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ABSTRACT. We describe a construction of the cyclotomic structure on topolog-
ical Hochschild homology (T'HH) of a ring spectrum using the Hill-Hopkins-
Ravenel multiplicative norm. Our analysis takes place entirely in the category
of equivariant orthogonal spectra, avoiding use of the Bokstedt coherence ma-
chinery. As a consequence, we are able to define versions of topological cyclic
homology (T'C) relative to an arbitrary commutative ring spectrum A. We
describe spectral sequences computing this relative theory 4T R in terms of
TR over the sphere spectrum and vice versa. Furthermore, our construction
permits a straightforward definition of the Adams operations on TR and T'C'.
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1. INTRODUCTION

Over the last two decades, the calculational study of algebraic K-theory has
been revolutionized by the development of trace methods. In analogy with the
Chern character from topological K-theory to ordinary cohomology, there exist
“trace maps” from algebraic K-theory to various more homological approximations,
which also can be more computable. For a ring R, Dennis constructed a map
K(R) — HH(R) that generalizes the trace of a matrix. Goodwillie lifted this trace
map to negative cyclic homology

K(R) — HC™(R) — HH(R)

and showed that rationally, this map can often be used to compute K(R).

In his 1990 ICM address, Goodwillie conjectured that there should be a “brave
new” version of this story involving “topological” analogues of cyclic and Hochschild
homology (THH and TC), defined by changing the ground ring from Z to the
sphere spectrum. Although the modern symmetric monoidal categories of spectra
had not yet been invented, Bokstedt developed coherence machinery that enabled
a definition of T’ L z%le%lgg these lines and constructed a “topolggical” Dennis trace
map K — THH [10]. Subsequently, Bokstedt-Hsiang-Madsen [T1] defined T'C and
constructed the cyclotomic trace map

K—TC—THH

in the course of resolving the K-theory Novikov conjecture (for groups s Eiéf}/é}}
a mild BFF&t ness hypothesis). Subsequently, seminal work of McCarthy [32] an
Dundas M"]g_showed that when working at a prime p, T'C' often captureg a reat
deal of information about K-theory. Hesselholt and Madsen (inter alia, %TaﬁéEKen
used T'C' to make extensive computations in K-theory including computational
resolution of the Quillen-Lichtenbaum conjecture for certain fields.

The calculational power of trace methods depends on the ability to compute T'C,
which ultimately derives from the methods of equivariant stable homotopy theory,
as T'C'is constructed from the S'-action on TH H. Specifically, Bokstedt’s definition
of THH closely resembles a cyclic bar construction, and as a consequence T'HH
is an S'-equivariant spectrum. In fact, THH(R) has a very special equivariant
structure: TH H(R) is a cyclotomic spectrum, which is an S*-equivariant spectrum
equipped with additional data that models the structure of the free loop space AX.

The cyclic bar construction can be formed in any symmetric monoidal category
(A,X,1); we will let Ng7'® denote the resulting simplicial (or cyclic) object. Recall
that in the category of spaces, for a group-like monoid M, there is a natural map

INY°M| — Map(S*, BM) = ABM

(where | - | denotes geometric realization) that is a weak equivalence on fixed points
for any finite subgroup C,, C S*. Moreover, for each such C,,, the free loop space
is equipped with equivalences (in fact homeomorphisms)

(ABM)®» =~ ABM

of S'-spaces, where (ABM)®" is regarded as an S'-space (rather than an S'/C,,-
space) via pullback along the nth root isomorphism

pn: ST = SY/C,.
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In analogy, a cyclotomic spectrum is an S'-equivariant spectrum equipped with
compatible equivalences of S'-spectra

tn: piLO"X — X,

where L& denotes the (left derived) “geometric” fixed points functor.

The construction of the cyclotomic structure on T H H has classically been one
of the more subtle and mysterious parts of the construction of TC. In a modern
symmetric monoidal category of spectra (e.g., symmetric spectra or EKMM S-
modules), one can simply define THH (R) as

THH(R) = [INY°R],

but the resulting equivariant spectrum did not have the correct homotopy type.
Only Bokstedt’s original construction of TTH H seemed to produce the cyclotomic
structure.

Although this situation has not impeded the calculational applications, reliance
on the Bokstedt construction has limited progress in certain directions. For one
thing, it does not seem to be possible to use the Bokstedt construction to define T'C
relative to a ground ring that is not the sphere spectrum S. Moreover, the details
of the Bokstedt construction make it difficult to understand the equivariance (and
therefore relevance to T'C) of various additional algebraic structures that arise on
THH, notably the Adams operations and the coalgebra structures.

The purpose of this paper is to introduce a new approach to the construction of
the cyclotomic structure on T'H H using an interpretation of TH H in terms of the
Hill-Hopkins-Ravenel multiplicative norm. Our point of departure is the observa-
tion that the construction of the cyclotomic structure on TH H (R) ultimately boils
down to having good models of the smash powers

R"M=RARAN...\R
—_— —

n

of a spectrum R as a Cj-equivariant spectrum such that there is a suitably com-
patible collection of diagonal equivalences

R — ®“"R"",

The recent solution of the Kervaire invariant one problem involved the detailed anal-
ysis of a multiplicative norm construction in equivariant stable homotopy theory
that has precisely this behavior. Although Hill-Hopkins-Ravenel studied the norm
construction Ng for a finite group G and subgroup H, using the cyclic bar construc-
tion one can extend this construction to a norm N2 " on associative ring qrthogonal
spectra; such a construction first appeared in the thesis of Martin StolszIWk%

For the following definition, we need to introduce some notation. Let .S de-
note the category of orthogonal spectra and let S'.#SY denote the category of
orthogonal S'-spectra indexed on the complete universe U. Finally, let .#S[T)]
and S'.ZSY[T] denote the categories of associative ring orthogonal spectra and
associative ring orthogonal S'-spectra, respectively.

Definition 1.1. Define the functor
NS': 78[T] — S*.7SY
to be the composite functor

R IR |NJ°R),
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with | N;Y°R| regarded as an orthogonal S!-spectrum indexed on the standard trivial )
:changeuniverse

universe R>°. Here ZV.. denotes the change of universe functor (see Definition 2.0J.

Since both the cyclic bar construction and the change of universe functor preserve
commutative ring orthogonal spectra, the norm above also preserves commutative
ring orthogonal spectra. In the following proposition, let .#S[P] and S'.# SU[P]
denote the categories of commutative ring orthogonal spectra and commutative
ring orthogonal S'-spectra, respectively.

Proposition 1.2. Nes1 restricts to a functor
NS': 7S[P| — S'.7SU[P|

that is the left adjoint to the forgetful functor from commutative ring orthogonal
Sl-spectra to commutative ring orthogonal spectra.

Since the forgetful functor from commutative ring orthogonal S*-spectra to com-
mutative ring orthogonal spectra is the composite of the change of universe functor
I}%m and the functor that forgets equivariance, the previous proposition therefore

identifies N " 78 [P] — S'.#SY[P] as the composite functor
R T (R® SY).

Here ® denotes the tensor of a commutative ring orthogonal spectrum with an
unbased space, and we regard R®S?! as a functor from commutative ring orthogonal
spectra to commutative ring orthogonal spectra with an action of S'.

The deep aspect of the Hill-Hopkins-Ravenel treatment of the norm functor is
their analysis of the left derived functors of the norm. As part of this analysis they
show that the norm Ng preserves certain weak equivalences. For our norm N2 !
into S'.#SY, we work with the homotopy theory defined by the F-equivalences of
orthogonal S'-spectra, where an F-equivalence is a map that induces an isomor-
phism on all the homotopy groups at the fixed point spectra for the finite subgroups
of St.

Proposition 1.3. Assume that R is a cofibrant associative ring orthogonal spec-

trum and R is either a cofibrant associative ring orthogonal spectrum or a cofibrant

commutative ring orthogonal spectrum. If R — R is a weak equivalence, then
1, = 1

N2 (R) — N2 (R) is an F-equivalence in S*.#SU.

As a consequence we obtain the following additional observation about the ad-
junction in the commutative case.

Proposition 1.4. The left derived functor of
NS': 78[P| — S'.7SU[P]

(for the F-equivalences on the codomain) exists and is left adjoint to the right
derived forgetful functor.

Our first main theorem is that when R is a cofibrant associative ring orthogonal
spectrum, NEIR is a cyclotomic gpectrum. To be precise, we use the point-set
model of cyclotomic spectra from F’? , which provides a definition entirely in terms
of the category of S'-equivariant orthogonal spectra.

Theorem 1.5. Let R be a cofibrant associative or cofibrant commutative ring or-

thogonal spectrum. Then Neis has a natural structure of a cyclotomic spectrum.
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Proposition Wﬁ%% describes Nes1 as the homotopical left adjoint to the
forgetful functor, suggests a generalization of our construction of T'"H H that takes
ring orthogonal C,,-spectra as input. For commutative ring orthogonal C),-spectra,
we can define Ng:l as the left adjoint to the forgetful functor. However, to extend
to the non-commutativ case, we need an explicit construction. We give such a
construction in Section E in terms of a cyclic bar construction, which we denote as
NXyC’C"R. Its geometric realization |[N¥*C» R| has an S'-action, and promoting it
to the complete universe, we obtain a genuine S'-equivariant orthogonal spectrum
that we denote as NgiR. The following proposition is a consistency check.

Proposition 1.6. Let R be a commutative ring orthogonal C,-spectrum. Then
1

NgnR s isomorphic to the left adjoint of the forgetful functor from commutative

ring orthogonal S'-spectra to commutative ring orthogonal C,,-spectra.

Again, we can describe the left adjoint in terms of a tensor
NE, = . (R®c, Y,
where the relative tensor R®¢, S* may be explicitly constructed as the coequalizer
(i*R)® C, ® S* = (i"R) ® S*

of the canonical action of C,, on S and the action map (i*R) ® C,, — i* R, where
i* denotes the change-of-group functor to the trivial group. Choosing an appro-
priately subdivided model of the circle produces the isomorphism between the two
descriptions.

As above, by cofibrantly replacing R we can compute the left-derived functor cvelotomic
of Ng:l, and in this case Ng;R is a p-cyclotomic spectrum (see Defini iQI&W
provided either n is prime to p or R is “C),-cyclotomic” (q.v. Deﬁnition%li_elﬁ#}f
This leads to the obvious definition of T'C¢, R. This C,-relative THH (and the
associated constructions of TR and TC) is expected to be both interesting and
comparatively easy to compute for some of the equivariant spectra that arise in
Hill-Hopkins-Ravenel, in particular the real cobordism spectrum M Ug.

We can also consider another kind of relative construction, namely in the situa-
tion where R is an algebra over an arbitrary com tafive ring orthogonal spectrum
A. One of the principal advantages of Deﬁnition“ : is that it can be easily extended
to this relative setting; the equivariant indexed product can be carried out in any
symmetric monoidal category, and the homotopical analysis (after change of uni-
verse) extends to A-modules.

Definition 1.7. Let A be a cofibrant commutative ring orthogonal spectrum, and
denote by #S4[T] the category of A-algebras. We define the A-relative norm
functor

st 1 U
ANe : fSA[T] — S ﬂSI]gmA
by
R I{ N R.
Here, in the construction ZY. A, we regard A as a commutative ring orthogonal

Sl-spectrum (on the universe R*) with trivial S'-action. Then Z{.. A is a com-
mutative ring orthogonal S'-spectrum (on the universe U) and S*.# SgU 4 denotes
RO

the category of ZY.. A-modules in S*.#SY.
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We write 4T HH(R) for the underlyi Jon-equivariant spectrum of 4N flR;
this spectrum was denoted thh“(R) in %T IX.2.1]. When R is a commutative

A-algebra, 4N eis is naturally a commutative ZY.. A-algebra. The functor
1
ANS . 7S,[P] — Slfsgw[m

is again left d'pmianltn Lo the forgetful functor. An argument analogous to the proof
of Theorem “ kg then establishes the following theorem.

Theorem 1.8. Let R be a cofibrant associative A-algebra or cofibrant commutative
1
A-algebra. Then ANeS R is a cyclotomic spectrum with structure map a map of A-

modules. Moreover, the natural map Neis — ANESIR induced by the lax symmetric
monoidal natural transformation A — Aa is a cyclotomic map.

As a consequence, we can define the A-relative topological cyclic homology
ATC(R) (as the usual homotopy limit over the Frobenius and restriction maps)
and the cyclotomic map N5'R — ANflR induces a map TC(R) — sTC(R).
The relative topological cyclic homology is therefore the target for an A-relative
cyclotomic trace K(R) — 4aTC(R), factoring though the usual cyclotomic trace
K(R) — TC(R). Experts will recognize that one can also give a direct construc-
tion of the relative cyclotomic trace induced by the j (":]lusion of objects in a spectral
category enriched in orthogonal spectra (e.g., seej%%

Theorem 1.9. Let R be a cofibrant associative A-algebra or a cofibrant commu-
tative A-algebra. There is an A-relative cyclotomic trace map K(R) — ATC(R)
making the following diagram commute

K(R) —— TC(R) —— THH(R)

U J

ATC(R) — s,THH(R).

Using the identification NEIA ~ 7V (A ® S') in the commutative context, the
map S' — * induces a map of equivariant commutative ring orthogonal spectra

NeSlA — IV A. Just as in the non-equivariant case, we can identify AN?l (R) as
extension of scalars along this map.

Proposition 1.10. There is a natural isomorphism
1 1
ANY (R) = N? (R) Anst A LE= A
When R is a cofibrant associative A-algebra or cofibrant commutative A-algebra,
this induces a natural isomorphism in the stable category

ANS'(R) = N5'(R) Nyt g T A

The equivariant homotopy groups &7 (N2 1R) are the T R-groups TR?(R) and
so mEn (4 N¥ 1R) are hy definition the relative T'R-groups 4T R (R). The Kiinneth
spectral sequence of ﬂMmbined with the previous theorem to compute the
relative T'R-groups from the absolute T'R-groups and Mackey functor Tor. More
often we expect to use the relative theory to compute the absolute theory. Non-
equivariantly, the isomorphism

eq:changebasering | (1.11) THH(R)NAZ ,THH(RAA)
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gives rise to a Kiinneth spectral sequence

Tor s B)(A(R), Al(R)) = AJ(THH(R)).
An Adams spectral sequence can then in practice be used to com gnteeggge?gnmotopy
i] i I S%l hold i

groups of THH(R). For formal reasons, the isomorphism olds equiv-
ariantly, but now we have three different versions of the non-equivariant Kiinneth

spectral sequence (none of th'ch Hzgeeg%i;cgi%s elegant an E2—terngg which we use
in conjunction with equation . We discuss these in Section BI

A further application of our model of THH and T'C is a construction when R
is commutative of Adams operations on Neis and g N flR that are compatible
with the cyclotomic structure. McCarthy explained how Adams operations can be
constructed on any cyclic object that when viewed as a functor from the cyclic
category, factors through the category of finite sets (and all maps). As a conse-
quence, it is possible to construct Adams operations on THH of a commutative
monoid object in any symmetric monoidal category of spectra. The advantage of
our formulation is that we can verify the equivariance of these operations and in
particular show they descend to T'C' and A4TC.

Theorem 1.12. Let A be a commutative ring orthogonal spectrum and R a com-
1 1

mutative A-algebra. There are “Adams” operations ¢ : ANf R — AN? R. When

r 18 prime to p, the operation YY" commutes with the restriction and Frobenius maps

on the p-cyclotomic spectrum sTHH(R) and so induces a corresponding operation
on ATR(R) and ATC(R).

We have organized the paper to conﬁain q(rief r%view with references to much
of the background Iieeded here. S &1011 is entirely review of [30] and [22, App. B o THH
and EQCUOW review ??f In addition, the main results in Sections
and erlap significantly with W]Lalthough our treafment is very different: we
rely on}{[l E] to study the absolute S'-norm whereas [F dlrectly analyzes the con-

struction by using a somewhat different model structure and focuses on the case of
commutative ring orthogonal spectra.

Acknowledgments. The authors would like to thank Lars Hesselholt, Peter May,
and Mike Hopkins for many helpful conversations. This project was made possible
by the hospitality of AIM and MSRI.

2. BACKGROUND ON EQUIVARIANT STABLE HOMOTOPY THEORY

sec:background

In this section, we briefly review necessary details about the category of orthog-
onal G-spectra and the geometric fixed point and norm functor Our primary
sources for this material are the monographs o }}\/Iandell and May 30 and the ap-
pendix to Hill-Hopkins-Ravenel @2}% See also %’7, §2] for a review of some of these
details. We begin with two subsections discussing the point-set theory followed by
two subsections on homotopy theory and derived functors.

2.1. The point-set theory of equivariant orthogonal spectra. Let G be a
compact Lie group. We denote by GT the category of based G-spaces and G-maps.
The smash product of G-spaces makes this a closed symmetric monoidal category,
with function object F(X,Y) the based space of (non-equivariant) maps from X
to Y with the conjugation G-action. In particular, GT i enriched over G-spaces.
We will denote by U a fixed universe of G-representations [30] §II.1.1], by which we
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mean a countable dimensional vector space with linear G-action and G-fixed inner
product that contains R*°, is the sum of finite dimensional G-representations, and
that has the property that any G-representation that occurs in U occurs infinitely
often. Let V&(U) denote the set of finite-dimensional G-vector subspaces of U,
regarded as G-inner product spaces with the inherited inner product. Except in this
section, we always assume that G is a complete G-universe, meaning that all finite
dimensional irreducible G-represntations are reprented as subspaces. For V, W in
VE(U), denote by #(V, W) the space of (non-equivariant) isometric isomorphisms
V — W, regarded as a GG-space via conjugation. Let fg be the category enriched
in G-spaces with V¥ (U) as its objects and .#5(V, W) as its morphism G-spaces; we
write just £ when U is understood.

M
Definition 2.1 (WZ{O, I1.2.6]). An orthogonal G-spectrum is a G-equivariant con-
tinuous functor X: £ — G7T equipped with a structure map

ovw: X(MIASY — X(Vaw)

that is a natural transformation of enriched functors o x #o — G7T and that is
associative and unital in the obvious sense. A map of orthogonal G-spectra X — X’
is an equivariant natural transformation that commutes with the structure map.

We denote the category of orthogonal G-spectra by G.#S. When necessary to
specify the universe U, we include it in the notation as G.#SY.

The category of orthogonal G-spectra is enriched over based G-spaces, where the
G-space of maps consists of all natural transformations (not just the equivariant
ones). Tensors and cotensors are computed levelwise. The category of orthogonal
G-spectra is a closed symmetric monoidal category with unit the equivariant sphere
spectrum Sg (with Sg(V) = SV).

For technical reasons, it is often convenient to give equivalent formulation
of orthogonal G-spectra as diagram spaces. Following [30, §I1.4], we consider the
category _Z¢ which has the same objects as .#g but morphisms from V' to W given
by the Thom space of the complement bundle of linear isometries from V to W.

M
prop:orthodesc ‘ Proposition 2.2 (ﬁqg(), 11.4.3]). The category GZS of orthogonal G-spectra is equiv-

alent to the category of Zq-spaces, i.e., the continuous equivariant functors from
Fa to Tg. The symmetric monoidal structure is given by the Day convolution.

This description provides simple formulas for suspension spectra and desuspen-
sion spectra in orthogonal G-spectra.

M
Definition 2.3 (qu)’(), I1.4.6]). For any finite-dimensional G-inner product space V'
we have the shift desuspension spectrum functor

Fv:GT — GIS
defined by
(FvA) (W) = Ja(V,W) N A.
This is the left adjoint to the evaluation functor which evaluates an orthogonal

G-spectrum at V.

H
Remark 2.4. In H{Tg], the desuspension spectrum Fy S is denoted as S~V and
FyA is denoted as ¥° A in a nod to the classical notation. (They write S~V A A
for Fy A= FVSO A A)
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Since the category G.#S§ is symmetric monoidal under the smash product, we
have categories of associative and commutative monoids, i.e., algebras over the
monads T and P that create 0 ciative and commutative monoids in symmetric
monoidal categories (e.g., see [15] §11.4] for a discussion).

Notation 2.5. Let G.#S[T] and G.# S[P| denote the categories of associative and
commutative ring orthogonal G-spectra.

For a fixed object A in GZS[P], there is an associated symmetric monoidal
category G S, of A-modules in orltgo%(lgllarglsG—spectra, with product the A-relative
smash product A4. Asin Notation ere are categories G.#S4[T] of A-algebras,
and G.ZS4[P] of commutative A-algebras |30, I11.7.6].

We now turn to the description of various useful functors on orthogonal G-
spectra. We begin by reviewing the change of universe funct , In contrast to
the classical framework of “coordinate-free” equivariant spectraﬁa, orthogonal G-
spectra disentangle the point-set and homotopical roles of the universe U. A first
manifestation of this occurs in the behavior of the point-set “change of universe”
functors.

M
Definition 2.6 d{%{), V.1.2]). For any pair of universes U and U’, the point-set
change of universe functors
79 GrSV — GrSY
are defined by ZU X (V) = _# (R, V) Aoy X (R™) for V in VE(U’), where n =
dim V.

These functors are strongly symmetric monoidal equivalences of categories:

Proposition 2.7 (ﬁ%{(), V.1.1,V.1.5)). Given universes U,U’,U",
(1) ZY is naturally isomorphic to the identity.
(2) Y, o TY' is naturally isomorphic to TY .
(3) ZY' is strong symmetric monoidal.

We are particularly interested in the change of universe functors associated to
the universes U and U%. The latter of these universes is isomorphic to the standard
trivial universe R*°. Note that the category of orthogonal G-spectra on R* is just
the category of orthogonal spectra with G-actions.

Given a subgroup H C G, we can regard a G-space X (V') as an H-space t5; X (V).
The space-level construction gives rise to a spectrum-level change-of-group functor.

Definition 2.8 (%, V.2.1]). For a subgroup H C G, define the functor
vy GrSY — Hos'uY
by
aX)(V) = Iu®R",V) Nom) ti(X(R"))
for V in VH(:3,U), where n = dim(V).
M
As observed in WB'O, V.2.1, V.1.10], for V in VE(U),
(g X) (V) = tg(X (V).

In contrast to the category of G-spaces, there are two reasonable constructions of
fixed-point functors: the “categorical” fixed points, which are based on the descrip-
tion of fixed points as G-equivariant maps out of G/H, and the “geometric” fixed
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points, which commute with suspension and the smash product (on the homotopy
category level). :él%%io%éstche description of orthogonal G-spectra as _#g-spaces in
Proposition provides the easiest way to construct the categorical and geometric
fixed point functors |30, §V].

For any normal H < G, let #H (U, V) denote the G/H-space of H-fixed points
of #Zc(U,V). Given any orthogonal spectrum X, the collection of fixed points
{X(V)#} forms a g -space. We can turn this collection into a _#/p-space in

two ways. There is a functor ¢: Zq/p — ZH induced by the pullback of H-trivial
G-representations to G/ H-representations along the quotient map G — G/H.

M
Definition 2.9 (WBU, §V.3]). For H a normal subgroup of G, the categorical fixed
point functor

(—):cr8Y — (G/H).7SY"
is computed as the pullback of the ¢/ py-space {X(V)H} along q.

On the other hand, there is an equivariant continuous functor ¢: I — 74 JH
induced by taking a G-representation V to the G/ H-representation V.

M
Definition 2.10 (WB’O, §V.4]). For H a normal subgroup of G, the geometric fixed
point functor

o (—): GrSY — (G/H)78V"
is constructed by taking the left Kan extension of the #X-space {X(V)#} along
¢.

M
Both fixed-point functors are lax symmetric monoidal WB’O, V.3.8, V.4.7] and so
descend to categories of associative and commutative ring orthogonal G-spectra.

prop:fixsymmon| Proposition 2.11. Let H C G be a normal subgroup. Let X andY be orthogonal

G-spectra. There are natural maps
X NBHY — dH(XAY)  and XTAYH — (XAY)H
that exhibit ®H and (=) as lax symmetric monoidal functors.
Therefore, there are induced functors
o (. GIS[T] — (G/H).IS[T]
and
o (-)": GIS[P] — (G/H).7S[P].

:fixs on
For a commutative ring orthogonal G-spectrum A, a corollary of Proposition iﬁl i |
is that the fixed-point functors interact well with the category of A-modules.

Corollary 2.12. Let A be a commutative ring orthogonal spectrum. The fized-point
functors restrict to functors

. GISy — (G/H).I Spu 4
and

(=) GISs — (G/H).ISyn.

Remark 2.13. We can extend these constructions to subgroups H C G that
are not normal by considering the normalizer NH and quotient WH = G/NH.
However, since we do not need this generality herein, we do not discuss it further.
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2.2. The point-set theory o ﬁkle norm. Central to our work is the realization
by Hill, Hopkins, and Ravenel [22] that a tractable model for the “correct” equi-
variant homotopy type of a smash power can be formed as a point-set construction
using the point-set change of universe functors. It is “correct” insofar as there is
a diagonal map VWhich induces an equivalence onto the geometric fixed points (see
Section E':ﬁ below) Lhey refer to this construction as the norm after the norm map
of Greenlees—w%\é’ea }fTQ , which 1 furn is named for the norm map of Evens in group
cohomology [16, Chapter 6].

The point of departure for the construction of the norm is the use of the change-
of-universe equivalences to regard orthogonal G-spectra on any universe U as G-
objects in orthogonal spectra. C(Igrgqld explicit discussions of the interrelationship
can be found in F’Si)l §Y1i1lb%£lmdaf§5’ .7].) We now give a point-set description of the
nopm, following [[35] and T3] these descriptions are equivalent to the description
of 22, §A] by the work of [[T3].

For the construction of the norm, it is convenient to use BG to denote the cate-
gory with one object, whose monoid of endomorphisms is the finite group G. The
category (. S)BY of functors from BG to the category .#S of (non-equivariant) or-
thogonal spectra indexed on the universe R> is isomorphic to the category G.# S
of orthogonal G-spectra indexed on the universe R>. We can then use the change
of universe functor Z{.. to give an equivalence of (.#8)% & with the category G.#SY
of orthogonal G-spectra indexed on U.

Definition 2.14. Let G be a finite group and H C G be a finite index subgroup
with index n. Fix an ordered set of coset representatives (gi,...,9,), and let
a: G — ¥, L H be the homomorphism

Oé(g) = (Uu h17 ceey hn)
defined by the relation gg; = gy (;)hi- The indexed smash-power functor
NG (I8P — (£8)5¢

is defined as the composite

(F8)BH L, (7 8)BEH) 2, (78)BC,
The norm functor
NG:Hs8V — Go8Y
is defined to be the composite
X = IT¥ NG TR X.

This definition depends on the choice of coset representatives; however, any other
choice gives a canonically naturally isomorphic functor (the isomorphism induced
by permuting f: rs and multiplying each factor by the appropriate element of H).
As observed ina@}‘i 7], in fact it is possible to give a description of the norm which
is independent of any choices and is determined ins ec;},gebéz. the universal property
of the left Kan extension. Alternatively, Schwede %3'5,‘6_@ gives another way of
avoiding the choice above, using the set (G : H) of all choices of ordered sets of
coset representatives; (G : H) is a free transitive 3, ! H-set and the inclusion of
(915---,9n) in (G : H) induces an isomorphism

AGX = (G: H) As,m X
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(where (n) indicates the nth smash power). In our work, G will be the cyclic group
Cpr < St and H = C, (usually for r = 1), and we have the obvious choice of coset
representatives g, = e2"(#=1/7" letting us take advantage of the explicit formulas.
In the case r = 1, we have the following.

Proposition 2.15. Let G be a finite group and U a complete G-universe. The
norm functor
N¢: 78 — GrSY
is given by the composite
X = IH X1,
where X denotes the smash power indexed on the set G.

When dealing with commutative rin ggthogonal G-spectra, the norm has a
particularly attractive formal descriptiong}flTZ, 7], which is a consequence of the fact
that the norm is a symmetric monoidal functor.

Theorem 2.16. Let G be a finite group and let H be a subgroup of G. The norm
restricts to the left adjoint in the adjunction

N§G: HIS[P| = GISIP: vy,
where 3, denotes the change of group functor along H < G.

The relationship H‘&he norm with the geometric fixed point functor is encoded
in the diagonal map 22 ?].

Definition 2.17. Let G be a finite group, H C G a subgroup, and K <{G a normal
subgroup. Let X be an orthogonal H-spectrum. There is a natural diagonal map
of orthogonal G/ K-spectra

A N @R X — oK NEX.

For any fixed commutative r;E% or&ho onadh spectrum A, the indexed smash-
slndexedsmas

power construction of Definition can be carried out in the symmetric monoidal
category #S4. Denote the A-relative indexed smash-power by (A4)¢. To make
sense of this, just as in the absolute case, we have to use the change of universe
functors: For X an A-module, we understand (A4)¢ X to be

(A)CX == a* XM,

. X X . : indexedsmash
where the nth smash power is over A and a* is as in Definition iﬁi lZf ['his is an
A-module (in G.#S®™). We then have the following definition of the A-relative
norm functor:

Definition 2.18. Let A be a commutative ring orthogonal spectrum. Write Ag
for the commutative ring orthogonal G-spectrum Z.. A obtained by regarding A as
an object of (£S)PY and applying the change of universe functor. The A-relative
norm functor
ANG: 78y — GISY,
is defined to be the composite
X o T (A1)9X).

There is an A-relative diagonal map constructed in exactly the same way as the
absolute diagonal map. For the following proposition, note that A =2 ®% Ag.
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Proposition 2.19. Let G be a finite group. Let A be a commutative ring orthog-
onal spectrum and let X be an A-module. There is a natural diagonal map of
A-modules

Ajp: X — ®9,4NEX.

The diagonal map for the norm shares the following extended naturality property
of other diagonal maps. Let z € G be an element in the center of G. Then
multiplication by z is a natural automorphism on objects of G.# S®™ or on objects
of G.¥ Sﬂlﬁw, and so induces a natural automorphism Iﬂgmz of NgX for any X in

H78'uY OEe%f:Tﬁ%e%:)r(ef{?ﬁHany X in Hfo’U. We use the following observation
an

in Sections

Proposition 2.20. Let z be an element of the center of G and let H < G. Then
for any orthogonal H-spectrum X indexed on 1;;U, the following diagram commutes
in GISY:
A PENGX
/
dHX JI{{OO z

i
PENGX.

For a commutative ring orthogonal spectrum A and an A-module X, the following
diagram commutes in G.#SY :

dCHNEX
>
J/Zﬂgooz
A

PEANYX.

X

Proof. The diagonal map X — @GNgX is induced by the space-level diagonal map
(X)) — (X (V)" — (XM(G o V))©
for which the analogous diagram is clear. ([

2.3. Homotopy theory of orthogonal spectra. We now review the homotopy
theory of orthogonal G-spectra with a focus on discussing the derived functors
associated to the point-set constructions of the preceding section. We begin by
reviewing the various model structures on orthogonal G-spectra. All of these model
structures are ultimately derived from the standard model structure on GT (the
category of based G-spaces), which we begip by reviewing.

Following the notational conventions of [30], we start with the sets of maps

I={(G/H x §""), — (G/H x D"),}

and
J={(G/H x D")y — (G/H x (D" x 1))},

where n > 0 and H varies over the closed subgroups of G. Recall that there is a
compactly generated model structure on the category GT in which I and J are the
generating cofibrations and generating acyclic cofibrations (e.g., [30, I11.1.8]). The
weak equivalences and fibrations are the maps X — Y such that X7 — Y is a
weak equivalence or fibration for each closed H C G. Transporting this structure
levelwise in V(U), we get the level model structure in orthogonal G-spectra.
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Proposition 2.21 (ﬁ%’[(), I11.2.4]). Fiz o G-universe U. There is a compactly gen-
erated model structure on G.#SY in which the weak equivalences and fibrations are
the maps X — Y such that each map X (V) — Y (V) is a weak equivalence or
fibration of G-spaces. The sets of generating cofibrations and acyclic cofibrations
are given by IS = {Fyi|i € I} and J& = {Fvj | j € J}, where V wvaries over
VE(U).

The level model structure is primarily scaffolding to construct the stable model
structures. In order to specify the weak equivalences in the stable model structures,
we need to define equivariant homotopy groups.

Definition 2.22. Fix a G-universe U. The homotopy groups of an orthogonal
G-spectrum X are defined for a subgroup H C G and an integer q as

L olim mq(( V)7 q=
Hoon _
T (X) = colim 7o ((QV* "X (V)H) ¢<o,
R=ICV
Veve(U)

(see ﬁ%’q(), §I11.3.2)).

These are the homotopy groups of the underlying G-prespectrum associated to
X (via the forgetful functor from orthogonal G-spectra to prespectra). We define
the stable equivalences to be the maps X — Y that induce isomorphisms for all
homotopy groups.

Proposition 2.23 (ﬁ%’[(), 4.2]). Fiz a G-universe U. The standard stable model
structure on G.#8Y is the compactly generated symmetric monoidal model struc-
ture with the cofibrations given by the level cofibrations, the weak equivalences the
stable equivalences, and the fibrations determined by the right lifting property. The
generating cofibrations are given by Ig as above, and the generating acyglic cofibra-
tions K are the union of Jg and certain additional maps described in [[30, 4.3].

We will also use a variant of the standard stable model structure that can be
more convenient when working with the derived functors of the norm. We refer
to this as the complete stable model str fure. See 22, 7] for a comprehensive
discussion of this model structure, and 38 §A] for a brief review. In order to
describe this, denote by IY and JY the generating cofibrations for the stable model
structure on orthogonal H-spectra indexed on the universe ¢}, U.

Theorem 2.24 (H%{%, 2.7)). Fiz a G-universe U. There is a compactly generated
symmetric monoidal model structure on GIS with generating cofibrations and
acyclic cofibrations the sets {GL Ag i | i € Ig’U, H < G} and {GyAmg | j €
J};’U, H < G} respectively. The weak equivalences are the stable equivalences, and
the fibrations are determined by the right lifting property.

Both the ta,nccl)%gt asbtﬁgble model structure and the complete model structure
of Theorem Etﬁz can be lifted to model structures on the category G.#SY[T] of

associative monoids in orthogonal G-spectra.

Theorem 2.25 (ﬁ’%, 7.6.(iv)],ﬁ[2H‘}Z{, 2.7)). Fiz a G-universe U. There are compactly
generated model structures on G.# SY[T| in which the weak equivalences are the sta-
ble equivalences of underlying orthogonal G-spectra indexed on U and the fibrations
are respectively
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(1) the maps which are stable fibrations of underlying orthogonal G-spectra in-
dexed on U, or

(2) the maps which are complete stable fibrations of underlying orthogonal G-
spectra indexed on U.

In each case, the cofibrations are determined by the left-lifting property.

To obtain model structures on commutative ring orthogonal spectra, we also need
the “positive” variants of the standard stable and complete stable model structures.
We define the positive model structures in terms of generating cofibrations I and
JT that are defined analogously with I and J except that we restrict to represen-
tations V' that contain a nonzero trivial representation.

HR
Theorem 2.26 (H{ZZ, ?.7)). Fiz a G-universe U. There are compactly generated
model structures on G.#SY[P] in which the weak equivalences are the stable equiv-
alences of the underlying orthogonal G-spectra and fibrations are respectively

(1) the maps which are positive stable fibrations of underlying orthogonal G-
spectra indexed on U, or

(2) the maps which are positive complete stable fibrations of underlying orthog-
onal G-spectra indexed on U.

In each case, the cofibrations are determined by the left-lifting property.

For a fixed object A in GZSY[P], there are also lifted model structures on
the categories G.#SY of A-modules, G.#SY[T] of A-algebras, and G.#SY[P] of
mutative A-a ras in both the stable and complete stable model structures
(30, II1.7.6] and 22 ]). (There are also lifted model structures on the category

G.#8Y of A-modules when A is an object of G.#SY[T], but we will not need these.)
HR
Theorem 2.27 (H{EZ, 2.7). Fiz a G-universe U. Let A be a commutative ring or-

thogonal G-spectrum indexed on U. There are compactly generated model structures
on the categories G#SY and GISY[T| in which the fibrations and weak equiva-
lences are created by the forgetful functors to the stable and complete stable model
structures on G SY. There are compactly generated model structures on G.¥ SY [P
in which the fibrations and weak equivalences are created by the forgetful functors
to the positive stable and positive complete stable model structures on GﬂSX.

Finally, when dealing with cyclotomic spectra, we need to use variants of these
model structures where stable equivalences are determined by a family of sub-
groups of G. Recall from [30}, TV.6.1] the definition of a family: a family F is a collec-
tion of closed subgroups of G that is closed under taking closed subgroups (and con-
jugation). We say a map X — Y is an F-equivalence if it induces an isomorphism
on homotopy groups 7 for all H in F. All of the model stryctures described above
have analogues with respect to the F-equivalences (e.g., see‘kﬂ?ﬁo, IV.6.5]), which are
built from sets I and J where the cells Fy,(G/H x S"~1), — Fy(G/H x D"), and
Fv(G/H x D™); — Fy(G/H x D™ x I); are restricted to H € F. We record the
situation in the following omnibus theorem.

Theorem 2.28. There are stable and complete stable compactly generated model
structures on the categories GZSY, GISY[T], and G.ISY[P| where the weak
equivalences are the F-equivalences.

Let A be a commutative ring orthogonal G-spectrum. There are stable and
complete stable compactly generated model structures on the categories GfSX,
GISYT], and G SY[P| where the weak equivalences are the F-equivalences.



thm:catder

thm:derivenorm |

16 V.ANGELTVEIT, A.BLUMBERG, T.GERHARDT, M.HILL, T.LAWSON, AND M.MANDELL

We are most interested in case of G = S' and Fri, the family of finite subgroups
of S' and the family F,, of the p-subgroups {Cy»} of S* for a fixed prime p.

2.4. Derived functors of fixed points and the norm. We now discuss the use
of the model structures described in the previous section to construct the derived
functors of the categorical fixed points, the geometric fixed points, and the norm
functors. We begin with the categorical fixed point functor. Since this is a right
adjoint, we have right-derived functors computed using fibrant replacement (in any
of our available stable model structures):

Theorem 2.29. Let H C G be a normal subgroup. Then the categorical fized-point
functor (=)2: G#8Y — (G/H).#SV" is a Quillen right adjoint; in particular, it
preserves fibrations and weak equivalences between fibrant objects in the stable and
complete stable model structures (and their positive variants) on G.#SY.

As the fibrant objects in the model structures on associative and commutative
ring orthogonal spectra are fibrant in the underlying model structures on orthogonal
G-spectra, we can derive the categorical fixed points by fibrant replacement in any
of the settings in which we work.

In contrast, the geo ic fixed point functor admits a Quillen left derived func-
tor (see%“’;}o, V.4.5] and 22} 7]).

Theorem 2.30. Let H be a normal subgroup of G. The functor ®(—) preserves
cofibrations and weak equivalences between cofibrant objects in the stable and com-
plete stable model structures (and their positive variants) on G.#SY.

Since the cofibrant objects in the lifted model structures on G.# S[T] are cofibrant
when regarded as objects in G.#S, an immediate corollary of Theorem Eéﬁii 1s that
we can derive ® by cofibrant replacement when working with associative ring
orthogonal G-spectra. In contrast, the underlying orthogonal G-spectra associated
to cofibrant objects in G#S[P] in either of the model structures we study are
essentially never cofibrant and a separate argument j Qeeded in that case in our
work below. The first part of the fo 193";’?;}15 d%hgorem is 22} 7]; the case of A-modules
is similar and discussed in Section

Theorem 2.31. The norm Ng(—) preserves weak equivalences between cofibrant
objects in any of the various stable model structures on H.ZS and H ZS[P|. Let
A be a commutative ring orthogonal spectrum. Then the A-relative norm ANS(—)
preserves weak equivalences between cofibrant objects in 'S4 and FSy[P).

The utility, of gacomplete model structure is the following homotopical version
of Theorem 22%‘1

Theorem 2.32. Let H be a subgroup of G. The adjunction
N§: H7S[P| = GISIP: v
is a Quillen adjunction for the positive complete stable structures.

Finally, we have the following result about the derived version of the diagonal
map ‘R%‘Zu, ?]. We note the strength of the conclusion: the diagonal map is an
isomorphism on cofibrant objects, not just gcyg%%gc ecquivalence. The case of A-
modules is similar and discussed in Section
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Theorem 2.33. Let H be a normal subgroup of G. The diagonal map

A:d7X — d9NGX
is an isomorphism of orthogonal spectra (and in particular a weak equivalence) when
X is cofibrant in any of the stable model structures on GZS, when X is a cofibrant
object in GFZS[T], or when X is a cofibrant object in G S[P].

Let A be a commutative ring orthogonal spectrum. The A-relative diagonal map

of orthogonal spectra

Ay: X — 9, NOX,
is an isomorphism (and in particular a weak equivalence) of orthogonal spectra when
X is cofibrant in IS4 or in FSa[P].

3. CYCLOTOMIC SPECTRA AND TC

In this section, we review the details of the category of p-cyclotomic spectra
and the construction of topological cyclic homology (T'C). The diagonal maps that
naturally arise in the context of the norm go in the opposite direction to the usual
structure maps, and so we also explain how to construct T'C' from these “op”-
cyclotomic spectra. In the following, fix a prime p and a complete S! universe
U.

3.1. Background on p-cyclotomic spectra. In this section, we briefly review
the point-set description of p-cyclotomic spectra from [[7, §4]; we refer the reader to
that paper for more detail discussion.

M
Definition 3.1 (f’?, 4.5]). A p-cyclotomic spectrum X consists of an orthogonal
Sl-spectrum X together with a map of orthogonal S'-spectra

tp: PP X — X,

such that the induced map on the derived functor p;Lq)CPX — X is an Fp-
equivalence. Here p, denotes the p-th root isomorphism S* — S'/C,. A morphism
of p-cyclotomic spectra consists of a map of orthogonal S'-spectra X — Y such
that the diagram

PP X — X

L]

p;)fI)CPY —Y
comimutes.

Remark 3.2. A cyclotomic spectrum is an orthogonal spectrum with p-c (I;qlotomic
structures for all primes p satisfying certain compatibility relations; see 3%7, 4.7-8]
for details.

M
Following }F'?, 5.4-5], we have the following weak equivalences for p-cyclotomic
spectra.

Definition 3.3. A map of p-cyclotomic spectra is a weak equivalence when it is a
weak equivalence of the underlying (non-equivariant) orthogonal spectra.

M
Proposition 3.4 (}F’?, 5.5]). A map of p-cyclotomic spectra is a weak equivalence if
and only if it is an F,-equivalence of the underlying orthogonal S*-spectra.
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3.2. Constructing TR and TC from a cyclotomic spectrum. In this sec-
tion, we give a very rapid review of the definition of TR and T'C' in terms of the
point-set category of cyclotomic spectra described above. i ie%q%g%%%ed reader is
referred to the excellent treatment in Madsen’s CDM notes zggﬁme details on
the construction in terms of the classical (homotopical) definition of a cyclotomic
spectrum.

For a p-cyclotomic spectrum X, the collection {X»"} of (point-set) categorical
fixed points is equipped with functors

F,R: X% — X%

for all n defined as follows. The Frobenius maps F' are simply the obvious inclusion
of fixed-point maps, and the restriction maps R are constructed as the composite
Cpn * 3 Cp\Con— 3, C Conoy (tp)Pt Cone
X&rm 2= (pp XTr)7en =t — (pp @ X) et ey X e
The Frobenius and restriction maps satisfy the jden; i%elf oR=RoF. When X is
fibrant in the F,-model structure (of Theorem , we then define

TR(X) =holimg X" and  TC(X) = holimp y X",

In general we define TR and T'C using a fibrant replacement that preser G the
p-cyclotomic structure; such a functor is provided by the main theorems of ;F’?, 85],
which construct a model structure on p-cyclotomic spectra where the fibrations
are the fibrations of the underlying orthogonal S'-spectra in the F,-model struc-
ture. Alternatively, an explicit construction of a fibrant replace t functor on
orthogonal spectra that preserves cyclotomic structures is given in [} 4.6-7].

M
Proposition 3.5 (cf. HB’T', 1.4]). A weak equivalence X —'Y of p-cyclotomic spectra
induces weak equivalences TR(Xy) — TR(Yy) and TC(Xy) — TC(Yy) of orthog-
onal spectra, where (—)5 denotes any fibrant replacement functor in p-cyclotomic
spectra.

Remark 3.6. We do not yet have an abstract homotopy theory for multiplicative
1]?,Zjects in cyclotomic spectra, and the explicit fibrant replacement functor Q% of
FS,_ 4.6] is lax monoidal but not lax symmetric monoidal. As a consequence, at
present we do not know how to convert a p-cyclotomic spectrum which is also a
commutative ring orthogonal S'-spectrum into a cyclotomic spectrum that is a
fibrant commutative ring orthogonal S'-spectrum.

3.3. Op-cyclotomic spectra. For our construction of TH H based on the norm
(in the next section), the diagonal map X — ®“N& X is in the opposite direction
of the cyclotomic structure map needed in the definition of a cyclotomic structure.
In the case when X is cofibrant (or a cofibrant ring or cofibrant commutative
ring orthogonal spectrum), the diagonal map is an isomorphism and so presents no
difficulty; in the case when X is just of the homotopy type of a cofibrant orthogonal
spectrum, the fact that the structure map goes the wrong way necessitates some
technical maneuvering in order to construct TR and T'C.

Definition 3.7. An op-p-cyclotomic spectrum X consists of an orthogonal S!-
spectrum X together with a map of orthogonal S'-spectra

v: X — p;q)C”X
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that is a Fp-equivalence. A map of op-p-cyclotomic spectra is a map of orthogonal
Sl-spectra that commutes with the structure map. A map of op-p-cyclotomic spec-
tra is a weak equivalence when it is an Fj,-equivalence of the underlying orthogonal
Sl-spectra.

Note that the definition above uses a condition on the point-set geometric fixed
point functor rather than the derived geometric fixed point functor. In practice, we
should restrict to those op-p-cyclotomic spectra X where the canonical map in the
Sl-equivariant stable category p;Lq)CPX — p;q)CPX is an Fp,-equivalence; the full
subcategory of such op-p-cyclotomic spectra is closed under weak equivalence. In
this subcategory, a map is a weak equivalence if and only if it is a weak equivalence
of the underlying (non-equivariant) orthogonal spectra.

Rather than study the category of op-p-cyclotomic spectra in detail, we simply
explain an approach to constructing TR and T'C from this data. In what follows, let
(—)s denote a fibrant replacement functor in the F,-model structure on orthogonal
Sl-spectra; to be clear, we assume the given natural transformation X — X ris
always an acyclic cofibration. Then for a op-p-cyclotomic spectrum X, we get a
commutative diagram

X ———p0Or X

Xy —; (P;‘bCpx)f — (P;‘I)Cp (X7))s
where the right vertical map is an acyclic cofibration because pj, and ®C» preserve

acyclic cofibrations, and the bottom right horizontal map is a weak equivalence for
the same reason. In place of the restriction map R, we have a zigzag

R: (X5) " — ((pp @7 (X5))p)rmt = (Xp) S
constructed as the following composite

~

(X ) s (p5(X ) ) Ot —Z (3 (X)) ) O

(@ (X)) 7 e (98O X))ot e (X ).

We can use this as an analogue of T'R.
Definition 3.8. Define °’T R as the homotopy limit of the diagram
e (X )T ((pp @ (X)) )T e (X ) S
e (X)) (@ (X)) — X
The zigzags R are compatible with the inclusion maps
F: (Xp)" — (Xp) S
in the sense that the following diagram commutes

(X7) Tt — (P (X)) e (X )"

S
(Xp) O —— ((py®Cr (X)) = (Xp) o
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We can therefore form an analogue of T'C.

Definition 3.9. Define °?T'C by taking the homotopy limit over the diagram

e (X)) e (X))
where the top parts are the R zigzags and the bottom the F' maps.
This has the expected homotopy invariance property.

Proposition 3.10. Let X — Y be a weak equivalence of op-p-cyclotomic spec-
tra. The induced maps PTR(X) — °TR(Y) and °?TC(X) — PTC(Y) are weak

equivalences.

Although we have nothing to say in general about the relationship between
p-cyclotomic spectra and op-p-cyclotomic spectra or between °P?T'C and T'C, in
the case when X has compatible p-cyclotomic and op-p-cyclotomic structures, we

have the following comparison result. This in particular applies when X h S Ct.}%e clostruc
homotopy type of a cofibrant orthogonal spectrum, as we explain in Section iLﬁ[ '

Proposition 3.11. Let X be an op-p-cyclotomic spectrum and a p-cyclotomic spec-

trum and assume that the composite of the two structure maps
prdrX — X — prdr X
is homotopic to the identity. Then there is a zig-zag of weak equivalences connecting

TR(X) and °°?TR(X) and a zig-zag of weak equivalences connecting TC(X) and
PTC(X).

Proof. In the case of the comparison of TR(X) and °?TR(X), it suffices to show
that the homotopy limits of diagrams of fibrant objects of the form

. -1
eq:comptrl | (3.12) Y, In y!

n

Y1 —— ...

and

(3.13) Y T Y I Y

n

are equivalent, where g, L og,, is homotopic to the identity. This kind of rectification
argument is standard, although we are not sure of a place in the literature where
the precise fact we need is spelled out. We argue as follows. Choosing a homotopy
H from the identity to g, ' o g,, we get a strictly commuting diagram of the form

—1
fn I

Y, Y! Y/ Y/ Y1

idT idT H T gt OgnT idT
id x {0} id x {1}

Y, Ly Oy Wy ey

n

R

n ’ id ’ id gn
Y, Y! Y/ Y, Yo 1.

id id

Note that all the vertical maps are weak equivalences, and therefore the induced
maps between the homotopy limits of the rows are both weak equivalences. Thgm trl
homotopy limit of the top row is weakly equivalent to the homotopy limit of 1@ | ﬁi
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and the Eomggoppé limit of the bottom row is weakly equivalent to the homotopy

limit of . This completes the comparison of TR(X) and °?TR(X); the argu-

ment for comparing TC(X) and °?TC(X) is analogous using “ladders” in place of

rOws. ]
4. THE CONSTRUCTION AND HOMOTOPY THEORY OF THE S!-NORM

In this section, we construct the norm from the trivial group to S' and study
its basic point-set and homotopy properties. In the next section, we prove that
under mild hypotheses it gives a model for THH with the correct equivariant
homotopy type. Unlike norms for finite groups, the S'-norm does not apply to
arbitrary orthogonal spectra; instead we need an associative ring structure. In the
case when R is commutative, we identify the S'-norm as the left adjoint of the
forgetful functor from orthogonal S!-spectra indexed on a complete universe to
(non-equivariant) orthogonal spectra.

Throughout this section, we fix a complete S'-universe U. As in the definition of
the norm for ﬁnoi‘lcgtgggups, the (point-set) equivalence of categories ZY.. discussed

in Section E'i will play a key technical role.

For an orthogonal ring spectrum R, let N2*°R denote the cyclic bar construction

with respect to the smash product; i.e., the cyclic object in orthogonal spectra with
k-simplices
[k] — RARAN...AR
E+1
and the usual cyclic structure maps induced from the ring structure on R.
Lemma 4.1. Let R be an object in FZS[T|. Then the geometric realization of the

cyclic bar construction |NY°R| is naturally an object in S*.7 SR .

Proof. Tt i gylgyckrﬁ%vn that the geometric realization of a cyclic space has a natural
Sl-action ?‘23, .I]. Since geometric realization of an orthogonal spectrum is com-
puted levelwise, it follows by continuous naturality that the geometric realiza ion . et
of a cyclic object in orthogonal spectra has an S'-action. As noted in Section ‘ﬁ |
the category S'.#S®™ of orthogonal S'-spectra indexed on R* is isomorphic to
the category of orthogonal spectra with S'-actions. (I

Using the point-set change of universe functors we can regard this ag i d%éegn on
the complete universe U. The following definition repeats Definition l'l from the
introduction.

Definition 4.2. Let R be a ring orthogonal spectrum. Define the functor
NS': 78[T] — §'.78Y
to be the composite functor
NS'R =TV, |NY°R|.

When Js,a commutative ring orthogonal spectrum, the usual tensor homeo-
morphism [I5] 1X.3.3]
INV°R| =2 R® S!

yields the following characterization:
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Proposition 4.3. The restriction of Nes1 to I S[P] lifts to a functor
NS': 7S[P| — S'.7SV[P|

that is left adjoint to the forgetful functor
*: St rSYP) — 7 SIP].

Proof. To obtain the refinement of N5' to a functor #S[P] — S*.#SV[P], it suffices
to construct a refinement of |N;¥| to a functor

INY|: #S[P] — STI/SHTP].
We obtain this immediately from the strong symmetric monoidal isomorphism
[Xe| AYs| = | Xo AYS|

for simplicial objects X,,Y, in orthogonal spectra and the easy observation that the
map is S'-equivariant for cyclic objects. Indeed, using the isomorphism

P[X,| = [PX.],

we can identify |[NZ7PX| as P(X A S}). Now using the canonical reflexive coequal-

izer

PPR—=PR— R

we can identify |[N°R| as the reflexive coequalizer
PP(RASL) =ZP(RASL) — R® S,

constructing the tensor of R with the unbased space S* in the category of commu-
tative ring orthogonal spectra. A formal argument now identifies this as the left
adjoint to the forgetful functor

o STISET P — S|P

and it follows that N " is the left adjoint to the forgetful functor indicated in the
statement. ]

We now turn to the question of understanding the derived functors of Nesl.
Recall that when dealing with cyclic sets, the S'-fixed points do not usually carry
homotopically meaningful information. As a consequenc owe will work with the
model structure on S'.#SY provided by Theorem EEQS with weak equivalences
the Frin-equivalences, i.e., the maps which are isomorphisms on the homotopy
groups of the (categorical or geometric) fixed point spectra for the finite subgroups
of St (irrespective of what happens on the fixed points for S'). We will now
write ST.Z Sgﬁn for S*.#SY to emphasize that we are using the Fpi,-equivalences.
We use analogous notation for the categories of ring orthogonal S'-spectra and
commutative ring orthogonal S'-spectra.

We now show that N2 " admits (left) derived functors when regarded as landing
in St.7 Sgﬁn and (in the commutative case) S*.7 SgFin [P]. Our analysis requires the

following observation about the point-set description of the Cp-action on N5 (R),
which follows from inspection of the definitions.
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Lemma 4.4. Let R be a ring orthogonal spectrum or commutative ring orthogonal

spectrum. Fiz a cyclic subgroup C,, C S' and let U = e, U, a complete Cy,-
universe. There is an isomorphism of orthogonal C,, -spectra indexed on U

Lc NS R= IRw(Lc |NA NY°R RJ),

. . def changegrou
where ¢, is as in Definition 7.3

Using the results reviewed in Section iﬁ%lo)%—egt deriving the norm, we now ana-
lyze the Friy-homotopy type of N "R. In the discussion that follows, for computing
the left derived functor of geometric fixed points, we can use cofibrancy conditions
in the positive complete stable model structure (a fortiori, in the complete, the
stable, and the positive stable model structures).

thm:Tder | Theorem 4.5. Let R — R’ be a weak equivalence of cofibrant orthogonal ring
1 1
spectra. Then the induced map N5 R — N2 R’ is an Frin-equivalence.

Proof. Fix a cyclic subgroup C, C S' and consider the derived geometric fixed ointeet
points, which we can compute as L@C"NS R ~ L<I>C"L NS R. By Lemma &'ﬂ

we can understand the Cp,-action on N5'R in terms of the Cr-action on |[NY°R].
Since |NY°R| is the geometric realization of a cyclic spectrum, the C,, action
be computed in terms of the edgewise subdivision of the cyclic spectrum N°R [T,
§1]. Specifically, the nth edgewise subdivision sd,, N2Y°R is a simplicial orthogonal
spectrum with a simplicial C),-action such that there is a natural isomorphism of
orthogonal S'-spectra

|sd NS°R| 2 [NSR),

where the S'-action on the left e%tlelgsist the Cy-action induced from the simplicial
1

structure. Thus, by Lemma we have L& NS'R ~ LOOnT, oo|sd NY°R|.
Under the hypotheses,

70, |sd, NS¥°R| 2 [TV, (sd,, NS°R)|

is cofibrant in C,, .#S U and so we can compute L® using the point-set geometric

fixe omt functor @, which commutes with geometric realization. By Proposi-
tion ointsetnorm

NSO X = 1. X,
and so we can identify the kth level of the simplicial object in terms of the C,,-norm,
T, (sd, NSY°R)y, = (NC» R)NEHD).,

(In the next section, we will observe that the diagonal maps fit together into a

simplicial map.) Since R E ge Js.a Ovlyntlaak equivalence of cofibrant objects, this
isomorphism and Theorem imply

31U, (sdp NSY°R), — 0TV, (sd,, N°R),

is a weak equivalence of orthogonal spectra for each k, i.e., a simplicial-level weak
equivalence of simplicial orthogonal spectra. To conclude a weak equivalence on
geometric realization, we just need to see that at each V' in V(R*°), the simplicial
spaces are “proper”, i.e., each degeneracy map is an h-cofibration of spaces. This
again follows from the hypothesis that R and R’ are cofibrant, as the maps R *) —
RMNE+1) induced by the inclusion of the unit are cofibrations and in particular are
spacewise h-cofibrations and give spacewise h-cofibrations on @C“I]goo. O
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In the commutative case, we have the following derived functor result.

Proposition 4.6. Regarded as a functor on commutative ring orthogonal spectra,

the functor NES1 is a left Quillen functor with respect to the positive complete model
structure on S S[P| and the Frin-model structure on S'.#SU[P].

Proof. The forgetful functor preserves fibrations and acyclic fibrations. O

The following proposition compares the derived functor on commutative ring
orthogonal spectra with the derived functor on ring orthogonal spectra.

Proposition 4.7. Let R — R’ be a weak equivalence of ring orthogonal spectra
where R is cofibrant and R’ is a cofibrant commutative ring orthogonal spectrum.
Then the induced map NGSIR — NeSIR’ is an Frin-equivalence.

Proof. By H{%, ?.7], the point-set geometric fixed point functor ®“» computes the
derived geometric fixed point functor when applied to the norm qf E%T%gﬁbrant com-
mutative ring orthogonal spectrum. The argument of Theorem now generalizes
to the case in the statement. (]

1
5. THE CYCLOTOMIC STRUCTURE ON N7 R

In this section, we show that the S'-norm NEIR has the correct equivariant
homotopy type, in the sense that NeSIR is a cyclotomic spectrum in orthogonal
Sl-spectra. Tder

The proof of Theorem ﬂﬁfds a description of the orthogonal C,-spectrum
L*Canl(R) as the geometric realization of a simplicial orthogonal C),-spectrum
having k-simplices given by norms

(NecnR)/\(k-l-l) o Iﬂtgw (R/\n(k-i-l)),

where C,, acts by block permutation on RN+ and U = ;U (for U a complete
Sl—universe). The faces are also given blockwise, with d; for 0 < ¢ < k — 1 the
induced map on norms of the multiplication of the (i 4+ 1)st and (i + 2)nd factors
of R,
NeCn (R/\(kJrl)) N NeCn (R/\k).

The face map dj is a bit more complicated and uses both an dilrét%ri%al cyclic per-
mutation inside the last N R factor (as in Proposition Eﬁﬁf)ﬁgd_agpermutation
of the k + 1-factors of (NS R)N*+1) together with the multiplication dy. Writing
g = €2™/" for the canonical generator of C,, < S' and « for the natural cyclic
permutation on X #*+1 then dj, is the composite

AT g

In fact, we have the following concise description of the C),-action on Nesl—
bimodule terms. We obtain a (NS R,N&" R)-bimodule Y NS R by using the stan-

dard right action, but twisting the left action using Iﬂgm g (for g = e2™/" the
canonical generator of C,, < S*'). In the followin tement, we use the cyclic bar
construction with coefficients in a bimodule, q.v. [[L1, §2].

Theorem 5.1. Let R be a ring orthogonal spectrum. For any C,, C S', there is
an isomorphism of orthogonal C,-spectra

6, NE (R) = N (NERONER),
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where the cyclic bar construction is taken in the symmetric monoidal category

C,78Y.

Next we assemble the diagonal maps into a map NZ 'R - pEPCn NS "R of or-

thogonal S g-is getra The following lemma (which is just a specialization of Propo-
sition Elﬂlﬂ provﬁies the basic compatibility we need.

Lemma 5.2. Let R be a cofibrant orthogonal spectrum, let H < S* be a finite
subgroup, and let h € H. Then the diagram

. ®INIR
R/ lz@,@h
A

dHN BH R
commutes.

We now prove the main theorem about the diagonal map cyclotomic structure;
in light of our assembled work, the proof is straightforward.

Theorem 5.3. Let R be a ring orthogonal spectrum. The diagonal maps
An: R/\(k-‘rl) N (I)CnNECnR/\(k-i-l)
assemble into natural maps of S'-equivariant spectra
Tn: NS'R — pr @910, |sd, NO°R|.

If R is cofibrant or cofibrant as a commutative ring orthogonal spectrum, then these
maps are 1somorphisms.

Proof. Lemma iﬂ'—lmﬁll_lf;cﬁ%%ﬁat the diagonal maps A,, assemble in %Npatural maps
of cyclic spectra, and the properties of the edgewise subdivision [LT], 1.11] imply
that on realization we .h%}/n(leisngaps of orthogonal S'-spectra. Under cofibrancy hy-
potheses, Theorem EEgZ now implies that the realization of the diagonal maps is an
isomorphism. (I

When R is cofibrant, the preceding theorem immediately provides the cyclotomic
structure on N7 'R. Iﬁ R Qrzl(l:XHTkslilss,tthe homotopy type of a cofibrant object, appli-
cation of Proposition allows us to functorially work with °?TR and °?TC as
models of TR and TC.

6. A DESCRIPTION OF RELATIVE THH AS THE RELATIVE S!'-NORM

ec:THH

In this section, we extend the work of Section &—to_fhe setting of A-algebras
for a commutative orthogonal ring spectrum A. The category of A-modules is a
symmetric oidal category with respect to A4, the smash product over A. As
explained ir?ﬁ%%, ?.7], the construction of the indexed smash product can be carried
out in the symmetric monoidal category of A-modules. Our construction of relative
cyclotomic T'H H will use the associated A-relative norm.

We will write Ag to denote the commutative ring orthogonal G-spectrum ob-
tained by regarding A as having trivial G-action; i.e., Ac = Z§.A. (This is a
commutative ring orthogonal G-spectrum since Z¥.. is a symmetric monoidal func-
tor.) For example, if A is the sphere spectrum then Ag is the G-equivariant sphere

spectrum. For an R-algebra A, let Ni”R denote the cyclic bar construction with
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:cycl |
respect to the smash product over A. The same proof as Lemma &'i implies the
following.

Lemma 6.1. Let R be an object in FSy[T]. Then the geometric realization of the
cyclic bar construction |NS'CR| is naturally an object in S*.7S%

Using the point-set change of universe functors we can turn this into an orthog-
onal S'-spectrum indexed on the complete universe U.

Definition 6.2. Let R be an orthogonal ring spectrum. Define the functor
ANS 84T — S' 7Sy
as the composite
ANS'R =TU.IN°R).
The argument for Proposition ﬁ%l%oves the following relative version.

Proposition 6.3. The restriction of ANesl to commutative A-algebras lifts to a
functor

ANS IS4 [P) — S'ISY [P
that is left adjoint to the forgetful functor
SIS [P] — S SalP).

We now make a non-equivariant observation about relative TH H (ignoring the

group action temporarily) that informs our description of the equiv; r&ant S 1%%&%1‘?
Similar theorems have appeared previously in the literature, e.g., F

Lemma 6.4. Let R be an A-algebra in orthogonal spectra. Then there is an iso-
morphism
STHH(R) NsTHH(A) A ATHH(R)

Proof. Commuting the smash product with geometric realization reduces the lemma
to verifying the formula

(RARA...ANR)Aapan.~pAR=ZRAARAA ... A4 R,

which is a straightforward calculation. O

:nonequirel
We now generalize Lemma %iﬂ to take advantage of the equivariant structure.

Proposition 6.5. Let G be a finite group. Let A be a ring orthogonal spectrum
and M an A-module. The A-relative norm is obtained by base-change from the
usual norm,

ANSM = NEM Ayea Ac.

Proof. Since M is an A-module, we know that NEM is an N&A-module (in the
category G.#SY), using the fact that the norm is a symmetric monoidal [[2Z, ?.7]
functor. The right hand side is the extension of scalars along the canonical map
NEA — Ag obtained as the adjoint of the natural (non-equivariant) map 4 — Ag.
Again because the norm is monoidal, we obtain a canonical map from N M A NG A
Ag to AN SM ; this map is an isomorphism because it is clearly an isomorphism
after forgetting the equivariance. O
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Extending this to S!, if R is an A-algebra, then we have the following charac-
terizations of relative THH as an S'-spectrum that follows by essentially the same

argument.
Proposition 6.6. Let R be an A-algebra in orthogonal spectra. Then we have an
isomorphism

1
ANS' R NS'RApor 4 Agi

:Td
We now turn to the homotopical analésis. oofi 1é;t]S\] eil. The proof of Theorem &{g <

(and the analogous statement to Lemma give rise to the following result.

thm:relTder | Theorem 6.7. Let R — R’ be a weak equivalence of cofibrant A-algebras. Then
1 1
the induced map ANES R — ANeS R’ is an Frin-equivalence.

L. . L :Tcommquillen
Similarly, we can extend the homotopical statement of Proposition 0 the

relative setting.

‘prop:rechommquillen‘ Proposition 6.8. Regarded as a functor on commutative A-algebras, the functor

Nes1 is a left Quillen functor with respect to the positive complete model structure
on FZSA[P] and the Fpin-model structure on Slfsgsl [P)].

|prop:re1Tdercompder| Proposition 6.9. Let R — R’ be a weak equivalence of A-algebras where R is

cofibrant and R’ is a cofibrant commutative A-algebra. Then the induced map
1 1

N2 R — N2 R’ is an Frin-equivalence.

1
7. THE CYCLOTOMIC STRUCTURE ON ANeS R

sec:amodcyc

The main application of the perspective of THH as the S'-norm is the existence
1
of a cyclotomic structure on 4N f R, which we now construct in this section. In

contrast to the absolute situation when 4 = S, the A-relative S'-norm 4 N eis and
the associated constructions of 4T R and AT'C are novel and could not have been
done using the Bokstedt construction of THH.

We begin by explaining what we mean by a cyclotomic spectrum in Ag-modules
for A a commutative ring orthogonal spectrum. The geometric fixed point functor
®% is lax monoidal, and therefore gives rise to a functor

¢ GISY, — 78U, .

In the case of a finite subgroup C, < S!, for an Agi-module X, we have that
®» X is an orthogonal S*/C,,-spectrum and a module over Ag: /¢, Pulling back
along the nth root isomorphism p,: S — S'/C,, again gives rise to an orthogonal
Sl-spectrum p ®“» X that is a module over Ag: =2 pnAsic,-

Definition 7.1. A p-cyclotomic spectrum relative to A consists of an Agi-module

X together with a map of Agi-modules
tp: pr®rX — X,
that induces an F,-equivalence in the homotopy category of Agi-modules

prLOPX — X,
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As in the absolute case, the diagonal map
An: R/\A(k+l) SN (I)C"ANC"R/\A(k+1)

is an isomorphism both for cofibrant A-algebras and for cofibrant commutative A-
algebras. Following the development in the absoliltf setting, we can then estabhsh
cloqala,

(using the same argument as for Theorem b.3Jj the cyclotomic structure on AN 'R.
Theorem 7.2. Let R be an A-algebra. The diagonal maps

A, RAaG+) (I)CHANECTLRAA(ICH)
assemble into natural maps of Agi-modules

ot aNS' R — pr @Il | sd, NS°R|,

where U = te, U. If R is cofibrant or cofibrant as a commutative A-algebra, then
these maps are isomorphisms.

When R is cofibrant or a cofibrant commutative A-algebra, these maps give a
cyclotomic structure on 4N f 'R.IfR only has the homot type fa z(;PCﬁbrant
object, we can form the relative analogues of Definitions an ‘Which we
denote TR and YTC.

Suppose that we are given a map of commutative ring orthogonal spectra ¢: A —
A’; and an A’-algebra R. Pullback along ¢ allows us to regard R as an A-algebra,
and this gives rise to an induced map on relative THH, TR, and TC.

Proposition 7.3. Let R be a (commutative) A-algebra and ¢: A — A’ a map of
commutative ring orthogonal spectra. Then we have a map

ANeis — A/NflR

of cyclotomic spectra that gives rise to maps ATR(R) — aTR(R), ATC(R) —
wTC(R), PTR(R) — ETR(R), and PTC(R) — ETC(R).

Proof. The natural map R Ay R — R Aa R gives rise to a map of orthogonal
1

Sl-spectra ANeS R — A/NGSIR. Since the relative diagonal map is functorial in ¢,

it follows that this is a map of cyclotomic spectra. The remaining statements now

follow from the functoriality of all of the constructions involved in defining TR_),
TC(_), OPTR(_), and OPTC(_). [l

8. THH oF C,,~-EQUIVARIANT RING SPECTRA

For G a finite group and H < G a subgroup, the norm N§ provides a functor
from orthogonal H-spectra to orthogonal G-spectra. In this section, we generalize
this construction to a relative norm Ngi, which we view as a “C,,-relative THH”.
We begin with an explicit construction in terms of aegycclic(iol%%gucconstruction, which
generalizes the simplicial object studied in Section l&m“/ise subdivision of
the cyclic bar construction.

Definition 8.1. Let R be an associative ring orthogonal C,,-spectrum indexed on
the trivial universe R>. Let NXyC’C"R denote the simplicial object that in degree
q is R4t has degeneracy s; (for 0 < i < ¢) induced by the inclusion of the
unit in the i-th factor, has face maps d; for 0 < i < ¢ induced by multiplication
of the ith and (¢ + 1)th factors. The last face map d4 is given as follows. Let ayq
be the automorphism of R4+ that cyclically permutes the factors putting the
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last factor in the zeroth position and then acts on that factor by the generator
g = €e>™/" of C,,. The last face map is d, = do o .

The previous definition constructs a simplicial object but not a cyclic object.
Nevertheless it does have extra structure, of the same sort found on the edgewise
subdivision of a cyclic object. The operator aq in simplicial degree ¢ is the generator
of a Cj,(4+1)-action (the action obtained by regarding RMat1) a5 an indexed smash
product for C,, < Cp(g4+1)). The faces, degeneracies, and operators t satisfy the
following relations in addition to the usual simplicial relations:

ag(qul) —=id
doog = dg
diag = og_1d;—1 for 1 <7 < ¢
8i0g = Qg15i—1 for 1 <i < g¢q
S00tg = (g 415
This defines a A2P-object in the notation of fl}%q, 1.5]. As explained in Ha%, 1.6-8],

the geometric realization has an S!-action extending the C,,-action.

Definition 8.2. Let R be an associative ring orthogonal C,-spectrum indexed on

the universe U = e, U. The relative norm Ng:lR is defined as the composite
functor

N& R =I{. NY(IE"R)

When R is a commutativec%%_[orthogonal C,-spectrum, we have the following
analogue of Proposition

Proposition 8.3. The restriction of Ng; to Cp, I S[P] lifts to a functor
NE' : C,. 7 S[P| — 5' 7 S[P]

that is left adjoint to the forgetful functor
2 SL7S[P) — C,.7S[P.

We now describe t h%(%topical properties of the relative norm. The following
analogue of Theorem B.5 has the same proof.

Theorem 8.4. Let R — R’ be a weak equivalence of cofibrant associative ring
1 1
orthogonal C,,-spectra. Then NgnR — Ngn R’ is a Friy-equivalence.

. . L. :Tcommquillen
In the commutative case, we have the following analogue of Proposition ﬁ‘é also
using the identical proof).

Theorem 8.5. Regarded as a functor on commutative ring orthogonal C,,-spectra,
the functor Ngi 1s a left Quillen functor with respect to the positive complete model
structure on Cp, # S[P] and the Frin-model structure on S'.ZSY[P)].

We now turn to the question of the cyclotomic structure.

Theorem 8.6. Let R be a cofibrant associative ring orthogonal C.,-spectrum or a
cofibrant commutative ring orthogonal C,,-spectrum. If p is prime to n, then Ng;R
has the natural structure of a p-cyclotomic spectrum.
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lodi
Proof. As in the proof of Theorem iﬁtgt we gaha1dent1fy LC Ng R as the geometric
realization of a simplicial orthogonal Cp,-spectrum of the form
NS (REHD),
Since p is prime to n, we have a diagonal map R4+ — @CPNCC{:" RMNatD) - which
again commutes with the simplicial structure and induces a diagonal map

i N& R — pi®» NE. R.
Under the hypothesis that R is cofibrant as an or onal C),-spectrum or cofibrant
as a commutative ring orthogonal Cp-spectrum [[22, ?.7] shows that the diagonal

map RMNeHD — @CPN 7 RMa+1) s an isomorphism, and it follows that 7, is an
isomorphism. The i inverse gives the p-cyclotomic structure map. O

As usual, we can construct TRc, R and T'C¢, R from the cyclotomic structure
on Ng:lR. And as before, hen.]z:ic C())nnsl%fs ]Chas the homotopy type of a cofibrant object,
application of Proposition%ms to work with ?T R¢, and “?TC¢, .

When p divides n, the diagonal map is of the form

st gC N
Ncn/pfb "R — ®“*N¢ (R)
and is an isomorphism when R is cofibrant as an orthogonal C),-spectrum or as a

commutative ring orthogonal C),-spectrum. In this case, we can get a p-cyclotomic
structure map if we have one on R of the following form:

Definition 8.7. For p|n, a C,, p-cyclotomic spectrum consists of an orthogonal
Cp-spectrum X together with a map of orthogonal C),-spectra

t: NGm %X — X
n/p
that induces a weak equivalence from the derived composite functors.

Proposition 8.8. Assume p|n and let R be a associative ring orthogonal C, -

spectrum with a C, p-cyclotomic structure such that the structure map t is a ring
St .

map. Then N¢g R has the natural structure of a p-cyclotomic spectrum.

At present, we do not know if the previous proposition is interesting. For any
(non-equivariant) ring orthogonal spectrum R’, R = NS R’ satisfies the hypothesis
of the previous proposition, and NgiR ~ N5 "R’. We know of no other examples.

9. FIRST EXAMPLES OF 4TC

In this section, we begin to study the computational aspects of 4T R and 4TC.
We discuss relative analogues of standard classical computations of TR and T'C.
In the following section we construct a number of spectral sequences to compute
the relative TR. We intend to return to more detailed calculations in future work.

We begin by computing 4THH(A), sATR(A), and sTC(A). Non-equivariantly,
the isomorphism A Ag A = A implies that A, THH(A) = A. The equivariant
structure on 4T H H(A) arises from the description

ATHH(A) = AN Sgi.
That is, the cyclotomic structure is entirely induced from the cyclotomic structure

on the (equivariant) sphere spectrum. In order to use this observation to compute
ATR(A) and ATC(A), we need the following lemma.
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Lemma 9.1. Let Z be an orthogonal spectrum (regarded as an orthogonal G-
spectrum with trivial action) and X an orthogonal G-spectrum on a universe U.
Then for any closed subgroup H C G the natural composite map in the stable cate-
gory

ZANXH 5 ZHAXH 5 (ZAX)H

is an isomorphism.

Proof. 1t suffices to consider the case when Z is a finite complex. Then we have
an isomorphism in the equivariant stable category Z A X ~ F(DZ, X) where DZ
denotes the dual and F' the mapping spectrum functor (cotensor of the equivariant
stable category enriched over the stable category). Then we have

ZANX)E ~F(DZ, X! ~F(DZ X"~ 2z X"
and it is straightforward to identify this weak equivalence with the map above. [
Coupled with the identification of AT Wﬁ (g lﬂabove the arguments i EII §5)

allow the computation of 4TC(A). (See or the version of [I1, 5.15]
needed here for the last equlvalence below

Proposition 9.2. There are p-equivalences
ATR(A) ~lim(AANTR™(S)) ~, AV [[(AABCy»)
ATC(A) ~lm(ANTC™(S)) ~, ANTC(S).
Indeed, the arguments in ﬁ{ﬁ are stated in terms of “spherical group rings”

S[T] = ¥°°T'; where T is a group-like topological monoid. For relativ I;Z;[C we
should consider the group A-algebra A[l[] dseAl'/\ S[I']. The argument for [1I, 5.17]

rac
extends to the relative context (see also [29] or the version of this argument

we need) and we obtain the following theorem.

Theorem 9.3. Let ' be a group-like monoid. There is a p-equivalence
ATC(A[L]) ~, ANTC(S[T]).

The spherical group ring is an example of a Thom spectrum for the trivial
sifying map. More generally, the computation of the THH of Thom spectra %]ﬁg%
extends t, the goptext 2of the relative TH H of the generalized Thom spectra over
BGL; A F j_Wmstudy this issue in future work.

10. SPECTRAL SEQUENCES FOR ATR
sec:spectralsequences

In this section we present four spectral sequences for computing 4T R. In each
case we actually have two spectral sequences, one graded over the integers and
a second graded over RO(S'). We follow the modern convention of denoting an
integral grading with * and an RO(S!)-grading with x. Although the two look
formally similar, th VA6 a%%algifferent computationally, for reasons explained in

the introduction to [[24]: the Tor terms are computed using very different notions

of projective module. Specifically, for V' a non-trivial representation Ei_)(EVR)

cannot be expected to be projective as a E(k_)R Mackey functor module; however,

Ei_)(EVR) is of course projective as a =R Mackey functor module, being just a

shift of the free module Eif)R.



32 V.ANGELTVEIT, A.BLUMBERG, T.GERHARDT, M.HILL, T.LAWSON, AND M.MANDELL

10.1. The absolute to relative spectral sequence. The equivariant homotopy
1

groups 7 (N5' R) are the T R-groups TR"(R) and so 75" (4N R) are by defini-

tion the relative T'R-groups 4T R (R).

Notation 10.1. Let
TR)(R) =
ATR)(R) =

(NSY(R))
(AN (R))

€

(NS(R)) TR (R)=x

¢
(ANS'(R)) ATR{(R) = 7t

ES:
xt

rext 1
Using the isomorphism of Proposition %FM
1 1
ANf (R) = N? (R) Ansta Agt,

i sMande112
we can apply the Kiinneth spectral sequences of HHZeYIW sfoancc?mpute the relative T R-
TOlpS alfggpbthe absolute T'R-groups and Mackey functor Tor. Technically, to apply
F and for ease of statement, we restrict to a finite subgroup H < S?'.

Theorem 10.2. Let A be a cofibrant commutative orthogonal spectrum and let R
be a coftbrant associative A-algebra or cofibrant commutative A-algebra. For each
finite subgroup H < S*, there is a natural strongly convergent spectral sequence of
H-Mackey functors
=) _ _
Tor =" W(TRO(R),nl 7 (Ar)) = ATRO(R),

compatible with restriction among finite subgroups of S*.

Compatibility with restriction among finite subgroups of S* refers to the fact that
for H < K, the restriction of the K-Mackey functor Tor to an H-Mackey functor
is canonically isomorphic to the H-Mackey functor Tor and the corresponding iso-
morphism on E*°-terms induces the same filtration on m,. (Free K-Mackey functor
modules restrict to free H-Mackey functor modules essentially because finite K-sets
restrict to finite H-sets.)

We also have corresponding Kunneth spectral sequences graded on RO(H) for
H < S' or RO(S'). We choose to state our results in terms of the RO(S')-
grading because this makes the behavior of the restriction among subgroups easier
to describe; in the following theorem, x denotes the RO(S*)-grading.

Theorem 10.3. Let A be a cofibrant commutative orthogonal spectrum and let R
be a cofibrant associative A-algebra or cofibrant commutative A-algebra. For each
finite subgroup H < S*, there is a natural strongly convergent spectral sequence of
H-Mackey functors

) _ - _
Tor! = W(TRI(R).5 7 (Ar) = ATRO(R),
compatible with restriction among finite subgroups of S*.

10.2. The simplicial filtration spectral sequence. The spectral sequence of the
preceding subsection essentially gives a computation of the relative theory in terms
of absolute theory. More often we expect to use the relative theory to compute the
absolute theory. Non-equivariantly, the isomorphism

eq:changebaseringtxt | (10.4) THH(R)NAZ ,THH(RAA)
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gives rise to a Kiinneth spectral sequence

Torﬁi(RAsROP)(A*(R),A*(R)) = A THH(R)).

An Adams spectral sequence can then in practice be used to com ggeeggsee?{)n otopy
groups of THH(R). For formal reasons, the isomorphism (M_sﬁﬂmgeﬁnv—
ariantly, but now we have three different versions of the non-equivariant Kiinneth
spectral sequence (none of which ave llg;clgi%gtgltegant an E%-term) which we use
in conjunction with equation ).

The first equivariant spectral sequence generalizes the Kiinneth spectral sequence
in the special case when 7, A is a field. Non-equivariantly, it derives from the
simplicial filtration of the cyclic bar construction; equivariantly, we restrict to a
finite subgroup C,, < S! and look at the simpli 'alz,[%Ltl;ation on the nth edgewise
subdivision (described in the proof of Theorem ;

Theorem 10.5. Let A be a cofibrant commutative orthogonal spectrum and let R
be a cofibrant associative A-algebra or cofibrant commutative A-algebra. Let H be
a finite subgroup of S*

(1) There is a natural spectral sequence strongly converging to the integer graded

H-Mackey functor ATRSf)(R) with E'-term
E}, = m(aN (RNEHD)).

(2) There is a natural spectral sequence strongly converging to the RO(S')—
graded H-Mackey functor ATR7)(R) with E*-term

Bl =n(aNI(RNTD)),

The E2-terms of both spectral sequences are compatible with restriction among finite
subgroups of S*.

To see the compatibility with restriction among subgroups, we note that for
H = C,,n, the E%-term (Efﬁ)c’" is the homology of the simplicial object

sd,, 7Em ((NCm A)NeFD),

For H < K, the subdivision operators then induce an isomorphism on Fs-terms.

In general, we do not know how to describe the E?-term of these spectral se-
quences. One can formulate box-flatness hypotheses that would permit the id, ~Hoch
tification of the E?-term as a kind of Mackey functor Hochschild homology K?T?]g,;
however, such hypotheses will rarely hold in practice. On the other hand, when
A = HF for F a field, for formal reasons, the E'-term is a purely algebraic functor
of the graded vector space m, R. We conjecture that the E2-term is a functor of the
graded F-algebra 7, R.

10.3. The cyclic filtration spectral sequence. We have a second spectral se-

quenceari gpﬁélc“%g _Ege filtration on cyclic objects constructed by Fiedorowicz and
Gajda [T7]. ATthough they work in the context of spaces, their arguments generalize

to provide an Fgi,-equivalence
[EXe| — | X
for cyclic orthogonal spectra, where F is the evident orthogonal spectrum general-

ization of the construction in their Definition 1,

EX, = Xy A A(s, [m])-.

[m] eAface
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The proof of their Proposition 1 (which in fact only gives an Fgin-equivalence for
spaces) also applies in the orthogonal spectrum context, substituting geometric
fixed points for fixed points, to prove the Fri,-equivalence for orthogonal spectra.
Change of universe ZY.. commutes with geometric realization, and we use the coend
filtration of EX, for Xe = N’ R to obtain the following Fiedorowicz-Gajda cyclic
filtration spectral sequences.

Theorem 10.6. Let A be a cofibrant commutative orthogonal spectrum and let R
be a cofibrant associative A-algebra or cofibrant commutative A-algebra. Let H be
a finite subgroup of S'.
(1) There is a natural spectral sequence of integer graded H-Mackey functors
strongly converging to ATR7(R) with E'-term
R/\(erl))).

s+1

Eé,t =Ty (In[@]oo (S-1|- Ao

(2) There is a natural spectral sequence of RO(S')-graded H-Mackey functors
strongly converging to ATR,(f)(R) with E'-term

E;T = ET(I]I[R]“’ (SJlr /\Cs+1 R/\(S+1)))'
The E'-terms are compatible with restriction among finite subgroups of S'.

10.4. The relative cyclic bar construction spectral sequence. The third
spectral sequence directly involves Mackey functor Tor. For an A-algebra R, let

SN S”R denote the (4 N9 R, , N R)-bimodule obtained by twisting the left action
of ANY"R on 4N R by the generator g = e2™/™ of C,,. We can identify the C),-
homotopy type of 4N f "R in terms of this bimodule,

AN R= ZYNZ (AN RGN R),

where the cyclic bar construction on the right is taken in the symmetric monoidal
category of A-modules in orthogonal C,-spectra and U = 1., U denotes U viewed
as a compl te, .g&é}ﬁgﬂgrse. A consequence of this description is that the main
theorem of E“ZYI constructing the equivariant Kunneth spectral sequence applies:

Theorem 10.7. Let A be a cofibrant commutative orthogonal spectrum and let R
be a cofibrant associative A-algebra or cofibrant commutative A-algebra. Fiz n > 0.

(1) There is a natural strongly convergent spectral sequence of integer graded
Cn-Mackey functors

EZ, = MNE"(R/\AROP)(E*ANEC%R7 E*‘Z;NS"R) — ATRO(R).

(2) There is a natural strongly convergent spectral sequence of RO(S')-graded
Chn-Mackey functors

Ef)* = mNgn(RAAROP)(E*ANSnRvE*%NSHR) [ ATRSi)(R).

kK

We see no reason why the E?-terms for the spectral sequences of the previous
theorem should be compatible under restriction among finite subgroups of S*.
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11. ADAMS OPERATIONS

In this section, we study the circle power operations on T'H H (R) for a commuta-
tive ring R and on 4T H H (R) for a commutative ebra R. Such operations WEL | nhaberSchack
first defined on Hochschild E\fogm%g y by Loday %%gnd Gerstenhaber-Schack [18]

and explaine McCarthy 321 in terms of covering maps of the circle and extended
to THH by 32[ Following [[T2Z, 4.5.3], w réefeé to, these as Adams operations and
denote as Y" though in older literature [[27] , the Adams operations differ
by a factor of the operation number 7). Spec1ﬁcally, we study how the operations
interact with the equivariance, and we show that when 7 is prime to p, ¥" descends
to an operation on TR(R), TC(R), and in g commutative A-algebra context to
an operation on ATR(R) and 4TC(R), cf. [IZ, §7]. We study the effect of ¢" on
ATRy(R) and 4T'Cy(R), where it is shown to be the identity when R is connective.

We recall the construction of McCarthy’s Adams operations, which ultimately
derives from the identification of N’ 'R as the tensor R ® S' in the category of
commutative A-algebras. Using the standard model for the circle as the geometric
realization of a simplicial set S! (with one 0-simplex and one non-degenerate 1-
simplex), the tensor identification is just observing that Ny R is the simplicial
object obtained by taking S! coproduct factors of R in simplicial degree e,

NY*R=R® S!.
The operation ¥" is induced by the r-fold covering map
gr: St — St e s erf,
after tensoring with R.

Definition 11.1. Let A be a commutative ring orthogonal spectrum and R a com-
mutative A-algebra. For r # 0, the Adams operation

V" A\THH(R) — ATHH(R)

is the map of (non-equivariant) commutative A-algebras obtained as the tensor of
R with the quotient map ¢,: S — S'.

We will study the equivariance of 3" using the C),-action that arises on the
edgewise subdivision of a cyclic set. To make this section more self-contained,
we again recall from [[I1, §1] how this works. There is a natural homeomorphism

I |sdy, X| — | X|

for the n-fold edgewise subdivision of a simplicial space or simplicial orthogonal
spectrum and the canonical isomorphism of simplicial %Hjects sd,sds X — sd,s X,
which together make the following diagram commute 1T}, 1.12]:

|sd, sds X| —— | sdys X|

eq:subdiv-compat ‘ (11.2) Jrl lém
|sds X| ——— |X].

When X has a cyclic structure, sd,, X comes with a natural C,-equivariant structure
which on the geometric realization is the restriction to C,, of the natural S!-action;
moreover, in the diagram above, the left hand isomorphism is Cs-equivariant Fﬁ%ﬂ}
1.7-8].
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thm:AdamsTR
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We have a simplicial model of " by McCarthy’s observation that g, is the geo-
metric reglization of a quotient map of simplicial sets sd, Sg — S. By naturality,
diagram ; is compafible with this quotient map.

Proposition 11.3. Let A be a commutative ring orthogonal spectrum and R a
commutative A-algebra. For r # 0 and n relatively prime to r, the restriction of g,
is the multiplication by r isomorphism C,, — C, and the Adams operations ¥" is a
map of commutative ring orthogonal Cy,-spectra

T

P Lz«nANeSlR — q*L*CnANflR.
Moreover, for s relatively prime to n, the formula
1 1
()" (%) 0" =™ 15 AN R — 16, aNE R
holds.

Proof. As above, the r-fold covering map defining the Adams operations becomes
a Cp-equivariant map

sd, (sd, S’l) — (g |c,)*(sdy, S’l).

Tensoring levelwise and applying I]goo, we obtain a map of simplicial commutative
A-algebras
TV (R® (sdy, sd, 1)) — ¢* T (R ® sd,, SY).
X :subdiv-compat R X X
The result now follows from diagram ( | i'i; and its compatibility with the covering
projections g, . (|

In the case when p /r, the previous proposition shows that in particular the
operation ¢" should pass to categorical Cpn-fixed points (in the derived category
of A). Taking fibrant replacements, we get a map (of non-equivariant A-modules)

s 1 C n 1 C n
W' (aNZ R);™ — (aN7 R);”
making the diagram

1 Cpn P" 1 Cpn
(AN7 R);™ —— (aNJ R);™

| v

L Cn L Cyn
(ANeSR)f T(ANeSR)f

s

commute, where F' is the natural inclusion of fixed-points. Passing to the homotopy
limit, we get an Adams operation ¢" on AT R(R).

Theorem 11.4. Let A be a commutative ring orthogonal spectrum and R a com-
mutative A-algebra. For p [r, the Adams operation ¥ induces a map

Y ATR(R) — ATR(R)
natural in the derived category of A.

We next argue that for p fr, the Adams operation ¢" descends to ATC(R).



thm: AdamsTC

thm:AdamspiO

cor:AdamsTCpiO
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Theorem 11.5. Let A be a commutative Ting orthogonal spectrum and R a com-
mutative A-algebra. For p fr, the Adams operation " induces a map

Y ATC(R) — ATC(R)
natural in the derived category of A.

Proof. 1t suffices to consider the case when R is cofibrant as a commutative A-
algebra and to show that " commutes with the cyclotomic structure map t,, or
equivalently, its inverse isomorphism

. St * 3 Cp U cyc
Tp: ANZ — pp @ rTpo|sd, NXTR|.

L. . :subdiv-compat
This is clear from the naturality of “ ii; (I

Finally, we provide the following computation for the action of the Adams oper-
ations on oATRy and 4TC,.

Theorem 11.6. Let A be a commutative ring orthogonal spectrum and R a com-
mutative A-algebra. Assume that R is connective. Then for p /lr, the Adams
operation Y acts by the identity on AT Ry(R).

Proof. Under the hypothesis of connectivity,
ATRy(R) = moATR(R) 2 moTR(R) & moTR(HmoR)

and so it suffices to consider the case when A = S and R = HmpR. Writing
Ry = moR, byofﬁ Addendum 2. 3], we have a canonical isomorphism of TRo(R)

with the p-typical Witt ring W(Rp) and canonical isomorphisms of 7TO "TR(R)
with W,,41(Ro), the p-typical Witt vectors of length n 4+ 1. Letting Ry vary over
all commutative rings, ¥" then restricts to a natural transformation 7, , ; of rings
Wht1(=) = Wai1(—). We complete the proof by arguing that this natural trans-
formation is the identity.

Since Wi, y1 is representable, it suffices to prove that 1], is the identity when
Ry is the representing object Z[zo, . .., xy], or, since this is torsion free, when Ry =
Qlz—,...,x,]. A fortiori, it sufﬁces to prove %), is the identity when Ry is a
Q-algebra. Since for a Q-algebra W,,1(Rp) is isomorphic as a ring to the cartesian
product of n + 1 copies of Ry via the ghost coordinates, the only possible natural
ring endomorphisms of W, 1 are the maps that permute the factors. Since "
commutes with the restriction map R on TR(R), and on the ghost coordinates
the restriction map induces the projection onto the first n factors, it follows by
induction that ] is the identity. (|

Since a connective commutative A-algebra R admits a canonical map of com-
mutative A-algebras R — HmgR, we obtain the following corollary of the previous
theorem and its proof.

Corollary 11.7. Let A be a commutative ring orthogonal spectrum and R a com-
mutative A-algebra. Assume that R is connective and that p fr. Then 4TCy(R)
has the Frobenius invariants of W(moR) as a quotient and the action of ¢¥" descends
to the identity map on this quotient.
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12. MADSEN’S REMARKS
adsenTraces

In his CDM notes [29; p. 218], Madsen describes the restriction map, and notes
that the inverse is not as readily accessible even in the algebraic setting since
“A(r) = r® -+ ®r is not linear”. In our framework, we naturally get the in-
verse to the cyclotomic structure map, rather than the cyclotomic structure map
itself. At first blush, this poses a curious contradiction. The answer arises from the
transfer: v — v®? is linear modulo the ideal generated by the transfer, and this is
exactly the ideal killed by &%,

The observation that the ideal killed by ®¥ coincides with the ideal generated
by the transfer is essentially formal from the definition: ®#(X) = (X A EP)H is
a composite of the categorical fixed points with the localization killing cells of the
form S'/K for K a proper subgroup of H. Computationally, this means that all
transfers from proper subgroups of H are killed.

The observation that the algebraic diagonal map is linear modulo the transfer
is more interesting and relies on quite elementary algebra (undoubtedly familiar to
the readers with experience with TNR-functors). Consider the C,-module

NE» (Z{z,y}) = (Z{z,y})",

where Z{z,y} is the free abelian group on the set {z,y}. Inside is the element
(z+y)®P, which is obviously in the fixed points of the Cj-action. Madsen’s remark
is essentially that (z + y)®P is not z®P + y®P. We can expand (z + y)®? using a
non-commutative version of the binomial theorem as follows. Observing that the
full symmetric group X, acts on the tensor power (and the C, action is just the
obvious restriction), if we group all terms with 4 tensor factors of x and p — i tensor
factors of y, then we see that the symmetric group permutes these and a subgroup
conjugate to X; x X,_; stabilizes each element. We therefore see that the sum of
all of such terms for a fixed 7 can be expressed as the transfer

TrngEpfi $®i ® y®(p_i)'

Letting ¢ vary and summing the terms (and then restricting back to C}) shows that

p—1
(z + y)®P = 2®P 4¢P 4 Resg: (Z Trgfxxp,i x®zy®(p_z)).
i=1
All of the terms involving transfers are in the ideal generated by transfers by defi-
nition, and so we conclude that the pt* power map is linear modulo these.

The story is actually a bit more complex, as we illustrate with an algebraic
example. In algebra, the fixed points of G-module play the role of the geometric
fixed points in equivariant stable homotopy theory.

Let p = 2, and let R = Z[z]. Then the two-fold tensor power, Cs-equivariantly,
is

Z[Cy - x] = Z[z, gx].
The transfer ideal is generated by 2 and x + gz, and modulo 2 and z + gz, the map
x +— x - gx induces the canonical surjection

Zz] — Z|zx - gx).

In this example, the map from R to the fixed points of R®? is not an isomorphism;
we can interpret the failure to be an isomorphism as a failure to correctly interpret
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the transfer of the element 1. In particular, restricting to the submodule generated
by 1 we implicitly computed
N7, =17,

endowed with the trivial action. To better model the genuine equivariant story,
we must use a richer algebraic norm (the Tambara functor valued norm). For our
purposes, this is the left-adjoint to the forgetful functor from Tambara functors to
commutative rings.

An explicit construction of the left adjoint is 7y N (H R), reflecting the fact that
for this richer norm, the algebraic model much better approximates the stable story.
For G = Cy and for R = Z[z], the fixed points are the ring

with the elements ¢ and y the transfers of 1 and x respectively. Thus, modulo the
image of the transfer, this ring is simply Z[z - gz], and the norm map x — z - gx is
an isomorphism.
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