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Abstract

Biological brains can adapt and learn from past experience. Yet neuroevolution, that is, automatically creating
artificial neural networks (ANNs) through evolutionary algorithms, has sometimes focused on static ANNs that
cannot change their weights during their lifetime. A profound problem with evolving adaptive systems is that
learning to learn is highly deceptive. Because it is easier at first to improve fitness without evolving the ability to
learn, evolution is likely to exploit domain-dependent static (i.e., nonadaptive) heuristics. This article analyzes this
inherent deceptiveness in a variety of different dynamic, reward-based learning tasks, and proposes a way to
escape the deceptive trap of static policies based on the novelty search algorithm. The main idea in novelty search is
to abandon objective-based fitness and instead simply search only for novel behavior, which avoids deception
entirely. A series of experiments and an in-depth analysis show how behaviors that could potentially serve as a
stepping stone to finding adaptive solutions are discovered by novelty search yet are missed by fitness-based
search. The conclusion is that novelty search has the potential to foster the emergence of adaptive behavior in

reward-based learning tasks, thereby opening a new direction for research in evolving plastic ANNS.
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I. Introduction

Neuroevolution (NE), that 1is, evolving artificial
neural networks (ANNs) through evolutionary algo-
rithms, has shown promise in a variety of control
tasks (Floreano, Diirr, & Mattiussi, 2008; Reil &
Husbands, 2002; Stanley, Bryant, & Miikkulainen,
2005; Stanley & Miikkulainen, 2002; Yao, 1999).
However, the synaptic connections in ANNs produced
by NE are normally static, which may limit the adap-
tive dynamics the network can display during its life-
time (Blynel & Floreano, 2002). While some tasks do
not require the network to change its behavior, many
domains would benefit from online adaptation. In other
words, whereas evolution produces phylogenetic adap-
tation, learning gives the individual the possibility to
react much faster to environmental changes by modify-
ing its behavior during its lifetime. For example, a
robot that is physically damaged should be able to
adapt to its new circumstances without the need to
re-evolve its neurocontroller. In this way, when the
environment changes from what was encountered
during evolution, adapting online is often necessary to
maintain performance.

There is much evidence that evolution and learning
are both integral to the success of biological evolution
(Mayley, 1997; Nolfi & Floreano, 1999) and that life-
time learning itself can help to guide evolution to higher
fitness (Hinton & Nowlan, 1987). Thus NE can benefit
from combining these complementary forms of adapta-
tion by evolving ANNs with synaptic plasticity driven
by local learning rules (Baxter, 1992; Floreano &
Urzelai, 2000; Stanley, Bryant & Miikkulainen, 2003).
Synaptic plasticity allows the network to change its
internal connection weights based on experience
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during its lifetime. It also resembles the way organisms
in nature, which possess plastic nervous systems, cope
with changing and unpredictable environments
(Floreano & Urzelai, 2000; Niv, Joel, Meilijson, &
Ruppin, 2002; Soltoggio, Bullinaria, Mattiussi, Diirr,
& Floreano, 2008). In this article, the term plastic
ANNs refers in particular to ANNs that can accord-
ingly change their connection weights during their life-
time, while the term adaptive ANNs refers to the larger
class of ANNSs that can adapt through any means (e.g.,
through recurrent connections). In a recent demonstra-
tion of the power of the plastic approach, Soltoggio
et al. (2008) evolved plastic Hebbian networks with
neuromodulation, that is, in which some neurons can
enhance or dampen the neural plasticity of their
target nodes, that acquired the ability to memorize
the position of a reward from previous trials in a
T-maze learning problem. However, evolving adaptive
controllers for more complicated tasks has proven dif-
ficult in part because learning to learn is deceptive,
which is the focus of this article.

Objective functions often exhibit the pathology of
local optima (Goldberg, 2007; Mitchell, Forrest, &
Holland, 1991) and the more ambitious the goal, the
more likely it is that search can be deceived by subopti-
mal solutions (Lehman & Stanley, 2008, 2010a). In par-
ticular, if fitness does not reward the stepping stones that
lead to the final solution in the search space, fitness-
based search may be led astray. Deception in domains
that require adaptation is particularly pathological for
two primary reasons: (1) Reaching a mediocre fitness
through nonadaptive behavior is often relatively easy,
but any further improvement requires an improbable
leap to sophisticated adaptive behavior, and (2) only
sparse feedback on the acquisition of adaptive behavior
is available from an objective-based performance mea-
sure. Because it is easier at first to improve fitness with-
out evolving the ability to learn, objective functions may
sometimes exploit domain-dependent static (i.e., nona-
daptive) heuristics that can lead them further away from
the adaptive solution in the genotypic search space, as
analysis in this article will confirm. Because of the pro-
blem of deception in adaptive domains, prior experi-
ments in evolving plastic ANNs have needed to be
carefully designed to ensure that no nonadaptive heur-
istics exist that could potentially lead evolution prema-
turely astray. This awkward requirement has
significantly limited the scope of domains amenable to
adaptive evolution and stifled newcomers from entering
the research area.

To remedy this situation and open up the range of
problems amenable to evolving adaptation, this article
proposes that the novelty search algorithm (Lehman &
Stanley, 2008) which abandons the traditional notion of
objective-based fitness, circumvents the deception

inherent in adaptive domains. Instead of searching for
a final objective behavior, novelty search rewards find-
ing any instance whose behavior is significantly differ-
ent from what has been discovered before. Surprisingly,
this radical form of search has been shown to outper-
form traditional fitness-based search in several decep-
tive domains (Lehman & Stanley, 2008, 2010b, 2010c;
Mouret, 2009), suggesting that it may be applicable to
addressing the problem of deception in evolving plastic
ANNSs, which is the focus of this article.

To demonstrate the potential of this approach, this
article first compares novelty search to fitness-based
evolution in a dynamic, reward-based single T-maze
scenario first studied in the context of NE by Blynel
and Floreano (2003) and further investigated by
Soltoggio et al. (2008) to demonstrate the advantage
of neuromodulated plasticity. In this scenario, the
reward location is a variable factor in the environment
that the agent must learn to exploit. Because the aim of
this article is to show that novelty search solves parti-
cular difficult problems in the evolution of plastic net-
works and it has been shown that neuromodulation is
critical to those domains (Soltoggio et al., 2008), all
evolved ANNs employ this most effective form of
plasticity.

Counterintuitively, novelty search significantly out-
performs regular fitness-based search in the T-maze
learning problem because it returns more information
about how behavior changes throughout the search
space. To explain this result and understand the
nature of deception in this domain, the locus of decep-
tion in the T-maze is uncovered through a Sammon’s
mapping  visualization that shows how fitness-
based search and novelty search navigate the high-
dimensional genotypic search space. The main result
is that genotypes that are leveraged by novelty search
as stepping stones can in fact lead fitness-based search
astray.

Furthermore, deceptiveness in reward-based scenar-
ios can increase when learning is only needed in a low
percentage of trials. In that case, evolution is trapped in
local optima that do not require learning at all because
high fitness is achieved in the majority of trials. By
varying the number of times the reward location
changes in the T-maze domain, the effect of adaptation
on the fitness function can be controlled to make the
domain more or less deceptive for objective-based
fitness. While fitness-based search performs worse
with increased domain deception (as one would
expect), novelty search is not significantly affected,
suggesting an intriguing new approach to evolving
adaptive behavior. The interesting aspect of this obser-
vation is that novelty search both solves the problem
and solves it in a general way despite lacking any
incentive to do so.
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Additional experiments in the more complicated
double T-maze domain and a bee foraging task add
further evidence to the hypothesis that novelty search
can effectively overcome the deception inherent in
many dynamic, reward-based scenarios. In these
domains, novelty search still significantly outperforms
fitness-based search under an increased behavioral
search space and raised domain complexity.

The article begins with a review of novelty search
and evolving adaptive ANNs in the next section. The
T-maze domain is then described in Section 3, followed
by the experimental design in Section 4. Results are
presented in Section 5 and a detailed analysis of the
inherent deception in the T-maze domain is conducted
in Section 6. The double T-maze and bee domain
experiments are described in Section 7. The article con-
cludes with a discussion and ideas for future work in
Section 8.

2. Background

This section first reviews novelty search, which is the
proposed solution to deception in the evolution of
learning. Then an overview of evolving plastic ANNs
is given, focusing on the neuromodulation-based model
followed in this article. The section concludes with a
description of NEAT, which is augmented in this article
to encode neuromodulated plasticity.

2.1 The search for novelty

The problem with the objective fitness function in evo-
lutionary computation is that it does not necessarily
reward the intermediate stepping stones that lead to
the objective. The more ambitious the objective, the
harder it is to identify a priori these stepping stones.

This article hypothesizes that evolving plastic ANNs
is especially susceptible to missing the essential inter-
mediate stepping stones for fitness-based search and is
therefore highly deceptive. Reaching a mediocre fitness
through nonadaptive behavior is relatively easy, but
any further improvement requires sophisticated adap-
tive behavior with only sparse feedback from an objec-
tive-based performance measure. Such deception is
inherent in most dynamic, reward-based scenarios.

A potential solution to this problem is novelty
search, which is a recent method for avoiding deception
based on the radical idea of ignoring the objective
(Lehman & Stanley, 2008, 2010a). The idea is to iden-
tify novelty as a proxy for stepping stones. That is,
instead of searching for a final objective, the learning
method is rewarded for finding any behavior whose
functionality is significantly different from what has
been discovered before. Thus, instead of an objective
function, search employs a novelty metric. That way,

no attempt is made to measure overall progress. In
effect, such a process gradually accumulates novel
behaviors. This idea is also related to the concept of
curiosity and seeking novelty in reinforcement learning
research (Schmidhuber, 2003, 2006).

Although it is counterintuitive, novelty search was
actually more effective at finding the objective than a
traditional objective-based fitness function in a decep-
tive navigation domain that requires an agent to navi-
gate through a maze to reach a specific goal location
(Lehman & Stanley, 2008; Mouret, 2009), in evolving
biped locomotion (Lehman & Stanley, 2010a), and in
evolving a program for an artificial ant benchmark task
(Lehman & Stanley, 2010b). Thus novelty search might
be a solution to the longstanding problem with training
for adaptation.

The next section describes the novelty search algo-
rithm (Lehman & Stanley, 2008) in more detail.

2.1.1 The novelty search algorithm. Evolutionary
algorithms are well-suited to novelty search because
the population that is central to such algorithms natu-
rally covers a wide range of expanding behaviors. In
fact, tracking novelty requires little change to any evo-
lutionary algorithm aside from replacing the fitness
function with a novelty metric.

The novelty metric measures how different an indi-
vidual is from other individuals, creating a constant
pressure to do something new. The key idea is that
instead of rewarding performance on an objective, the
novelty search rewards diverging from prior behaviors.
Therefore, novelty needs to be measured.

There are many potential ways to measure novelty
by analyzing and quantifying behaviors to characterize
their differences. Importantly, like the fitness function,
this measure must be fitted to the domain.

The novelty of a newly generated individual is com-
puted with respect to the observed behaviors (i.e., not
the genotypes) of an archive of past individuals whose
behaviors were highly novel when they originated.
In addition, if the evolutionary algorithm is steady
state (i.e., one individual is replaced at a time) then
the current population can also supplement the archive
by representing the most recently visited points. The
aim is to characterize how far away the new individual
is from the rest of the population and its predecessors
in novelty space, that is, the space of unique behaviors.
A good metric should thus compute the sparseness at
any point in the novelty space. Areas with denser clus-
ters of visited points are less novel and therefore
rewarded less.

A simple measure of sparseness at a point is the
average distance to the k-nearest neighbors of that
point, where k is a fixed parameter that is determined
experimentally. Intuitively, if the average distance to a
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given point’s nearest neighbors is large then it is in a
sparse area; it is in a dense region if the average distance
is small. The sparseness p at point x is given by

1 k
px) =7 ) dist(x, o), (1
i=1

where p; is the ith-nearest neighbor of x with respect to
the distance metric dist, which is a domain-dependent
measure of behavioral difference between two indivi-
duals in the search space. The nearest neighbors calcu-
lation must take into consideration individuals from the
current population and from the permanent archive of
novel individuals. Candidates from more sparse regions
of this behavioral search space then receive higher
novelty scores. It is important to note that this novelty
space cannot be explored purposefully, that is, it is not
known a priori how to enter areas of low density just as
it is not known a priori how to construct a solution
close to the objective. Thus moving through the space
of novel behaviors requires exploration. In effect,
because novelty is measured relative to other individuals
in evolution, it is driven by a coevolutionary dynamic.

If novelty is sufficiently high at the location of a new
individual, that is, above some minimal threshold p,),;,,
then the individual is entered into the permanent
archive that characterizes the distribution of prior solu-
tions in novelty space, similarly to archive-based
approaches in coevolution (De Jong, 2004). The current
generation plus the archive give a comprehensive sam-
ple of where the search has been and where it currently
is; that way, by attempting to maximize the novelty
metric, the gradient of search is simply toward what
is new, with no other explicit objective. To ensure
that the archive continues to push the search to new
areas and does not expand too fast, the threshold p,),;, is
adjusted dynamically (e.g., by lowering p,,;, if no new
individuals are added during a certain number of eva-
luations) to maintain a healthy rate of expansion.

It is important to note that novelty search resembles
prior diversity maintenance techniques (i.e., speciation)
popular in evolutionary computation (Darwen & Yao,
1996; Goldberg & Richardson, 1987; Hornby, 2006;
Hu, Goodman, Seo, Fan, & Rosenberg, 2005;
Mahfoud, 1995). The most well known are variants of
fitness sharing (Darwen & Yao, 1996; Goldberg &
Richardson, 1987). These also in effect open up the
search by reducing seclection pressure. However, in
these methods, as in Hutter’s fitness uniform selection
(Hutter & Legg, 2006), the search is still ultimately
guided by the fitness function. Diversity maintenance
simply keeps the population more diverse than it
otherwise would be. Also, most diversity maintenance
techniques measure genotypic diversity as opposed to

behavioral diversity (Darwen & Yao, 1996; Mahfoud,
1995). In contrast, novelty search takes the radical step
of only rewarding behavioral diversity with no concept
of fitness or a final objective, inoculating it to tradi-
tional deception.

Other related methods seek to accelerate search
through neutral networks by recognizing neutral areas
in the search space (Barnett, 2001; Stewart, 2001).
Stewart (2001) explicitly rewards drifting further away
in genotype space from the center of the population
once a neutral network is encountered. Similarly,
Barnett (2001) seeks to accelerate movement across a
neutral network of equal objective fitness by reducing
the population to one individual. However, identifying
when the search is actually stalled may be difficult in
practice and while such approaches potentially decrease
the search complexity, finding the objective might still
take a long time depending on the deceptiveness of the
task.

It is also important to note that novelty search is not
a random walk; rather, it explicitly maximizes novelty.
Because novelty search includes an archive that accu-
mulates a record of where search has been, backtrack-
ing, which can happen in a random walk, is effectively
avoided in behavioral spaces of any dimensionality. In
this way, novelty search resembles tabu search (Glover
& Laguna, 1997), which keeps a list of potential solu-
tions to avoid repeatedly visiting the same points.
However, tabu search still tries to measure overall pro-
gress and therefore can be potentially led astray by
deception.

The novelty search approach in general allows any
behavior characterization and any novelty metric.
Although generally applicable, novelty search is best
suited to domains with deceptive fitness landscapes,
intuitive behavioral characterization, and domain con-
straints on possible expressible behaviors.

Changing the way the behavior space is character-
ized and the way characterizations are compared will
lead to different search dynamics, similarly to how
researchers now change the fitness function to improve
the search. The intent is not to imply that setting up
novelty search is easier than objective-based search.
Rather, once novelty search is set up, the hope is that
it can find solutions beyond what even a sophisticated
objective-based search can currently discover. Thus the
effort is justified in its returns.

In summary, novelty search depends on the follow-
ing four main concepts:

e Individuals’ behaviors are characterized so that they
can be compared.

e The novelty of an individual is computed with
respect to observed behaviors of other individuals
and not others’ genotypes.
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e Novelty search replaces the fitness function with a
novelty metric that computes the sparseness at any
point in the novelty space.

e An archive of past individuals is maintained whose
behaviors were highly novel.

The evolutionary algorithm that evolves neuro-
modulated plastic networks (explained later in
Section 2.3) through novelty search in this article is
NeuroEvolution of Augmenting Topologies (NEAT;
Stanley & Miikkulainen, 2002), which offers the ability
to discover minimal effective plastic topologies.

The next section reviews the evolution of adaptive
ANNSs and details the model for neuromodulated plas-
ticity in this article, which is followed by an explanation
of NEAT.

2.2 Evolving adaptive neural networks

Researchers have been evolving adaptive ANNs for
more than 15 years. Early work often focused on com-
bining the built-in adaptive capabilities of backpropa-
gation with NE. For example, Nolfi and Parisi (1993,
1996) evolved self-teaching networks that trained a
motor control network through backpropagation
from the outputs of a teaching subnetwork. In separate
work, they evolved a network that learns through back-
propagation to predict what it would see after moving
around in its environment (Nolfi, Parisi, & Elman,
1994). Learning to predict the next state during the
network’s lifetime was shown to enhance performance
in a foraging task. Interestingly, Chalmers (1990)
evolved a global learning rule (i.e., a rule that applies
to every connection) and discovered that the evolved
rule was similar to the well-known delta rule used in
backpropagation. Furthermore, McQuesten and
Miikkulainen (1997) showed that NE can benefit
from parent networks teaching their offspring through
backpropagation.

Baxter (1992) performed early work on evolving
networks with synaptic plasticity driven by local learn-
ing rules, setting the stage for NE of plastic ANNSs.
He evolved a very simple network that could learn boo-
lean functions of one value. Each connection had a rule
for changing its weight to one of two possible values.
Baxter’s contribution was mainly to show that local
learning rules are sufficient to evolve a plastic network.
Floreano and Urzelai (2000) later showed that the
evolution of local (node-based) synaptic plasticity
parameters produces networks that can solve complex
problems better than recurrent networks with fixed-
weights.

In Floreano and Urzelai’s (2000) experiment, a plas-
tic network and a fixed-weight fully recurrent network
were evolved to turn on a light by moving to a switch.

After the light turned on, the networks had to move
onto a gray square. The plastic networks were com-
pared with the fixed-weight networks. Each connection
in the plastic network included a learning rule and a
learning rate. The fixed-weight network only encoded
static connection weights. The sequence of two actions
proved difficult to learn for the fixed-weight network
because the network could not adapt to the sudden
change in goals after the light was switched on.
Fixed-weight networks tended to circle around the
environment, slightly attracted by both the light
switch and the gray square. Plastic networks, on the
other hand, completely changed their trajectories after
turning on the light, reconfiguring their internal weights
to tackle the problem of finding the gray square. This
landmark result established the promise of evolving
plastic ANNs and that in fact plastic networks can
sometimes evolve faster than static networks. The
local learning rules in the evolved networks facilitated
the policy transition from one task to the other.

Plastic ANNs have also been successfully evolved
to simulate robots in a dangerous foraging domain
(Stanley et al., 2003). Although this work also showed
that recurrent fixed-weight networks can be more effec-
tive and reliable than plastic Hebbian controllers in
some domains, more recent studies (Niv et al., 2002;
Soltoggio et al., 2008; Soltoggio, Diirr, Mattiussi, &
Floreano, 2007) suggest that both network types
reach their limits when more elaborate forms of learn-
ing are needed. For example, classical conditioning
seems to require mechanisms that are not present in
most current network models. To expand to such
domains, following Soltoggio et al. (2008), the study
presented in this article controls plasticity through
neuromodulation.

2.2.1 Neuromodulated plasticity. In the plastic
ANNs presented in the previous section (e.g.,
Floreano & Urzelai, 2000; Stanley et al., 2003), the
internal synaptic connection strengths change following
a Hebbian learning rule that modifies synaptic weights
based on pre- and postsynaptic neuron activity. The
generalized Hebbian plasticity rule (Niv et al., 2002)
takes the following form:

Aw =n-[Axy + Bx+ Cy + D], 2)

where 7 is the learning rate, x and y are the activation
levels of the presynaptic and postsynaptic neurons,
and A-D are the correlation term, presynaptic term,
postsynaptic term, and constant, respectively.

In a neuromodulated network, a special neuromodu-
latory neuron can change the degree of potential plas-
ticity between two standard neurons based on their
activation levels (Figure 1). In addition to its standard
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Figure 1. Neuromodulated plasticity. The weight of the con-
nection between standard neurons n; and n, is modified by a
Hebbian rule. Modulatory neuron m determines the magnitude
of the weight change.

activation value «; each neuron i also computes its
modulatory activation m;:

a; = Z Wiji - Oj, (3)

jeStd

mi= Y wi-oj, (4)

jeMod

where wj; is the connection strength between pre-
synaptic neuron j and postsynaptic neuron i and o; is
calculated as o;(a;) = tanh(a;/2). The weight between
neurons j and i then changes following the m;modu-
lated plasticity rule

Awy; = tanh(m;/2) - n - [Aojo; + Bo; + Co; + D). (5)

The benefit of adding modulation is that it allows the
ANN to change the level of plasticity on specific neu-
rons at specific times. That is, it becomes possible to
decide when learning should szop and when it should
start. This property seems to play a critical role in reg-
ulating learning behavior in animals (Carew, Walters,
& Kandel, 1981) and neuromodulated networks
have a clear advantage in more complex dynamic,
reward-based scenarios: Soltoggio et al. (2008)
showed that networks with neuromodulated plasticity
significantly outperform both fixed-weight and tradi-
tional plastic ANNs without neuromodulation in the
double T-maze domain, and display nearly optimal
learning performance.

The next section describes NEAT, the method that
evolves plastic neuromodulated ANNSs in this article.

2.3 NeuroEvolution of Augmenting
Topologies (NEAT)

The NEAT method was originally developed to evolve
ANNS to solve difficult control and sequential decision
tasks and has proven successful in a wide diversity of
domains (Aaltonen et al., 2009; Stanley et al., 2003,

2005; Stanley & Miikkulainen, 2002; Taylor,
Whiteson, & Stone, 2006; Whiteson & Stone, 2006).
Evolved ANNSs control agents that select actions
based on their sensory inputs. NEAT is unlike many
previous methods that evolved neural networks, that is,
neuroevolution methods, which traditionally evolve
either  fixed-topology  networks (Gomez &
Miikkulainen, 1999; Saravanan & Fogel, 1995) or arbi-
trary random-topology networks (Angeline, Saunders,
& Pollack, 1994; Gruau, Whitley, & Pyeatt, 1996; Yao,
1999). Instead, NEAT begins evolution with a popula-
tion of small, simple networks and complexifies the net-
work topology into diverse species over generations,
leading to increasingly sophisticated behavior. A simi-
lar process of gradually adding new genes has been
confirmed in natural evolution (Martin, 1999;
Watson, Hopkins, Roberts, Steitz, & Weiner, 1987)
and shown to improve adaptation in a few prior evolu-
tionary (Watson et al., 1987) and neuroevolutionary
(Harvey, 1993) approaches. However, a key feature
that distinguishes NEAT from prior work in complex-
ification is its unique approach to maintaining a healthy
diversity of complexifying structures simultaneously, as
this section reviews. Complete descriptions of the
NEAT method, including experiments confirming the
contributions of its components, are available in
Stanley and Miikkulainen (2002, 2004) and Stanley
et al. (2005).

Before describing the neuromodulatory extension,
let us review the three key ideas on which the basic
NEAT method is based. First, to allow network struc-
tures to increase in complexity over generations, a
method is needed to keep track of which gene is
which. Otherwise, it is not clear in later generations
which individual is compatible with which in a popula-
tion of diverse structures, or how their genes should be
combined to produce offspring. NEAT solves this pro-
blem by assigning a unique historical marking to every
new piece of network structure that appears through a
structural mutation. The historical marking is a number
assigned to each gene corresponding to its order of
appearance over the course of evolution. The numbers
are inherited during crossover unchanged, and allow
NEAT to perform crossover among diverse topologies
without the need for expensive topological analysis.

Second, historical markings make it possible for the
system to divide the population into species based on
how similar they are topologically. That way, indivi-
duals compete primarily within their own niches instead
of with the population at large. Because adding new
structure is often initially disadvantageous, this separa-
tion means that unique topological innovations are
protected and therefore have time to optimize their
structure before competing with other niches in the
population. The distance § between two network
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encodings can be measured as a linear combination of
the number of excess (£) and disjoint (D) genes, as well
as the average weight differences of matching genes
(W), where excess genes are those that arise in the line-
age of one parent at a time later than all the genes in the
other parent and disjoint genes are any other genes in
the lineage of one parent but not the other one (Stanley
& Miikkulainen, 2002, 2004):

CIE 02D
S=—+— W 6
N Ty te (6)

The coefficients ¢y, ¢», and ¢3 adjust the importance of
the three factors, and the factor », the number of genes
in the larger genome, normalizes for genome size (N is
normally set to one unless both genomes are excessively
large; accordingly, it is set to one in this article).
Genomes are tested one at a time; if a genome’s dis-
tance to a representative member of the species is less
than §,, a compatibility threshold, the genome is placed
into this species.

Third, many systems that evolve network topologies
and weights begin evolution with a population of
random topologies (Gruau et al., 1996; Yao, 1999). In
contrast, NEAT begins with a uniform population of
simple networks with no hidden nodes, differing only in
their initial random weights. Because of speciation,
novel topologies gradually accumulate over evolution,
thereby allowing diverse and complex phenotype pat-
terns to be represented. No limit is placed on the
size to which topologies can grow. New structures are
introduced incrementally as structural mutations occur,
and only those structures survive that are found to be
useful through fitness evaluations. In effect, then,
NEAT searches for a compact, appropriate topology
by incrementally increasing the complexity of existing
structure.

Few modifications to the standard NEAT algorithm
are required to also encode neuromodulated plasticity.
NEAT’s genetic encoding is augmented with a new
modulatory neuron type and each time a node is
added through structural mutation, it is randomly
assigned a standard or modulatory role. The neuromo-
dulatory dynamics follow Equations 3-5.

Also, importantly for this article, novelty search is
designed to work in combination with NEAT (Lehman
& Stanley, 2008, 2010c). In particular, once objective-
based fitness is replaced with novelty, the NEAT algo-
rithm operates as normal, selecting the highest scoring
individuals to reproduce. Over generations, the popula-
tion spreads out across the space of possible behaviors,
continually ascending to new levels of complexity (i.e.,
by expanding the neural networks in NEAT) to create
novel behaviors as the simpler variants are exhausted.
Thus, through NEAT, novelty search in effect searches

not just for new behaviors, but for increasingly complex
behaviors.

Therefore, the main idea is to evolve neuromodula-
tory ANNs with NEAT through novelty search. The
hypothesis is that this combination should help to
escape the deception inherent in many adaptive
domains. The next section describes such a domain,
which is the initial basis for testing this hypothesis in
this article.

3. The T-Maze domain

The first domain in this article is based on experiments
performed by Soltoggio et al. (2008) on the evolution
of neuromodulated networks for the T-maze learning
problem. This domain is ideal to test the hypothesis
that novelty search escapes deception in adaptive
domains because it is well-established from prior
work (Blynel & Floreano, 2003; Diirr, Mattiussi,
Soltoggio, & Floreano, 2008; Soltoggio et al., 2007,
2008) and can be adjusted to be more or less deceptive,
as is done in this article. Furthermore, it represents a
typical reward-based dynamic scenario (i.e., the agent’s
actions that maximize reward intake can change during
its lifetime), where optimal performance can only be
obtained by an adaptive agent. Thus the results pre-
sented here should also provide more insight into the
potential deceptiveness in similar learning problems.
The single T-maze (Figure 2) consists of two arms
that either contain a high or low reward. The agent
begins at the bottom of the maze and its goal is to navi-
gate to the reward position and return home. This pro-
cedure is repeated many times during the agent’s
lifetime. One such attempted trip to a reward location
and back is called a trial. A deployment consists of a set
of trials (e.g., 20 trials in the single T-maze experiments
in this article are attempted over the course of a deploy-
ment). The goal of the agent is to maximize the amount
of reward collected over deployments, which requires

® R
Figure 2. The T-maze. In this depiction, high reward is located
on the left and low reward is on the right side, but these posi-
tions can change over a set of trials. The goal of the agent is to
navigate to the position of the high reward and back home to its

starting position. The challenge is that the agent must remember
the location of the high reward from one trial to the next.
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it to memorize the position of the high reward in
each deployment. When the position of the reward
sometimes changes, the agent should alter its strategy
accordingly to explore the other arm of the maze in the
next trial. In Soltoggio’s original experiments
(Soltoggio et al., 2008), the reward location changes
at least once during each deployment of the agent,
which fosters the emergence of learning behavior.

However, the deceptiveness of this domain with
respect to the evolution of learning can be increased if
the reward location is not changed in all deployments in
which the agent is evaluated. For example, an indivi-
dual that performs well in the 99 out of 100 deploy-
ments wherein learning is not required and only fails in
the one deployment that requires learning will most
likely score a high fitness value. Thus such a search
space is highly deceptive to evolving learning and the
stepping stones that ultimately lead to an adaptive
agent will not be rewarded. The problem is that learn-
ing domains often have the property that significant
improvement in fitness is possible by discovering
hidden heuristics that avoid lifetime adaptation enti-
rely, creating a pathological deception against learning
to learn.

If adaptation is thus only required in a small subset
of deployments, the advantage of an adaptive indivi-
dual over a nonadaptive individual (i.e., always navi-
gating to the same side) in fitness is only marginal.
The hypothesis is that novelty search should outper-
form fitness-based search with increased domain
deception.

4. Single T-Maze experiment

To compare the performance of NEAT with fitness-
based search and NEAT with novelty search, each
agent is evaluated on 10 deployments, each consisting
of 20 trials. The number of deployments in which the
high reward is moved after 10 trials varies among one
(called the 1/10 scenario), five (called the 5/10 scenario),
and 10 (called the 10/10 scenario), effectively control-
ling the level of deception. The high reward always
begins on the left side at the start of each deployment.

Note that all deployments are deterministic, that is,
a deployment in which the reward does not switch sides
will always lead to the same outcome with the same
ANN. Thus the number of deployments in which the
reward switches is effectively a means to control the
proportional influence of adaptive versus nonadaptive
deployments on fitness and novelty. The question is
whether the consequent deception impacts novelty as
it does fitness.

Of course, it is important to note that a population
rewarded for performance in the 1/10 scenario would
not necessarily be expected to be attracted to a general

solution. At the same time, a process like novelty search
that continues to find new behaviors should ultimately
encounter the most general such behavior. Thus the
hypothesized advantage of novelty search in such sce-
narios follows naturally from the dynamics of these
different types of search.

Figure 3 shows the inputs and outputs of the ANN
(following Soltoggio et al., 2008). The Turn input is set
to 1.0 when a turning point is encountered. M-E is set
to 1.0 at the end of the maze and Home becomes 1.0
when the agent successfully navigates back to its start-
ing position. The Reward input is set to the amount of
reward collected at the maze end. An agent crashes if it
does not (1) maintain a forward direction (i.e., activa-
tion of output neuron between —0.3 and 0.3) in corri-
dors, (2) turn either right (0 >0.3) or left (0o <—0.3)
when it encounters the junction, or (3) make it back
home after collecting the reward. If the agent crashes
then the current trial is terminated.

The fitness function for fitness-based NEAT (which
is identical to Soltoggio et al., 2008) is calculated as
follows: Collecting the high reward has a value of 1.0
and the low reward is worth 0.2. If the agent fails to
return home by taking a wrong turn after collecting a
reward then a penalty of 0.3 is subtracted from fitness.
On the other hand, 0.4 is subtracted if the agent does
not maintain forward motion in corridors or does not
turn left or right at a junction. The total fitness of an
individual is determined by summing the fitness values
for each of the 20 trials over all 10 deployments.

Novelty search on the other hand requires a novelty
metric to distinguish between different behaviors. The
novelty metric for this domain distinguishes between
learning and nonlearning individuals and is explained
in more detail in the next section.

Left / right

A

Evolved topology

$60600

L
=

Turn
Rewar

Home

Bias

Figure 3. ANN topology. The network has four inputs, one
bias, and one output neuron (Soltoggio et al., 2008). Turn is set to
1.0 at a turning point location. M-E is set to 1.0 at the end of the
maze, and Home is set to 1.0 when the agent returns to the home
location. The Reward input returns the level of reward collected
at the end of the maze. The bias neuron emits a constant 1.0
activation that can connect to other neurons in the ANN.
Network topology is evolved by NEAT.
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4.1 Measuring novelty in the single T-Maze

The aim of the novelty metric is to measure differences
in behavior. In effect, it determines the behavior-space
through which the search explores. Because the goal of
this article is to evolve adaptive individuals, the novelty
metric must distinguish a learning agent from a non-
learning agent. Thus it is necessary to characterize
behavior so that different such behaviors can be com-
pared. The behavior of an agent in the T-maze domain
is characterized by a series of trial outcomes (i.e., 200
trial outcomes for 10 deployments with 20 trials each).
To observe learning behavior, and to distinguish it
from nonlearning behavior, it is necessary to run multi-
ple trials in a single lifetime, such that the agent’s beha-
vior before and after a reward switch can be observed.
Importantly, the behavior space in the T-maze domain
is therefore significantly larger than in prior experi-
ments (Lehman & Stanley, 2008), effectively testing
novelty search’s ability to succeed in a high-dimen-
sional behavior space of 200 dimensions (versus only
two dimensions in Lehman & Stanley, 2008). It is
important to note that the dimensionality of the beha-
vior space is not the only possible characterization of
the dimensionality of the problem. For example, the
dimensionality of the solution ANN is also significantly
related to the difficulty of the problem.

Each trial outcome is characterized by two values:
(1) the amount of reward collected (high, low, none) and
(2) whether or not the agent crashed. These outcomes
are assigned different distances to each other depending
on how similar they are (Figure 4). In particular, an
agent that collects the high reward and returns home
successfully without crashing (HN) should be more
similar to an agent that collects the low reward and
also returns home (LN) than to one that crashes with-
out reaching any reward location (NY). The novelty
distance metric dist ooy 15 ultimately computed by
summing the distances between each trial outcome of
two individuals over all deployments.

Trial outcome
Name Collected reward Crashed Pairwise distances
NY None Yes
LY  Low Yes Vi }2
HY High Yes 3
LN Low No } 1 }2
HN High No

Figure 4. The T-maze novelty metric. Each trial is characterized
by (I) the amount of collected reward (2) whether the agent
crashed. The pairwise distances (shown at right) among the five
possible trial outcomes, NY, LY, HY, LN, and HN, depend on their
behavioral similarities.

Figure 5 depicts outcomes over several trials of three
example agents. The first agent always alternates
between the left and the right T-maze arm, which
leads to oscillating low and high rewards. The second
agent always navigates to the left T-maze arm. This
strategy results in collecting the high reward in the
first four trials and then collecting the low reward
after the reward switch. The third agent exhibits the
desired learning behavior and is able to collect the
high reward in seven out of eight trials. (One trial of
exploration is needed after the reward switch.)

Interestingly, because both agents one and two col-
lect the same amount of high and low reward, they
achieve the same fitness, making them indistinguishable
to fitness-based search. However, novelty search discri-
minates between them because dist oy, (agent,
agent,) =4.0 (Figure 5). Recall that this behavioral
distance is part of the novelty metric (Equation 1),
which replaces the fitness function and estimates the
sparseness at a specific point in behavior space.

Importantly, fitness and novelty both use the same
information (i.e., the amount of reward collected and
whether or not the agent crashed) to explore the search
space, though in a completely different way. Thus the
comparison is fair.

4.2 Generadlization performance

An important goal of the comparison between fitness
and novelty is to determine which learns to adapt most
efficiently in different deployment scenarios, for exam-
ple, 1/10, 5/10, and 10/10. Thus it is important to note
that, because performance on different scenarios will
vary based on the number of trials in which the reward
location switches, for the purpose of analyzing the results
there is a need for an independent measure that reveals
the overall adaptive capabilities of each individual.
Therefore, to test the ability of the individuals to
generalize independently of the number of deployments

Reward switch Fitness
LN HN! HN LN HN LN[48]
1+ 0+1+0=40

Agent1 [ LN HN

dist,(a,a,)=1 + 0 + 1 + 0 +

Agent 2
Agent 3

HN HN HN HN

| LN LN LN LN|48
HN HN HN HN |

LN HN HN HN|7.2

>
>

Time

Figure 5. Three sample behaviors. These learning and non-
learning individuals all exhibit distinguishable behaviors when
compared over multiple trials. Agent three achieves the desired
adaptive behavior. The vertical line indicates the point in time that
the position of the high reward changed. While agents | and 2
look the same to fitness, novelty search notices their difference,
as the distance calculation (inset line between agents | and 2)
shows.
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in which the position of the high reward changes, they
are tested for 20 trials on each of two different initial
settings: (1) high reward starting left and (2) high
reward starting right. In both cases, the position of
the high reward changes after 10 trials. An individual
passes the generalization test if it can collect the high
reward and return back home in at least 18 out of 20
trials from both initial positions. Two low reward trials
in each setting are necessary to explore the T-maze at
the beginning of each deployment and when the posi-
tion of the high reward switches.

The generalization measure does not necessarily cor-
relate to fitness. An individual that receives a high fit-
ness in the 1/10 scenario can potentially perform poorly
on the generalization test because it does not exhibit
adaptive behavior. Nevertheless, generalization perfor-
mance does follow a general upward trend over evalua-
tions and reveals the ultimate quality of solutions (i.e.,
individuals passing the generalization test would receive
high fitness scores in all scenarios).

4.3 Experimental parameters

NEAT with fitness-based search and novelty search run
with the same parameters in the experiments in this
article. The steady-state real-time NEAT (rtNEAT)
package (Stanley, 2006-2008) is extended to encode
neuromodulatory neurons. The population size is 500,
with a 0.001 probability of adding a node (uniformly
randomly chosen to be standard or modulatory) and
0.01 probability of adding a link. The weight mutation
power is 1.8. The coefficients ¢y, ¢», and ¢3 for NEAT’s
genome distance (see Equation 6) are all set to 1.0. Runs
last up to 125,000 evaluations. They are stopped when
the generalization test is solved. The number of nearest
neighbors for the novelty search algorithm is 15 (fol-
lowing Lehman & Stanley, 2008). The novelty threshold
is 2.0. This threshold for adding behaviors to the archive
dynamically changes every 1,500 evaluations. If no new
individuals are added during that time the threshold is
lowered by 5%. It is raised by 20% if the number of
individuals added is equal to or higher than four. The
novelty scores of the current population are reevaluated
every 100 evaluations to keep them up to date (the
archive does not need to be reevaluated). Connection
weights range within [—10, 10]. These parameter values
are shared by all experiments in this article.

The coefficients of the generalized Hebbian learning
rule used by all evolved neuromodulated networks in
the T-maze domain are 4=0.0, B=0.0, C=-0.38,
D=0.0, and n=-94.6, resulting in the following
m;-modulated plasticity rule:

Awj; = tanh(m;/2) - 35.95y. (7

These values worked well for a neuromodulated ANN
in the T-maze learning problem described by Soltoggio
et al. (2008). Therefore, to isolate the effect of evolving
based on novelty versus fitness, they are fixed at these
values in the T-maze experiments in this article.
However, modulatory neurons still affect the learning
rate at Hebbian synapses as usual. For a more detailed
description of the implications of different coefficient
values for the generalized Hebbian plasticity rule,
see Niv et al. (2002).

5. Single T-Maze results

Because the aim of the experiment is to determine how
quickly a general solution is found by fitness-based
search and novelty search, an agent that can solve the
generalization test described in Section 4.2 counts as a
solution.

Figure 6 shows the average performance (over 20
runs) of the current best-performing individuals on the
generalization test across evaluations for novelty search
and fitness-based search, depending on the number of
deployments in which the reward location changes.
Novelty search performs consistently better in all sce-
narios. Even in the 10/10 domain that resembles the
original experiment (Soltoggio et al., 2008), it takes fit-
ness significantly longer to reach a solution than novelty
search. The fitness-based approach initially stalls, fol-
lowed by gradual improvement, whereas on average
novelty search rises sharply from early in the run.

Figure 7 shows the average number of evaluations
(over 20 runs) that it took fitness-based and novelty-
based NEAT to solve the generalization test in the 1/10,

350 T T T T T T

Novelty
Search (1/10)

300 g

Nove:y\

Search (10/10) _:': -

250 |

/' Fitness-based ; :
Search (10/10) . 4

200

150 Fitness-based

Search (1/10)

Average maximum generalization

100 1 1 1 1 1 1
0 20000 40000 60000 80000 100000 120000

Evaluations

Figure 6. Comparing generalization of novelty search and fit-
ness-based search. The change in performance (calculated like
fitness) over evaluations on the generalization test is shown for
NEAT with novelty search and fitness-based search in the 1/10
and 10/10 scenarios. All results are averaged over 20 runs.

The main result is that novelty search learns a general solution
significantly faster.
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5/10, and 10/10 scenarios. If no solution was found
within the initial 125,000 evaluations, the current simu-
lation was restarted (i.e., a new run was initiated). This
procedure was repeated until a solution was found,
counting all evaluations over all restarts.

Both novelty and fitness-based NEAT were restarted
three times out of 20 runs in the 10/10 scenario. Fitness-
based search took on average 90,575 evaluations
(0 =152,760) while novelty search was almost twice as
fast at 48,235 evaluations on average (o = 55,638). This
difference is significant (p <0.05). In the more decep-
tive 1/10 scenario, fitness—based search had to be
restarted six times and it took 124,495 evaluations on
average (o =281,789) to find a solution. Novelty search
only had to be restarted three times and was 2.7 times
faster (p<0.001) at 45,631 evaluations on average
(0 =46,687).

Fitness-based NEAT performs worse with increased
domain deception and is 1.4 times slower in the 1/10
scenario than in the 10/10 scenario. It took fitness
on average 105,218 evaluations (o0 =65,711) in the
intermediate 5/10 scenario, which is in-between its per-
formance on the 1/10 and 10/10 scenarios, confirming
that deception increases as the number of trials requir-
ing adaptation decreases. In contrast, novelty search is
not significantly affected by increased domain decep-
tion: The performance differences among the 1/10,
5/10, and 10/10 scenarios is insignificant for novelty
search, confirming its immunity to deception.

Recall that individuals cannot avoid spending at least
two trials (when the position of the reward switches for

— Novelty m——

120000 Fithess ——

100000

80000 [ B

60000

Evaluations
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1/10 5/10
Scenario
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Figure 7. Average evaluations to solution for novelty search
and fitness-based search. The average number of evaluations over
20 runs that it took novelty search and fitness-based search to
solve the generalization test is shown. Novelty search performs
significantly better in all scenarios and fitness-based search per-
forms even worse when deception is high. Interestingly, novelty
search performance does not degrade at all with increasing
deception.

both initial settings; Section 4.2) collecting the low
reward to pass the generalization test. However, the
action after collecting the low reward (e.g., crashing
into a wall or taking a wrong turn on the way home)
is not part of the criteria for passing the test. To ensure
that stricter criteria do not change the results, a second
experiment consisting of 50 independent runs was per-
formed in which the agent also had to return back
home after collecting the low reward. That way, the
agent always must return home. It took novelty
search on average 191,771 evaluations (o=162,601)
to solve this harder variation while fitness-based
search took 267,830 evaluations (o = 198,455). In this
harder scenario, both methods needed more evalua-
tions to find a solution but the performance difference
is still significant (p < 0.05).

Interestingly, novelty search not only outperforms
fitness-based search in the highly deceptive 1/10 sce-
nario but also in the intermediate 5/10 scenario and
even in the 10/10 scenario, in which the location of
the reward changes every deployment. There is no
obvious deception in the 10/10 scenario (which resem-
bles Soltoggio’s original experiment; Soltoggio et al.,
2008). However, the recurring plateaus in fitness
common to all scenarios (Figure 6) suggest a general
problem for evolving learning behavior inherent to
dynamic, reward-based scenarios. The next section
addresses this issue in more depth.

6. Analysis of deception
in the single T-Maze

Why does novelty search outperform fitness-based
search even when the position of the high reward
changes in every deployment? To answer this question
the analysis in this section is based on runs in a see-
mingly nondeceptive setting: Every individual is evalu-
ated in one deployment consisting of 20 trials in which
the position of the high reward switches after 10 trials.
The high reward is always located on the left side of the
maze at the beginning of each deployment and an indi-
vidual counts as a solution if it can collect at least 18
out of 20 high rewards and navigate back home. This
reduction in deployments combined with the relaxed
solution criteria simplifies an in-depth analysis (e.g.,
by yielding smaller novelty archives that are easy to
visualize) and is analogous to the 10/10 scenario. The
aim is to uncover the hidden source of deception and
how exactly novelty search avoids it.

One interesting way to analyze different evolutionary
search techniques is to examine what they consider best,
that is, which individuals have the highest chances to
reproduce. For novelty search, these are the individuals
that display the most novel behavior and therefore
enter the archive. For fitness-based search, the most
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Figure 8. Novelty search archive and fitness champions. Behaviors archived by novelty search and the highest-fitness-so-far found by
fitness-based search during evolution are shown together with their corresponding fitness and evaluation at which they were
discovered. Agents were evaluated on 20 trials and the reward location switches after |0 trials. Arcs (at top) connect behaviors that
were highly rewarded by both methods. Novelty search consistently archives new behaviors while fitness-based search improves
maximum fitness only four times during the whole evolutionary run. Many of the behaviors found by novelty search would receive the
same fitness, which means they are indistinguishable to fitness-based search. The main result is that a higher number of promising

directions are explored by novelty search.

rewarded are the champions, that is, the behaviors with
the highest fitness found so far. Although the probabil-
istic nature of the evolutionary search means that such
individuals are not guaranteed to produce offspring,
they represent the most likely to reproduce.

Highlighting the dramatic difference between these
contrasting reward systems, Figure 8 shows the beha-
viors archived by novelty search and the most fit indi-
viduals (when they first appear) found by fitness-based
search during a typical evolutionary run. It took
novelty search 27,410 evaluations to find a solution in
this scenario while fitness-based search took almost
twice as long with 49,943 evaluations. While novelty
search finds 30 behaviors that are novel enough to
enter the archive, fitness only discovers five new cham-
pions during the whole evolutionary run. A look at the
fitness values of the archived novel behaviors reveals
that many of them collapse to the same score, making
them indistinguishable to fitness-based search (also see
Section 4.1 for discussion of such conflation). For
example, the second through fifth archived behaviors
in Figure 8, which represent different combinations of
10 HY (high reward/crash) and 10 LY (low reward/
crash) events, all receive the same fitness. However,
they are all highly rewarded by novelty search at the
time they are discovered, which places them into the
archive.

In the first 40,429 evaluations, fitness-based search
does not discover any new champions, giving it little

information about the direction in which the search
should proceed. On the other hand, novelty search con-
stantly produces novel behaviors and takes these beha-
viors and the current population into account to guide
the search.

A visualization technique can help to gain a deeper
understanding of how the two approaches navigate the
high-dimensional genotypic search space. The most
common technique to visualize evolution is to plot fit-
ness over evaluations; although this technique reveals
information about the quality of the solution found so
far, it provides no information on how the search pro-
ceeds through the high-dimensional search space.
Various methods have been proposed to illuminate
the trajectory of the search (Barlow, Galloway, &
Abbass, 2002; Kim & Moon, 2003; Vassilev, Fogarty,
& Miller, 2000) most of which focus on visualizing the
fitness landscape to gain a deeper understanding of its
ruggedness.

However, the aim of this analysis is to visualize how
the genotypes produced by both search methods tra-
verse the search space in relation to each other. Two
potential such visualization techniques are Principal
Component Analysis (PCA; Kittler & Young, 1973)
and Sammon’s mapping (Sammon, 1969). Both methods
provide a mapping of high-dimensional points in geno-
typic space () to points in N> However, while PCA
tries to account for the most variance in the data at
expense to their original Euclidean distances,
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Sammon’s Mapping aims to preserve the distances of
the genotypes in the mapping to a lower dimension
(Dybowski, Collins, Hall, & Weller, 1996). Therefore,
Sammon’s mapping is chosen for this analysis because
the distances between genotypes produced by fitness-
based search and novelty search in the two-dimensional
visualization should be as close to their original dis-
tances as possible to understand how they relate. This
approach facilitates the comparison between different
regions of the search space that both methods explore.

Sammon’s mapping maps a high-dimensional data-
set onto a lower number of dimensions (typically two or
three dimensions), allowing a better understanding of
the underlying structure of data. The mapping mini-
mizes the stress measure F, which is the discrepancy
between the high-dimensional distances §;; between all
objects i and j and the resulting distances d;; between the
data points in the lower dimension:

1 n—1 n (Slj_dl_])z

k= n—1 §~n 5“2 Sii
Zi:l Zj:i+1 iji=1 j=i+1 v

The stress measure can be minimized by a steepest des-
cent procedure in which the resulting value of E is a
good indicator of the quality of the projection.

For this study, Sammon’s mapping projects high-
dimensional genotypes produced over the course of evo-
lution onto a two-dimensional space. The output of the
mapping are x and y coordinates for every genotype
that minimize stress measure E. The original high-
dimensional distance §; between two genotypes is
based on NEAT’s genome distance (Equation 6),
which is a good indicator of the similarity of two net-
work encodings. The distance d;; between two objects
i and j in the visualization space is calculated by their
Euclidean distance /G, —j.)* + G, —j,)>. To make the two-
dimensional visualization clearer, not all genotypes cre-
ated during evolution are part of the Sammon’s map-
ping; instead, only those are shown that have either (1)
a genome distance § greater than 9.0 compared to
already recorded genotypes or (2) have a distance smal-
ler than 9.0 but display a different behavior (based on
the novelty metric described in Section 4.1). These cri-
teria ensure that a representative selection of genotypes
is shown that is still sparse enough to be visible in the
projection onto two dimensions.

Figure 9 shows a Sammon’s mapping of 882 geno-
types; 417 were found by novelty search and 465 were
found by fitness-based search during a typical evolu-
tionary run of each. In this example, novelty search
found a solution after 19,524 evaluations while it took
fitness-based search 36,124 evaluations. The low stress
measure £=0.058 indicates that the original genotypic
distances have been conserved by the mapping.
Genotypes that are close to each other in the

®)

Figure 9. Combined Sammon’s mapping. The Sammon’s map-
ping of 417 genotypes found by novelty search (gray) and 465
found by fitness-based search (black) is shown. The size of each
mark corresponds to the fitness of the decoded network. Larger
size means higher fitness. Fitness-based search covered more of
the genotypic search space than novelty search because it
searches through many identical behaviors (though different
genotypes) when it is stuck at a local optimum. Four important
individuals are identified: the final solution found by fitness-based
search (A), a network that collects the high reward in the first 10
trials and then the low reward (B), a network that collects the
low reward in 18/20 trials (C) and the final solution found by
novelty search (D). Although A and C are close they have signif-
icantly different fitnesses. Thus while the discovery of C could
potentially serve as a stepping stone for novelty search, fitness-
based search is led astray from the final solution. Points B and D
are discussed in the text.

two-dimensional output space are also close to each
other in genotype space.

The mapping reveals that both methods discover
different regions of high fitness and that the majority
of behaviors simply crash without collecting any
rewards (denoted by the smallest points). The main
result is that while novelty search (light gray) discovers
a genotypic region of high fitness and then quickly
reaches the solution (i.e., a behavior that can collect
the high reward in at least 18 out of 20 trials, denoted
by D in Figure 9), fitness-based search (black) needs to
cover more of the genotypic search space because it
searches through many identical behaviors (though dif-
ferent genotypes) when it is stuck at a local optimum.

Interestingly, an intermediate solution found by fit-
ness-based search discovers a behavior that collects 18
out of 20 /ow rewards and returns back home (denoted
by Cin Figure 9). The network that produces this beha-
vior and the final solution (A4) are close in genotypic
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space though they have very different fitness values (178
vs. 50). Thus while the discovery of this behavior could
potentially serve as a stepping stone to finding the final
solution for novelty search, rather than helping fitness
it actually deceives it. Agents that collect the high
reward in 10 out of 20 trials and return back home
(B in Figure 9) receive a higher fitness than C-type
agents even though they are actually farther away
from the final solution in genotype space and therefore
might lead fitness search astray.

Figure 10 examines the temporal progression of the
two search methods in more detail by showing the
Sammon’s mapping from Figure 9 at different stages
of evolution in the corresponding run. For each evalua-
tion (i.e., snapshot in time) the mapping shows the
genotypes found so far together with the behaviors
archived by novelty search and the champions found
by fitness-based search.

Novelty search explores a wider sampling of the
search space than fitness-based search during the first
1,000 evaluations. After that, both methods explore
similar behaviors until novelty search finds a novel
behavior at evaluation 13,912 that collects the low
reward and returns back home in the first 10 trials
and then collects the high reward and returns back
home in the successive trials. The ability to successfully
return back home after collecting a reward turns out to
be a stepping stone to regions of higher fitness. It opens
up a wide range of possible new behaviors that lead
novelty search to discover 18 new archive members
between evaluations 15,000 and 19,520. Interestingly,
all the underlying network encodings for these beha-
viors are close to each other in genotypic space even
though they produce significantly different behaviors.
Finally, novelty search discovers a solution after
19,524 evaluations.

In contrast, fitness-based search is not able to exploit
the same set of behaviors as potential stepping stones
because many collapse to the same fitness. While fit-
ness-based search discovers two new champions in the
first 1,000 evaluations, it does not discover the next
until evaluation 19,520. This more fit behavior is
located within a cluster of high fitness genotypes close
to the final solution. However, it takes fitness-based
search another 17,439 evaluations to discover that solu-
tion. The problem again is that fitness-based search is
deceived by genotypes that have a higher fitness than
those that are actually closer to the solution (Figure 9).

In a sense, novelty search proceeds more systemati-
cally, discovering a region of novel behaviors and then
discovering the final solution in fewer evaluations than
fitness-based search by exploiting intermediate stepping
stones to guide the search. In fact, the number of
archived behaviors is always higher than the number
of new champions found by fitness across all runs.

To gain a better understanding of the fitness land-
scape in this domain, Figure 11 shows histograms of
fitness values for individuals discovered by novelty and
fitness-based search in a typical run. The histograms are
normalized so that the area sum is one. Interestingly,
the vast majority of behaviors (for novelty and fitness-
based search) receive one of three different fitness
values resulting in three peaks in each distribution.
In effect, many behaviors receive the same fitness,
which is another indicator of the lack of intermediate
stepping stones and the absence of a fitness gradient in
the T-maze domain. Moreover, the majority of beha-
viors (61% for fitness and 88% for novelty) simply
crash without collecting any reward, suggesting that
the encoded networks are brittle to small mutations.

Overall, the analysis in this section shows that
novelty search is able to return more information
about how behavior changes throughout the search
space. It finds a solution significantly faster than fit-
ness-based search by exploiting intermediate stepping
stones to guide its search. Interestingly, genotypes
that are potential stepping stones for novelty search
can lead fitness-based search astray if fitness does not
correlate with distance to the final solution (Figure 9).

7. Additional experiments

To further demonstrate novelty search’s ability to effi-
ciently evolve plastic ANNs, two substantially more
complex scenarios are investigated, which are explained
in the next sections.

7.1 Double T-Maze

The double T-maze (Figure 12) includes two turning
points and four maze endings, which makes the learn-
ing task substantially more difficult than the single
T-maze studied in the previous sections (Soltoggio et
al., 2008). In effect the agent must now memorize a
location on a map that is twice as large.

The experiment follows the setup described in
Section 3 with a slightly modified novelty metric to
capture behaviors in the larger environment. The beha-
vior of an agent is still characterized by a series of trial
outcomes, but each such outcome is now determined by
the corresponding trial fitness value (e.g., 0.2 for col-
lecting the low reward). The behavioral difference
between two behaviors is then calculated as the sum
over all trial differences. Each evaluation consists of
two deployments with 200 trials each in which the
high reward changes location after every 50 trials.
Thus the behavior characterization includes 400
dimensions.

Fitness-based search had to be restarted five times
and found a solution in 801,798 evaluations on average
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Figure 10. Sammon’s mapping of novelty and fitness-based search at different stages of evolution. A mapping of 882 recorded
genotypes—470 produced by novelty search (second column) and 465 by fitness-based search (fourth column)—is shown at seven
different time steps together with the corresponding behavior characterizations added to the archive by novelty search and those of
the champions found by fitness-based search. Larger markers in the Sammon’s mapping denote higher fitness received by the decoded
network. The archived behaviors found by novelty search and the champions found by fitness-based search are connected to show the
progression of each search. The magnification (bottom left) of the novelty mapping shows a region of the genotypic space with many
novel behaviors that have small genotypic distances to each other. Novelty search finds a solution significantly faster than fitness-based
search by exploiting intermediate stepping stones to guide the search.
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(0 =10695,534). Novelty search found a solution in
364,821 evaluations on average (o =411,032) and had
to be restarted two times. Therefore, even with an
increased behavioral characterization (200-dimensional
for the single T-maze vs. 400-dimensional for the
double T-maze) and increased domain complexity,
novelty search still finds the appropriate adaptive beha-
vior significantly faster than fitness-based search
(» <0.05).

7.2 Foraging bee

Another domain studied for its reinforcement learning-
like characteristics is the bee foraging task (Soltoggio
et al., 2007; Niv et al., 2002). A simulated bee needs to
remember which type of flower yields the most nectar in
a stochastic environment wherein the amount of nectar
associated with each type of flower can change.

The bee flies in a simulated three-dimensional envir-
onment (Figure 13a) that contains a 60 m x60 m flower
field on the ground with two different kind of flowers
(e.g., yellow and blue). The bee constantly flies down-
ward at a speed of 0.5 m/s and can perceive the flower
patch through a single eye with a 10° view cone. The
outside of the flower patch is perceived as gray colored.

The ANN controller has five inputs (following
Soltoggio et al., 2007); the first three are Gray, Blue,
and Yellow, which receive the percentage of each per-
ceived color in the bee’s view cone. The Reward input is
set to the amount of nectar consumed after the bee
successfully lands on either a yellow or blue flower.
It remains zero during the flight. The Landing input is
set to 1.0 upon landing. The bee has only one output
that determines if it stays on its current course or
changes its direction to a new random heading.

Each bee is evaluated on four deployments with 20
trials each. The flower colors are inverted after 10 trials
on average and between deployments, thereby changing
the association between color and reward value. The
amount of collected nectar (0.8 for high-rewarding
and 0.3 for low-rewarding flowers) over all trials is
the performance measure for fitness-based search.

To mitigate noisy evaluation in novelty search (i.e., a
single random change in direction at the beginning of
the flight can lead to a very different sequence of col-
lected high and low rewards), each deployment is
described by two values. The first is the number of
high rewards collected before the color switch and the
second is the number of high rewards collected after-
wards. This novelty metric rewards the bee for collect-
ing a different number of high rewards before and after
the reward switch than other individuals. This measure

R

®

Figure 12. The double T-maze. The maze includes two turning
points and four maze endings. In this depiction, high reward is
located at the top left of the maze, but its position can change
over a set of trials. The goal of the agent is to navigate to the
position of the high reward and remember that location from
one trial to the next.
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Figure 11. Distribution of fitness for novelty and fitness-based search for a typical run. The fitness values for fitness-based search (a)
and novelty search (b) both have three peaks in both histograms. There are other values, but they are relatively very rare. Thus many
of the genotypes collapse to the same few fitness values, suggesting a lack of intermediate stepping stones for a fitness-based search

method.
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reflects that what is important is displaying adaptive
behavior that is dependent on the time of the reward
switch. The coefficients of the generalized Hebbian
learning rule for this experiment are 4=-0.79, B=
0.0, C=0.0, and D=-0.038. These values worked
well for a neuromodulated ANN in the foraging bee
domain described by Soltoggio et al. (2007). The
other experimental parameters are kept unchanged.

A bee counts as a solution if it displays the desired
learning behavior of associating the right color with the
currently high-rewarding flower (which corresponds to
a fitness of 61). Both fitness-based search and novelty
search discovered solutions in 13 out of 25 runs.
Novelty search took on average 261,098 evaluations
(0 =130,926) when successful and fitness-based search
on average 491,221 evaluations (o0=277,497).
Although novelty search still finds a solution signifi-
cantly faster (p <0.05), both methods quickly reach a
high local optimum before that (Figure 13b).

8. Discussion and future work

Novelty search outperforms fitness-based search in all
domains investigated and is not affected by increased
domain deception. This result is interesting because it is
surprising that without any other a priori knowledge an
algorithm that is not even aware of the desired behavior
would find such behavior at all, let alone in a general
sense.

Fitness-based search also takes significantly more
evaluations to produce individuals that exhibit the
desired adaptive behavior when the impact of learning
on the fitness of the agent is only marginal. Because it is
easier at first to improve fitness without evolving the

ability to learn, objective-based search methods are
likely to exploit domain-dependent static (i.e., nona-
daptive) heuristics.

In the T-maze domain in this article, agents initially
learn to always navigate to one arm of the maze and
back, resulting in collecting 20 high rewards (i.e., 10
high rewards for each of the two starting positions)
on the generalization test. Yet, because the reward loca-
tion changes after 10 trials for both initial settings, to be
more successful requires the agents to exhibit learning
behavior.

The natural question then is why novelty search out-
performs fitness-based search in the seemingly nonde-
ceptive 10/10 scenario? While the deception in this
setting is not as obvious, the analysis presented in
Section 6 addressed this issue in more depth. The pro-
blem is that evolving the right neuromodulated
dynamics to be able to achieve learning behavior is
not an easy task. There is little information available
to incentivize fitness-based search to pass beyond static
behavior, making it act more like random search.
In other words, the stepping stones that lead to learning
behavior are hidden from the objective approach
behind long plateaus in the search space.

This analysis reveals that fitness-based search is
easily led astray if fitness does not reward the stepping
stones to the final solution, which is the case in the
T-maze learning problem (Figure 9). Novelty search,
on the other hand, escapes the deceptive trap and
instead builds on the intermediate stepping stones to
proceed through the search space more efficiently.
Novelty search’s ability to keep track of already-
explored regions in the search space is probably ano-
ther factor that accounts for its superior performance.

Simulated bee

Flight direction

Average maximum fitness

Average maximum fitness

61 - Novelty search
59 -
57
55
53
51
49
47 -
45

LY

L

Fitness-based search

0 150000 300000 450000 600000 750000 900000
Evaluations

Figure 13. Comparing novelty search to fitness-based search in the bee domain. The simulated bee flying in a three-dimensional
space is shown in (a). The bee is constantly flying downwards but can randomly change its direction. The bee can perceive the flower
patch with a simulated view cone (Soltoggio et al., 2007). (b) The change in fitness over time (i.e., number of evaluations) is shown for
NEAT with novelty search and fitness-based NEAT, which are both averaged over 25 runs for each approach. The main result is that
both methods reach about the same average fitness but novelty search finds a solution significantly faster.
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While in some domains the fitness gradient can be
improved, that is, by giving the objective-based search
clues in which direction to search, such an approach
might not be possible in dynamic, reward-based scenar-
i0s. The problem in such domains is that reaching a
certain fitness level is relatively easy, but any further
improvement requires sophisticated adaptive behavior
to evolve from only sparse feedback from an objective-
based performance measure. That is, novelty search
returns more information about how behavior changes
throughout the search space.

In this way, novelty search removes the need to care-
fully design a domain that fosters the emergence of
learning because novelty search on its own is capable
of doing exactly that. The only prerequisite is that the
novelty metric is constructed such that learning and
nonlearning agents are separable, which is not necessa-
rily easy, but is worth the effort if objective-based
search would otherwise fail.

In fact, because NEAT itself employs the fitness
sharing diversity maintenance technique (Goldberg &
Richardson, 1987; Stanley & Miikkulainen, 2002)
within its species (Section 2.3), the significant difference
in performance between NEAT with novelty search and
NEAT with fitness-based search also suggests that tra-
ditional diversity maintenance techniques do not evade
deception as effectively as novelty search. Interestingly,
novelty search has also been shown to succeed indepen-
dently of NEAT (Mouret, 2009) in evolving ANNs and
it also outperforms fitness-based search in genetic pro-
gramming (Lehman & Stanley, 2010b). Thus evidence
is building for its generality.

Novelty search’s ability to build gradients that lead
to stepping stones is evident in performance curves
(Figure 6). The increase in generalization performance
is steeper than for fitness-based NEAT, indicating a
more efficient climb to higher complexity behaviors.
In effect, by abandoning the objective, the stepping
stones come into greater focus (Lehman & Stanley,
2008, 2010a). Although it means that the search is
wider, the alternative is to be trapped by deception.

Of course, there are likely domains for which the
representation is not suited to discovering the needed
adaptive behavior or in which the space of behaviors is
too vast for novelty search to reliably discover the right
one. However, even in the double T-maze domain in
which the length of the behavioral characterization is
substantially larger (i.e., 400 dimensions), novelty
search still significantly outperforms fitness-based
search. There are only so many ways to behave and
therefore the search for behavioral novelty becomes
computationally feasible and is different than random
search. On the other hand, even though novelty search
is still significantly faster in the foraging bee task, fit-
ness-based search reaches a local optimum that is very

close to the final solution in about the same number of
evaluations. A possible explanation for the more even
performance in this domain is that the noisy environ-
ment offers a vast space of exploitable behavioral stra-
tegies. Future research will address the problem of
noise in novelty search in more detail.

Overall, the results in this article are important
because research on evolving adaptive agents has been
hampered largely as a result of the deceptiveness of
adaptive tasks. Yet the promise of evolving plastic
ANNSs is among the most intriguing in artificial intelli-
gence. After all, our own brains are the result of such an
evolutionary process. Therefore, a method to make
such domains more amenable to evolution has the
potential to further unleash a promising research direc-
tion that is only just beginning. To explore this oppor-
tunity, a promising future direction is to apply novelty
search to other adaptive problems without the need to
worry about mitigating their potential for deception.

For example, an ambitious domain that may benefit
from this approach is to train a simulated biped to walk
adaptively. Lehman and Stanley (2010a) have already
shown that novelty search significantly outperforms
objective-based search in a biped walking task.
However, as in previous work (Bongard & Paul,
2001; Hase & Yamazaki, 1999; Reil & Husbands,
2002), static ANNs were evolved. Although plastic
biped-controlling ANNs have been evolved in the
past (Ishiguro, Fujii, & Hotz, 2003; McHale &
Husbands, 2004), new advances in evolving neuromo-
dulated ANNs (Dirr et al., 2008; Soltoggio et al., 2008)
can potentially allow such controllers to be more robust
to environmental changes and to morphological
damage. Moreover, unlike past evolved biped control-
lers, such networks could be deployed into a wide range
of body variants and seamlessly adapt to their bodies of
origin, just as people can walk as they grow up through
a wide array of body sizes and proportions. As is
common when novelty search succeeds, this adaptive
domain likely suffers from deception. Initially, the
robot simply falls down on every attempt, obfuscating
to the objective function any improvements in leg oscil-
lation (Panne & Lamouret, 1995). However, after
exploring all the different ways to fall down, novelty
search should lead evolution to more complex beha-
viors and eventually to walking. Novelty search in com-
bination with neuromodulated ANNs might be the
right combination to evolve such a new class of plastic
controllers.

Characterizing when and for what reason novelty
search fails is also an important future research direc-
tion. Yet its performance in this article and in past
research (Lehman & Stanley, 2008, 2010b, 2010c;
Mouret, 2009) has proven surprisingly robust. While
it is not always going to work well, this article suggests
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that it is a viable new tool in the toolbox of evolution-
ary computation to counteract the deception inherent
in evolving adaptive behavior.

9. Conclusions

This article showed that (1) reinforcement learning
problems such as the T-maze and bee foraging task are
inherently deceptive for fitness-based search and (2)
novelty search can avoid such deception by exploiting
intermediate stepping stones to guide its search.
A detailed analysis revealed how the two different app-
roaches explore the genotypic space and demonstrated
that novelty search, which abandons the objective to
search only for novel behaviors, in fact facilitates the
evolution of adaptive behavior. Results in a variety of
domains demonstrated that novelty search can signifi-
cantly outperform objective-based search and that it per-
forms consistently under varying levels of domain
deception. Fitness-based NEAT on the other hand per-
forms increasingly poorly as domain deception increases,
adding to the growing body of evidence (Lehman &
Stanley, 2008, 2010b, 2010c; Mouret, 2009) that novelty
search can overcome the deception inherent in a diver-
sity of tasks. The main conclusion is that it may now be
more realistic to learn interesting adaptive behaviors
that have been heretofore seemingly too difficult.
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