® MPL EXITY Volume 11

INTERNATIONAL

Tracking moving targets and the non-
stationary traveling salesman problem

Q. Jiang, R. Sarker and H. Abbass

School of Information Technology and Electrical Engineering
University of New South Wales at ADFA
Northcott Drive, Canberra 2600, Australia

Email: {ruhul, abbass}@cs.adfa.edu.au

Ab stract

The Traveling Salesman Problem (TSP) has been studied extensively in the literature with the
assumption that all cities to be visited are stationary. In this paper, we investigate a non-stationary
version of TSP (NTSP) where all cities (objects/targets) are moving at known velocities. This
problem is motivated by many real life problems in security and defence. We propose a genetic
algorithm based solution approach for NTSP and analyse the solutions obtained.

1. Introduction

The Traveling Salesman Problem (TSP) is one of the best known and extensively studied
optimization problems in the literature. It has attracted the attention of many researchers over
the last half-a-century because of its simple problem description but difficulty in obtaining the
optimal solutions efficiently. The problem is: a salesman, starting from her base, intends to
visit each of several cities exactly once and return to the base ensuring minimum total traveling
distance (or cost).

The classical TSP has been studied extensively, and many algorithms have been proposed
over the last half-a-century. However, many real-world TSP type problems are dynamic in
nature. Recently, Zhou et al (2003) studied the dynamic or non-stationary TSP (NTSP) which
may encompass one or more additional features such as (i) the number of cities may change
with time: some new cities may appear in the tour and some old ones may disappear; and/or
(i1) the city locations (or cost matrix) may change with time. In this paper, we discuss a non-
stationary version of TSP where the number of cities is fixed but the cost matrix changes
continuously.

In the following section, we define NTSP very briefly. The following two sections discuss
the solution approaches for classical TSP and a genetic algorithm based solution approach for

- 171 - © Copyright 2005

Complexity International Volume 11

NTSP. Experimental setup and analysis of results are then presented and conclusions are
drawn.

2. Non-stationary TSP

Most previous works on TSP have assumed that the number of cities is fixed and the cities
(objects/targets) to be visited are stationary. However, there are practical TSP scenarios where
the targets to be visited are themselves in motion (Helvig et al, 2003). For examples, (i) re-
supplying patrolling boats by a supply ship, (ii) intercepting a number of mobile ground units
by an aircraft, (iii) intercepting a number of non-stationary ships by an aircraft and (iv)
supplying hazardous materials to a number of mobile units by a robot. In this paper, we
consider a NTSP where the targets move with constant velocities on a known two-dimensional
surface. We define the NTSP as follows:

Given a set of targets S= {s;, . . ., 5,,}, each target s; is moving in a direction d; at
constant velocity v; from an initial position p;, and given a pursuer starting from the
origin (say O) at constant velocity v,, find the shortest/fastest tour starting (and
ending) at the origin, such that the pursuer intercepts with all targets.

To describe an NTSP, we have considered one pursuer starting from the origin O and three
targets sy, s, and s3 as shown in Fig. 1. The target s, is moving in the direction of A-B, s, in the
direction of C-D and s; in the direction of E-F. The pursuer starting from the origin O, should
visit each target only once and return to the origin O in the minimum possible time.

Figure 1. An example of NTSP with three cities.

Helvig et al (2003) pointed out that minimizing the travel time is equivalent to minimizing
the distance travelled for the stationary TSP (STSP). However, in the case of NTSP, these
two objectives are very different, each leading to distinct properties, strategies, and results.

-172 - © Copyright 2005

Complexity International Volume 11

3. Solution approaches

Stationary TSP (STSP) is a well-known NP hard problem. It is unlikely that an optimization
algorithm would find optimal tours for a STSP with more than 30 cities in the general case in a
reasonable time. Most algorithms developed for STSP are either approximation algorithms or
heuristics. Christofiedes’ algorithm is one of the best approximation methods for STSP that
can guarantee to find the solutions with the error rate 3/2 (Johnson and Papadimitriou, 1985).
However, if the number of cities is large, the error rate is too high. Johnson and Papadimitriou
(1985) studied the possibility of polynomial-time heuristics that provide good guarantees for
all (symmetric) STSP instances and showed that this can only happen in the unlikely event
that P=NP. Heuristic techniques such as Simulated Annealing (SA) (Budinich, 1996;
Kirkpatrick et al, 1983; and Jeong and Kim, 1991), Genetic Algorithms (GAs) (Choi et al,
2003 and Moon et al, 2002), Tabu search (TS) (Carlton and Barnes, 1996 and Knox, 1994)
and Ant Colony Optimization (ACO) (Stutzle and Hoos, 2000 and Branke and Guntsch,
2003) are applied to solve many instances of STSP. In this paper, we are interested in solution
approaches of NTSP.

NTSP expands the domain and complexity of the classical TSP. The stationary
targets/cities become non-stationary and minimizing the traveling distance (or time) becomes
harder. Similar to the original TSP, the NTSP is NP-complete, where it is unlikely that
polynomial-time exact algorithms can be developed.

Formin and Lingas (2002) provides a (2 +¢€)-approximation algorithm for the NTSP.
Helvig et al (2003) presented exact algorithms for three special cases of NTSP: all targets have
the same direction, only limited number of moving targets and all targets have the same speed.
However their algorithms are not suitable for the general cases of NTSP. From Hammar and
Nilsson (1999), it is clear that the approximation methods are only suitable for some special
cases of NTSP rather than the general NTSP cases. In this paper, we develop a GA based
algorithm for NTSP.

4. The algorithm

We used a straightforward GA algorithm. The algorithm starts with initializing the
population with randomly generated (but feasible) solutions. Each solution is then evaluated
by simulating the movements of each target and calculating the anticipated interception points.
The reproduction loop then takes place through selecting and crossing-over parents, and
mutating the resultant children. If illegal solutions are generated, a repair operator is applied by
randomly fixing the duplicated parts in a solution. Solutions are then evaluated and the
reproduction cycle continues. The proposed GA based algorithm for NTSP is as follows:

Begin
t 0
initialize P (t)
predict interception and evaluate P (t)
while (not terminate-condition) do

begin

- 173 - © Copyright 2005

Complexity International Volume 11

t t+ 1

select P (t+1) from P (t)
alter P (t+1)
apply repair operator to P (t+1)
predict interception and evaluate P (t+1)
end
end

For convenience of representation, we choose the integer coded GA rather than the
traditional binary coding. First, we create a number of tours each with an order of cities to be
visited for example {1, 3,4 ... n}. Then we calculate the fitness of each tour (total traveling
time). The fitness calculation in NTSP is not as simple as STSP. To explain the fitness
calculation, let us consider the example of Figure 1 where we define a tour as O-s;-s,-53-0O.
Calculate the time required for each pair of cities (targets) in the tour as follows:

* (alculate the minimum time required from O to s;. Since s; is moving at a constant
velocity v, the pursuer must meet s; at location A, instead of A (see Fig. 2). That
means the pursuer must travel towards A, to minimize the travel time, which is not
difficult to find as the direction and velocity of the target s, and the speed of pursuer
are known and constant. In our calculation, we use the maximum speed of the pursuer.
The assumption here is that the pursuer speed is higher than the speed of any target. If
this assumption is violated, the definition of NTSP will need to change because in
some cases, the pursuer may not be able to intercept with the target. Suppose the
travel time from O to s; is T;. Once the pursuer reaches A, (after time T)), the targets
s, and s will reach location C; and E, respectively.

Figure 2. Movement from O to s; (at time T).

« The pursuer will take time T, to travel from A to the new location of s, which is C, as
of Fig. 3. The target s3 will reach the location E, by that time.

- 174 - © Copyright 2005

Complexity International Volume 11

Figure 3. Movement from A; to s, (at time T; + T>).

* The pursuer will take time T to travel from C, to the new location of s; which is E; as
of Fig. 4.

* The pursuer will take time T to travel from E; to the origin O.

* The fitness of the tour is f'= T;+T,+T5+T,.

Figure 4. Movement from C, to s3 and s3 to O.

In our algorithm, we use two different crossovers: Order Crossover (OX) and Cycle
Crossover (CX). Both crossover operators guarantee that if the two parents are valid tours,
the child is also a valid tour. In OX, two cut points are randomly chosen on the parent
chromosomes. In order to create an offspring, the string between the two cut points in the first
parent is first copied to the offspring, then the remaining position are filled by considering the
sequence of activities in the second parent, staring after the second cut point (when the end of
the chromosome is reached, the sequence continues at position 1).

CX focuses on subsets of cities that occupy the same subset of positions in both parents.
Then, these cities are copied from the first parent to the offspring (at the same position), and

- 175 - © Copyright 2005

Complexity International Volume 11

the remaining positions are filled with the cities of the second parent. In this way, the position
of each city is inherited from one of the two parents. However, many edges can be broken in
the process, because the initial subset of cities is not necessarily located at consecutive
positions in the parent tours.

We use the swap 2 as mutation operator. Two cities are randomly selected and swapped
(i.e., their positions are exchanged). This mutation operator is the closest in philosophy to the
original mutation operator, because it only slightly modifies the original tour with 4 edges at
the most.

Finally we apply a repair mechanism to repair any infeasible tours created in any stage of
the algorithm such as the pursuer visits any cities twice and/or miss any other cities. The
repair mechanism is used mainly for the initial population since all operators guarantee to
generate valid tours.

“IDialog = \U\@ Pl

1333.7:

mn.nz
93,1 WW
803.2 |
569.4 |
5355 |
016

267.7 |

1339 ©

0.0 10 20 30 40 50 60 70 80 90 100 Generation

Figure 5. Two screen dumps of the tracking moving target problem.
The left figure shows the progress of the evolutionary computation model (worst fitness (top
line), average fitness (middle line), and best fitness (bottom line)) and the right figure shows the
sequence of interceptions.

5. Experimental setup
We have generated 30 NTSP instances of 10 cities randomly. The pursuer’s location and

speed, and the location, speed and direction of movement for each city were generated within
the following ranges.

- 176 - © Copyright 2005

Complexity International Volume 11

Table 1. Test problems’ data.

Initial location Direction of movement
Speed
X-axis y-axis X-axis y-axis
Pursue 0-100 0-100 20-40 - -
T
City 0-100 0-100 10-20 -1 to +1 -1 to +1

As an example, one problem instance is shown in Tables 2 and 3.

Table 2. Details of pursuer.

Number of Cities: 10
Initial position of pursuer (x-axis) 98.5424
Initial position of pursuer (y-axis) 51.4723
The speed of pursuer: 30

Table 3. Details of targets.

Initial position Moving direction Spee
d
City ID X-axis Y-axis X-axis Y-axis

1 18.8665 15.6839 -0.886946 -0.461873 17
2 2.81664 8.91639 0.270585 -0.962696 13
3 18.2772 20.6597 0.676864 0.736108 14
4 83.9867 29.4462 -0.955202 0.295954 11
5 46.7837 61.3042 -0.457243 -0.889342 10
6 84.3494 39.8209 0.765682 0.643219 15
7 59.226 94.6413 -0.756471 0.654027 16
8 73.9737 61.7654 -0.0791881 -0.99686 15
9 13.6156 76.45 0.333373 -0.942795 13
10 10.8492 51.9188 -0.824517 -0.565837 13

We use the following parameters in our experiments:

Population size 30
Probability of crossover 0.8
Probability of mutation 0.1
Number of generations in each run 30

- 177 - © Copyright 2005

Complexity International Volume 11

Number of independent runs 30

6. Results and discussions
For each problem instance, we have recoded the best fitness, worst fitness, and mean fitness

with standard deviation for both OX and CX. The experimental results of 30 NTSP instances
for both CX and OX are analysed and reported in the following table.

Table 4. Comparing Crossover operators.

Crossove Number of instances Percentage of
r operator with better fitness total
CX 5 16.67
0X 7 23.33

By the best fitness value, we mean the minimum of 30 minimum values obtained from each
of 30 independent runs (one minimum for each run) for a given NTSP instance. A total of 18
instances out of 30 produced exactly the same best fitness value using either crossover
operator. In the remaining 12 instances, CX operator produces better results for 5 instances
and OX operator produces better results for 7 instances. Although from the limited
experimental results it is hard to say which operator is better (CX or OX), we present the
minimum and the average of minimum fitness values for 12 competing instances in Fig. 5.

300 +——
[}) 280 1 -
‘_36 @ CX-Min
> 260 m CX-Avg
g 240 O OX-Min
= 0O OX-Av
ic 550 4 ﬂ 9

200 =L

1 2 3 4 5 6 7 8 9 10 11 12

NTSP instance number

Figure 6. The best and average-best fitness for CX and OX.

By the average-best fitness value, we mean the average of 30 minimum fitness values
obtained from 30 independent runs (minimum of each run) for a given NTSP instance. As we
can see in the Figure 6, if the fitness is lower for a crossover operator, the corresponding
average-best fitness is consistently lower. That ensures again there is no clear winner so far.

- 178 - © Copyright 2005

Complexity International Volume 11

7. Conclusion

In this paper, we have introduced a non-stationary version of the classical traveling salesman
problem. We have developed a GA based methodology for solving NTSP problems. To
demonstrate the use of our developed algorithm, we have solved 30 randomly generated NTSP
instances using two different crossover operators.

References

Branke, J. and M. Guntsch (2003), New ideas for applying ant colony optimization to the probabilistic TSP,
Applications of Evolutionary Computing, 2611: 165-175.

Budinich, M. (1996), A self-organizing neural network for the traveling salesman problem that is competitive
with simulated annealing, Neural Computation, 8(2): 416-424.

Carlton, W.B. and J.W. Barnes (1996), Solving the traveling-salesman problem with time windows using tabu
search, IIE Transactions, 28(8): 617-629.

Choi, I.C., S.I. Kim, and H.S. Kim (2003), A genetic algorithm with a mixed region search for the asymmetric
traveling salesman problem, Computers & Operations Research, 30(5): 773-786.

Fomin, F.V. and A. Lingas (2002), Approximation algorithms for time-dependent orienteering, Information
Processing Letters, 83(2): 57-62.

Hammar, M. and B. Nilsson (1999), Approximation Results for Kinetic Variants of TSP, In Automata,
Languages and Programming: 26th International Colloquium(ICALP'99), Prague, Czech: Springer.

Helvig, C.S., G. Robins, and A. Zelikovsky (2003), The moving-target traveling salesman problem, Journal of
Algorithms, 49(1): 153-174.

Huang, L., C.G. Zhou, and K.P. Wang (2003), Hybrid ant colony algorithm for traveling salesman problem,
Progress in Natural Science, 13(4): 295-299.

Jeong, C.S. and M.H. Kim (1991), Fast Parallel Simulated Annealing for Traveling Salesman Problem on
Simd-Machines with Linear Interconnections, Parallel Computing, 17(2-3): 221-228.

Johnson, D.S. and C.H. Papadimitriou (1985), Performance guarantees for heuristic, In The Traveling salesman
problem: a guided tour of combinatorial optimization, L. Eugene L, Editor. Wiley: Chichester (West
Sussex]); New York, 145-180.

Knox, J. (1994), Tabu Search Performance on the Symmetrical Traveling Salesman Problem, Computers &
Operations Research, 21(8): 867-876.

S. Kirkpatrick, C.D. Gelatt and M.P. Vecchi, Science 220 (1983) 671-680.

Moon, C., et al. (2002), An efficient genetic algorithm for the traveling salesman problem with precedence
constraints, European Journal of Operational Research, 140(3): 606-617.

Stutzle, T. and H.H. Hoos (2000), MAX-MIN Ant System, Future Generation Computer Systems, 16(8): 889-
914.

Zhou, A., L. Kang, and Z. Yan (2003), Solving Dynamic TSP with Evolutionary Approach in Real Time,
Proceedings of IEEE-CEC2003, 2: 951-957.

- 179 - © Copyright 2005

