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Asymptotic relative efficiency of two estimators

For statistical estimation problems, it is typical and even desirable that several reasonable
estimators can arise for consideration. For example, the mean and median parameters of
a symmetric distribution coincide, and so the sample mean and the sample median become
competing estimators of the point of symmetry. Which is preferred? By what criteria shall
we make a choice?

One natural and time-honored approach is simply to compare the sample sizes at which
two competing estimators meet a given standard of performance. This depends upon the
chosen measure of performance and upon the particular population distribution F .

To make the discussion of sample mean versus sample median more precise, consider a
distribution function F with density function f symmetric about an unknown point θ to
be estimated. For {X1, . . . , Xn} a sample from F , put Xn = n−1

∑n
i=1 Xi and Medn =

median{X1, . . . , Xn}. Each of Xn and Medn is a consistent estimator of θ in the sense
of convergence in probability to θ as the sample size n → ∞. To choose between these
estimators we need to use further information about their performance. In this regard, one
key aspect is efficiency, which answers: How spread out about θ is the sampling distribution
of the estimator? The smaller the variance in its sampling distribution, the more “efficient”
is that estimator.

Here we consider “large-sample” sampling distributions. For Xn, the classical central
limit theorem tells us: if F has finite variance σ2

F , then the sampling distribution of Xn is
approximately N(θ, σ2

F/n), i.e., Normal with mean θ and variance σ2
F/n. For Medn, a similar
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classical result [11] tells us: if the density f is continuous and positive at θ, then the sampling
distribution of Medn is approximately N(θ, 1/4[f(θ)]2n). On this basis, we consider Xn and
Medn to perform equivalently at respective sample sizes n1 and n2 if

σ2
F

n1
=

1

4[f(θ)]2n2
.

Keeping in mind that these sampling distributions are only approximations assuming that
n1 and n2 are “large”, we define the asymptotic relative efficiency (ARE) of Med to X as
the large-sample limit of the ratio n1/n2, i.e.,

ARE(Med, X, F ) = 4[f(θ)]2σ2
F . (1)

Definition in the general case

For any parameter η of a distribution F , and for estimators η̂(1) and η̂(2) approximately
N(η, V1(F )/n) and N(η, V2(F )/n), respectively, the ARE of η̂(2) to η̂(1) is given by

ARE(η̂(2), η̂(1), F ) =
V1(F )

V2(F )
. (2)

Interpretation. If η̂(2) is used with a sample of size n, the number of observations needed for
η̂(1) to perform equivalently is ARE(η̂(2), η̂(1), F )× n.

Extension to the case of multidimensional parameter. For a parameter η taking values in R
k,

and two estimators η̂
(i) which are k-variate Normal with mean η and nonsingular covariance

matrices Σi(F )/n, i = 1, 2, we use (see [11])

ARE(η̂(2), η̂(1), F ) =

(
|Σ1(F )|

|Σ2(F )|

)1/k

, (3)

the ratio of generalized variances (determinants of the covariance matrices), raised to the
power 1/k.

Connection with the maximum likelihood estimator

Let F have density f(x | η) parameterized by η ∈ R and satisfying some differentiability
conditions with respect to η. Suppose also that I(F ) = Eη{[

∂
∂η

log f(x | η)]2} (the Fisher

information) is positive and finite. Then [5] it follows that (i) the maximum likelihood
estimator η̂(ML) of η is approximately N(η, 1/I(F )n), and (ii) for a wide class of estimators
η̂ that are approximately N(η, V (η̂, F )/n), a lower bound to V (η̂, F ) is 1/I(F ). In this
situation, (2) yields

ARE(η̂, η̂(ML), F ) =
1

I(F )V (η̂, F )
≤ 1, (4)

making η̂(ML) (asymptotically) the most efficient among the given class of estimators η̂.
We note, however, as will be discussed later, that (4) does not necessarily make η̂(ML) the
estimator of choice, when certain other considerations are taken into account.
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Detailed discussion of estimation of point of symmetry

Let us now discuss in detail the example treated above, with F a distribution with density
f symmetric about an unknown point θ and {X1, . . . , Xn} a sample from F . For estimation
of θ, we will consider not only Xn and Medn but also a third important estimator.

Mean versus median

Let us now formally compare Xn and Medn and see how the ARE differs with choice of F .
Using (1) with F = N(θ, σ2

F ), it is seen that

ARE(Med, X, N(θ, σ2
F )) = 2/π = 0.64.

Thus, for sampling from a Normal distribution, the sample mean performs as efficiently as
the sample median using only 64% as many observations. (Since θ and σF are location
and scale parameters of F , and since the estimators Xn and Medn are location and scale
equivariant, their ARE does not depend upon these parameters.) The superiority of Xn here
is no surprise since it is the MLE of θ in the model N(θ, σ2

F ).
As noted above, asymptotic relative efficiencies pertain to large sample comparisons and

need not reliably indicate small sample performance. In particular, for F Normal, the exact
relative efficiency of Med to X for sample size n = 5 is a very high 95%, although this
decreases quickly, to 80% for n = 10, to 70% for n = 20, and to 64% in the limit.

For sampling from a double exponential (or Laplace) distribution with density f(x) =
λe−λ|x−θ|/2, −∞ < x < ∞ (and thus variance 2/λ2), the above result favoring Xn over
Medn is reversed: (1) yields

ARE(Med, X, Laplace) = 2,

so that the sample mean requires 200% as many observations to perform equivalently to the
sample median. Again, this is no surprise because for this model the MLE of θ is Medn.

A compromise: the Hodges-Lehmann location estimator

We see from the above that the ARE depends dramatically upon the shape of the density
f and thus must be used cautiously as a benchmark. For Normal versus Laplace, Xn is
either greatly superior or greatly inferior to Medn. This is a rather unsatisfactory situation,
since in practice we might not be quite sure whether F is Normal or Laplace or some other
type. A very interesting solution to this dilemma is given by an estimator that has excellent
overall performance, the so-called Hodges-Lehmann location estimator [2]:

HLn = Median

{
Xi + Xj

2

}
,

the median of all pairwise averages of the sample observations. (Some authors include the
cases i = j, some not.) We have [3] that HLn is asymptotically N(θ, 1/12[

∫
f2(x)dx]2n),

3



which yields that ARE(HL, X, N(θ, σ2
F )) = 3/π = 0.955 and ARE(HL, X, Laplace) = 1.5.

Also, for the Logistic distribution with density f(x) = σ−1e(x−θ)/σ/[1+ e(x−θ)/σ]2, −∞ < x <
∞, for which HLn is the MLE of θ and thus optimal, we have ARE(HL, X, Logistic) = π2/9
= 1.097 (see [4]). Further, for F the class of all distributions symmetric about θ and having
finite variance, we have infF ARE(HL, X, F ) = 108/125 = 0.864 (see [3]). The estimator
HLn is highly competitive with X at Normal distributions, can be infinitely more efficient
at some other symmetric distributions F , and is never much less efficient at any distribution
F in F . The computation of HLn appears at first glance to require O(n2) steps, but a much
more efficient O(n log n) algorithm is available (see [6]).

Efficiency versus robustness trade-off

Although the asymptotically most efficient estimator is given by the MLE, the particular
MLE depends upon the shape of F and can be drastically inefficient when the actual F
departs even a little bit from the nominal F . For example, if the assumed F is N(µ, 1) but
the actual model differs by a small amount ε of “contamination”, i.e., F = (1− ε)N(µ, 1) +
εN(µ, σ2), then

ARE(Med, X, F ) =
2

π

(
1 − ε + εσ−1

)2 (
1 − ε + εσ2

)
,

which equals 2/π in the “ideal” case ε = 0 but otherwise → ∞ as σ → ∞. A small
perturbation of the assumed model thus can destroy the superiority of the MLE.

One way around this issue is to take a nonparametric approach and seek an estimator
with ARE satisfying a favorable lower bound. Above we saw how the estimator HLn meets
this need.

Another criterion by which to evaluate and compare estimators is robustness. Here let
us use finite-sample breakdown point (BP): the minimal fraction of sample points which
may be taken to a limit L (e.g., ±∞) without the estimator also being taken to L. A
robust estimator remains stable and effective when in fact the sample is only partly from
the nominal distribution F and contains some non-F observations which might be relatively
extreme contaminants.

A single observation taken to ∞ (with n fixed) takes Xn with it, so Xn has BP = 0. Its
optimality at Normal distributions comes at the price of a complete sacrifice of robustness.
In comparison, Medn has extremely favorable BP = 0.5 but at the price of a considerable
loss of efficiency at Normal models.

On the other hand, the estimator HLn appeals broadly, possessing both quite high ARE
over a wide class of F and relatively high BP = 1 − 2−1/2 = 0.29.

As another example, consider the problem of estimation of scale. Two classical scale
estimators are the sample standard deviation sn and the sample MAD (median absolute
deviation about the median) MADn. They estimate scale in different ways but can be
regarded as competitors in the problem of estimation of σ in the model F = N(µ, σ2), as
follows. With both µ and σ unknown, the estimator sn is (essentially) the MLE of σ and is
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asymptotically most efficient. Also, for this F , the population MAD is equal to Φ−1(3/4)σ,
so that the estimator σ̂n = MADn/Φ

−1(3/4) = 1.4826MADn competes with sn for estimation
of σ. (Here Φ denotes the standard normal distribution function, and, for any F , F−1(p)
denotes the pth quantile, inf{x : F (x) ≥ p}, for 0 < p < 1.) To compare with respect
to robustness, we note that a single observation taken to ∞ (with n fixed) takes sn with
it, sn has BP = 0. On the other hand, MADn and thus σ̂n have BP = 0.5, like Medn.
However, ARE(σ̂n, sn, N(µ, σ2)) = 0.37, even worse than the ARE of Medn relative to X.
Clearly desired is a more balanced trade-off between efficiency and robustness than provided
by either of sn and σ̂n. Alternative scale estimators having the same 0.5 BP as σ̂n but much
higher ARE of 0.82 relative to sn are developed in [10]. Also, further competitors offering
a range of trade-offs given by (BP, ARE) = (0.29, 0.86) or (0.13, 0.91) or (0.07, 0.96), for
example, are developed in [12].

In general, efficiency and robustness trade off against each other. Thus ARE should be
considered in conjunction with robustness, choosing the balance appropriate to the particular
application context. This theme is prominent in the many examples treated in [14].

A few additional aspects of ARE

Connections with confidence intervals

In view of the asymptotic normal distribution underlying the above formulation of ARE in
estimation, we may also characterize the ARE given by (2) as the limiting ratio of sample
sizes at which the lengths of associated confidence intervals at approximate level 100(1−α)%,

η̂(i) ± Φ−1
(
1 −

α

2

)
√

Vi(F )

ni
, i = 1, 2,

converge to 0 at the same rate, when holding fixed the coverage probability 1 − α. (In
practice, of course, consistent estimates of Vi(F ), i = 1, 2, are used in forming the CI.)

Fixed width confidence intervals and ARE

One may alternatively consider confidence intervals of fixed length, in which case (under
typical conditions) the noncoverage probability depends on n and tends to 0 at an exponential
rate, i.e., n−1 log αn → c > 0, as n → ∞. For fixed width confidence intervals of the form

η̂(i) ± dσF , i = 1, 2,

we thus define the fixed width asymptotic relative efficiency (FWARE) of two estimators

as the limiting ratio of sample sizes at which the respective noncoverage probabilities α
(i)
n ,

i = 1, 2, of the associated fixed width confidence intervals converge to zero at the same
exponential rate. In particular, for Med versus X, and letting η = 0 and σF = 1 without
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loss of generality, we obtain [13]

FWARE(Med, X, F ) =
log m(−d)

log[2(F (d) − F 2(d))1/2]
, (5)

where m(−d) is a certain parameter of the moment generating function of F . The FWARE
is derived using large deviation theory instead of the central limit theorem. As d → 0, the
FWARE converges to the ARE. Indeed, for F a Normal distribution, this convergence (to
2/π = 0.64) is quite rapid: the expression in (5) rounds to 0.60 for d = 2, to 0.63 for d = 1,
and to 0.64 for d ≤ 0.1.

Confidence ellipsoids and ARE

For an estimator η̂ which is asymptotically k-variate Normal with mean η and covariance
matrix Σ/n, as the sample size n → ∞, we may form (see [11]) an associated ellipsoidal
confidence region of approximate level 100(1 − α)% for the parameter η,

En,α = {η : n (η̂ − η)′Σ−1(η̂ − η) ≤ cα},

with P (χ2
k > cα) = α and in practice using a consistent estimate of Σ. The volume of the

region En,α is
πk/2(cα/n)k/2|Σ|1/2

Γ((k + 1)/2)
.

Therefore, for two such estimators η̂
(i), i = 1, 2, the ARE given by (3) may be characterized

as the limiting ratio of sample sizes at which the volumes of associated ellipsoidal confidence
regions at approximate level 100(1−α)% converge to 0 at the same rate, when holding fixed
the coverage probability 1 − α.

Under regularity conditions on the model, the maximum likelihood estimator η̂
(ML) has a

confidence ellipsoid En,α attaining the smallest possible volume and, moreover, lying wholly
within that for any other estimator η̂.

Connections with testing

Parallel to ARE in estimation as developed here is the notion of Pitman ARE for comparison
of two hypothesis test procedures. Based on a different formulation, although the central
limit theorem is used in common, the Pitman ARE agrees with (2) when the estimator and
the hypothesis test statistic are linked, as for example X paired with the t-test, or Medn

paired with the sign test, or HLn paired with the Wilcoxon signed-rank test. See [4], [7], [8],
and [11].

Other notions of ARE

As illustrated above with FWARE, several other important approaches to ARE have been
developed, typically using either moderate or large deviation theory. For example, instead of
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asymptotic variance parameters as the criterion, one may compare probability concentrations
of the estimators in an ε-neighborhood of the target parameter η: P (|η̂(i) − η| > ε), i = 1, 2.
When we have

log P (|η̂
(i)
n − η| > ε)

n
→ γ(i)(ε, η), i = 1, 2,

as is typical, then the ratio of sample sizes n1/n2 at which these concentration probabilities
converge to 0 at the same rate is given by γ(1)(ε, η)/γ(2)(ε, η), which then represents another

ARE measure for the efficiency of estimator η̂
(2)
n relative to η̂

(1)
n . See [11, 1.15.4] for discussion

and [1] for illustration that the variance-based and concentration-based measures need not
agree on which estimator is better. For general treatments, see [7], [9] [8], and [11, Chap.
10], as well as the other references cited below. A comprehensive bibliography is beyond
the present scope. However, very productive is ad hoc exploration of the literature using a
modern search engine.
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