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Abstract

Asymmetric spike patterns are constructed for the two-component Schnakenburg reaction-
diffusion system in the singularly perturbed limit of a small diffusivity of one of the components.
For a pattern with k spikes, the construction yields k1 spikes that have a common small am-
plitude and k2 = k − k1 spikes that have a common large amplitude. A k-spike asymmetric
equilibrium solution is obtained from an arbitrary ordering of the small and large spikes on
the domain. Explicit conditions for the existence and linear stability of these asymmetric spike
patterns are determined using a combination of asymptotic techniques and spectral properties
associated with a certain nonlocal eigenvalue problem. These asymmetric solutions are found
to bifurcate from symmetric spike patterns at certain critical values of the parameters. Two
interesting conclusions are that asymmetric patterns can exist for a reaction-diffusion system
with spatially homogeneous coefficients under Neumann boundary conditions and that these
solutions can be linearly stable on an O(1) time scale.

1 Introduction

Over the past several decades there have been many different reaction-diffusion systems of activator-

inhibitor type proposed to model various biological and chemical phenomena including, biological

morphogenesis (cf. [3], [11], [4]), and the development of patterns on sea shells (cf. [12]). A review

of recent progress in pattern formation is given in [10].

The usual first step in studying these reaction-diffusion models is to construct spatially homo-

geneous steady-state solutions. These solutions can occur when the coefficients in the reaction-

diffusion equation are homogeneous in both space and time. A Turing-type stability analysis,

originating from the work of Turing [15], is then used to analyze the stability of these spatially

uniform steady-state solutions. This analysis leads to the determination of conditions for which

spatially uniform steady-state solutions bifurcate to small amplitude spatially nonuniform solutions.

The appeal of this type of analysis is that it is both widely applicable and is very simple.

However, many singularly perturbed reaction-diffusion systems admit steady-state solutions

that locally have large spatial gradients. For example, spots and stripes occur in many sea shells
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patterns. These patterns have been modeled by various reaction-diffusion systems involving various

generalizations of the well-known Gierer-Meinhardt (GM) model [12]. A conventional Turing-type

stability analysis is not applicable for studying the stability of these solutions. A fundamental

issue is how should the Turing-type stability analysis be modified in order to study the stability of

localized solutions for reaction-diffusion systems.

A second feature of interest is that it is commonly believed that reaction-diffusion systems

with spatially homogeneous coefficients under Neumann boundary conditions typically only admit

solutions that obey certain symmetry conditions. In contrast, biological patterns in nature can

have some inherent asymmetry. In recent years there has been a focus on investigating various

mechanisms that give rise to asymmetric patterns in reaction-diffusion models. The mechanisms

that have been considered include the effect of Robin-type boundary conditions [13], the effect of

spatially varying diffusion coefficients [9], and the effect of precursor gradients modeled by spatially

varying coefficients in the differential operator [5]. An interesting question is whether asymmetric

steady-state patterns can exist for such systems without these mechanisms.

The goal of this paper is to continue the investigation, initiated for the GM model in [6],

[16], [18], and [2], of the construction and stability of localized symmetric and asymmetric spike

patterns for spatially uniform reaction-diffusion systems under homogeneous Neumann boundary

conditions. In [6] a generalization of a Turing-type stability analysis was used to determine the

stability of symmetric spike patterns for the one-dimensional GM model. In [16] and [18] asymmetric

steady-state patterns for the GM model were constructed and the stability of these solutions was

investigated. A different approach for the construction of asymmetric patterns was given in [2].

The dynamics of asymmetric spike patterns was analyzed in [8].

Our goal is to show that the mathematical analyses used to construct symmetric and asymmetric

spike patterns for the GM model and to determine the stability of these solutions is easily adapted

to other reaction-diffusion systems. More specifically, in this paper we use a formal asymptotic

analysis to study the existence and stability of asymmetric equilibrium spike patterns for the well-

known Schnakenburg model [14]. In a certain parameter regime the Schakenburg model is one of

the simplest models that can be analyzed explicitly to show the occurrence of Hopf bifurcations

generating periodic patterns. In other parameter regimes it yields spike-type equilibrium patterns.

The Schnakenburg model is given by

ut = D1uxx − u + vu2 , −1 < x < 1 , t > 0 , (1.1a)

vt = D2vxx + B − vu2 , −1 < x < 1 , t > 0 , (1.1b)

ux(±1, t) = vx(±1, t) = 0 , (1.1c)
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where D1 > 0, D2 > 0 and B > 0 are constants. We introduce new variables by

u = û/(2B) , v = 2Bv̂ . (1.2)

Substituting (1.2) into (1.1), and dropping the hat notation, we obtain

ut = D1uxx − u + vu2 , −1 < x < 1 , t > 0 , (1.3a)

vt = D2vxx +
1

2
− bvu2 , −1 < x < 1 , t > 0 , (1.3b)

ux(±1, t) = vx(±1, t) = 0 , (1.3c)

where b−1 = 4B2. To find a scaling appropriate for spike solutions we assume that u diffuses more

slowly than v, so that

D1 = ε2 , D2 = D , (1.4)

where ε ≪ 1. We then introduce the new variables

D =
D̃

ε
, v = εṽ , u =

ũ

ε
. (1.5)

Substituting (1.5) into (1.1), and dropping the tilde variables, we obtain the following singularly

perturbed reaction-diffusion system of interest:

ut = ε2uxx − u + vu2 , −1 < x < 1 , t > 0 , (1.6a)

εvt = Dvxx +
1

2
− b

ε
vu2 , −1 < x < 1 , t > 0 , (1.6b)

ux(±1, t) = vx(±1, t) = 0 . (1.6c)

The asymmetric equilibrium solutions to (1.6) that we construct in the limit ε → 0 have the

form of a sequence of spikes of different heights. Specifically, for a pattern with k spikes, our

asymptotic analysis yields k1 > 0 spikes that have a common small amplitude and k2 = k − k1 > 0

spikes that have a common large amplitude. A k-spike asymmetric equilibrium solution is obtained

from an arbitrary ordering of the small and large spikes across the interval. An example of such a

spike pattern that is obtained from the analysis is shown in Fig. 1(a) and Fig. 1(b). Such solutions

are shown to exist when D is less than some critical value Dm that depends on k1, k2, and b. For

some range of parameters it is also shown that solution multiplicity occurs in the sense that there

are two possible solutions with k1 small and k2 large spikes. At a specific parameter value, an
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Figure 1: Plots of u and v versus x for a five-spike asymptotic asymmetric equilibrium solution of
the form BAABB for D = 0.0005, b = 1 and ε = 0.02. This solution is unstable.

asymmetric solution branch with k spikes is shown to to bifurcate from the symmetric branch sk

for which k spikes have an equal amplitude.

Next, we analyze the linear stability of these asymmetric equilibrium spike patterns. There

are two classes of eigenvalues to be considered: the large O(1) eigenvalues and the small O(ε2)

eigenvalues. For the large eigenvalues, in Section 3 we obtain an explicit stability criterion for

the asymmetric spike patterns in terms of the maximum eigenvalue of a certain matrix eigenvalue

problem. We show that, with respect to the large O(1) eigenvalues, the asymmetric spike solutions

are stable when D > De, where the critical value De depends on k1, k2, b, and on the specific

orientation of the small and large spikes within a given k-spike sequence. The stability of the

k-spike patterns with respect to the small eigenvalues of order O(ε2) is also studied. We derive

a generalized matrix eigenvalue problem that determines the small eigenvalues. An asymmetric

k-spike pattern is shown to bifurcate from the symmetric branch sk at the parameter value where

k − 1 small eigenvalues simultaneously cross through zero. From numerical computations of the

generalized matrix eigenvalue problem, we show that these bifurcating asymmetric branches are all

unstable with respect to the small eigenvalues. Our main conclusion is that, although all of these

asymmetric patterns are ultimately unstable, there are ranges of D for which asymmetric equilibria

will persist for long time intervals of the order t << O(ε−2).

The outline of this paper is as follows. In §2 we use the method of matched asymptotic ex-
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pansions to construct a k-spike asymmetric equilibrium spike solution to (1.6). In §3 we determine

conditions that ensure that the large O(1) eigenvalues associated with the linearization of (1.6)

about the asymmetric equilibrium solution have negative real parts. When this condition holds, we

say that the pattern is stable with respect to the large O(1) eigenvalues. Examples of the theory

for solutions with fewer than five spikes, together with some specific results for these solutions, are

given in §4. In §5 we analyze the small eigenvalues and we calculate their algebraic sign numerically

for the specific examples discussed in §4. Some concluding remarks are made in §6.

2 Asymmetric Equilibrium Solutions

In the limit ε → 0, we construct an asymmetric k-spike equilibrium solution to (1.6) in the form

of a sequence of spikes of different heights. To do so, we first must construct a local canonical one-

spike equilibrium solution to (1.6) on a finite domain of length 2l, where l > 0 is a parameter. This

problem is shown to have two different solutions. A k-spike asymmetric solution is then obtained by

using translates of these two local solutions in such a way to ensure that the resulting equilibrium

solution to (1.6) on the interval −1 ≤ x ≤ 1 is C1 continuous.

The local one-spike solution u = u(x) and v = v(x), with the spike centered at x = 0, satisfies

ε2uxx − u + vu2 = 0 , −l < x < l , (2.1a)

Dvxx +
1

2
− b

ε
vu2 = 0 , −l < x < l , (2.1b)

vx(±l) = ux(±l) = 0 , (2.1c)

where the functions u and v are even functions of x. In the limit ε → 0, u(l) is exponentially small

and v(l) = O(1). For ε → 0, the asymptotic solution to (2.1) is readily obtained by the method of

matched asymptotic expansions. We calculate that

u(x) ∼ 1

v(0)
uc(x/ε) , (2.2)

where uc(y) is the unique solution to

u
′′

c − uc + u2
c = 0 , −∞ < y < ∞ , (2.3a)

uc → 0 as |y| → ∞ ; u
′

c(0) = 0 , uc(0) > 0 . (2.3b)

The solution to (2.3) is

uc(y) =
3

2
sech2 (y/2) . (2.4)
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Since u is localized near x = 0, the term ε−1bvu2 in (2.1b) can be asymptotically approximated as

a multiple of a Dirac mass. Thus, when ε ≪ 1, the problem for v(x) is

Dv
′′

+
1

2
− ba

v(0)
δ(x) = 0 , −l < x < l , (2.5a)

v
′

(±l) = 0 . (2.5b)

Here δ(x) is the delta function and a is defined by

a =

∫

∞

−∞

[uc(y)]2 dy =
9

4

∫

∞

−∞

sech4 (y/2) dy = 6 . (2.5c)

The solvability condition for (2.5) is obtained by integrating (2.5a) across the interval. This yields,

v(0) =
6b

l
. (2.6a)

Then, the solution to (2.5) is written as

v(x) = lGl(x; 0) , (2.6b)

where Gl(x; 0) is the modified Green’s function satisfying

DGlxx +
1

2l
− δ(x) = 0 , −l < x < l , (2.7a)

Glx(±l; 0) = 0 , (2.7b)

Gl(0; 0) =
v(0)

l
=

6b

l2
. (2.7c)

A simple calculation gives,

Gl(x; 0) = − x2

4lD
+ E − 1

2D
(l − |x|) , −l ≤ x ≤ l , (2.8a)

where the constant E is given by

E =
l

2D
+

6b

l2
. (2.8b)

In terms of this solution, we calculate v(l) = lGl(l; 0) explicitly as

v(l) =
l2

4D
+

6b

l
. (2.9)
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The next step is to determine all different values of l, labeled by l1,..,ln, such that v(l1) =, ..,=

v(ln). For a certain range of parameters, as shown below, there are exactly two such values of

l. These local canonical solutions corresponding to different values of l are then used to obtain a

global asymmetric spike pattern for (1.6) on the interval −1 < x < 1.

It is convenient to write v(l) in the form

v(l) =
q2

4D
[β (l/q)]−1 , q ≡ [24bD]1/3 , (2.10a)

where the function β(z) is defined by

β(z) ≡
[

z2 + 1/z
]−1

. (2.10b)

The function β(z) > 0 in (2.10b) has several key properties. It has a unique global maximum point

at z = zc, where

zc = 2−1/3 . (2.11)

In addition, β
′

(z) > 0 on [0, zc) and β
′

(z) < 0 on (zc,∞). Therefore, given any z ∈ (0, zc), there

exists a unique point z̃ ∈ (zc,∞) such that β(z) = β(z̃) ≡ β[f(z)]. The inverse function z̃ = f(z)

is readily calculated from the explicit form of β(z) given in (2.10b). This leads to the first result.

Result 2.1: On the interval z ∈ (0, zc], the inverse function is

z̃ = f(z) = −z

2
+

√

z2 + 4/z

2
. (2.12)

Some key properties of the function f(z) on z ∈ (0, zc], which are needed below are: f(zc) = zc,

f(z) is convex on (0, zc), and f
′

(z) < −1 on (0, zc) with f
′

(zc) = −1. In Fig. 2 and Fig. 2 we plot

β(z) and the inverse function f(z), respectively.

The implication of these results for β(z) and f(z), obtained from examining (2.10a), is that

there are exactly two different types of spikes. We summarize this result as follows.

Result 2.2: Given any l, with l/q < zc, there exists a unique l̃, with l̃/q ≡ z̃ > zc, such that

v(l) = v(l̃).

We refer to solutions of length l and l̃ as A-type and B-type spikes, respectively. From (2.6a)

and (2.2) we conclude that v(0) is a decreasing function of l and u(0) is an increasing function of

l. Thus, the maximum value of u associated with an A-type spike is smaller than that for a B-type

spike. Consequently, we refer to A-type and B-type spikes as small and large spikes, respectively.
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Figure 2: Plots of the functions β(z) and f(z)

We now construct a k-spike equilibrium solution to (1.6) on −1 ≤ x ≤ 1 with k1 ≥ 0 spikes of

type A and k2 = k − k1 ≥ 0 spikes of type B. The spikes are arranged in any particular order from

left to right across the interval as

ABAAB....B , k1 – A’s , and k2 – B’s . (2.13)

In the construction of these patterns we use translation invariance and the fact that v(l) = v(l̃).

This allows us to glue A and B type spikes together to satisfy a C1 continuity for the global function

v defined on [−1, 1]. Since the support of an A-spike and a B-spike is 2l and 2l̃, respectively, we must

impose the length constraint 2k1l + 2k2 l̃ = 2. In addition, we must impose that β(l/q) = β(l̃/q),

which ensures that v is C1 continuous. We summarize this construction of asymmetric spike

patterns in the next result.

Result 2.3: Let k1 and k2 be non-negative integers such that k1 + k2 = k. Let z with z ∈ (0, zc]

and z̃ ∈ [zc,∞) be solutions to the nonlinear algebraic system

k1z + k2z̃ =
1

q
, (2.14a)

β(z) = β(z̃) . (2.14b)

Then, defining l and l̃ by l = qz and l̃ = qz̃, we obtain a spike pattern with k1 small spikes each

having support 2l and k2 large spikes each having support 2l̃. Here q is defined in terms of D in

(2.10a).

We now investigate the solvability of the system (2.14). The solution to (2.14b) is simply

z̃ = f(z). Thus, the solutions to (2.14) are determined by the intersection points of the curve
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Figure 3: Graphical plot of (2.14) when k1 = 3, k2 = 1 and b = 1. The solid curve is z̃ = f(z).
The dotted straight line (2.14a) is plotted for D = Dm1

= 0.002445, D = 0.0017 and D = 0.0010.
When D = 0.002445 this line is tangent to f(z). When D = 0.0017 there are two solutions zl and
zu to (2.14), and only one solution when D = 0.0010.

z̃ = f(z) with the straight line z̃ = −k1z/k2 + 1/(qk2) on the interval 0 < z ≤ zc. From the

properties of f(z) listed following (2.12) above, it is clear that there are two different cases to

consider:

Case 1: k1/k2 ≤ 1 ; Case 2: k1/k2 > 1 . (2.15)

Since f(z) is convex and f
′

(z) ≤ −1 on z ∈ (0, zc], with equality only when z = zc, we can readily

obtain the following result:

Result 2.4 (Case 1): Let k1/k2 ≤ 1. Then, when D < Dm, there exists a unique solution (z, z̃)

to (2.14) on z ∈ (0, zc) and z̃ ∈ (zc,∞). The critical value Dm is

Dm =
[

12bk3
]−1

, k = k1 + k2 . (2.16a)

When D = Dm, then z = z̃ = zc and hence l = l̃ = 1/k. In this special case, we get a symmetric

k-spike solution with spikes of equal height. The numerical values for Dm are

Dm = 0.0104/b (k = 2); Dm = 0.00308/b (k = 3); Dm = 0.00130/b (k = 4) . (2.16b)
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The solvability of (2.14) is more complicated when there are more small than large spikes on the

interval (i. e. when k1/k2 > 1). In this case, which we show graphically in the z̃, z plane of Fig. 3,

as D is decreased from a large value the straight line of slope −k1/k2 first intersects the curve

z̃ = f(z) at a point of tangency at some critical value of D, labeled by Dm1
. As D is decreased

slightly below Dm1
, there are exactly two roots to (2.14) until D is decreased to the value Dm

defined in (2.16a). When D is decreased below Dm there is only one solution to (2.14) on (0, zc).

Result 2.5 (Case 2): Let k1/k2 > 1. Then, there exists a critical value Dm1
> Dm such that the

solution multiplicity property for (2.14) on the interval z ∈ (0, zc) and z̃ ∈ (zc,∞) is as follows:

If D > Dm1
→ there are no solutions ,

If Dm < D < Dm1
→ there are exactly two solutions , (2.17a)

If D < Dm → there is exactly one solution .

The critical value Dm1
is the solution of the tangency condition system

k1z + k2f(z) =
1

q
, f

′

(z) = −k1/k2. (2.17b)

By using (2.12) for f(z) we can calculate Dm1
explicitly. The condition f

′

(z) = −k1/k2 yields

the quadratic equation for z3 given by

(z3 − 2)2 = γ2z3(z3 + 4) , where γ = 1 − 2k1

k2

. (2.18)

The solution to (2.18) on (0, zc) is

z∗ =

[

2(1 + γ2) − 2
√

(1 + γ2)2 − (1 − γ2)

(1 − γ2)

]1/3

. (2.19)

Finally, from k1z + k2f(z) = 1/q, and the definition of q in (2.10a), we obtain that

Dm1
=

1

24b
[k2f(z∗) + k1z∗]

−3 . (2.20)

Numerical values for Dm1
calculated from (2.20) are

Dm1
= 0.004009/b (k1 = 2, k2 = 1); Dm1

= 0.002445/b (k1 = 3, k2 = 1) . (2.21)

To summarize, consider a particular fixed ordering of small and large spikes across the interval.

When D < Dm, and when there are more large B-spikes than small A-spikes, there is exactly one
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asymmetric pattern with that particular ordered sequence. However, when there are more small

than large spikes in the sequence, then for some range of D there are exactly two such patterns

that have the same ordering.

Finally, we calculate the equilibrium solution u = ue and v = ve on −1 < x < 1. Given

a specific ordered sequence of large and small spikes on the interval, we have from (2.6a) that

ve(xj) ≡ vj = 6b/lj , where lj = l if the jth spike is A-type and lj = l̃ if the jth spike is B-type.

Near the jth spike, ue ∼ v−1

j uc

[

ε−1(x − xj)
]

. Therefore, (1.6b) for ve becomes

Dvexx +
1

2
− 6b

k
∑

j=1

1

vj
δ(x − xj) = 0 , −1 < x < 1 , (2.22a)

vex(±1) = 0 . (2.22b)

The solvability condition for (2.22) is
∑k

j=1
v−1

j = (6b)−1. This condition is equivalent to k1l+k2 l̃ =

1, which is satisfied by (2.14a). The solution to (2.22) is then readily represented in terms of an

appropriate Green’s function. In this way, we obtain the following main result.

Proposition 2.1 (Asymmetric): Let ε → 0 and fix a particular ordering of small and large

spikes across the interval as in (2.13). Then, for D < Dm, there exists an asymmetric k-spike

equilibrium solution (ue, ve) to (1.6) of the form,

ue(x) ∼
k
∑

j=1

v−1

j uc

[

ε−1(x − xj)
]

. (2.23a)

The constant vj , given by vj = ve(xj) satisfies

vj = 6b/lj , j = 1, .., k . (2.23b)

Here for each j, lj = l or lj = l̃ depending on whether the jth spike is A-type or B-type, respectively.

Here l and l̃ are determined in terms of k1, k2 and q by (2.14). The value lj = l must occur k1 > 0

times, while lj = l̃ must occur k2 = k − k1 > 0 times. The function ve is

ve(x) ∼
k
∑

j=1

6b

vj
G(x;xj) + v̄ , (2.24a)

where G(x;xj) satisfies

DGxx +
1

2
= δ(x − xj) , −1 < x < 1 , (2.25a)

Gx(±1;xj) = 0 ,

∫

1

−1

G(x;xj) dx = 0 . (2.25b)
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The solution is

G(x;xj) = − 1

4D

(

x2 + x2
j

)

+
1

2D
|x − xj | −

1

6D
. (2.25c)

The constant v̄ in (2.24a), given by v̄ = 1

2

∫

1

−1
ve dx, is calculated from

v̄ = vi − 6b
k
∑

j=1

G(xi;xj)/vj , (2.26)

where the right-hand side in (2.26) is independent of i. The spike locations xj satisfy

x1 = l1 − 1 , xk = 1 − lk , xj+1 = xj + lj+1 + lj , j = 1, .., k − 2 . (2.27)

When k1/k2 > 1 and Dm < D < Dm1
, this result still holds. However, as discussed in Result

2.5 above, there are two possible values of the pair l and l̃ for each D on this range. Examples of

the theory are given in §4.

3 The Stability Analysis: Large Eigenvalues

To study the stability of the asymmetric solutions ue and ve constructed in §2, we substitute

u(x, t) = ue(x) + eλtφ(x) , v(x, t) = ve(x) + eλtη(x) , (3.1)

into (1.6) where η ≪ 1 and φ ≪ 1. This leads to the eigenvalue problem

ε2φxx − φ + 2veueφ + u2
eη = λφ , −1 < x < 1 , (3.2a)

Dηxx − b

ε
u2

eη =
2b

ε
veueφ + ελη , −1 < x < 1 , (3.2b)

φx(±1) = ηx(±1) = 0 . (3.2c)

The spectrum of (3.2) contains large eigenvalues that are O(1) as ε → 0 and small eigenvalues that

are O(ε2) as ε → 0. The goal is to determine the conditions under which both sets of eigenvalues

have negative real parts. In this section we analyze the large eigenvalues and in §5 we study the

small eigenvalues.

To examine the large eigenvalues, we look for an eigenfunction of (3.2) in the form

φ(x) ∼
k
∑

j=1

φj

[

ε−1(x − xj)
]

, (3.3)
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where φj(y) → 0 exponentially as |y| → ∞. Since both ue and φ are localized near each xj as

ε → 0, the coefficients in the differential operator of (3.2b) are multiples of Dirac masses. Letting

ε → 0, labeling ve(xj) = vj, and assuming that λ = O(1) as ε → 0, we obtain that (3.2b) reduces

asymptotically to

Dηxx −



6b
k
∑

j=1

1

v2
j

δ(x − xj)



 η = 2b
k
∑

j=1

∫

∞

−∞

ucφj dy δ(x − xj) . (3.4)

This problem is equivalent to

Dηxx = 0 − 1 < x < 1 ; ηx(±1) = 0 , (3.5a)

[η]j = 0 ; [Dηx]j =
6b

v2
j

η(xj) + 2b

∫

∞

−∞

ucφj dy , j = 1, .., k . (3.5b)

Here we have defined [v]j = v(xj+) − v(xj−).

In the analysis below we need to calculate η(xj) from (3.5). By solving (3.5) on each subinterval

as done in Appendix A, we can readily derive a linear system for η(xj) for j = 1, .., k in the form

(B + C)η = ω , (3.6)

where B, C, η, and ω are defined by

C ≡ 6b

D













1/v2
1 0 · · · 0

0
. . . · · · 0

...
...

. . .
...

0 0 · · · 1/v2
k













, η ≡







η(x1)
...

η(xk)






, φ ≡







φ1

...
φk






, ω = −2b

D

∫

∞

−∞

ucφdy ,

(3.7a)

and

B ≡































1/d2 −1/d2 0 · · · 0 0 0

−1/d2 1/d2 + 1/d3

. . .
. . .

. . . 0 0

0
. . .

. . .
. . .

. . .
. . . 0

...
. . .

. . .
. . .

. . .
. . .

...

0
. . .

. . .
. . .

. . .
. . . 0

0 0
. . .

. . .
. . . 1/dk−1 + 1/dk −1/dk

0 0 0 · · · 0 −1/dk 1/dk































. (3.7b)
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In (3.7b) we have defined the inter-spike distances as

dj = xj − xj−1 , j = 2, .., k . (3.7c)

Since the matrix B + C is symmetric and invertible, we obtain that

η = (B + C)−1
ω . (3.8)

Next, we substitute (2.23a), (2.24a), and (3.3) into (3.2a), and let ε → 0, to obtain the eigenvalue

problem

φ
′′

j − φj + 2ucφj +
1

v2
j

ηju
2
c = λφj , −∞ < y < ∞ , (3.9)

for j = 1, .., k. Here ηj = η(xj) and φj(y) → 0 as y → ∞. Using (3.7) and (3.8), we can write (3.9)

in vector form as

φ
′′ − φ+ 2ucφ− 2u2

c

(
∫

∞

−∞
uc Eφ dy

∫

∞

−∞
u2

c dy

)

= λφ . (3.10)

Here the symmetric matrix E is defined by

E = C (B + C)−1 . (3.11)

We decompose E as

E = S−1ΛeS , (3.12)

for some nonsingular matrix S and diagonal matrix Λe, which contains the eigenvalues of E . Then,

upon defining ψ = Sφ, we obtain from (3.10) that

ψ
′′ −ψ + 2ucψ − 2u2

c

(
∫

∞

−∞
ucΛeψ dy

∫

∞

−∞
u2

c dy

)

= λψ , −∞ < y < ∞ , (3.13a)

ψ → 0 , as |y| → ∞ . (3.13b)

Since Λe is a diagonal matrix we get k uncoupled scalar problems from (3.13).

The final step in the stability analysis is to determine the conditions for which Re(λ) < 0 in

(3.13). For this we need the following key result of Wei (cf. [17]) in the form written in Appendix

E of [6].
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Theorem(Wei [17] and [6]): Let ζ > 0 and consider the nonlocal eigenvalue problem for φ(y)

φ
′′ − φ + 2ucφ − ζu2

c

(
∫

∞

−∞
ucφdy

∫

∞

−∞
u2

cdy

)

= λφ , −∞ < y < ∞ , (3.14a)

φ → 0 as |y| → ∞ , (3.14b)

corresponding to eigenpairs for which λ 6= 0. Here uc(y) is given in (2.4). The following result

pertains to the eigenvalue λ0 6= 0 of (3.14) with the largest real part:

• If ζ < 1 then Re(λ0) > 0,

• If ζ > 1 then Re(λ0) < 0.

Comparing (3.13) and (3.14) we conclude that an asymmetric equilibrium spike pattern will be

stable with respect to the large O(1) eigenvalues when the minimum eigenvalue e1 of the matrix

E in (3.11) exceeds the threshold e1 > 1/2. However, it is preferable to express our key stability

result in terms of the matrix E−1, which is the product of two tridiagonal matrices. Our main

stability result is summarized as follows:

Proposition 3.1 (Asymmetric Patterns): Let λ0 6= 0 be the eigenvalue of (3.13) with the

largest real part. Let em be the maximum eigenvalue of the matrix E−1 = BC−1 + I, where I is the

identity matrix, Then, Re(λ0) < 0 when

em < 2 , (3.15)

and Re(λ0) > 0 when em > 2.

In the special case where the spike pattern is symmetric, as studied in [7], it follows that vj = 6bk

for j = 1, .., k, and dj = 2/k for j = 2, .., k. Thus, in this symmetric case, the matrices C and B in

(3.7) become

C =
1

6bDk2
I , B =

k

2
B0 , where B0 ≡































1 −1 0 · · · 0 0 0

−1 2
. . .

. . .
. . . 0 0

0
. . .

. . .
. . .

. . .
. . . 0

...
. . .

. . .
. . .

. . .
. . .

...

0
. . .

. . .
. . .

. . .
. . . 0

0 0
. . .

. . .
. . . 2 −1

0 0 0 · · · 0 −1 1































. (3.16)
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Thus, the matrix E−1 in Proposition 3.1 is

E−1 = 3bDk3B0 + I . (3.17)

The eigenvalues µj of B0 are readily calculated as

µj = 2

[

1 − cos

(

π(j − 1)

k

)]

, for j = 1, .., k . (3.18)

The maximum eigenvalue of B0 is µk. Thus, the maximum eigenvalue em of E−1 is em = 3bDk3µk+1.

Using this value in (3.15) of Proposition 3.1 we recover the following stability result of [7] for

symmetric patterns.

Corollary 3.1 (Symmetric Patterns): Let λ0 6= 0 be the eigenvalue of (3.13) with the largest

real part. Then, for ε → 0 and k ≥ 2, Re(λ0) < 0 when

D < Dk ≡
(

6bk3 [1 + cos (π/k)]
)−1

, (3.19)

and Re(λ0) > 0 when D > Dk. When k = 1, then D1 = ∞.

4 Examples of the Theory

We now give some analytical and numerical predictions obtained from our existence and stability

criteria for asymmetric patterns with four or fewer spikes. The existence criterion for asymmetric

equilibria does not depend on the specific orientation of the spikes on the interval. However, for

solutions with three or more spikes, the stability criterion with respect to the O(1) eigenvalues does

depend on the specific ordering of the spikes on the interval.

4.1 Two-Spike Patterns

For the case of two spikes where k1 = k2 = 1 we can show that the two-spike pattern exists and

is stable when De < D < Dm. The pattern loses its stability with respect to the large eigenvalues

when D < De.

To obtain an explicit value for De, we calculate the matrix E−1 = BC−1 + I in Proposition 3.1

analytically. Using (3.7b) for B and (3.7a) for C, we get

E−1 = I +
6bD

d2

(

l−2
1

−l−2
2

−l−2
1

l−2
2

)

, (4.1)
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where I is the 2 × 2 identity matrix. Since d2 = l1 + l2 = 1 and lj = qzj, where q is defined in

(2.10a), (4.1) becomes

E−1 = I +
6bD

q2

(

z−2
1

−z−2
2

−z−2
1

z−2
2

)

. (4.2)

The maximum eigenvalue em of E−1 in (4.2) is readily calculated as

em =
6bD

q2

(

z−2

1
+ z−2

2

)

+ 1 . (4.3)

Substituting (4.3) into the stability criterion (3.15), we obtain that the pattern is stable if and only

if

1

z2
1

+
1

z2
2

<
4

q
. (4.4)

Setting k1 = k2 = 1 in (2.14), we conclude that z2
1 + 1/z1 = z2

2 + 1/z2 and z1 + z2 = 1/q. Thus,

z1z2 = q. Substituting these formulae into (4.4), and solving for q, we obtain that the two-spike

pattern is stable when q3 > 1/6, where q = (24bD)1/3 from (2.10a). This leads to the following key

result:

Result 4.1(Two Spikes): Let k1 = k2 = 1 and ε → 0. Then, a two-spike pattern of the form AB

or BA exists and is stable with respect to the large O(1) eigenvalues when D satisfies

b−1

144
< D <

b−1

96
(4.5)

The upper bound in (4.5) is the existence bound given in (2.16a). The pattern loses its stability

when D is decreased below the lower bound in (4.5). Notice that the stability criterion here is the

same for both AB and AB patterns.

In Fig. 4 we plot u from Proposition 2.1 for AB patterns at three different values of D. In

this figure, the plots with D = 0.010 and D = 0.008 represent stable equilibria. The solution with

D = 0.006 is an unstable equilibrium solution.

4.2 Three-Spike Patterns

Similar results can be obtained for a three-spike pattern. Using (3.7) for B and C, we get that

E−1 = BC−1 + I satisfies

E−1 = 6bDÊ + I , where Ê ≡





e11 e12 0
e21 e22 e23

0 e32 e33



 , (4.6a)
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Figure 4: Plots of u versus x for a two-spike asymptotic asymmetric equilibrium solution of the
form AB with D = .010 (solid curve), D = 0.008 (dotted curve), and D = 0.006 (heavy solid
curve). Also, ǫ = .02 and b = 1.

where the entries eij are defined by

e11 = l−2
1

(l1 + l2)
−1 , e12 = −l−2

2
(l1 + l2)

−1 , e21 = −l−2
1

(l1 + l2) ,

e22 = l−2

2

[

(l1 + l2)
−1 + (l2 + l3)

−1
]

, e23 = −l−2

3
(l2 + l3)

−1 , (4.6b)

e32 = −l−2
2

(l2 + l3)
−1 , e33 = l−2

3
(l2 + l3) .

Let σ be an eigenvalue of Ê . As shown in Result 4.7 of §4.3 below, Ê has an eigenvalue of zero.

The other two eigenvalues of Ê are found to satisfy

σ2 − σκt + κd = 0 . (4.7a)

Here κd and κt, which is the trace of Ê , are defined in terms of the eij by

κt = e11 + e22 + e33 , κd = e11e22 + e11e33 + e22e33 − e23e32 − e21e12 . (4.7b)

Thus, we can calculate the maximum eigenvalue em of E−1 needed in Proposition 3.1. In this way,

we obtain the following stability result:
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Result 4.2(Three Spikes): Let k = 3 and ε → 0. Assume that D is such that a three-spike

pattern exists, where z and z̃ are computed from (2.14). Then, the pattern is stable with respect to

the large O(1) eigenvalues when

(

κt +
√

κ2
t − 4κd

)

<
1

3bD
, (4.8)

and it is unstable when the inequality in (4.8) is reversed.

Let De be the critical value of D where the stability changes. Then, De is the value of D for

which

κt +
√

κ2
t − 4κd =

1

3bD
. (4.9)

Equations (4.9) and (2.14) form a coupled system for z, z̃ and De. This system, which is solved by

Newton’s method, depends on k1, k2, and on the specific ordering of the small and large spikes on

the interval. However, by examining (4.9), with the eij as defined in (4.6b), it is clear that AAB

and BAA patterns have the same stability criterion as do those of the form BBA and ABB.

We first consider the case k1 = 1 and k2 = 2 so that no solution multiplicity occurs. There

are two different values of De depending on the two orientations ABB and BAB. We obtain the

following numerical results:

Result 4.3(Three Spikes): Let k1 = 1, k2 = 2, and ε → 0. Then, a three-spike pattern exists

and is stable with respect to the large O(1) eigenvalues when D satisfies

ABB pattern ; → 0.00122/b < D < 0.00308/b , (4.10a)

BAB pattern ; → 0.00224/b < D < 0.00308/b . (4.10b)

The three-spike pattern loses its stability when D is decreased below the lower bounds in (4.10).

The upper bounds are the values of Dm given in Result 2.4.

In Fig. 5(a) and Fig. 5(b) we plot u versus x for BAB and ABB patterns, respectively. For

each pattern we plot the solution at two different values of D. All of these solutions are stable with

respect to the O(1) eigenvalues except for the BAB pattern in Fig. 5(a) with D = .002.

Now we consider the case where k1 = 2 and k2 = 1. In this case, solution multiplicity occurs

for the range of D given in Result 2.5. There are two patterns to consider: AAB and ABA. As

an example, in Fig. 6 we plot the two solutions of the form ABA that exist when D = 0.0035 and

b = 1. The solid curve in this figure, corresponding to the larger value of z, is stable. The dotted

curve, corresponding to the smaller value of z, is unstable.
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(a) BAB pattern: D = 0.003 (solid curve), D = 0.002
(dotted curve)
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(b) ABB pattern: D = 0.003 (solid curve), D =
0.0018 (dotted curve)

Figure 5: Plots of u versus x for a three-spike asymptotic asymmetric equilibrium solution of the
form BAB and ABB for two different values of D with ǫ = .02 and b = 1.
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Figure 6: Plots of u versus x exhibiting solution multiplicity for a three-spike pattern of the form
ABA. The parameter values are D = 0.0035, ǫ = .02, and b = 1. The solid curve, corresponding to
the larger root, is stable. The dotted curve, corresponding to the smaller root, is unstable.

20



To find the critical value De of D, where the stability of each of these patterns is exchanged, we

must solve the coupled system (2.14) and (4.9) numerically. In this way, we obtain the numerical

values

De = .00347/b AAB pattern ; De = .00396/b ABA pattern . (4.11)

For the AAB pattern this exchange of stability occurs for the larger root of (2.14). In contrast, the

exchange of stability for the ABA pattern occurs for the smaller root to (2.14).

0:060:080:100:120:140:160:18

0:000 0:002 0:004 0:006 0:008 0:010 0:012
juj2

D

01 s1s2001
s3101

� k
s� >M

Figure 7: Plot of |u|2 defined in (4.12) versus D for solutions with three or fewer spikes with b = 1.
The symmetric branch with k spikes is sk. The asymmetric patterns AB, BAB, and AAB are
labeled by 01, 101, and 001, respectively. The portions of the branches that are solid (dotted) are
stable (unstable) with respect to the large O(1) eigenvalues.

Finally, in Fig. 7 we take b = 1 and we plot a bifurcation diagram showing the relationship

between the symmetric and asymmetric solution branches. The vertical axis in this figure is the

|u|2 norm defined by

|u|2 ≡





k
∑

j=1

v−2

j





1/2

. (4.12)

In this figure, we label by sk the symmetric branch for which k spikes have equal height. In the

symmetric case, vj = 6bk for j = 1, .., k, so that |u|2 = 1/(6b
√

k). From (3.19) the branch sk is
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stable with respect to the large O(1) eigenvalues when D < Dk. In Fig. 7, the portions of the

solution branches that are stable with respect to the large O(1) eigenvalues are given by the solid

lines. Portions of these branches that are unstable are dotted. In plotting the asymmetric solution

branches, we note that a pattern such as ABA traces out exactly the same curve in this figure as

an AAB pattern, except that their stability properties are different. In each case when plotting a

connecting asymmetric branch, we have plotted the one that is maximally unstable (i. e. the one

that goes unstable for the largest value of D).

4.3 Four-Spike Patterns

When there are four spikes we determine the maximum eigenvalue em of Proposition 3.1 numerically

using LAPACK [1]. Setting em = 2 gives the critical stability value De. Patterns that have the

values of De are AABB and BBAA, BABA and ABAB, AAAB and BAAA, ABBB and BBBA.

When k1 ≤ k2 we obtain the following results:

Result 4.4(Four Spikes): Let k1 ≤ k2 and ε → 0. Then, a four-spike pattern exists and is stable

with respect to the large O(1) eigenvalues when D satisfies

ABBB pattern ; → 0.00041/b < D < 0.00130/b , (4.13a)

BABB pattern ; → 0.00085/b < D < 0.00130/b , (4.13b)

AABB pattern ; → 0.00128/b < D < 0.00130/b , (4.13c)

BABA pattern ; → 0.00122/b < D < 0.00130/b . (4.13d)

These values suggest that solutions with fewer small spikes have wider stability regions than those

with more small spikes.

In Fig. 8(a) and Fig. 8(b) we set b = 1 and plot u versus x for the patterns BABA and BABB,

respectively. In each figure we plot the solution for two values of D. The solutions in these figures

corresponding to the larger (smaller) value of D is stable (unstable) with respect to the O(1)

eigenvalues.

Solution multiplicity is possible when k1 = 3 and k2 = 1. As an example, in Fig. 9 we plot the

two solutions for an AABA pattern that exist when D = 0.0023, k1 = 3, k2 = 1 and b = 1. Both of

these solutions are unstable. The only two patterns with different stability criteria are AAAB and

AABA. To find the critical value De where the stability of each of these patterns is exchanged, we

solve the coupled system (2.14) and (4.9) numerically. In this way, we obtain the numerical values

De = 0.00142/b AAAB pattern ; De = 0.00154/b AABA pattern . (4.14)
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(a) BABA pattern: D = .00125 (solid curve), D =
0.001 (dotted curve)
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(b) BABB pattern: D = .0012 (solid curve), D =
0.0006 (dotted curve)

Figure 8: Plot of u versus x for a four-spike asymptotic asymmetric equilibrium solution of the
form BABA and BABB for two different values of D with ǫ = .02 and b = 1.
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Figure 9: Plot of u versus x for a four-spike asymptotic asymmetric equilibrium solution of the
form AABA in the region where solution multiplicity occurs. The parameters are D = 0.0023,
ǫ = .02, and b = 1. The solid curve corresponds to the larger root of (2.14) while the dotted curve
corresponds to the smaller root.
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For both patterns this exchange of stability occurs for the larger root of (2.14).

Similar to Fig. 7, a plot (not shown) of the |u|2 norm versus D shows that an asymmetric

solution with m > 0 small spikes provides the transition between the symmetric branches sk and

sk−m.

4.4 A Few General Results

For k ≤ 3, we have shown numerically that an asymmetric branch with i > 0 small spikes provides

the connection between the symmetric branches sk and sk−i. This connection property should

holds for higher values of k. We now show that for any k, with k ≥ 2, the asymmetric branches

that emerge from the symmetric branch sk when D = Dm are stable with respect to the O(1)

eigenvalues at least sufficiently close to the bifurcation point. This result is summarized as follows.

Result 4.5: An asymmetric branch that emerges from the symmetric branch sk is always stable

with respect to the large O(1) eigenvalues for D − Dm sufficiently small.

To show this result, we first note that the symmetric branch sk is stable when D < Dk, where

Dk is given in (3.19). The asymmetric branch bifurcates from sk when D = Dm, where Dm is given

in (2.16a). By comparing (3.19) and (2.16a) it is clear than Dm < Dk. By continuity of matrix

eigenvalues with respect to small perturbations of a nonsingular matrix, the stability criterion (3.15)

for the asymmetric branches must hold sufficiently close to Dm. Hence the result 4.5 follows.

The next result shows a scaling property, with respect to the parameter b, for the range of

values of D where asymmetric equilibria exist and are stable with respect to the O(1) eigenvalues.

Result 4.6: Let k1 and k2 be non-negative integers and ε → 0. Then, we can find constants D∗
m1

and D∗
e , independent of the parameter b, such that an asymmetric pattern exists and is stable with

respect to the O(1) eigenvalues on the interval D∗
eb

−1 < D < D∗
m1

b−1.

This result follows readily from the definition of the matrix E−1 in Proposition 3.1. The matrix

B in (3.7b) depends only on the product bD. In addition, since vj = 6b/lj , it is clear from (3.7a)

that the matrix C−1 also only depends on the product bD. Hence, E−1 depends only on the product

bD and the scaling result given above holds.

The final result concerns an eigenvalue of the stability matrix E−1 defined in Proposition 3.1.

Result 4.7: The matrix E−1 = BC−1 + I always has the value one as an eigenvalue.

From the definition of B in (3.7b), we observe that Bζ = 0, where ζt = (1, .., 1) and 0 is the

zero vector. Thus, E−1η = η, where η = Cζ, and the result follows.
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5 The Stability Analysis: Small Eigenvalues

In this section we analyze the small eigenvalues of order O(ε2) in the spectrum of (3.2). These

eigenvalues may generate instabilities on a long time scale t = O(ε−2). We determine the range of

D for which these eigenvalues are in the stable left half-plane. In §5.1 we reduce (3.2) to the study

of a matrix eigenvalue problem. In §5.2 we analyze this matrix eigenvalue problem and compute

the eigenvalues numerically.

5.1 Deriving the Matrix Eigenvalue Problem

We first write (3.2) in the form

Lεφ + u2
eη = λφ , −1 < x < 1 , (5.1a)

Dηxx − b

ε
u2

eη =
2b

ε
veueφ , −1 < x < 1 , (5.1b)

φx(±1) = ηx(±1) = 0 . (5.1c)

Here

Lεφ ≡ ε2φxx − φ + 2veueφ , (5.1d)

while ue and ve are given by

ue ∼
k
∑

j=1

v−1

j uj ; ve ∼
k
∑

j=1

6b

vj
G(x;xj) + v̄ . (5.2)

We have defined uj(y) ≡ uc

[

ε−1(x − xj)
]

, where uc(y) is given in (2.4). Also, vj , v̄ and xj are given

in (2.23b), (2.26), and (2.27), respectively. The brackets are defined by 〈ζ〉j ≡ (ζ(xj+) + ζ(xj−))/2

and [ζ]j ≡ ζ(xj+) − ζ(xj−), where ζ(xj±) are the one-sided limits of ζ(x) as x → xj±. The spike

locations xj are such that

〈vex〉j = 0 , j = 1, .., k . (5.3)

Next, we differentiate the equilibrium problem for (1.6a) with respect to x to get

Lεuex = −u2
εvεx . (5.4)

Thus, for x near xj , we get

Lεu
′

j ∼ −εv−1

j u2
jvex . (5.5)
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This suggests that we expand

φ = φ0 + εφ1 + · · · , η(x) = εη0(x) + · · · , (5.6a)

where

φ0 ≡
k
∑

j=1

cju
′

j

[

ε−1(x − xj)
]

, φ1 ≡
k
∑

j=1

cjφ1j

[

ε−1(x − xj)
]

. (5.6b)

Here the cj are arbitrary coefficients.

We substitute (5.6a) into (5.1a) and use (5.5) and λ = O(ε2). For x near xj , we get that φ1j(y)

satisfies

cjLεφ1j ∼
u2

j

vj

[

cjvex(xj + εy) − η0(xj + εy)

vj

]

. (5.7)

Before solving this equation for φ1j we need to determine an important continuity property of the

right-hand side of (5.7).

Substituting (5.6a) into (5.1b), we get that η0 satisfies

Dη0xx − b

ε
u2

eη0 =
2b

ε2
veue (φ0 + εφ1) , −1 < x < 1 . (5.8)

Since φ0 is a linear combination of u
′

j, it follows that the term multiplied by φ0 on the right-hand

side in (5.8) behaves like a dipole. Hence, for ε ≪ 1, this term is a linear combination of δ
′

(x− xj)

for j = 1, .., k, where δ(x) is the delta function. Thus, η0 will be discontinuous across x = xj .

However, if we define the function f(x) by

f(x) ≡ cjvex(x) − η0(x)

vj
, (5.9)

then f is continuous across x = xj . To see this, we differentiate (1.6b) for ve with respect to

x and subtract appropriate multiples of the resulting equation and (5.8) to find that the dipole

term cancels exactly. Thus, f is continuous across x = xj , and we have 〈f〉j = f(xj). However,

〈vex〉j = 0 from (5.3). Hence, f(xj) = −v−1

j 〈η0〉j. Therefore, for ε ≪ 1, we get from (5.7) that φ1j

satisfies

cjLεφ1j ∼ −
u2

j

v2
j

〈η0〉j . (5.10)
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Since Lεuj = u2
j + O(ε), we can solve (5.10) as

cjφ1j(y) = − 1

v2
j

uj(y)〈η0〉j + O(ε) . (5.11)

Equation (5.11) shows that φ1j is continuous across x = xj and has the form of a spike. This

implies that the term in (5.8) proportional to φ1 behaves like a linear combination of δ(x−xj) when

ε ≪ 1 and, most importantly, has the same asymptotic order in ε as the dipole term proportional

to φ0. This shows the fact that we need to determine the approximate eigenfunction for φ to both

the O(1) and O(ε) terms in order to calculate an eigenvalue of order O(ε2).

Next, let ε → 0 and use (5.6b) to calculate for x near xj that

2b

ε2
veuecju

′

j ∼ 6bcj δ
′

(x − xj) , (5.12a)

b

ε
u2

e ∼ 6b

v2
j

δ(x − xj) . (5.12b)

Substituting (5.12) into (5.8), and using the formula (5.11) for φ1j, we get

Dη0xx − 6b





k
∑

j=1

v−2

j δ(x − xj)



 η0 = 6b

k
∑

j=1

cjδ
′

(x − xj) −
k
∑

j=1

12b

v2
j

〈η0〉jδ(x − xj) . (5.13)

This problem is equivalent to

Dη0xx = 0 , −1 < x < 1 ; η0x(±1) = 0 , (5.14a)

[Dη0]j = 6bcj ; [Dη0x]j = −6b

v2
j

〈η0〉j . (5.14b)

To estimate the small eigenvalue we substitute (5.6) into (5.1a) and multiply both sides of (5.1a)

by u
′

j . Upon integrating the resulting equation across the domain we get

k
∑

i=1

(

u
′

j, ciLεu
′

i

)

+ ε

k
∑

i=1

(

u
′

j, ciLεφ1i

)

+ ε
(

u
′

j, u
2
eη0

)

∼ λ

k
∑

i=1

(

ciu
′

i, u
′

j

)

. (5.15)

Here (f, g) ≡
∫

1

−1
f(x)g(x) dx. To within negligible exponentially small terms, the dominant con-

tribution in the sum comes from i = j since u
′

j is exponentially localized near x = xj . Thus, (5.15)

becomes

cj

(

u
′

j , Lεu
′

j

)

+ εcj

(

u
′

j, Lεφ1j

)

+
ε

v2
j

(

u
′

j, u
2
jη0

)

∼ λcj

(

u
′

j, u
′

j

)

. (5.16)
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Since Lε is self-adjoint, we integrate by parts on the second term on the left-hand side of (5.16)

and use (5.5) for Lεu
′

j. Since the integrands in (5.16) are localized near x = xj , we can write the

resulting integrals in terms of the stretched variable y = ε−1(x − xj) to get

−ε2

∫

∞

−∞

u2
ju

′

j

vj

[

vexcj −
η0

vj

]

dy − ε3cj

∫

∞

−∞

u2
j

vj
vexφ1j dy ∼ ελcj

∫

∞

−∞

(

u
′

c

)2

dy . (5.17)

In this expression η0 = η0(xj + εy) and vex = vex(xj + εy).

We now estimate each of the terms in (5.17). Since [φ1j ]j = 0, 〈vex〉j = 0, and u
′

j is odd, it

follows that the second integral on the left-hand side of (5.17) will be o(ε3) and can be neglected.

Thus, from (5.17) we obtain

ελcj

∫

∞

−∞

(

u
′

c

)2

dy ∼ −ε2

∫

∞

−∞

u2
ju

′

j

vj
f(xj + εy) dy , (5.18)

where f(x) is defined in (5.9). The function f is continuous across x = xj but its derivative is not.

For ε ≪ 1, we integrate by parts in (5.18) to obtain

ελcj

∫

∞

−∞

(

u
′

c

)2

dy ∼ ε3

3vj

∫

∞

−∞

u3
c dy 〈f ′〉j . (5.19)

Then, since vexx is continuous across x = xj and vexx(xj) = −1/(2D), we obtain

〈f ′〉j = cjvexx(xj) −
〈η0x〉j

vj
= − cj

2D
− 〈η0x〉j

vj
. (5.20)

Finally, substituting (5.20) into (5.19), we obtain the following main result:

Proposition 5.1: The eigenvalues of order O(ε2) for (3.2) satisfy

λcj

∫

∞

−∞

[

u
′

c(y)
]2

dy ∼ −ε2

3

∫

∞

−∞

[uc(y)]3 dy

(

〈η0x〉j
v2
j

+
cj

2Dvj

)

, j = 1, .., k . (5.21)

Here 〈η0x〉j is to be calculated from (5.14).

5.2 Analyzing the Matrix Eigenvalue Problem

We first define σ in terms of λ by

λ =
ε2

6D

(
∫

∞

−∞
[uc(y)]3 dy

∫

∞

−∞
[u′

c(y)]
2

dy

)

σ . (5.22)
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Then, (5.21) can be written in matrix form as

Fc+ σc = −D2

3b
C〈η0x〉 , (5.23)

where C is defined in (3.7a) and

F ≡













1/v1 0 · · · 0

0
. . . · · · 0

...
...

. . .
...

0 0 · · · 1/vk













, c ≡







c1

...
ck






, 〈η0x〉 ≡







〈η0x〉1
...

〈η0x〉k






. (5.24)

Next we must calculate 〈η0x〉 in terms of c from the solution to (5.14). The resulting expression

will then be substituted into (5.21).The solution to (5.14) can be written as

η0(x) =

k
∑

j=1

(6bcjg(x;xj) + mjG(x;xj)) + 2ηa , (5.25)

for some coefficients mj, for j = 1, .., k. Here G satisfies (2.25) and g(x;xj) is the dipole Green’s

function satisfying

Dgxx = δ
′

(x − xj) , −1 < x < 1 , (5.26a)

gx(±1;xj) = 0 ,

∫

1

−1

g(x;xj) dx = 0 . (5.26b)

Since G and g have a zero spatial average over the interval −1 < x < 1, the unknown constant ηa

in (5.25) is the average value of η(x) given by 2ηa =
∫

1

−1
η0 dx. The solution to (5.26) is clearly,

g(x;xj) = − ∂

∂xj

G(x;xj) . (5.27)

The jump conditions in (5.14b), together with the requirement that
∑k

j=1
[Dη0x]j = 0, lead us to

the following problem for the coefficients mk:

m = −DC〈η0〉 , etm = 0 . (5.28)

Here we have defined

m ≡







m1

...
mk






, e ≡







1
...
1






, 〈η0〉 ≡







〈η0〉1
...

〈η0〉k






. (5.29)
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Using (5.25) we calculate that

〈η0〉 = 6bPgc+ Gm+ 2ηae , (5.30)

where Pg and G are defined by

Pg ≡







〈g(x1;x1)〉1 · · · g(x1;xk)
...

. . .
...

g(xk;x1) · · · 〈g(xk;xk)〉k






, G ≡







G(x1;x1) · · · G(x1;xk)
...

. . .
...

G(xk;x1) · · · G(xk;xk)






. (5.31)

Combining (5.28) and (5.30), we determine m as

m = −6bDC (I + DGC)−1 Pgc− 2DηaC (I + DGC)−1
e . (5.32)

The constraint etm = 0 determines ηa as

ηa = −3b

β
etC (I + DGC)−1 Pgc , where β ≡ etC (I + DGC)−1

e . (5.33)

Next, by differentiating (5.25), and by noting that g(x;xj) is piecewise constant, we obtain

〈η0x〉 = Pm , (5.34)

where

P ≡







〈Gx(x1;x1)〉1 · · · Gx(x1;xk)
...

. . .
...

Gx(xk;x1) · · · 〈Gx(xk;xk)〉k






. (5.35)

By calculating P and Pg explicitly, it is easy to see that

Pg = −Pt . (5.36)

Finally, by substituting (5.32) for m into (5.34) we determine 〈η0x〉 in terms of c. Substituting

this expression for 〈η0x〉 into (5.23) we obtain the following main result:

Proposition 5.2: For ε ≪ 1, the eigenvalues of (3.2) of order λ = O(ε2) satisfy

λj ∼
ε2

6D

(
∫

∞

−∞
[uc(y)]3 dy

∫

∞

−∞
[u′

c(y)]
2

dy

)

σj , (5.37)
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where σj is an eigenvalue of the matrix eigenvalue problem

(R−F) c = σc . (5.38a)

Here F is defined in (5.24). The matrix R is defined by

R ≡ 2D3CP (I + DCG)−1 C
(

β−1H− I
)

Pt , (5.38b)

where

H ≡ KC (I + DCG)−1 , K ≡ eet =







1 · · · 1
...

. . .
...

1 · · · 1






. (5.38c)

The constant β in (5.38b) is defined in (5.33).

We first show that our result reduces to that obtained in [7] for the special case of a symmetric

spike pattern. For a symmetric pattern vj = 6bk for j = 1, .., k. Thus, C and F are multiples of

the identity matrix given by

C =
1

6bDk2
I , F =

1

6bk
I . (5.39)

Equation (5.38) then becomes

(

− k

2D
I + γP (I + γG)−1

(

β−1H− I
)

Pt

)

c =
3σk2b

D
c , (5.40)

where

γ =
1

6bk2
, H =

γ

D
K (I + γG)−1 . (5.41)

For a symmetric spike pattern (2.24a) becomes

ve(x) ∼ 1

k

k
∑

j=1

G(x;xj) + v̄ . (5.42)

By evaluating (5.42) at x = xi ≡ −1 + (2i − 1)/k, we obtain that e is an eigenvector of the matrix

G. By differentiating (5.42) at x = xi, and using the equilibrium condition (5.3) that 〈vex〉i = 0 for

i = 1, .., k, we get that Pe = 0, where P is the matrix defined in (5.35). Thus, since K = eet, we
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conclude that the matrix product P (I + γG)−1 H in (5.40) is identically the zero matrix. Thus, for

a symmetric spike pattern, (5.38) reduces to the following matrix problem considered in [7]:

Mc = ωc σ =
D

3k2b
ω , (5.43a)

where

M = − k

2D
I − γP (I + γG)−1 Pt . (5.43b)

The eigenvalues of M were computed explicitly in ([7]) with the result

ω1 = − k

2D
; ωj =

k

2D





(

1 − γ
2DK

)

tan2

(

θj

2

)

tan2

(

θj

2

)

− γ
2Dk sec2

(

θj

2

)



 , j = 2, .., k , (5.44)

where θj = π(j − 1)/k for j = 2, .., k. When γ = 2Dk, then ωj = 0 for j = 2, ..k. It is at this value

that the stability of the symmetric branch sk with respect to the small eigenvalues changes. In this

way, the following result was obtained in [7]:

Proposition 5.3 (From [7]): Consider a symmetric k-spike equilibrium solution where xj =

−1 + (2j − 1)/k for j = 1, .., k. Then, for ε ≪ 1, the eigenvalues λ of (3.2) of order O(ε2) are all

real, and they are all negative when

D < Dm =
1

12bk3
. (5.45)

When D > Dm, then k − 1 small eigenvalues are positive. When D = Dm, λ = 0 is an eigenvalue

of algebraic multiplicity k − 1. Furthermore, Dm < Dk, where Dk, given in (3.19) is the largest

value of D for which the symmetric branch sk is stable with respect to the large O(1) eigenvalues.

Since Dm < Dk, the symmetric branch sk is stable with respect to both the large and small

eigenvalues only when D < Dm. Notice that the critical value Dm is precisely the value of D given

in Result 2.4 where the asymmetric patterns bifurcate from the symmetric solution branch sk.

Thus, as D is decreased below the bifurcation value D = Dm, the symmetric branch sk becomes

stable with respect to the small eigenvalues. The final question we address is to determine the

stability with respect to the small eigenvalues of the k − 1 asymmetric branches (ignoring in the

counting the different possible oriented sequences of the small and large spikes) that emerge from

sk at D = Dm. This stability calculation using (5.38) must be done numerically.

The numerical procedure is as follows. We fix k1, k2, b, and a specific orientation of the large

and small spikes on the interval. Since the eigenvalues depend on the product bD, we take b = 1
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D
(a) AB pattern
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��

D
(b) ABB and BAB patterns

Figure 10: Plot of σ∗, defined in (5.46), for two and three-spike patterns with b = 1. The plots are
shown for the range of values of D where each pattern is stable with respect to the large eigenvalues.
In Fig. 10(b) the solid curve is for an ABB pattern and the dotted curve is for a BAB pattern.

without loss of generality and we let D be a continuation parameter. We then compute z and z̃

from (2.14). This determines z1,..,zk and from this we calculate vj = 6b/lj from (2.23b). In terms

of vj we then evaluate the matrix F in (5.24). In calculating the matrix R in (5.38b), we use the

explicit formula (2.25c) for the Green’s function G(x;xj). The eigenvalues σj of the matrix R−F
in (5.38) are calculated numerically using LAPACK [1]. The maximum eigenvalue of this matrix is

denoted by

σ∗ = Max(σj) for j = 1, .., k . (5.46)

From Proposition 5.2, we conclude that a k-spike pattern is unstable when σ∗ > 0.

In Fig. 10(a) and Fig. 10(b) we plot σ∗ versus D for two and three spike patterns, respectively.

In each case we have plotted σ∗ versus D over the range of values of D for which the pattern exists

and is stable with respect to the large eigenvalues (these ranges were given in §4). In Fig. 11 we plot

σ∗ versus D for certain four spike patterns. In each case we have found that σ∗ > 0 over this range,

indicating that the asymmetric pattern is unstable with respect to the small eigenvalues. Further

numerical computations (not shown) also indicate that although an asymmetric branch may be

stable with respect to the large eigenvalues for some range of D, they are always unstable with

respect to the small eigenvalues on this range. Unfortunately, due to the difficulty in studying the

33
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��

D
Figure 11: Plot of σ∗, defined in (5.46), for four-spike patterns with b = 1. The heavy solid curve is
for an ABBB pattern, the solid curve is for a BABB pattern, and the dotted curve is for a BABA
pattern. In each case we have plotted σ∗ versus D for the range of D where the pattern is stable
with respect to the large eigenvalues.

eigenvalue problem (5.38) analytically, we are not able to provide a rigorous analytical justification

to confirm this numerical observation.

6 Conclusions

We have used formal asymptotic analysis to construct asymmetric equilibrium spike patterns for

the Schnakenburg model, and we have analyzed the stability properties of these solutions. We have

determined ranges of D for which asymmetric patterns exist, and other ranges of D where these

patterns are stable with respect to temporal instabilities on a fast O(1) time scale. We formulated a

matrix eigenvalue problem whose eigenvalues determine the stability of the asymmetric equilibrium

spike patterns on a long O(ε−2) time scale. From numerical computations of this matrix eigenvalue

problem, we show that for the ranges of D where the asymmetric patterns are stable with respect

to the large O(1) eigenvalues, the patterns are always unstable with respect to the small O(ε2)

eigenvalues.

The analysis presented above generalizes the typical Turing analysis based on linearizing a

reaction-diffusion system around a spatially homogeneous equilibrium state. A similar analysis of
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asymmetric spike patterns was made for the Gierer-Meinhardt model in [16], and similar conclusions

were obtained regarding the existence and the stability properties of these solutions. It is hoped

that the analytical methods developed in this paper and in [16] will become a common tool for the

analysis of spike-type patterns in other reaction-diffusion systems.

A Calculation of the Matrices B and C
Consider the boundary value problem

Dη
′′

= 0 , η
′

(±1) = 0 , (A.1a)

[η]j = 0 ,
[

Dη
′

]

j
=

6b

v2
j

ηj − ωjD , (A.1b)

for j = 1, . . . , k, where [η]j ≡ η(xj+)− η(xj−) and xj satisfies (2.27). In (A.1b), ηj = η(xj) and ωj

is defined by

ωj = −2b

D

∫

∞

−∞

uc φj dy . (A.2)

Let ηt = (η1, . . . , ηk). To obtain a linear system for η, we solve (A.1) analytically on each subin-

terval and impose the continuity of η(x) to get

η(x) =







η1 , −1 < x < x1 ,
ηj

dj+1
(xj+1 − x) +

ηj+1

dj+1
(x − xj) , xj < x < xj+1 , j = 1, . . . , k − 1 ,

ηk , xk < x < 1 .

(A.3)

Here dj = xj − xj−1. Imposing the jump conditions on Dη
′

from (A.1b), we obtain the system of

equations,

η1

d2

− η2

d2

= −6bη1

Dv2
1

+ ω1 , (A.4a)

−ηj−1

dj
+ ηj

(

1

dj
+

1

dj+1

)

− ηj+1

dj+1

= −6bηj

Dv2
j

+ ωj , j = 1, .., k − 1 , (A.4b)

−ηk−1

dk
+

ηk

dk
= −6bηk

Dv2
k

+ ωk . (A.4c)

Writing (A.4) as a linear system for η we obtain the matrix formulation given in (3.6) and (3.7).
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