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Abstract

In this paper we study the global scheduling of periodic
task systems upon uniform multiprocessor platforms. We
first show two very general properties which are well-
known for uniprocessor platforms and which remain for
multiprocessor one: (i) under few and not so restrictive
assumptions, we show that any feasible schedules of peri-
odic task system are periodic from some point and (ii) for
the specific case of synchronous periodic task systems, we
show that the schedule repeats from the origin. We then
present our main result: any feasible schedules of asyn-
chronous periodic task sets using a fixed-priority sched-
uler are periodic from a specific point. Moreover, we char-
acterize that point and we provide a feasibility interval for
those systems.

1 Introduction
The use of computers to control safety-critical real-time
functions has increased rapidly over the past few years.
As a consequence, real-time systems — computer sys-
tems where the correctness of each computation depends
on both the logical results of the computation and the time
at which these results are produced — have become the fo-
cus of much study. Since the concept of “time” is of such
importance in real-time application systems, and since
these systems typically involve the sharing of one or more
resources among various contending processes, the con-
cept of scheduling is integral to real-time system design
and analysis. Scheduling theory as it pertains to a finite
set of requests for resources is a well-researched topic.
However, requests in real-time environment are often of a
recurring nature. Such systems are typically modelled as
finite collections of simple, highly repetitive tasks, each of
which generates jobs in a very predictable manner. These
jobs have upper bounds upon their worst-case execution
requirements, and associated deadlines. In this work, we
consider periodic task systems, each periodic task τi gen-
erates jobs at each integer multiple of its period Ti and the
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jobs must be executed for at most Ci time units and com-
pleted by its relative deadline Di. The first job of a task τi

is released at time Oi (the task offset). If there is a time in-
stant at which jobs of all tasks are released synchronously,
the system is said to be synchronous; otherwise the system
is said to be asynchronous.
The scheduling algorithm determines which job[s]

should be executed at each time instant. When there is at
least one schedule satisfying all constraints of the system,
the system is said to be feasible. More formal definitions
of these notions are given in Section 2.
Uniprocessor real-time systems are well studied since

the seminal paper of Liu and Layland [1], the literature
presenting scheduling algorithms and feasibility tests for
this case is tremendous. In contrast for multiprocessor
parallel machines the problem of meeting timing con-
straints is a relatively new research area.
In the design of scheduling algorithms for multiprocessor

environments, one can distinguish between at least two
distinct approaches. In partitioned scheduling, all jobs
generated by a task are required to execute on the same
processor. Global scheduling, by contrast, permits task
migration (i.e., different jobs of an individual task may ex-
ecute upon different processors) as well as job migration:
an individual job that is preempted may resume execution
upon a processor different from the one upon which it had
been executing prior to preemption.
Scheduling theorists distinguish between at least three

kinds of multiprocessor machines:

Identical parallel machines These are multiprocessors
in which all the processors are identical, in the sense that
they have the same computing power.

Uniform parallel machines By contrast, each proces-
sor in a uniform parallel machine is characterized by its
own computing capacity, a job that executes on proces-
sor pi of computing capacity si for t time units completes
si × t units of execution.

Unrelated parallel machines In unrelated parallel ma-
chines, there is an execution rate sij associated with each



job-processor pair, a job Ji that executes on processor pj

for t time units completes sij × t units of execution.
Related research. The problem of scheduling periodic

task systems on identical parallel processors was origi-
nally proposed in [2]. Dhall and Liu [3] showed that the
Rate Monotonic (RM) and Earliest Deadline First (EDF)
do not provide a feasible schedule for arbitrary low pro-
cessor utilization. Moreover it has been showed that no
on-line1 scheduling algorithm can be optimal [4]. Nev-
ertheless optimal algorithms based on PFair scheduling
[5] were proposed for identical parallel processors. PFair
schedules are likely to contain a large number of job pre-
emptions and context-switches. For some applications,
this is not an issue; for others, however, the overhead re-
sulting from too many preemptions may prove unaccept-
able.
A better understanding of hard real-time scheduling on

identical multiprocessors was provided through [6, 7,
8, 9, 10]. Recent results concern uniform multiproces-
sors [7, 11, 12, 13, 14]. These papers presented results
on feasibility tests or improved algorithms in order to in-
crease processors utilization. It may be noticed that in re-
cent papers, the fact that a feasible schedule repeats or that
a feasibility interval exists is mentioned but not proved (as
underlined by Baker in [15]). We know that real-time mul-
tiprocessor scheduling problems are typically not solved
by applying straightforward extensions of techniques used
for solving similar uniprocessor problems (see [18] for
such examples). For that reason we shall rigorously de-
fine feasibility intervals and related properties for uniform
multiprocessors in this paper.
In [16], a first step in order to prove that a feasible sched-

ule repeats was given for the case of two identical proces-
sors. The author gave the earliest instant from which the
schedule repeats. The work presented in [16] is actually
a generalization of a result obtained for uniprocessor case
in [17]. We shall compare the contribution of this work in
regard to [16] Section 4.1.
This research. In this paper, we show that any feasi-

ble schedules of a periodic task system on uniform par-
allel processors repeat from some point, extending this
way results from uniprocessor case [19] to multiproces-
sor one. For synchronous periodic task systems on uni-
form parallel processors we show that the schedule repeats
from the origin. Then we give a feasibility interval for
the case of global fixed-priority scheduling2 of these sys-
tems. Then, we prove a more precise and useful result, the
main contribution of this paper: any feasible schedules of
global fixed-priority scheduling of asynchronous periodic
task systems on uniform parallel processors are periodic
from a specific point (or possibly before). We also char-
acterize that point and we provide a feasibility interval for
those systems. Moreover, we provide an additional con-

1the characteristics of jobs need not be known prior to their release
times.

2the priorities are assigned to the tasks beforehand, at run-time each
request inherits of its task priority and remains constant.

tribution: we show that priority-driven algorithms are pre-
dictable on uniform multiprocessors.
Organization. This paper is organized as follows. In

Section 2, we introduce our model of computation and
we show that priority-driven algorithms are predictable on
uniform platforms (Section 2.1). In Section 3, we show
that any feasible schedules of periodic task systems are
periodic from some point. In Section 3.1, we consider
the specific case of synchronous periodic task systems. In
Section 4, we present our main result: a feasibility inter-
val for asynchronous periodic task sets using global fixed-
priority scheduling and we conclude in Section 5.

2 Definitions and assumptions

We consider the scheduling of periodic task systems. A
system τ is composed by n periodic tasks τ1, τ2, . . . , τn,
each task is characterized by a period Ti, a relative dead-
line Di, a worst-case execution time Ci and an offset Oi.
Such a periodic task generates an infinite sequence of jobs,
with the k’th job arriving at time-instant Oi + (k − 1)Ti

(k = 1, 2, . . .), having a worst-case execution require-
ment of Ci units, and a hard deadline at time-instant
Oi + (k − 1)Ti + Di.
We shall distinguish between implicit deadline systems

where Di = Ti,∀i; constrained deadline systems where
Di ≤ Ti,∀i and arbitrary deadline systems where there
is no constraint between the deadline and the period.
In some cases, we shall consider the more general prob-

lem of scheduling a set of jobs, each job Jj = (rj , ej , dj)
is characterized by an release time rj , an execution time
ei and an absolute deadline dj . The job Jj must execute
for ej time units over the interval [rj , dj).
A periodic system is said to be synchronous if there is

an instant at which jobs of all tasks are released syn-
chronously, i.e. ∃t, k1, k2, . . . kn such that ∀i : t =
Oi + kiTi (see [14] for details). Without loss of general-
ity, we assume that Oi = 0,∀i, for synchronous systems.
Otherwise the system is said to be asynchronous.
A task becomes active from its release time to its com-

pletion.
We denote by τ (i) def= {τ1, τ2, . . . , τi}, by Omax

def=
max{O1, O2, . . . , On}, by Pi

def= lcm{T1, T2, . . . , Ti}
and P

def= Pn.
A system τ is said to be feasible upon a multiprocessor
platform if there exists at least one schedule in which all
tasks meet their deadlines. If A is an algorithm which
schedules τ upon a multiprocessor platform to meet the
deadlines, then the system τ is said to be A-feasible.
We consider in this paper m uniform processors,

and without loss of generality, the set of processors
{p1, . . . , pm} is considered ordered in the decreasing or-
der of their computing capacity. We consider in this paper
a discrete model, i.e., the characteristics of the tasks are
integers. Moreover, we assume that the instants at which



the scheduler makes decisions are equidistant.3

We now formalize the notions of the state of the system
and the schedule.

Definition 1 (State of the system θ(t)) For any
constrained deadline system τ = {τ1, . . . , τn}
we define the state θ(t) of the system τ at in-
stant t as θ : N → ({−1, 0, 1} × N2)n with

θ(t) def= (θ1(t), θ2(t), . . . , θn(t)) where

θi(t)
def=



(−1, t1, 0), if no job of task τi was acti-
vated before or at t and it re-
mains t1 time units until the
first activation of τi. (We have
0 < t1 ≤ Oi);

(0, t2, 0), if at least one job of τi was
already activated before t, but
there is no active job of τi at
t. The time elapsed since its
last activation is t2. (We have
0 < t2 < Ti);

(1, t3, t4), if there is an active job of τi

at instant t the time elapsed
since its last action is t3 and
t4 units were already executed.
(We have 0 ≤ t3 < Ti and
0 ≤ t4 < Ci.)

Definition 2 (Schedule σ(t)) For any task system τ =
{τ1, . . . , τn} and any ordered set of m processors
{p1, . . . , pm} we define the schedule σ(t) of system τ at
instant t as σ : N → {0, 1, . . . , n}m where

σ(t) def= (σ1(t), σ2(t), . . . , σm(t)) with

σj(t)
def=

 0, if there is no task scheduled on pj

at instant t;
i, if τi is scheduled on pj at instant t.

∀1 ≤ j ≤ m.

In this work, we consider that task parallelism is forbid-
den: a task cannot be scheduled at the same instant on
different processors, i.e. @j1 6= j2 ∈ {1, 2, . . . ,m} and
t ∈ N such that σj1(t) = σj2(t) 6= 0.
Notice that Definition 2 can be extended trivially to the

scheduling of a set of jobs.
The scheduling algorithms considered in this paper are

deterministic with the following definition:

Definition 3 (Deterministic algorithms) A scheduling
algorithm is said to be deterministic if it generates a
unique schedule for any given sets of jobs.

Moreover, we shall assume that the decision of the
scheduling algorithm at time t is not based on the past,
nor on the actual time t but only on the characteristics of
active tasks and on the state of the system at time t. More
formally, we consider memoryless schedulers.

3e.g., all natural integers if Ci/sj is an natural integer ∀i, j.

Definition 4 (Memoryless algorithms) A scheduling al-
gorithm is said to be memoryless if the scheduling deci-
sion made by it at time t depends only on the characteris-
tics of active tasks and on the current state of the system,
i.e., on θ(t).

Consequently, for memoryless and deterministic sched-
ulers we have the following property:

∀t1, t2 such that θ(t1) = θ(t2) then σ(t1) = σ(t2).

In uniprocessor (or identical multiprocessor) scheduling,
a work-conserving algorithm is defined to be the one that
never idles a processor while there is at least one active
job. For uniform multiprocessors we adopt the following
definition.

Definition 5 (Work-conserving algorithms) An uni-
form multiprocessor scheduling algorithm is work-
conserving if:

• no processor is idled while there are active jobs;

• if at some time instant there are fewer than m active
jobs (m denotes the number of uniform processors)
then the active jobs are executed upon the fastest pro-
cessors;

• higher priority jobs are executed on faster proces-
sors.

2.1 Preliminary results
In order to dispose of a feasibility interval and since the
task parameter Ci is only an upper bound of the actual
execution time of the task requests, we need to show that
work-conserving and priority-driven algorithms are pre-
dictable on uniform platforms. As far as we know the lat-
ter property is not considered in the literature and we shall
fill the gap. But first we need some additional definitions
and properties.

Definition 6 (Priority-driven algorithms) A scheduling
algorithm is a priority-driven algorithm if and only if it
satisfies the condition that for every pair of jobs Ji and
Jj , if Ji has higher priority than Jj at some time instant,
then Ji always has higher priority than Jj .

It may be noticed that the order defined on the set of jobs
is not necessarily total. Indeed, we only need to compare
the priorities of simultaneous active jobs.
In this section, we consider the scheduling of sets of `

jobs (e.g., the set J = {J1, . . . , J`}), and without loss of
generality we consider jobs in decreasing order of priori-
ties (J1 > J2 > · · · > J`). We suppose that the execu-
tion times of each job Ji can be any value in the interval
[e−i , e+

i ] and we denote by J+
i the job defined from job

Ji as follows: J+
i

def= (ri, e
+
i , di). Similarly, J−i is the

job defined from Ji as follows: J−i = (ri, e
−
i , di). We



denote by J (i) the set of the first i higher priority jobs.
We denote also by J

(i)
− the set {J−1 , . . . , J−i } and by J

(i)
+

the set {J+
1 , . . . , J+

i }. Notice that the schedule of an or-
dered set of jobs using a work-conserving and priority-
driven algorithm is unique. Let S(J) be the time instant
at which the lowest priority job of J begins its execution
in the schedule. Similarly, let F (J) be the time instant at
which the lowest priority job of J completes its execution
in the schedule.

Definition 7 (Predictable algorithms) A scheduling al-
gorithm is said to be predictable if S(J (i)

− ) ≤ S(J (i)) ≤
S(J (i)

+ ) and F (J (i)
− ) ≤ F (J (i)) ≤ F (J (i)

+ ), for all
1 ≤ i ≤ ` and for all feasible J

(i)
+ sets of jobs.

In [20] the authors showed that work-conserving priority-
driven algorithms are predictable on identical processors.
The proof presented is not convincing (the proof is based
on the total sum of execution times without taking into
account the hypothesis that task parallelism is forbidden),
we shall show here a more general result: the case of uni-
form work-conserving and priority-driven algorithms. We
introduce the notion of availability of the processors for a
set of jobs.

Definition 8 (Availability of the processors A(J, t))
For any ordered set of jobs J and any ordered set
of m uniform processors {p1, . . . , pm}, we define
the availability of the processors A(J, t) of the set of
jobs J at instant t as the set of available processors:
A(J, t) def= {j | σj(t) = 0} ⊆ {1, . . . ,m}, where σ is
the schedule of J .

Lemma 1 For a feasible ordered set of jobs J (using the
priority-driven and work-conserving schedule) and an or-
dered set of uniform processors {p1, . . . , pm}, we have
that A(J (i)

+ , t) ⊆ A(J (i), t), for all t and all i. That is, at
any time instant the processors available in σ

(i)
+ are also

available in σ(i). (We consider that the sets of jobs are or-
dered in the same decreasing order of the priorities, i.e.,
J1 > J2 > · · · > J` and J+

1 > J+
2 > · · · > J+

` .)

Proof. The proof is made by induction by ` (the num-
ber of jobs). Our inductive hypothesis is the following:
A(J (k)

+ , t) ⊆ A(J (k), t), for all t and 1 ≤ k ≤ i.
The property is true in the base case since A(J (1)

+ , t) ⊆
A(J (1), t), for all t. Indeed, S(J (1)) = S(J (1)

+ ) and they
are both scheduled on the fastest processor, but J

(1)
+ will

be executed for the same or a larger amount of time than
J (1).
We shall show now that A(J (i+1)

+ , t) ⊆ A(J (i+1), t), for
all t.
Since the jobs in J (i) have higher priority than Ji+1, then

the scheduling of Ji+1 will not interfere with higher prior-
ity jobs which are already scheduled. Similarly J+

i+1 will

not interfere with higher priority jobs of J
(i)
+ which are

already scheduled. Therefore, we may build the sched-
ule σ(i+1) from σ(i), such that the jobs J1, J2, . . . , Ji, are
scheduled at the very same instants and on the very same
processors as they were in σ(i). Similarly, we may build
σ

(i+1)
+ from σ

(i)
+ .

Notice that A(J (i+1), t) will contain the same available
processors as A(J (i), t) for all t except the time instants at
which Ji+1 is scheduled, and similarly A(J (i+1)

+ , t) will
contain the same available processors as A(J (i)

+ , t) for
all t except the time instants at which J+

i+1 is scheduled.

From the inductive hypothesis we have that A(J (i)
+ , t) ⊆

A(J (i), t), for all t and consequently, the job Ji+1 can
be scheduled at least at the very same instants and on the
very same processors than J+

i+1, but the job Ji+1 may
also progress at the very same instant on faster proces-
sors or during additional time instants (since we consider
work-conserving scheduling). Combined with the fact
that ei ≤ e+

i the property follows. 2

Theorem 2 Work-conserving and priority-driven algo-
rithms are predictable on uniform platforms.

Proof. For a feasible ordered set J of ` jobs and an
ordered set of uniform processors {p1, . . . , pm}, we have
to show that S(J (i)

− ) ≤ S(J (i)) ≤ S(J (i)
+ ) and F (J (i)

− ) ≤
F (J (i)) ≤ F (J (i)

+ ), for all 1 ≤ i ≤ `. (The sets of jobs
are ordered in the same decreasing order of the priorities,
i.e., J−1 > J−2 > · · · > J−` , J1 > J2 > · · · > J` and
J+

1 > J+
2 > · · · > J+

` .)
The proof is made by induction by ` (the number of jobs).

We show the second part of each inequality, i.e. S(J (i)) ≤
S(J (i)

+ ) and F (J (i)) ≤ F (J (i)
+ ), for all 1 ≤ i ≤ `. The

proof of the first part of inequalities is similar.
Our inductive hypothesis is the following: S(J (k)) ≤

S(J (k)
+ ) and F (J (k)) ≤ F (J (k)

+ ), for all 1 ≤ k ≤ i.
The property is true in the base case since S(J (1)) =

S(J (1)
+ ) and F (J (1)) ≤ F (J (1)

+ ).
We shall show now that S(J (i+1)) ≤ S(J (i+1)

+ ) and
F (J (i+1)) ≤ F (J (i+1)

+ ).
Since the jobs in J (i) have higher priority than Ji+1 then

the scheduling of Ji+1 will not interfere with higher pri-
ority jobs which are already scheduled. Similarly J+

i+1

will not interfere with higher priority jobs of J
(i)
+ which

are already scheduled. Therefore, we may build σ(i+1)

from σ(i), respectively σ
(i+1)
+ from σ

(i)
+ , such that the

jobs J1, J2, . . . , Ji, respectively the jobs J+
1 , J+

2 , . . . , J+
i ,

are scheduled at the very same instants and on the very
same processors as they were in σ(i), respectively in σ

(i)
+ .

The job Ji+1 can be scheduled only when the proces-
sors are available in σ(i), consequently at those time in-
stants t0 ≥ ri+1 for which the availability of processors
A(J (i), t) 6= ∅. Similarly J+

i+1 may be scheduled at those
time instants t+0 ≥ ri+1 for which the availability of pro-
cessors A(J (i)

+ , t) 6= ∅. From the inductive hypothesis we
know that higher priority jobs complete sooner (or at the



same time) consequently t0 ≤ t+0 , and Ji+1 begins its ex-
ecution in σ(i+1) sooner or at the same instant than J+

i+1

in σ
(i+1)
+ , i.e. S(J (i+1)) ≤ S(J (i+1)

+ ). It follows from
Lemma 1 that from time t0 the job Ji+1 can be scheduled
at least at the very same instants and on the very same pro-
cessors than J+

i+1, but the job Ji+1 may also progress at
the very same instants on faster processors or during ad-
ditional time instants (since we consider work-conserving
scheduling). Consequently, F (J (i+1)) ≤ F (J (i+1)

+ ). 2

3 Periodicity of deterministic and
memoryless scheduling algo-
rithms

In this section, we shall show that feasible schedules of
periodic task systems obtained using deterministic and
memoryless algorithm are periodic from some point (The-
orem 3), assuming that the execution times of each task
is constant. With the latter assumption, we obtain two
interesting applications of Theorem 3: preemptive fixed-
priority algorithms (Corollary 4) and deterministic EDF4

(Corollary 5). But first, we formalize the notion of feasi-
bility interval.

Definition 9 (Feasibility interval) For any task system
τ = {τ1, . . . , τn} and any ordered set of m processors
{p1, . . . , pm}, the feasibility interval is a finite interval
such that if no deadline is missed while considering only
requests within this interval then no deadline will ever be
missed.

Theorem 3 For any deterministic and memoryless algo-
rithm A, if an asynchronous constrained deadline system
τ is A-feasible, then the A-feasible schedule of τ on m
uniform processors is finally periodic, i.e. from some point
the schedule repeats. (Assuming that the execution time of
each task is constant.)

Proof. First notice that from t0 ≥ Omax all tasks are re-
leased, and the configuration θi(t) of each task is a triple
of finite integers (α, β, γ) with α ∈ {0, 1}, 0 ≤ β <
max1≤i≤n Ti and 0 ≤ γ < max1≤i≤n Ci. Therefore
there is a finite number of possible combinations and we
can find two instants t1 and t2 (t2 > t1 ≥ t0) with the
same state of the system. The schedule repeats from that
instant with a period dividing t2 − t1, since the scheduler
is deterministic and memoryless. 2

Notice that non-preemptive scheduling algorithms are
not memoryless5 since at instant t the scheduler must
know which task[s] was scheduled at instant t−1 to make
a scheduling decision and to avoid preemption.

4by deterministic EDF we mean that ambiguous situations are solved
deterministically.

5at least with our definitions (Definition 1 in particular).

Corollary 4 For any preemptive fixed-priority algorithm
A, if an asynchronous constrained deadline system τ is A-
feasible, then the A-feasible schedule of τ on m uniform
processors is finally periodic. (Assuming that the execu-
tion time of each task is constant.)

Proof. The result is a direct consequence of Theorem 3,
since a preemptive fixed-priority algorithm is determinis-
tic and memoryless. 2

Corollary 5 A feasible schedule obtained using deter-
ministic global EDF on m multiprocessor platforms of an
asynchronous constrained deadline system τ is finally pe-
riodic. (Assuming that the execution time of each task is
constant.)

Proof. The result is a direct consequence of Theorem 3,
since deterministic EDF is deterministic and memoryless.

2

Notice that the scheduler may intentionally idle one or
several processors in order to satisfy some constraints
of the system, i.e., the scheduler may be not work-
conserving. In other words, Theorem 3 remains if the
scheduler idles the processor[s] in a deterministic and
memoryless way.

3.1 The particular case of synchronous pe-
riodic systems

In this section we deal with the particular case of syn-
chronous periodic task systems and we show the period-
icity of feasible schedules obtained using, as in Section 3,
deterministic and memoryless algorithms.

Theorem 6 For any deterministic and memoryless algo-
rithm A, if a synchronous constrained deadline system τ
is A-feasible, then the A-feasible schedule of τ on m uni-
form processors is periodic with a period P that begins at
instant 0. (Assuming that the execution time of each task
is constant.)

Proof. Since τ is a synchronous periodic system, all
tasks become active at instants 0 and P . Moreover, since
τ is a A-feasible constrained deadline system, all jobs oc-
curred strictly before instant P have finished their execu-
tion before or at instant P . Therefore at instants 0 and P
the system is in the same state, i.e. θ(0) = θ(P ), and a
deterministic and memoryless scheduling algorithm will
make the same scheduling decision. The schedule repeats
with a period equal to P .

2

An interesting special case of Theorem 6 is the following:

Corollary 7 A feasible schedule obtained using deter-
ministic global EDF of a synchronous constrained dead-
line system τ on m identical or uniform processors is pe-
riodic with a period P that begins at instant 0. (Assuming
that the execution time of each task is constant.)



Now we have the material to define a feasibility interval
for synchronous constrained deadline systems.

Corollary 8 For any preemptive fixed-priority algorithm
A and any A-feasible synchronous constrained deadline
system τ on m uniform processors, the interval [0, P ) is a
feasibility interval.

Proof. The result is a direct consequence of Theo-
rem 6 and Theorem 2, since fixed-priority schedulers are
priority-driven. 2

Notice that we do not assume here that the task execution
times are constant, the task parameter Ci represents the
worst-case execution time.

4 Fixed-priority scheduling of asyn-
chronous systems

In this section we give our main result: any feasi-
ble schedules on m uniform processors of asynchronous
constrained deadline systems, obtained using preemptive
fixed-priority algorithms, are periodic from some point
(Theorem 9), assuming that the execution time of each
task is constant. Moreover, we define a feasibility interval
for this case (Corollary 11).
Without loss of generality we consider the tasks ordered

in decreasing order of their priorities τ1 > τ2 > · · · > τn.
We introduce now the availability of the processors for

any schedule σ(t).

Definition 10 (Availability of the processors a(t))
For any task system τ = {τ1, . . . , τn} and any
ordered set of m processors {p1, . . . , pm} we de-
fine the availability of the processors a(t) of sys-
tem τ at instant t as the set of available processors
a(t) def= {j | σj(t) = 0} ⊆ {1, . . . ,m}.

Theorem 9 For any preemptive fixed-priority algorithm
A, if an asynchronous constrained deadline system τ is A-
feasible, then the A-feasible schedule of τ on m uniform
processors is periodic with a period P from instant Sn

where Si is defined inductively as follows:

• S1
def= O1;

• Si
def= max{Oi, Oi + dSi−1−Oi

Ti
eTi},∀i ∈

{2, 3, . . . , n}.

(Assuming that the execution time of each task is con-
stant.)

Proof. The proof is made by induction by n (the num-
ber of tasks). We denote by σ(i) the schedule obtained by
considering only the task subset τ (i), the first higher pri-
ority i tasks {τ1, . . . , τi}, and by a(i) the corresponding
availability of the processors. Our inductive hypothesis is
the following: the schedule σ(k) is periodic from Sk with
a period Pk for all 1 ≤ k ≤ i.

The property is true in the base case: σ(1) is periodic
from S1 = O1 with period P1, for τ (1) = {τ1}: since we
consider constrained deadline systems, at instant P1 = T1

the previous request of τ1 has finished its execution and
the schedule repeats.
We shall now show that any A-feasible schedule of

τ (i+1) is periodic with period Pi+1 from Si+1.
Since σ(i) is periodic with a period Pi from Si the fol-

lowing equation is verified:

σ(i)(t) = σ(i)(t + Pi),∀t ≥ Si. (1)

We denote by Si+1
def= max{Oi+1, Oi+1 +

dSi−Oi+1
Ti+1

eTi+1} the first request of τi+1 not before
Si.
Since the tasks in τ (i) have higher priority than τi+1, then

the scheduling of τi+1 will not interfere with higher prior-
ity tasks which are already scheduled. Therefore, we may
build σ(i+1) from σ(i) such that the tasks τ1, τ2, . . . , τi

are scheduled at the very same instants and on the very
same processors as they were in σ(i). We apply now the
induction step: for all t ≥ Si in σ(i) we have a(i)(t) =
a(i)(t + Pi) the availability of the processors repeats. No-
tice that at those instants t and t + Pi the available pro-
cessors (if any) are the same. Consequently at only these
instants task τi+1 may be executed. Notice that the sched-
uler can decide to leave one or several processor(s) to be
idle intentionally in a deterministic and memoryless way.
The instants t with Si+1 ≤ t < Si+1 +Pi+1, where τi+1

may be executed in σ(i+1), are periodic with period Pi+1

since Pi+1 is a multiple of Pi. Moreover since the system
is feasible and we consider constrained deadlines, the only
active request of τi+1 at Si+1, respectively at Si+1+Pi+1,
is the one activated at Si+1, respectively at Si+1 + Pi+1.
Consequently, the instants at which the deterministic and
memoryless algorithm A schedules τi+1 are periodic with
period Pi+1. Therefore, the schedule σ(i+1) repeats from
Si+1 with period equal to Pi+1 and the property is true for
all 1 ≤ k ≤ n, in particular for k = n : σ(n) is periodic
with period equal to P from Sn and the property follows.

2

An interesting application of Theorem 9 concerns identi-
cal processors:

Corollary 10 For any preemptive fixed-priority algo-
rithm A, if an asynchronous constrained deadline system
τ is A-feasible on m identical processors, then the A-
feasible schedule of τ is periodic with a period P from
instant Sn where Si are defined inductively as defined in
Theorem 9. (Assuming that the execution time of each task
is constant.)

Now we have the material to define a feasibility interval
for asynchronous constrained deadline periodic systems.

Corollary 11 For any preemptive work-conserving fixed-
priority algorithm A and for any A-feasible asynchronous
constrained deadline system τ on m uniform processors,



[0, Sn + P ) is a feasibility interval where Si are defined
inductively in Theorem 9. Moreover, for every task τi one
only has to check the deadlines in the interval [Si, Si +
lcm{Tj |j ≤ i}).

Proof. The Corollary 11 is a direct consequence of
Corollary 10 and Theorem 2, since fixed-priority algo-
rithms are priority-driven. 2

The feasibility interval given by Corollary 11 may be im-
proved as it was done in the uniprocessor case [19]. In that
paper, the authors introduced several intermediary results
proved by induction in order to give the following theo-
rem:

Theorem 12 [19] Let Xi be inductively defined by Xn =
Sn, Xi = Oi + bXi+1−Oi

Ti
cTi (i ∈ {n− 1, n− 2, · · · , 1};

then [X1, Sn + P ] is a feasibility interval.

Following the proof of Theorem 9, we can extend the
reasoning of Theorem 12 to the multiprocessor case, since
it does not depend on the number of processors nor on the
kind of platforms but on the availability of the processors.

Theorem 13 For any A-feasible system τ on m proces-
sors, [X1, Sn + P ] is a feasibility interval where Xi are
defined inductively in Theorem 12.

4.1 Comparison with earlier work
In this section we compare our results to those presented
in [16]. We show that, even if the instant X1 (Theorem 12)
is not necessary the earliest instant from which the sched-
ule repeats, our results are more general, i.e., they are
given for m uniform processors and constrained deadline
task systems.
In [16] preemptive fixed-priority scheduling of asyn-

chronous implicit deadline task systems on two identical
processors is considered. The authors extended results ob-
tained for uniprocessor case [17] to the case of two pro-
cessors and they showed that any feasible schedules repeat
immediately after a time instant called the last acyclic idle
time. The last acyclic idle time tc is defined as the last
time instant when at least one processor idles which does
not repeat with a period equal to P . No upper bound is
provided for tc, but the authors suggest that Omax + P
might be such a bound as it was for the uniprocessor case.
As the authors mention, the results obtained in [16] do

not remain for scheduling algorithms which are not work-
conserving, e.g. algorithm introducing intentionally idle
times in a deterministic and memoryless way.
Moreover from the applicability point of view, in order

to verify the feasibility of a periodic task system, the last
acyclic idle time must be found. It implies that one needs
to observe the schedule at least from instant Omax to in-
stant Omax + 2P , if we suppose that the bound remains
the same as for the uniprocessor case. The length of the
interval that must be observed is ' 2P and it is longer
than the interval that must be observed in our case (' P ).

Indeed in order to make the distinction between cyclic and
acyclic idle times, one must observe an interval of length
P , tc cannot appear before Omax and the upper bound on
tc is Omax + P . Once the last idle time t0 was found,
the interval [t0, t0 + P ) is studied in order to determine if
the system is feasible. Notice that the complexity of our
algorithm allowing to find the explicit form of the feasi-
bility intervals is O(n) (i.e., the computations of Sn and
X1). While Geniet’s algorithm needs to consider a full
hyper-period P .
In conclusion our results, concerning the fact that the

schedule repeats, are more general than those presented in
[16], since they are given for constrained deadline systems
on m uniform processors and can be applied to schedul-
ing algorithms introducing intentionally idle times in a
deterministic and memoryless way. Moreover we show
that priority-driven algorithms are predictable on uniform
multiprocessors and we provide a feasibility test consider-
ing that the task parameter Ci is the worst-case execution
time while Geniet considers that the execution times are
constant.

5 Conclusion and future work
In this work we extended some results concerning the pe-
riodicity of feasible schedules and the feasibility inter-
vals from the uniprocessor case to the multiprocessor case.
We showed that any feasible schedules of a periodic task
system on uniform parallel processors repeat from some
point. For synchronous constrained deadline task systems
we showed that this point is the origin and we provided
feasibility intervals for these systems. Then, we presented
the main contribution of this paper: feasibility intervals
for asynchronous constrained deadline task systems ob-
tained using preemptive fixed-priority algorithms.
As future work we are interested in obtaining results con-

cerning feasibility intervals for asynchronous constrained
deadline task systems obtained using deterministic EDF
on multiprocessor platforms.
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