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ABSTRACT
Visual notations are pervasive in circuit design, control systems,
and increasingly in mainstream programming environments. Yet
many of the foundational advances in programming language the-
ory are taking place in the context of textual notations. In order to
map such advances to the graphical world, and to take the concerns
of the graphical world into account when working with textual for-
malisms, there is a need for rigorous connections between textual
and graphical expressions of computation.

To this end, this paper presents a graphical calculus called Uc-
cello. Our key insight is that Ariola and Blom’s work on sharing in
the cyclic lambda calculus provides an excellent foundation for for-
malizing the semantics of graphical languages. As an example of
what can be done with this foundation, we use it to extend a graph-
ical language with staging constructs. In doing so, we provide the
first formal account of sharing in a multi-stage calculus.

1. INTRODUCTION
Visual programming languages are finding increasing popular-

ity in a variety of domains, and are often the preferred program-
ming medium for experts in these domains. Examples of such do-
mains include circuit design and control system design, and exam-
ples of mainstream tools include a wide range of hardware CAD
design environments, data-flow languages like LabVIEW [12, 16],
Simulink [23], and Ptolemy [14], spreadsheet-based languages such
as Microsoft Excel, or data modeling languages such as UML.
Compared to modern text-based languages, many visual languages
are limited in expressivity. For example, while they are often purely
functional, they generally do not support first-class functions. More
broadly, the wealth of abstraction mechanisms, reasoning princi-
ples, and type systems developed over the last thirty years is cur-
rently available mainly for textual languages. Yet there is real need
for migrating many ideas and results developed in the textual set-
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ting to the graphical setting.
Recognizing this need, we sought existing accounts of the se-

mantics of graph-based representations of programs, and of formal
connections between graph-based representations and visual rep-
resentations. The visual programming research literature focuses
largely on languages that are accessible to novice programmers
and domain experts, rather than general-purpose calculi. Exam-
ples include form-based [3] and spreadsheet-based [1, 10, 13]
languages. Citrin et al. give a purely graphical description of an
object-oriented language called VIPR [4] and a functional language
called VEX [5], but the mapping to and from textual representa-
tions is only treated informally. Erwig [9] presents a denotational
semantics for VEX using inductive definitions of graph represen-
tations to support pattern matching on graphs, but this style of se-
mantics does not preserve information about the syntax of graphs,
as it maps syntax to “meaning”.

Our key observation is that Ariola and Blom’s work on sharing
in the cyclic lambda calculus [2] provides a suitable – and pos-
sibly necessary – starting point. Their work establishes a formal
connection between text-based and graph-based representations of
programs. The two representations are not one-to-one because of
a subtle mismatch between textual and graphical representations in
how they express sharing of values. It is not clear how a formal con-
nection between a text-based and a graph-based formulation can be
developed without addressing this issue.

To understand the role of sharing, we must first note that it is
essential for compact representation. For example, without sharing,
the butterfly circuit for computing the FFT would be exponentially
larger [6, Figure 32.5].

Next, we note that values are shared in a graph by having more
than one edge come out of one output port. In contrast, textual
representations use repeated occurrences of a variable to provide
the basic mechanism for sharing values. This means that an edge
corresponds to a variable use only if that variable is used more than
once. If there is only one outgoing edge, there may or may not be a
corresponding variable in the textual representation. For example,
both of the following C code fragments

int x = 4;

int y = 5; int y = 5;

print_int(x+y+y); print_int(4+y+y);

correspond to a single LabVIEW graph



While the first code fragment assigns a local variable name to the
constant 4, the second snippet uses the constant 4 directly. But
there is no corresponding distinction in a graph. We do not know
of a notion in textual syntax that corresponds exactly to the notion
of sharing provided by graphs. This mismatch is a result of the con-
ventions that govern what is accepted as a visual representation of
a program and what is accepted as a textual representation. Explor-
ing alternative possibilities for visual representations is beyond the
scope of this paper: We take what is in popular use as the starting
point. Similarly, we find the possibilities for exploring alternative
design options on the textual side relatively limited: Disallowing
variable declarations that are used only once, or requiring all sub-
terms to be explicitly named would be unnatural restrictions for the
programmer. They are also problematic from the technical point of
view. For example, these constraints are not preserved by standard
reasoning principles such as substitution. In practice, this would
mean that a natural rewrite from one textual representation to an-
other would lead to a program that does not satisfy these additional
constraints.

We postulate that this treatment of sharing in both representa-
tions is a necessary complication in any connection between a tex-
tual representation of a programming language with the richness
of the lambda calculus and a graphical representation of the same
language.

1.1 Contributions
The key contribution of this paper is the observation that Ariola

and Blom’s work on sharing in the lambda calculus can be used as
the formal basis to capture the abstract syntax of visual languages
in the form of graph-based syntax, and to map new concepts in
text-based programming languages to a graph-based setting. Using
a visual calculus that we call Uccello, we show how concepts from
visual languages map to a graph-based representation naturally, and
how to extend the original calculus with staging constructs typical
in textual multi-stage languages [22]. The concept of scope for the
subgraph representing a lambda abstraction suggests a natural vi-
sual abstract syntax for staging constructs. While strictly speaking
unnecessary, shading is used to distinguish levels, and makes the
abstract syntax more readable. The resulting calculus maintains a
one-to-one correspondence between visual programs and a multi-
stage extension of the text-based lambda-calculus. We then use this
formal connection to lift the semantics of multi-stage languages to
the graphical setting. Graph reductions have corresponding reduc-
tions at the term level, and similarly, term reductions have corre-
sponding reductions at the graph level.

In addition to exposing the complexity of maintaining a corre-
spondence between visual and textual representations of programs,
a technical byproduct of studying this particular extension is that
we develop a high-level account of sharing in a multi-stage calcu-
lus. Ariola and Blom’s infrastructure suggests that copying must be
performed in both Escape and Run reductions. Defining the graph-
based reductions for multi-stage constructs requires us to specify
precisely what must be copied. Our main technical result shows
that this graph-based semantics is correct.

Non-contributions: This paper does not develop a particular
visual language. The visual abstract syntax used in this paper is
minimal, and is designed for analytic clarity rather than for visual
programming. With respect to visual languages, our work is a study
into how some existing visual languages may be related to textual
languages. The focus of the work is addressing problems that arise
at the level of abstract syntax in both graphical and textual settings,
and how a basic obstacle in the connection between the two must
be overcome. We do not claim the expertise to argue for or against

visual or textual languages, and we do not. We only acknowledge
that both styles are in popular use, and formally connecting them
would be useful.

1.2 Organization of this Paper
The rest of the paper is organized as follows. Section 2 ex-

plains how the syntax for visual languages such as LabVIEW and
Simulink can be modeled using a variation of Ariola and Blom’s
cyclic lambda-graphs. Section 3 introduces the syntax for a graph-
ical calculus called Uccello. Section 4 defines textual representa-
tions for Uccello and shows that graphs and terms in a specific nor-
mal form are one-to-one. Section 5 describes a reduction semantics
for both terms and graphs, and Section 6 concludes. Proofs for the
results presented in this paper can be found in Ellner’s thesis [7].

2. LABVIEW AND LAMBDA-GRAPHS
The practical motivation for the calculus studied in the rest of

this paper is to extend popular languages such as LabVIEW or
Simulink with higher-order functional and staging features. The
main abstraction mechanism in LabVIEW is to declare functions;
Figure 1 (a) displays the syntax for defining a function with two
formal parameters in LabVIEW. Uccello abstracts away from many
of the details of LabVIEW and similar languages. We reduce the
complexity of the calculus by supporting only functions with one
argument and by making functions first-class values. We can then
use nested lambda abstractions to model functions with multiple
parameters, as illustrated in Figure 1 (b).

Graph (c) illustrates Ariola and Blom’s lambda-graph syntax [2]
for the same computation. In this representation, a lambda abstrac-
tion is drawn as a box describing the scope of the parameter bound
by the abstraction. An edge between two nodes in the graph mean
that one node corresponds to a subterm of the other in the textual
representation. If the direction of the relation is not obvious, an
arrow is drawn from the superterm to the subterm.1 Parameter
references are drawn as back-edges to a lambda abstraction. The
lambda-graph (c) may appear less closely related to (a) than the
Uccello graph (b). But graphs (b) and (c) are in fact dual graphs.
That is, by flipping the direction of edges in the lambda-graph (c) to
represent data-flow instead of subterm relationships, and by mak-
ing connection points in the graph explicit in the form of ports, we
get the Uccello program (b). Based on this observation, we take Ar-
iola and Blom’s lambda-graphs as the starting point for our formal
development.

3. SYNTAX OF UCCELLO
The core language features of Uccello are function abstraction

and function application as known from the λ-calculus, and the
staging constructs Bracket “〈〉”, Escape “∼”, and Run “!”. Brackets
are a quotation mechanism delaying the evaluation of an expres-
sion, while the Escape construct escapes the delaying effect of a
Bracket (and so must occur inside a Bracket). Run executes such
a delayed computation. The semantics and type theory for these
constructs has been studied extensively in recent years [22]. Be-
fore defining the syntax of Uccello formally, we give an informal
description of its visual syntax. Note that this paper focuses on
abstract syntax for both terms and graphs, while issues such as an
intuitive concrete syntax and parsing are part of future work (see
Section 6).

1In Ariola and Blom’s graphs, free variables and constants are
not considered nodes by themselves, hence the missing arrows on
edges leading to variables and constants in graph (c).
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(a) LabVIEW [16] (b) Uccello (this paper) (c) Ariola and Blom [2]

Figure 1: The syntax of Uccello as middle-ground between that of LabVIEW and lambda-graphs

3.1 Abstract Visual Syntax
Abstract syntax for textual languages captures higher-level fea-

tures of syntax than what we see in string-based representations of
programs. Especially in a core calculus, abstract syntax focuses on
the key constructs that are most interesting from the semantic point
of view. This allows us to separate the semantic treatment from the
issues of parsing and printing programs. Similarly, as this paper
does not address parsing and layout of visual programs, we use a
graph-based abstract syntax for Uccello.2

An Uccello program is a graph built from the following compo-
nents:

Nodes represent function abstraction, function application, the
staging constructs Brackets, Escape, and Run, and “black holes”.
Black holes are a concept borrowed from Ariola and Blom [2] and
represent unresolvable cyclic dependencies that can arise in textual
languages with recursion. 3 As shown in Figure 2, nodes are drawn
as boxes labeled λ,@,〈〉,∼, !, and • respectively. Each lambda
node contains a subgraph inside its box which represents the body
of the function, and the node’s box visually defines the scope of
the parameter bound by the lambda abstraction. Bracket and Es-
cape boxes, drawn using dotted lines, also contain subgraphs. The
subgraph of a Bracket node represents code being generated for a
future-stage computation, while the subgraph of an Escape node
represents a computation resulting in a piece of code that will be
integrated into a larger program at runtime.

Free variables, displayed as variable names, represent name ref-
erences that are not bound inside a given Uccello graph.

Ports mark the points in the graph to which edges can connect.
We distinguish between source ports (drawn as triangles) and target
ports (drawn as rectangles). As shown in Figure 2, a lambda node
provides two source ports: out carries the value of the lambda itself,
since functions are first-class values in Uccello. When the function
is applied to an argument, then bind carries the function’s parame-
ter, and the return port receives the result of evaluating the function
body, represented by the lambda node’s subgraph. Intuitively, the

2An implementation effort beyond the scope of this work shows
that the core language can be elegantly extended to allow tailoring
the visual notation to different domains [24]. While such syntactic
sugar is satisfying from the aesthetic point of view, it makes the
formal treatment harder to follow.
3In functional languages, recursion is typically expressed using a
letrec-construct. The textual program letrec x=x in x introduces a
cyclic dependency that cannot be simplified any further. Ariola and
Blom visualize such terms as black holes.

fun and arg ports of an application node receive the function to be
applied and its argument respectively, while out carries the value
resulting from the application. The out port of a Bracket node car-
ries the delayed computation represented by the node’s subgraph,
and return receives the value of that computation when it is exe-
cuted in a later stage. Conversely, the out port of an Escape node
carries a computation that escapes the surrounding Bracket’s delay-
ing effect, and return receives the value of that computation.

Edges connect nodes and are drawn as arrows:

x x

The source of any edge is either the source port of a node or a
free variable x. The target of any edge is the target port of some
node. The only exception to this is the root of the graph. Similar
to the root of an abstract syntax tree, it marks the entry-point for
evaluating the graph. It is drawn as a dangling edge without a target
port, instead marked with a dot.

For convenience, the examples in this paper assume that Uccello
is extended with integers, booleans, binary integer operators, and
conditionals.

E 3.1 (F C). Consider a recursive
definition of the power function in OCaml. The function computes
the number xn for two inputs x and n:

let rec power = fun x -> fun n ->

if iszero? n then 1

else x * (power x (n-1))

in power

In Uccello, this program is expressed as follows:

λ λ

@
if

iszero?

1
*

@

@

-
1
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Figure 2: Uccello nodes

Closely following the textual definition, we can visualize the power
function as two nested lambda nodes. Consequently, two cascaded
application nodes are necessary for power x (n-1). Note that the
recursive nature of the definition is represented visually by an edge
from the out-port of the outer lambda node back into the lambda
box.

E 3.2 (M- C). A staged version of the
power function can be expressed as follows in MetaOCaml [15]:4

let rec power’ = fun x -> fun n ->

if iszero? n then .<1>.

else .<.˜x * .˜(power’ x (n-1))>.

in power’

The same program is represented in Uccello as shown to the left of
Figure 3. As in the text-based program, in Uccello we only need
to add a few staging “annotations” (in the form of Bracket and
Escape boxes) to the unstaged version of the power function.

E 3.3 (G G). In MetaOCaml, the staged
power function can be used to generate efficient specialized power
functions by applying the staged version only to its second input
(the exponent). For instance, evaluating the term M1:

.! .<fun x -> .˜(power’ .<x>. 3)>.

yields the non-recursive function fun x -> x*x*x*1. Similarly,
evaluating the Uccello graph in the middle of Figure 3 yields the
specialized graph on the right side; the graph in the middle trig-
gers the specialization by providing the staged power function with
its second input parameter. Note the simplicity of the generated
graph. When applying this paradigm to circuit generation, con-
trolling the complexity of resulting circuits can be essential, and
staging constructs were specifically designed to give the program-
mer more control over the structure of generated programs.

3.2 Formal Syntax
The following syntactic sets are used for defining Uccello graphs:

Nodes u, v,w ∈ V
Free variables x, y ∈ X

Source port types o ∈ O ::= bind | out
Target port types i ∈ I ::= return | fun | arg | in

Source ports r, s ∈ S ::= v.o | x
Target ports t ∈ T ::= v.i

Edges e ∈ E ::= (s, t)

As a convention, we use regular capital letters to denote concrete
sets. For example, E ⊆ E stands for a concrete set of edges e. We
write P(V) to denote the power set of V .
4MetaOCaml adds staging constructs to OCaml. Dots are used to
disambiguate the concrete syntax: Brackets around an expression e
are written as .<e>., an Escaped expression e is written as .∼ e,
and ! e is written as .!e.

An Uccello graph is then defined as a tuple g = (V, L, E, S , r)
where V is a finite set of nodes, L : V → {λ,@, 〈〉,∼, ! , •} is
a labeling function that associates each node with a label, E is
a finite set of edges, S : {v ∈ V | L(v) ∈ {λ, 〈〉,∼}} → P(V)
is a scoping function that associates each lambda, Bracket, and
Escape node with a subgraph, and r is the root of the graph. When
it is clear from the context, we refer to the components V , L, E, S ,
and r of a graph g without making the binding g = (V, L, E, S , r)
explicit.

3.3 Auxiliary Definitions
For any Uccello graph g = (V, L, E, S , r) we define the following

auxiliary notions. The set of incoming edges of a node v ∈ V is
defined as pred(v) = {(s, v.i) ∈ E} for any edge targets i. Given a
set U ⊆ V , the set of top-level nodes in U that are not in the scope
of any other node in U is defined as toplevel(U) = {u ∈ U | ∀v ∈
U : u ∈ S (v) ⇒ v = u}. If v ∈ V has a scope, then the contents of
v are defined as contents(v) = S (v)\{v}. For a given node v ∈ V , if
there exists a node u ∈ V with v ∈ toplevel(contents(u)), then u is a
surrounding scope of v. Well-formedness conditions described in
the next section will ensure that such a surrounding scope is unique
when it exists. A path v{ w in g is an acyclic path from v ∈ V to
w ∈ V that only consists of edges in {(s, t) ∈ E | ∀u : s , u.bind}.
The negative condition excludes edges starting at a bind port.

3.4 Well-Formed Graphs
Whereas context-free grammars are generally sufficient to de-

scribe well-formed terms in textual programming languages, char-
acterizing well-formed graphs (in particular with respect to scop-
ing) is more subtle. The well-formedness conditions for the func-
tional features of Uccello are taken directly from Ariola and Blom.
Since Bracket and Escape nodes also have scopes, these conditions
extend naturally to the multi-stage features of Uccello. Note how-
ever that the restrictions associated with Bracket and Escape are
simpler since unlike lambdas these are not binding constructs.

The set G of well-formed graphs is the set of graphs that satisfy
the following conditions:

Connectivity - Edges may connect ports belonging only to nodes
in V with the correct port types. Valid inports and outports for each
node type are defined as follows:

L(v) inports(v) outports(v)
λ {return} {bind, out}
@ {fun, arg} {out}
〈〉,∼ {return} {out}

! {in} {out}
• ∅ {out}

We require that an edge (v.o,w.i) connecting nodes v and w is in E
only if v,w ∈ V and o ∈ outports(v) and i ∈ inports(w). Similarly,
an edge (x,w.i) originating from a free variable x is in E only if
w ∈ V and i ∈ inports(w).

We also restrict the in-degree of nodes: each target port (drawn
as a rectangle) in the graph must be the target of exactly one edge,
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Figure 3: Generating power functions in Uccello

while a source port (drawn as a triangle) can be unused, used by
one or shared by multiple edges. Thus we require for any node v in
the graph that pred(v) = {(s, v.i) | i ∈ inports(v)}.

Scoping - Intuitively, source ports in Uccello correspond to bound
names in textual languages, and scopes are drawn as boxes. Let
w,w1,w2 ∈ V and v, v1, v2 ∈ dom(S ) be distinct nodes. By con-
vention, all nodes that have a scope must be in their own scope
(v ∈ S (v)). The following three graph fragments illustrate three
kinds of scoping errors that can arise:

λλ λ
λ

A name used outside the scope where it is bound corresponds to an
edge from a bind or an out port that leaves a scope. We prohibit the
first case by requiring that (v.bind, t) ∈ pred(w) only if w ∈ S (v).
For the second case, we require that if w1 < S (v) and w2 ∈ S (v) and
(w2.out, t) ∈ pred(w1) then w2 = v. Partially overlapping scopes
correspond to overlapping lambda, Bracket, or Escape boxes. We
disallow this by requiring that S (v1)∩ S (v2) = ∅ or S (v1) ⊆ S (v2) \
{v2} or S (v2) ⊆ S (v1) \ {v1}.

Root Condition - The root r cannot be the port of a node nested
in the scope of another node. Therefore, the root must either be a
free variable (r ∈ X) or the out port of a node w that is visible at the
“top-level” of the graph (r = w.out and w ∈ toplevel(V)).

4. GRAPH-TERM CONNECTION
To develop the connection between Uccello graphs and their tex-

tual representations, this section begins by defining a term language
and a translation from graphs to terms. Not all terms can be gener-
ated using this translation, but rather only terms in a specific normal
form. A backward-translation from terms to graphs is then defined,
and it is shown that a term in normal form represents all terms that
map to the same graph. Finally, sets of graphs and normal forms
are shown to be in one-to-one correspondence.

4.1 From Graphs to Terms
Building on Ariola and Blom’s notion of cyclic lambda terms,

we use staged cyclic lambda terms to represent Uccello programs
textually, and define them as follows:

Terms M ∈ M ::= x | λx.M | M M | letrec d∗ in M
| ∼ M | 〈M〉 | ! M

Declarations d ∈ D ::= x = M

Conventions: By assumption, all recursion variables x in letrec
declarations are distinct, and the sets of bound and free variables

are disjoint. We write d∗ for a (possibly empty) sequence of le-
trec declarations d. Different permutations of the same sequence of
declarations d∗ are identified. Therefore, we often use the set nota-
tion D instead of d∗. Given two sequences of declarations D1 and
D2, we write D1,D2 for the concatenation of the two sequences.
We write M1[x := M2] for the result of substituting M2 for all free
occurrences of the variable x in M1, without capturing any free
variables in M2. We use ≡α to denote syntactic equality up to α-
renaming of both lambda-bound variables and recursion variables.

To translate a graph into a term, we define the term construc-
tion τ : G → M. Intuitively, this translation associates all nodes in
the graph with a unique variable name in the term language. These
variables are used to explicitly name each subterm of the result-
ing term. Lambda nodes are associated with an additional variable
name, which is used to name the formal parameter of the repre-
sented lambda abstraction.

The translation τ starts by computing the set of top-level nodes
in V (see Section 3.3), and creates a letrec declaration for each of
these nodes. For a node v with no subgraph, the letrec declaration
binds the variable xv to a term that combines the variables associ-
ated with the incoming edges to v. If v contains a subgraph, then τ
is applied recursively to the subgraph, and xv is bound to the term
that represents the subgraph. The following definition formalizes
this process:

D 4.1 (T ). Let g = (V, L, E, S , r) be
a well-formed graph in G. Term construction, τ, is then defined as:

τ(g) = mkrec(decl(V), name(r))

We construct letrec declarations for any set of nodes W ⊆ V:

decl(W) = {xv = term(v) | v ∈ toplevel(W)}

For every node v ∈ V, we define a unique name xv, and a second
distinct name yv if L(v) = λ. We then associate a name with each
edge source s in the graph as follows:

name(s) =


xv if s = v.out
yv if s = v.bind
x if s = x

To avoid the construction of empty letrec terms (letrec D in M)
where D is an empty sequence of declarations, we use the following
helper function:

mkrec(D,M) =
{

M if D = ∅
letrec D in M otherwise



We construct a term corresponding to each node v ∈ V:

L(v) = • pred(v) = ∅
term(v) = xv

L(v) = λ pred(v) = {(s, v.return)}
term(v) = λyv.mkrec(decl(contents(v)), name(s))

L(v) = @ pred(v) = {(s1, v.fun), (s2, v.arg)}
term(v) = name(s1) name(s2)

L(v) = 〈〉 pred(v) = {(s, v.return)}
term(v) = 〈mkrec(decl(contents(v)), name(s))〉

L(v) = ∼ pred(v) = {(s, v.return)}
term(v) = ∼ mkrec(decl(contents(v)), name(s))

L(v) = ! pred(v) = {(s, v.in)}
term(v) = ! name(s)

The constraint v ∈ toplevel(W) in the definition of decl ensures that
exactly one equation is generated for each node: if v < toplevel(W),
then v is in the scope of a different node w ∈ W, and an equation
for v is instead included in term(w).

E 4.1 (T C). The function τ translates
the graph

λ

@

〈〉

~

~

as follows: Let v1 be the lambda node, v2 the Bracket node, v3 and
v4 the top and bottom Escape nodes, and v5 the application node
in the graph g. We associate a variable name x j with each node
v j. In addition, the name y1 is associated with the parameter of the
lambda node v1. The result is:

letrec x1 = λy1.(letrec x2 = 〈letrec x3 = ∼ y1, x4 = ∼ y1, x5 = x3 x4

in x5〉

in x2)
in x1

All nodes are in the scope of v1 so it is the only “top-level” node in
g. We create a letrec declaration for v1, binding x1 to a term λy1.N
where N is the result of recursively translating the subgraph inside
v1. When translating the subgraph of the Bracket node v2, note that
this subgraph contains three top-level nodes (v3, v4, v5). Therefore,
the term for v2 contains three variable declarations (x3, x4, x5).

4.2 Terms in Normal Form
The term construction function τ only constructs terms in a very

specific form. For example, while the graph in the previous exam-
ple represents the computation λy1.〈∼ y1 ∼ y1〉, the example shows
that τ constructs a different term. Compared to λy1.〈∼ y1 ∼ y1〉,
every subterm in the constructed term is explicitly named using le-
trec. This explicit naming of subterms expresses the notion of value
sharing in Uccello graphs, where the output port of any node can be
the source of multiple edges. Such normal forms are essentially

the same as A-normal form [19], and can be defined as follows:

Terms N ∈ Mnorm ::= x | letrec q+ in x
Declarations q ∈ Dnorm ::= x = x | x = y z | x = λy.N

| x = 〈N〉 | x = ∼ N | x = ! y

where q+ is a non-empty sequence of declarations q. In normal
forms, nested terms are only allowed in function bodies and inside
Brackets or Escapes, i.e. only for language constructs that corre-
spond to nodes with subgraphs. All other expressions are explic-
itly named using letrec declarations, and pure “indirection” decla-
rations of the form x = y with x . y are not allowed.

L 4.1. 1)Mnorm ⊆ M. 2) If g ∈ G then τ(g) ∈ Mnorm.

As we will show, τ is an injection, i.e. not every term corresponds
to a distinct graph. However, we will show that every term has
a normal form associated with it, and that these normal forms are
one-to-one with graphs. To this end, we define the normaliza-
tion function ν : M → Mnorm in two steps: general terms are first
mapped to intermediate forms, which are then converted into nor-
mal forms in a second pass. We define the setMpre of intermediate
forms as follows:

Terms N′ ∈ Mpre ::= x | letrec q′∗ in x
Declarations q′ ∈ Dpre ::= x = y | x = y z | x = λy.N′

| x = 〈N′〉 | x = ∼ N′ | x = ! y

Note that this set consists of normal forms with fewer restrictions:
empty letrec terms and indirections of the form x = y are allowed.

D 4.2 (T N). Given the definitions of
the translations J Kpre : M → Mpre and J Knorm : Mpre → Mnorm in
Figure 4, we define the normalization function ν : M → Mnorm by
composition: ν = J Knorm ◦ J Kpre.

The translation J Kpre maps any term M to a letrec term, assigning a
fresh letrec variable to each subterm of M. We preserve the nesting
of lambda abstractions, Bracket and Escapes by applying J Kpre to
subterms recursively. 5 Once every subterm has a letrec variable as-
sociated with it, and all lambda, Bracket, and Escape subterms are
normalized recursively, the function J Knorm eliminates empty letrec
terms and letrec indirections of the form x = y (where x . y) us-
ing substitution. The clause N′ < Mnorm in the definition of J Knorm

ensures that normalization terminates: without this restriction we
could apply J Knorm to a fully normalized term without making any
progress.

E 4.2 (T N). Given the following terms:

M1 ≡ λx.〈∼ x ∼ x〉
M2 ≡ letrec y = λx.〈∼ x ∼ x〉 in y
M3 ≡ λx.letrec y = 〈∼ x ∼ x〉 in y

Then ν(M1), ν(M2), and ν(M3) all yield a term alpha-equivalent to:

letrec y1 = λx.(letrec y2 = 〈letrec y3 = ∼ x, y4 = ∼ x, y5 = y3 y4

in y5〉

in y2)
in y1

Note that the basic structure of the original terms (lambda term
with Bracket body and application of two escaped parameter ref-
erences inside) is preserved by normalization, but every subterm is
now named explicitly.

L 4.2. If M ∈ M then ν(M) ∈ Mnorm.
5This is similar to the translation τ from graphs to terms presented
above, where lambda, Bracket and Escape nodes are translated to
terms recursively.



JxKpre = letrec in x
JMKpre = N′ x1 fresh

Jλx.MKpre = (letrec x1 = λx.N′ in x1)

JM1Kpre = letrec Q1 in x1 JM2Kpre = letrec Q2 in x2 x3 fresh
JM1 M2Kpre = (letrec Q1,Q2, x3 = x1 x2 in x3)

JMKpre = letrec Q in y
−−−−−−−−−−−−−−−−−−−−−−−→
JM jKpre = letrec Q j in y j

Jletrec
−−−−−−→
x j = M j in MKpre = (letrec Q,

−−−−−−−−−→
Q j, x j = y j in y)

JMKpre = N′ x1 fresh
J〈M〉Kpre = (letrec x1 = 〈N′〉 in x1)

JMKpre = N′ x1 fresh
J∼ MKpre = (letrec x1 = ∼ N′ in x1)

JMKpre = letrec Q in y x1 fresh
J! MKpre = (letrec Q, x1 = ! y in x1)

JNKnorm = N Jletrec in xKnorm = x

N′ < Mnorm JN′Knorm = N1 Jletrec y = λz.N1,Q in xKnorm = N2

Jletrec y = λz.N′,Q in xKnorm = N2

N′ < Mnorm JN′Knorm = N1 Jletrec y = 〈N1〉,Q in xKnorm = N2

Jletrec y = 〈N′〉,Q in xKnorm = N2

N′ < Mnorm JN′Knorm = N1 Jletrec y = ∼ N1,Q in xKnorm = N2

Jletrec y = ∼ N′,Q in xKnorm = N2

J(letrec Q in x)[y := z]Knorm = N y . z
Jletrec y = z,Q in xKnorm = N

Figure 4: The translation functions J Kpre : M→ Mpre and J Knorm : Mpre → Mnorm

v fresh
γpre(x) = ({v}, {v 7→ •}, {(x, v.in)}, ∅, v.out)

γpre(M) = (V, L, E, S , r) v fresh
γpre(λx.M) = (V ] {v}, L ] {v 7→ λ}, E[x := v.bind] ] {(r, v.return)}, S ] {v 7→ V ] {v}}, v.out)

γpre(M1) = (V1, L1, E1, S 1, r1) γpre(M2) = (V2, L2, E2, S 2, r2) v fresh
γpre(M1 M2) = (V1 ] V2 ] {v}, L1 ] L2 ] {v 7→ @}, E1 ] E2 ] {(r1, v.fun), (r2, v.arg)}, S 1 ] S 2, v.out)

−−−−−−−−−−−−−−−−−−−−−−−−−−→
γpre(M j) = (V j, L j, E j, S j, r j) γpre(M) = (V, L, E, S , r) v fresh

γpre(letrec
−−−−−−→
x j = M j in M) = (V

−−→
]V j, L

−−→
]L j, (E

−−−→
]E j)[

−−−−−−→x j := r j], S
−−→
]S j, r)

γpre(M) = (V, L, E, S , r) v fresh
γpre(〈M〉) = (V ] {v}, L ] {v 7→ 〈〉}, E ] {(r, v.return)}, S ] {v 7→ V ] {v}}, v.out)

γpre(M) = (V, L, E, S , r) v fresh
γpre(∼ M) = (V ] {v}, L ] {v 7→∼}, E ] {(r, v.return)}, S ] {v 7→ V ] {v}}, v.out)

γpre(M) = (V, L, E, S , r) v fresh
γpre(! M) = (V ] {v}, L ] {v 7→!}, E ] {(r, v.in)}, S , v.out)

∀v ∈ V : L(v) = • ⇒ pred(v) = ∅
σ(V, L, E, S , r) = (V, L, E, S , r)

σ(V ] {v}, L ] {v 7→ •}, E, S , r) = g
σ(V ] {v}, L ] {v 7→ •}, E ] {(v.out, v.in)}, S , r) = g

s , v.out (v.out, t) < E σ(V, L, E ] {
−−−−→
(s, t j)}, S \v, r[v.out := s]) = g

σ(V ] {v}, L ] {v 7→ •}, E ] {(s, v.in)} ] {
−−−−−−−→
(v.out, t j)}, S , r) = g

Figure 5: The translation functions γpre : M→ Gpre and σ : Gpre → G



4.3 From Terms to Graphs
To simplify the definition of a translation from terms to graphs,

we introduce a notion analogous to Ariola and Blom’s scoped pre-
graphs. The set Gpre of intermediate graphs consists of all graphs
for which a well-formedness condition is relaxed: nodes with label
• may have 0 or 1 incoming edge. Formally, whenever L(v) = •
then pred(v) = ∅ or pred(v) = {(s, v.in)}. If such a node has one
predecessor, we call it an indirection node. Since free variables
are not represented as nodes in Uccello, the idea is to associate
an indirection node with each variable occurrence in the translated
lambda-term. This simplifies connecting subgraphs constructed
during the translation, as it provides “hooks” for connecting bound
variable occurrences in the graph to their binders. We will also use
indirection nodes to model intermediate states in the graph reduc-
tions presented in Section 5.2.

We translate terms to Uccello graphs in two steps: A function
γpre maps terms to intermediate graphs, and a simplification func-
tion σ maps intermediate graphs to proper Uccello graphs. Before
defining these translations formally, we give visual descriptions of
γpre and σ.

x

@

γpre(M1)

γpre(M2)

γpre(M1 M2) =γpre(x) = γpre(λx.M) =

γpre(M)

λ

x

x

A free variable x is mapped by γpre to an indirection node with x
connected to its in port. A lambda term λx.M maps to a lambda
node v, where the pre-graph for M becomes the subgraph of v and
all free variables x in the subgraph are replaced by edges originating
at the lambda node’s bind port. An application M1 M2 translates to
an application node v where the roots of the pre-graphs for M1 and
M2 are connected to the fun and arg ports of v.

γpre(M)
x1

xn

γpre(M1)
x1

xn

γpre(Mn)
x1

xn

〈〉

γpre(M)

γpre(!M) =

γpre(M) !

γpre(〈M〉) =γpre(letrec x1=M1..xn=Mn in M) =

Given a letrec term (letrec x1 = M1, .., xn = Mn in M), γpre trans-
lates the terms M1 through Mn and M individually. The root of the
resulting pre-graph is the root of γpre(M). Any edge that starts with
one of the free variables x j is replaced by an edge from the root of
the corresponding graph γpre(M j). The cases for 〈M〉 and ∼ M are
treated similarly to the case for λx.M, and the case for !M is treated
similarly to the case for application.

Simplification eliminates indirection nodes from the pre-graph
using the following local graph transformations:

x
x
x
x

Any indirection node with a self-loop (i.e. there is an edge from its
out port to its in port) is replaced by a black hole. If there is an edge

from a free variable x or from a different node’s port s to an indi-
rection node v, then the indirection node is “skipped” by replacing
all edges originating at v to edges originating at x or s. Note that
the second and third cases are different since free variables cannot
be shared in Uccello.

To define these translations formally, we use the following nota-
tion: E[s1 := s2] denotes the result of substituting any edge in E
that originates from s1 with an edge that starts at s2:

E[s1 := s2] = {(s, t) ∈ E | s , s1} ∪ {(s2, t) | (s1, t) ∈ E}

S \u stands for the result of removing node u from any scope in the
graph: (S \u)(v) = S (v)\{u}. The substitution r[s1 := s2] results in
s2 if r = s1 and in r otherwise.

D 4.3 (G ). Given the definitions of
the translations γpre : M → Gpre and σ : Gpre → G in Figure 5,
we define the graph construction γ : M → G by composition:
γ = σ ◦ γpre.

L 4.3. For any M ∈ M, γ(M) is defined and is a unique,
well-formed graph.

Using the mappings ν, γ, and τ, we can now give a precise defi-
nition of the connections between terms, graphs, and normal forms.
Two terms map to the same graph if and only if they have the same
normal form. Thus, normal forms represent equivalence classes of
terms that map to the same graph by γ. The function ν gives an al-
gorithm for computing such representative terms. Given two well-
formed graphs g, h ∈ G, we write g = h if g and h are isomorphic
graphs with identical node labels.

L 4.4 (S  N). If M ∈ M. then
γ(M) = γ(ν(M)).

L 4.5 (R   ). If N ∈ Mnorm then
N ≡α τ(γ(N)).

L 4.6 (C  N). Let M1,M2 ∈ M.
If γ(M1) = γ(M2) then ν(M1) ≡alpha ν(M2).

E 4.3. In Example 4.2 we showed that the three terms
M1, M2, and M3 have the same normal form. By Lemma 4.4, they
translate to the same graph. This graph is shown in Example 4.1.
By Lemma 4.6, the terms M1, M2, and M3 must have the same
normal form since they map to the same graph by γ.

T 4.1 (C  G S). Well-formed
graphs and normal forms are one-to-one:

1. If M ∈ M then ν(M) ≡alpha τ(γ(M)).

2. If g ∈ G then g = γ(τ(g)).

5. SEMANTICS FOR UCCELLO
This section presents a reduction semantics for staged cyclic lambda

terms and graphs, and establishes the connection between the two.

5.1 Staged Terms
Ariola and Blom study a call-by-need reduction semantics for

the lambda-calculus extended with a letrec construct. In order to
extend this semantics to support staging constructs, we use the no-
tion of expression families proposed for the reduction semantics of
call-by-name λ-U [21]. In the context of λ-U, expression families
restrict beta-redexes to terms that are valid at level 0. Intuitively,
given a staged term M, the level of a subterm of M is the number
of Brackets minus the number of Escapes surrounding the subterm.
A term M is valid at level n if all Escapes inside M occur at a level
greater than n.



E 5.1. Consider the lambda term M ≡ 〈λx. ∼ ( f 〈x〉)〉.
The variable f occurs at level 0, while the use of x occurs at level
1. Since the Escape occurs at level 1, M is valid at level 0.

The calculus λ-U does not provide a letrec construct to directly
express sharing in lambda terms. Therefore, we extend the notion
of expression families to include the letrec construct as follows:

M0 ∈ M0 ::= x | λx.M0 | M0 M0 | letrec D0 in M0

| 〈M1〉 | ! M0

Mn+ ∈ Mn+ ::= x | λx.Mn+ | Mn+Mn+ | letrec Dn+ in Mn+

| 〈Mn++〉 | ∼ Mn | ! Mn+

Dn ∈ Dn ::=
−−−−−−−→
x j = Mn

j

In order to combine Ariola and Blom’s reduction semantics for
cyclic lambda-terms with the reduction semantics for λ-U, we need
to account for the difference in beta-reduction between the two for-
malisms: While λ-U is based on a standard notion of substitution,
Ariola and Blom’s beta-rule uses the letrec construct to express a
binding from the applied function’s parameter to the argument of
the application, without immediately substituting the argument for
the function’s parameter. Instead, substitution is performed on de-
mand by a separate reduction rule. Furthermore, substitution in λ-U
is restricted (implicitly by the β rule) to M0-terms. We make this
restriction explicit by defining which contexts are valid at different
levels:

C ∈ C ::= � | λx.C | C M | M C | letrec D in C
| letrec x = C,D in M | 〈C〉 | ∼ C | ! C

Cn ∈ Cn = {C ∈ C | C[x] ∈ Mn}

We write C[M] for the result of replacing the hole � in C with M,
potentially capturing free variables in M in the process. Further-
more, we adopt the notation D ⊥ M from [2] to denote that the set
of variables occurring as the left-hand side of a letrec declaration
in D does not intersect with the set of free variables in M.

Using these families of terms and contexts, we extend Ariola
and Blom’s reductions as shown in Figure 6. We write → for the
compatible extension of the rules in R, and we write →∗ for the
reflexive and transitive closure of→. The idea behind the sub rules
is to perform substitution on demand after a function application
has been performed. In this sense, the sub rules and the β◦ rule
together mimic the behavior of beta-reduction in λ-U.

5.2 Staged Graphs
To define a reduction semantics for Uccello, we define similar

notions as used in the previous section: the level of a node is the
number of surrounding Bracket nodes minus the surrounding Es-
cape nodes, and a set of nodes U is valid at level n if all Escape
nodes in U occur at a level greater than n.

D 5.1 (N ). Given a graph g = (V, L, E, S , r) ∈
G, a node v ∈ V has level n if there is a derivation for the judgment
level(v) = n defined as follows:

v ∈ toplevel(V)
level(v) = 0

surround(v) = u L(u) = λ level(u) = n
level(v) = n

surround(v) = u L(u) = 〈〉 level(u) = n
level(v) = n + 1

surround(v) = u L(u) = ∼ level(u) = n + 1
level(v) = n

We write level(v1) < level(v2) as a shorthand for level(v1) = n1 ∧

level(v2) = n2 ∧ n1 < n2. A set U ⊆ V is valid at level n if there is a
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@s2

l
s1

1⊕v

2⊕w

s2

s1

1⊕v

2⊕w

in out

in

g’

2b

s(g’)

l

1⊕w
l

1⊕w
l

1⊕w

s2

s1

@
v

g

l

w

out

fun

out

fun
arg

1

g’ := …

bind return

s0
arg

Figure 7: Beta-reduction for Uccello graphs

derivation for the judgment `n U defined as follows:

`n v ∀v ∈ toplevel(U)
`n U

L(v) ∈ {@, •, !}
`n v

L(v) = λ `n contents(v)
`n v

L(v) = 〈〉 `n+1 contents(v)
`n v

L(v) = ∼ `n contents(v)
`n+1 v

Context families and node levels are closely related. In the term
reductions presented in the previous section, context families re-
strict the terms in which a variable may be substituted. In the
graph reductions described in this section, determining whether
two nodes constitute a redex will require comparing the levels of
the two nodes. Furthermore, we can show that the notion of a set of
nodes valid at a given level corresponds directly to the restriction
imposed on terms by expression families.

L 5.1 (P   ).

1. Whenever Mn ∈ Mn and g = γ(Mn), then `n V.

2. Whenever g ∈ G with `n V, then τ(g) ∈ Mn.

When evaluating a graph g = (V, L, E, S , r), we require that g
be well-formed (see Section 3.4) and that `0 V . This ensures that
level(v) is defined for all v ∈ V .

L 5.2 (N   - ). For any graph
g ∈ G with `0 V and v ∈ V, we have level(v) = n for some n.

We now define three reduction rules that can be applied to Uccello
graphs. Each of these rules is applied in two steps: 1) If neces-
sary, we copy nodes to expose the redex in the graph. This step
corresponds to using the sub rules or the merge, li f t, and gc rules
(see Figure 6) on the original term. 2) We contract the redex by re-
moving nodes and by redirecting edges in the graph. This step cor-
responds to performing the actual β◦-, esc-, or run-reduction on a
term. In the following, we write j⊕V for the set { j⊕v | v ∈ V}where
j ∈ {1, 2}. Furthermore, we write U⊕V for the set (1⊕U)∪ (2⊕V).

Beta A β◦-redex in an Uccello graph consists of an application
node v that has a lambda node w as its first predecessor. The con-
traction of the redex is performed in two steps (see Figure 7):



letrec x = M0,Dn in C0[x] →sub letrec x = M0,Dn in C0[M0]
letrec x = C0[y], y = M0,Dn in Mn →sub letrec x = C0[M0], y = M0,Dn in Mn

(λx.M0
1) M0

2 →β◦ letrec x = M0
2 in M0

1
∼ 〈M0〉 →esc M0

! 〈M0〉 →run M0

letrec Dn
1 in (letrec Dn

2 in Mn) →merge letrec Dn
1,D

n
2 in Mn

letrec x = (letrec Dn
1 in Mn

1),Dn
2 in Mn

2 →merge letrec x = Mn
1 ,D

n
1,D

n
2 in Mn

2

(letrec Dn in Mn
1) Mn

2 →li f t letrec Dn in (Mn
1 Mn

2)
Mn

1 (letrec Dn in Mn
2) →li f t letrec Dn in (Mn

1 Mn
2)

letrec Dn in 〈Mn〉 →li f t 〈letrec Dn in Mn〉

letrec in Mn →gc Mn

letrec Dn
1,D

n
2 in Mn →gc letrec Dn

1 in Mn

if Dn
2 , ∅ ∧ Dn

2 ⊥ letrec Dn
1 in Mn

Figure 6: Term Reduction Rules
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Figure 8: Escape-reduction for Uccello graphs

1. Check that the edge (w.out, v.fun) is the only edge originating
at w.out, and that the application node v is outside the scope
of w. If any of these conditions do not hold, copy the lambda
node in a way that ensures that the conditions hold for the
copy of w. The copy of w is called 2 ⊕ w, and the original of
v is called 1 ⊕ v. Place 2 ⊕ w and its scope in the same scope
as 1 ⊕ v.

2. Convert 1 ⊕ v and 2 ⊕ w into indirection nodes, which are
then removed by the graph simplification function σ (defined
in Section 4.3). Redirect edges so that after simplification,
edges that originated at the applied function’s parameter (2⊕
w.bind) now start at the root s2 of the function’s argument,
and edges that originated at the application node’s output (1⊕
v.out) now start at the root s1 of the function’s body.

D 5.2 (G B). Given a graph g ∈ G with `0 V
and v,w ∈ V such that L(v) = @, L(w) = λ, (w.out, v.fun) ∈ E,
`0 contents(w), `0 {u | u ∈ S (surround(v))∧u{ v}, and level(w) ≤
level(v) Then the contraction of the β◦-redex v, written g →β◦ h, is
defined as follows:

1. We define a transitional graph g′ = (V ′, L′, E′, S ′, r′) using
the functions f1 and f2 that map edge sources in E to edge

sources in E′:

f1(x) = x
f1(u.o) = 1 ⊕ u.o

f2(x) = x

f2(u.bind) =

{
2 ⊕ u.bind if u ∈ S (w)
1 ⊕ u.bind otherwise

f2(u.out) =

{
2 ⊕ u.out if u ∈ S (w)\{w}
1 ⊕ u.out otherwise

Let s0 be the origin of the unique edge in E with target v.arg.
The components of g′ are constructed as follows:

V ′ =

 (V\S (w)) ⊕ S (w)
if |{(w.out, t) ∈ E}| = 1
and v < S (w)

V ⊕ S (w) otherwise

E′ = {( f1(s), 1 ⊕ u.i) | 1 ⊕ u ∈ V ′ ∧ (s, u.i) ∈ E ∧ u , v}
∪ {(2 ⊕ w.out, 1 ⊕ v.fun), ( f1(s0), 1 ⊕ v.arg)}
∪ {( f2(s), 2 ⊕ u.i) | 2 ⊕ u ∈ V ′ ∧ (s, u.i) ∈ E}

L′( j ⊕ u) = L(u) for j ∈ {1, 2}

S ′(2 ⊕ u) = 2 ⊕ S (u)
S ′(1 ⊕ u) = 1 ⊕ S (u) if v < S (u)
S ′(1 ⊕ u) = S (u) ⊕ S (w) if v ∈ S (u)

r′ = f1(r)

2. Let s1 and s2 be the origins of the unique edges in E′ with
targets 2⊕w.return and 1⊕v.arg respectively. We modify E′,
L′, and S ′ as follows:

(2 ⊕ w.out, 1 ⊕ v.fun) := (s1, 1 ⊕ v.in)
(s1, 2 ⊕ w.return) := (s2, 2 ⊕ w.in)

(s2, 1 ⊕ v.arg) := removed
L′(1 ⊕ v) := •

L′(2 ⊕ w) := •

S ′(2 ⊕ w) := undefined

Furthermore, any occurrence of port 2 ⊕ w.bind in E′ is re-
placed by 2⊕w.out. The resulting graph h of the β◦-reduction
is then the simplification σ(g′).

Escape An esc-redex consists of an Escape node v that has a
Bracket node w as its predecessor. We contract the redex in two
steps (see Figure 8):
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Figure 9: Run-reduction for Uccello graphs

1. Check that the edge (w.out, v.return) is the only edge orig-
inating at w.out, and that the Escape node v is outside the
scope of w. If any of these conditions do not hold, copy the
Bracket node in a way that ensures that the conditions hold
for the copy of w. The copy of w is called 2 ⊕ w, and the
original of v is called 1⊕ v. Place 2⊕w (and its scope) in the
scope of 1 ⊕ v.

2. Convert 1⊕v and 2⊕w into indirection nodes, which are then
removed by the function σ. Redirect edges so that after sim-
plification, edges that originated at the Escape node’s output
port (1 ⊕ v.out) now start at the root s1 of the Bracket node’s
body.

D 5.3 (G E). Given a graph g ∈ G with `0

V and v,w ∈ V such that L(v) = ∼, L(w) = 〈〉, (w.out, v.return) ∈ E,
`0 contents(w), and level(w) < level(v). Then the contraction of the
esc-redex v, written g→esc h, is defined as follows:

1. We define a transitional graph g′ = (V ′, L′, E′, S ′, r′) where
V ′,L′,S ′, and r′ are constructed as in Definition 5.2. 6 The
set of edges E′ is constructed as follows:

E′ = {( f1(s), 1 ⊕ u.i) | 1 ⊕ u ∈ V ′ ∧ (s, u.i) ∈ E ∧ u , v}
∪ {(2 ⊕ w.out, 1 ⊕ v.return)}
∪ {( f2(s), 2 ⊕ u.i) | 2 ⊕ u ∈ V ′ ∧ (s, u.i) ∈ E}

2. Let s1 be the origin of the unique edge in E′ with target 2 ⊕
w.return. We modify E′, L′, and S ′ as follows:

(2 ⊕ w.out, 1 ⊕ v.return) := (2 ⊕ w.out, 1 ⊕ v.in)
(s1, 2 ⊕ w.return) := (s1, 2 ⊕ w.in)

L′(1 ⊕ v) := •

L′(2 ⊕ w) := •

S ′(1 ⊕ v) := undefined
S ′(2 ⊕ w) := undefined

The resulting graph h of the esc-reduction is σ(g′).

Run A run-redex consists of a Run node v that has a Bracket
node w as its predecessor. The contraction of the redex is performed
in two steps (see Figure 9):

6In Definition 5.2, v and w refer to the application- and lambda
nodes of a β◦-redex. Here, v stands for the Escape node, and w
stands for the Bracket node of the esc-redex.

1. Check that the edge (w.out, v.in) is the only edge originating
at w.out, and that the Run node v is outside the scope of w. If
any of these conditions do not hold, copy the Bracket node in
a way that ensures that the conditions hold for the copy of w.
The copy of w is called 2 ⊕ w, and the original of v is called
1 ⊕ v. Place 2 ⊕ w (and its scope) in the same scope as 1 ⊕ v.

2. Convert 1⊕v and 2⊕w into indirection nodes, which are then
removed by σ. Redirect edges so that after simplification,
edges that originated at the Run node’s output port (1⊕v.out)
now start at the root s1 of the Bracket node’s body.

D 5.4 (G R). Given a graph g ∈ G with `0 V
and v,w ∈ V such that L(v) = !, L(w) = 〈〉, (w.out, v.in) ∈ E,
`0 contents(w), and level(w) ≤ level(v). Then the contraction of the
run-redex v, written g→run h, is defined as follows:

1. We define a transitional graph g′ = (V ′, L′, E′, S ′, r′) where
V ′,L′,S ′, and r′ are constructed as in Definition 5.2. The set
of edges E′ is constructed as follows:

E′ = {( f1(s), 1 ⊕ u.i) | 1 ⊕ u ∈ V ′ ∧ (s, u.i) ∈ E ∧ u , v}
∪ {(2 ⊕ w.out, 1 ⊕ v.in)}
∪ {( f2(s), 2 ⊕ u.i) | 2 ⊕ u ∈ V ′ ∧ (s, u.i) ∈ E}

2. Let s1 be the origin of the unique edge in E′ with target 2 ⊕
w.return. We modify E′, L′, and S ′ as follows:

(s1, 2 ⊕ w.return) := (s1, 2 ⊕ w.in)
L′(1 ⊕ v) := •

L′(2 ⊕ w) := •

S ′(2 ⊕ w) := undefined

The resulting graph h of the run-reduction is σ(g′).

5.3 Correctness
Any reduction step on a graph g = γ(M) corresponds to a se-

quence of reduction steps on the term M to expose a redex, fol-
lowed by a reduction step to contract the exposed redex. Con-
versely, the contraction of any redex in a term M corresponds to
the contraction of a redex in the graph γ(M).

T 5.1 (C  G R). Let g ∈
G, δ ∈ {β◦, esc, run}, M0

1 ∈ M
0 and g = γ(M0

1).

1. Graph reductions preserve well-formedness:

g→δ h implies h ∈ G

2. Graph reductions are sound:

g→δ h implies M0
1 →

∗ M0
2 →δ M0

3

for some M0
2 ,M

0
3 ∈ M

0 such that h = γ(M0
3)

3. Graph reductions are complete:

M0
1 →δ M0

2 implies g→δ h for some h ∈ G

such that h = γ(M0
2)

6. CONCLUSIONS AND FUTURE WORK
With the goal of better understanding how to extend visual lan-

guages with programming constructs and techniques available for
modern textual languages, this paper studies and extends a graph-
text connection first developed by Ariola and Blom. While the mo-
tivation for Ariola and Blom’s work was the graph-based compila-
tion of functional languages, only minor changes to their represen-
tations and visual rendering are needed to make their results a suit-
able basis for formalizing the abstract syntax of visual languages.



We extended this formalism with staging constructs, thereby de-
veloping a formal model for generative programming in the visual
setting.

In this paper we only presented an abstract syntax for the Uc-
cello core calculus. We are already working to develop more user-
friendly concrete syntax with features such as multi-parameter func-
tions or color shading to better visualize stage distinctions. This
step will raise issues related to parsing visual languages, where we
expect to be able to build on detailed previous work on layered [18]
and reserved graph grammars [25].

Visual and textual languages are often suitable for different tasks.
It will be interesting to see if the framework developed here can
be used as a basis for Erwig and Meyer’s proposal for integrating
visual and textual programming [11].

Another important direction will be lifting both type checking
and type inference algorithms defined on textual representations to
the graphical setting. Given the interactive manner in which visual
programs are developed, it will also be important to see whether
type checking and the presented translations can be incremental-
ized so that errors can be detected locally and without the need for
full-program analysis.
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