A.15)

1=1,2

So that gy satisfies Eq. (5.17).
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A.3 Sensitivity to Initial Conditions

The derivation of Eq. (8.5) for the overlaps Qx(t) = (my + Dy)/2 of two
trajectories Eq. (8.2) which start with slightly different initial conditions, is
similar to that of ¢;. Here the inputs n; j are the sources to a given cell that
are active at time ¢ in both trajectories. The only difference between the
equation for the delayed-time autocorrelations and the equal-time overlap
between two trajectories is the integral over the previous update times which
appears in (A.10) and (5.17). This results from the fact that in the latter
case the update sequence is identical in the two trajectories.

Appendix B: Determinstic Update Rules

The general form of Eq. (A.4) is usually derived for a binary variable
that is updated stochastically at a rate 7. One might therefore argue that
the irregular firing in our model is due to the stochasticity of the update
times of the model neurons. To show that this is not the case we define here
a completely deterministic dynamic model and show that it leads to exactly
the same equations for the mean rates of activity as those given above.

Consider the same network model, except that a neuron i of population
k is updated at times ¢t = (n + 4.)7, with n =0,1,2,... and 4 is randomly
chosen between 0 and 1. Let mj (¢) be the probability that the neuron of
population k, that is updated at time ¢, goes into (or stays in) the active
state. Since all neurons of population k£ are updated exactly once between
times t — 7, and ¢, my(¢) is given by

1 T
m(t) = - /U ' dt'm; (t — ') (B.1)

Going through arguments similar to those shown above, one can show that

my, satisfies
1

Tk
my(t) = — [ dt' Fe(mg(t —t),m;(t — ")) (B.2)
Tk /0
with Fj, given by Eqn. (A.5).
If we introduce inhomogeneities in the rate with which the cells are up-
dated so that cell 7 of population is updated at times ¢ = (n + §5)7F, where

1
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7F has a probability Ry(7)dr of being between 7 and 7 + dr we find that my
evolves as

%] R T
my(t) = /0 dT@ /0 ' Fo(mp(t — '), mi(t —t).  (B.3)
For Ry (t) = te~'/™ /72 this can be written as

1 o]
my,(t) = — dt'e ™ Fy(mg(t —t'), m(t — 1), (B.4)

and this is equivalent to Eqn. (A.4).

Thus in this completely deterministic model the mean rates my satisfy
exactly the same equations as the model with stochastic updating. This also
holds true for the other mean field equations of the model.
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