

New Computational Paradigms

� � � � � New � � � �

Computational Paradigms

Changing Conceptions
of What is Computable

S. Barry Cooper
Benedikt Löwe
Andrea Sorbi

Editors

S. Barry Cooper
Department of Pure Mathematics
University of Leeds
Leeds LS2 9JT
United Kingdom
pmt6sbc@leeds.ac.uk

Benedikt Löwe
Institute for Logic, Language and

Computation
University of Amsterdam
Plantage Muidergracht 24
1018 TV Amsterdam
The Netherlands
bloewe@science.uva.nl

Andrea Sorbi
Department of Mathematics and

Computer Science “Roberto Magari”
Università di Siena
Pian dei Mantellini 44
53100 Siena
Italy
sorbi@unisi.it

e-ISBN-13: 978-0-387-68546-5
DOI: 10.1007/978-0-387-68546-5

Library of Congress Control Number: 2007935311

Mathematics Subject Classification (2000): 68Q01, 68Q05

c©2008 Springer Science+Business Media, LLC
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media LLC, 233 Spring Street, New York,
NY 10013, USA) and the author, except for brief excerpts in connection with reviews or scholarly
analysis. Use in connection with any form of information storage and retrieval, electronic adaptation,
computer software, or by similar or dissimilar methodology now known or hereafter developed is
forbidden.
The use in this publication of trade names, trademarks, service marks and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

Cover illustration: Created by Sven Geier of the California Institute of Technology. The image, an
example of fractal art, is entitled “Deep Dive.”

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

ISBN-13: 978-0-387-36033-1

Contents

Preface . ix

List of Contributors . xi

Alan Turing, Logical and Physical
Andrew Hodges . 3

Part I The Turing Model of Computation and its Applications to Logic,
Mathematics, Philosophy, and Computer Science

Computability and Numberings
Serikzhan Badaev, Sergey Goncharov . 19

Computation as Conversation
Johan van Benthem . 35

Computation Paradigms in Light of Hilbert’s Tenth Problem
Yuri Matiyasevich . 59

Elementary Algorithms and Their Implementations
Yiannis N. Moschovakis, Vasilis Paschalis . 87

Applications of the Kleene–Kreisel Density Theorem to Theoretical
Computer Science
Dag Normann . 119

Church Without Dogma: Axioms for Computability
Wilfried Sieg . 139

vi Contents

Computability on Topological Spaces via Domain Representations
Viggo Stoltenberg-Hansen, John V. Tucker . 153

On the Power of Broadcasting in Mobile Computing
Jiří Wiedermann, Dana Pardubská . 195

Part II Logic, Algorithms and Complexity

The Computational Power of Bounded Arithmetic from the Predicative
Viewpoint
Samuel R. Buss . 213

Effective Uniform Bounds from Proofs in Abstract Functional
Analysis
Ulrich Kohlenbach . 223

Effective Fractal Dimension in Algorithmic Information Theory
Elvira Mayordomo . 259

Metamathematical Properties of Intuitionistic Set Theories with Choice
Principles
Michael Rathjen . 287

New Developments in Proofs and Computations
Helmut Schwichtenberg . 313

Part III Models of Computation from Nature

From Cells to (Silicon) Computers, and Back
Gheorghe Păun . 343

Computer Science, Informatics, and Natural Computing—Personal
Reflections
Grzegorz Rozenberg . 373

Part IV Computable Analysis and Real Computation

A Survey on Continuous Time Computations
Olivier Bournez, Manuel L. Campagnolo . 383

A Tutorial on Computable Analysis
Vasco Brattka, Peter Hertling, Klaus Weihrauch . 425

A Continuous Derivative for Real-Valued Functions
Abbas Edalat . 493

Contents vii

Infinite Time Computable Model Theory
Joel David Hamkins, Russell Miller, Daniel Seabold, Steve Warner 521

Index . 559

Preface

June 2005 saw the coming together, in Amsterdam, of the first meeting of a new re-
search community, which sought to renew, in the new century, the ground-breaking
legacy of Alan Turing. Computability in Europe (CiE) originated with a 2003 pro-
posal for EU funding but rapidly developed into a Europe-wide network of over
400 researchers from 17 countries, around 70 institutions, and a number of different
research disciplines (mathematics, computer science, physics, biology, philosophy,
and logic). This book of invited (and rigorously refereed) articles showcases the di-
versity, excitement, and scientific innovation of that first meeting, and the powerful
multidisciplinarity that it injected into computational research.

Many of the contributions to be found here reflect the necessity to deal with com-
putability in the real world—computing on continuous data, biological comput-
ing, physical computing, etc.—which has focused attention on new paradigms of
computation, based on biological and physical models. This book looks at new devel-
opments in the theory and practice of computation from a mathematical and predom-
inantly logical perspective, with topics ranging from classical computability to com-
plexity, biocomputing, and quantum computing. Traditional topics in computability
theory are also covered as well as relationships among proof theory, computability
and complexity theory, and new paradigms of computation arising from biology and
quantum physics and issues related to computability with/on the real numbers. The
book is addressed to researchers and graduate students in mathematics, philosophy,
and computer science with a special interest in foundational issues. Logicians and
theoretical physicists will also benefit from this book.

Since that first conference, CiE has become more than the sum of its parts, reasserting
an older tradition of scientific research. This more thoughtful approach is what this
1944 quotation from Einstein1 seems to refer to:

1 A. Einstein to R. A. Thornton, unpublished letter dated Dec. 7, 1944; in Einstein Archive,
Hebrew University, Jerusalem.

x Preface

So many people today—and even professional scientists—seem to me like
someone who has seen thousands of trees but has never seen a forest.
A knowledge of the historical and philosophical background gives that kind
of independence from prejudices of his generation from which most scien-
tists are suffering. This independence created by philosophical insight is—
in my opinion—the mark of distinction between a mere artisan or specialist
and a real seeker after truth.

There is a parallel between the competitive hyperactive specialism of parts of com-
puter science (and logic) and that of the string theory community that Lee Smolin2

focuses on in his recent book. He pinpoints:

. . . a more brash, aggressive, and competitive atmosphere, in which theo-
rists vie to respond quickly to new developments . . . and are distrustful of
philosophical issues. This style supplanted the more reflective, philosoph-
ical style that characterized Einstein and the inventors of quantum theory,
and it triumphed as the center of science moved to America and the intellec-
tual focus moved from the exploration of fundamental new theories to their
application.

This book embodies what is special about what CiE is trying to do in taking computa-
tional research beyond the constraints of “normal science,” while building a cohesive
research community around fundamental issues of computability.

Leeds S. Barry Cooper
Amsterdam Benedikt Löwe
Siena Andrea Sorbi
July 2007

2 L. Smolin, The Trouble With Physics: The Rise of String Theory, the Fall of a Science and
What Comes Next, Houghton Mifflin, 2006.

List of Contributors

Serikzhan Badaev
Kazakh National University, Almaty
050038, Kazakhstan
badaev@kazsu.kz

Johan van Benthem
Institute for Logic, Language &
Computation (ILLC), University of
Amsterdam, Amsterdam, 1018 TV, the
Netherlands
johan@science.uva.nl

and
Department of Philosophy, Stanford
University, Stanford, CA 94305,
U.S.A.
johan@csli.stanford.edu

Olivier Bournez
INRIA Lorraine and LORIA (UMR
7503 CNRS-INPL-INRIA-Nancy2-
UHP), BP239 54506 Vandœuvre-Lès-
Nancy, France
Olivier.Bournez@loria.fr

Vasco Brattka
Laboratory of Foundational Aspects
of Computer Science, Department of
Mathematics and Applied Mathematics,
University of Cape Town, Rondebosch
7701, South Africa
Vasco.Brattka@uct.ac.za

Samuel R. Buss
Department of Mathematics, University
of California, San Diego, La Jolla, CA
92093-0112, U.S.A.
sbuss@math.ucsd.edu

Manuel L. Campagnolo
DM/ISA, Technical University of
Lisbon, Tapada da Ajuda, 1349-017
Lisboa, Portugal
and
SQIG/IT Lisboa
mlc@math.isa.utl.pt

Abbas Edalat
Department of Computing, Imperial
College London, London SW7 2AZ,
United Kingdom
ae@doc.ic.ac.uk

Sergey Goncharov
Institute of Mathematics of Siberian
Branch of Russian Academy of
Sciences, Novosibirsk 6300090,
Russia
gonchar@math.nsc.ru

Joel David Hamkins
The College of Staten Island of The City
University of New York, Mathematics,
Staten Island, NY 10314, U.S.A.
and

xii List of Contributors

The Graduate Center of The City
University of New York, Ph.D. Program
in Mathematics, New York, NY 10016,
U.S.A.
jhamkins@gc.cuny.edu

http://jdh.hamkins.org

Peter Hertling
Institut für Theoretische Informatik und
Mathematik, Fakultät für Informatik,
Universität der Bundeswehr München,
85577 Neubiberg, Germany
Peter.Hertling@unibw.de

Andrew Hodges
Wadham College, University of
Oxford, Oxford OX1 3PN, United
Kingdom
andrew.hodges@wadh.ox.ac.uk

http://www.turing.org.uk

Ulrich Kohlenbach
Department of Mathematics, Technis-
che Universität Darmstad, D-64289
Darmstadt, Germany
kohlenbach@mathematik.tu

-darmstadt.de

http://www.mathematik.

tu-darmstadt.de/

~kohlenbach

Yuri Matiyasevich
Steklov Institute of Mathematics,
St. Petersburg 191023, Russia
yumat@pdmi.ras.ru

http://logic.pdmi.ras.ru/

~yumat

Elvira Mayordomo
Departamento de Informática e
Ingeniería de Sistemas, Universi-
dad de Zaragoza, 50018 Zaragoza,
Spain
elvira@unizar.es

Russell Miller
Queens College of The City University
of New York, Mathematics, Flushing,
New York 11367, U.S.A.
and
The Graduate Center of The City
University of New York, Ph.D. Program
in Computer Science, New York, NY
10016, U.S.A.
Russell.Miller@qc.cuny.edu

Yiannis N. Moschovakis
Department of Mathematics, Univer-
sity of California, Los Angeles, CA
90095-1555, U.S.A.
and
Graduate Program in Logic, Algorithms
and Computation (MΠΛA), University
of Athens, Panepistimioupolis, 15784
Zografou, Athens, Greece
ynm@math.ucla.edu

Dag Normann
Department of Mathematics, The
University of Oslo, Blindern N-0316,
Oslo, Norway
dnormann@math.uio.no

Dana Pardubská
Department of Computer Science,
Comenius University, 842 48 Bratislava,
Slovakia
pardubska@fmph.uniba.sk

Vasilis Paschalis
Graduate Program in Logic, Algorithms
and Computation (MΠΛA), University
of Athens, Panepistimioupolis, 15784
Zografou, Athens, Greece
pasva@yahoo.com

Gheorghe Păun
Institute of Mathematics of the Ro-
manian Academy, 014700 Bucureşti,
Romania

List of Contributors xiii

and
Research Group on Natural Computing,
Department of Computer Science
and Artificial Intelligence, Univer-
sity of Sevilla Avda, 41012 Sevilla,
Spain
george.paun@imar.ro

gpaun@us.es

Michael Rathjen
Department of Pure Mathematics,
University of Leeds, Leeds LS2 9JT,
United Kingdom
and
Department of Mathematics, Ohio
State University, Columbus, OH 43210,
U.S.A.
rathjen@math.ohio-state.edu

Grzegorz Rozenberg
Department of Computer Science,
University of Colorado at Boulder
Boulder, CO 80309, U.S.A.
and
Leiden Institute of Advanced Com-
puter Science (LIACS), Leiden
University, 2300 RA Leiden, the
Netherlands
rozenber@liacs.nl

Helmut Schwichtenberg
Mathematisches Institut der Univer-
sität München, D-80333 München,
Germany
schwicht@math.lmu.de

Daniel Seabold
Department of Mathematics, Hof-
stra University, Hempstead, NY
11549-1030, U.S.A.
matdes@hofstra.edu

Wilfried Sieg
Department of Philosophy, Carnegie
Mellon University, Pittsburgh, PA
15213, U.S.A.
sieg@cmu.edu

Viggo Stoltenberg-Hansen
Department of Mathematics, Upp-
sala University, S-75106 Uppsala,
Sweden
viggo@math.uu.se

John V. Tucker
Department of Computer Science,
University of Wales Swansea, SA2 8PP,
Wales
J.V.Tucker@swansea.ac.uk

Steve Warner
Department of Mathematics, Hof-
stra University, Hempstead, NY
11549-1030, U.S.A.

Klaus Wehirauch
Faculty of Mathematics and Computer
Science, University of Hagen, 58084
Hagen, Germany

Jiří Wiedermann
Institute of Computer Science, Academy
of Sciences of the Czech Republic, 182
07 Prague 8, Czech Republic
jiri.wiedermann@cs.cas.cz

matsjw@hofstra.edu

Klaus.Weihrauch@fernuni-hagen.de

Alan Turing, Logical and Physical

Andrew Hodges

Wadham College, University of Oxford, Oxford OX1 3PN, United Kingdom
andrew.hodges@wadh.ox.ac.uk
http://www.turing.org.uk

Summary. Alan M. Turing (1912–1954), the founder of computability theory, is generally
considered a pure logician. But his ideas involved the practical and physical implementation
of logical structure, particularly concerned with the relationship between discrete and contin-
uous, and his scientific work both began and ended in theoretical physics.

1 Delilah day

We shall begin in the middle, and with an Alan Turing who may not be familiar to
readers of this volume. ‘It is thought,’ he wrote, ‘that ... a very high degree of secu-
rity indeed can be obtained. There is certainly no comparison in security with any
other scrambler of less than ten times the weight. For tank-to-tank and plane-to-plane
work, a rather less ambitious form of key will probably be adequate. Such a key unit
might be of about the same size as the combining unit.’ The day was no ordinary
day: it was 6 June 1944, and the system was no ordinary system; it was the ‘Delilah’
real-time speech and fax scrambler, devised and developed by Turing with the as-
sistance of one engineer, Donald Bayley. According to this report (Turing 1944), the
work had begun in early May 1943. It was conducted at the British Secret Service
station at Hanslope Park, Buckinghamshire.

Turing’s speech cryptosystem illustrates many features typical of his work but not
widely known. (1) Speech secrecy characterized not only the content, but the fate,
of this work. This ‘top secret’ report emerged only in 2004. Further work by Turing
may yet be found to shed fresh light on his computational proposals. (2) This partic-
ular project was marked by Turing’s ambition to combine both the logical demand of
cryptographic security with the physical constraint of a small mobile unit for opera-
tional use. (3) The system combined both discrete and continuous elements, for the
sampling and the key was discrete, whilst the modular addition of signal amplitudes
was achieved by analogue electronic components. (4) The comparison with ‘any
other scrambler’ reflects the outcome of his top-level mission to the United States at

4 Andrew Hodges

the end of 1942, which gave him uniquely privileged access to advanced American
systems—so secret that he was not allowed to speak about it to British colleagues.
It was typical for him, on his return, to seek to outdo Bell Telephone Laboratories
with his single brain, and to build a better system with his own hands. This ambition
also served as the learning curve in electronics he needed in 1945 for his computer
design. (5) Turing’s wording indicates authoritative judgment, and not the submitting
of a proposal for the approval of superiors. In another report (Turing 1942), he com-
mented of his U.S. Navy counterparts that: ‘I am persuaded that one cannot very well
trust these people where a matter of judgement in cryptography is concerned.’ Those
judgements ranged extensively over questions of what would now be called software
and hardware: ‘I think we can make quite a lot of use of their machinery.’

I have introduced Turing in this unconventional form in order to shed a different
light on the man whom many readers of this volume will think of as a pure logician,
who founded computability theory and modern computer science through attacking
Hilbert’s Entscheidungsproblem in 1935–1936. As Newman (1955) put it, Turing
was ‘at heart more an applied than a pure mathematician’. It might be more true
to say that Turing had resisted this Cambridge classification from the outset. He at-
tacked every kind of problem—from arguing with Wittgenstein, to the characteristics
of electronic components, to the petals of a daisy. He did so on the basis of immense
confidence in the power of mathematical analysis, in whatever field he chose. But
Newman’s comment gives a correct impression that Turing began (and ended) with
the physical world.

Turing’s first known serious study, at the age of 16, was Einstein’s own semi-popular
text of The Theory of Relativity, a present from his grandfather. His next encounter
was with Eddington’s The Nature of the Physical World, from which he learnt about
quantum mechanics, then fresh and new. He was already research-minded, somehow
understanding more of general relativity than Einstein’s book explained, and seeing
the problem posed by Schrödinger’s configuration space. His first reading at the level
of contemporary research was of von Neumann’s Mathematische Grundlagen den
Quantenmechanik in 1933. His comment, ‘very interesting, and not at all difficult
reading, although the applied mathematicians seem to find it rather strong,’ conveys
not merely that he thought the applied mathematicians a little weak. It indicates his
zest for serious new mathematics with which to study the nature of the physical
world. Such was the start, and it was only two years later that Turing had the idea of
the Turing machine as a definition of effective calculability.

2 The shock of the new

Turing was stimulated by Newman’s 1935 lectures, which culminated in the question
of the Entscheidungsproblem. By Spring 1936, he had a fully worked out theory
of Turing machines, with which to give a fully satisfactory and negative answer to
Hilbert. His own famous opening (Turing 1936), of which Newman was perhaps the

Alan Turing, Logical and Physical 5

first reader, was: ‘a number is computable if its decimal can be written down by a
machine.’ Thus Turing introduced physical ideas into logic. But Turing had worked
in ignorance of Church’s definition of effective calculability in terms of the lambda-
calculus. Turing had to add an appendix demonstrating the mathematical equivalence
of his definition, and this delayed publication until the end of 1936.

Newman (1955) wrote that ‘it is difficult today to realize how bold an innovation it
was to introduce talk about paper tapes and patterns punched in them, into discus-
sions of the foundations of mathematics’, and the image was indeed a dose of Mod-
ern Times. Yet Church’s review of On computable numbers (Church 1937) did not
express anything other than welcome, even though that reviewer had the reputation
of being cautious to the point of pedantry. It was generous in spirit despite the fact
that it must have been disconcerting for Church that a young unknown, a complete
outsider, had given a more satisfactorily direct and ‘intuitive’ account of effective
calculation than the lambda-calculus. Moreover, Church was actually bolder in his
physical imagery than Turing was:

The author [Turing] proposes as a criterion that an infinite sequence of digits
0 and 1 be “computable” that it shall be possible to devise a computing ma-
chine, occupying a finite space and with working parts of finite size, which
will write down the sequence to any number of terms if allowed to run for
a sufficiently long time. As a matter of convenience, certain further restric-
tions are imposed in the character of the machine, but these are of such a
nature as obviously to cause no loss of generality — in particular, a human
calculator, provided with pencil and paper and explicit instructions, can be
regarded as a kind of Turing machine.

In a later sentence (in the review of Post’s work, immediately following) Church
referred to Turing’s concept as computability by an arbitrary machine, subject only
to such finiteness conditions.

It is an interesting question as to what Turing, who had started work in mathemati-
cal physics, thought were the physical connotations of his 1936 work. Firstly, there
is the question of the building of working Turing machines, and the universal ma-
chine in particular. Newman, and Turing’s friend David Champernowne, later at-
tested to discussions of it even at that time. But no written material has reached
us. It is certainly hard to see how Turing could have failed to see that the atomic
machine operations could be implemented with the sort of technology used in auto-
matic telephone exchanges and teleprinters. The second, more difficult, question is
what Turing thought the structure and limitations of computability had to say about
the physical world.

Turing certainly brought an idea of physical action into the picture of computation,
which was different from Church’s lambda-calculus. But his thorough analysis was
of the human calculator, with arguments for finiteness based not on physical space
and size, but on human memory and states of mind. It is strange that Church did not
simply quote this model in his review, but instead portrayed the human calculator as

6 Andrew Hodges

a particular case of an apparently more general finite ‘machine’ with ‘working parts’.
Nowadays his assertion about what can be computed by an ‘arbitrary machine’, em-
phasing its generality, and characterizing it in terms of space and size, reads more
like the ‘physical Church-Turing thesis’. If Church was trying to dispel the idea that
computability had something to do with the scope of physical machines, his words
were singularly ill-chosen for that purpose. But it seems that no one in the early era,
including Turing, thought out and analysed the distinction between the rule-based
human worker and a more general physical mechanism.

In his post-war writing, Turing made free use of the word ‘machine’ for describing
mechanical processes and made no attempt to alert his readers to any distinction
between human worker-to-rule and physical system—a distinction that, nowadays,
would be considered important. Thus Turing (1948) referred to written-out programs,
for a human to follow, as ‘paper machines’. The imagery is of a human acting out the
part of a machine. Indeed, he stated that any calculating machine could be imitated
by a human computer, again the reverse of the 1936 image. He referred often to
the rote-working human calculator as a model for the way a computer worked and
a guide as to what it could be made to do in practice. But he also referred to the
advantage of the universal machine being that it could replace the ‘engineering’ of
special-purpose machines. Most importantly, he appealed to the idea of simulating
the brain as a physical system. So in later years Turing readily appealed to general
ideas of physical mechanisms when discussing the scope of computability. But as for
what he had in mind in 1936, we cannot know.

A salient factor in this blank is that Turing left no notes or precursor papers to ex-
plain the development of his ideas. His 1934 work on the Central Limit Theorem
(stimulated by a lecture of Eddington), though original, gave no indication of the
dramatic work he would do a year later. But there is one small point that suggests
that he probably had a pre-existing technical interest in constructive analysis of the
real numbers, and for a curious reason.

Turing’s fellow mathematics scholar at King’s College, and probably his closest
friend, was David Champernowne, later a distinguished economist. In 1933, Cham-
pernowne published a short paper while still a second-year student—surely a com-
petitive spur to Turing. He made a contribution to the theory of normal numbers, a
subject springing from measure theory. A normal number is one whose digits are
uniformly distributed in any number base. It was known that almost all numbers are
normal, and yet no one had constructed a specific example. Champernowne (1933)
observed and proved that 0.123456789101112 . . . is normal in the decimal scale.
Turing took up his friend’s subject and worked on generalizing this construction so
as to satisfy the full criterion of normality. We know this because his notes were hand-
written on the reverse side of six pages of the typescript of On Computable Numbers,
as illustrated in (Hodges 2006). This shows the date of Turing’s work (which was
never published, and according to the commentary of Britton (1992) was flawed) to
be 1936 or later. But given that the impetus came in 1933, it seems very possible that

Alan Turing, Logical and Physical 7

his ideas about constructive procedures for defining real numbers germinated before
the stimulus from Newman’s lectures in 1935.

Turing’s note on normal numbers (Turing 1936?) uses the terms ‘mechanical pro-
cess’ and ‘constructive enumeration’, which show the closeness to the ideas of On
Computable Numbers. Indeed these notes were written on the reverse sides of pages
of the typescript including those on ‘computable convergence’. This is the section he
must have hoped to expand into a new constructive treatment of analysis, judging by
the hostage to fortune he left in the introduction saying that he would ‘soon’ give a
further paper on the computable definition of real functions. The difficulty posed by
the non-unique decimal representation of the reals seems to have stopped this project
in its tracks. Although Turing’s method in his correction note (Turing 1937) was the
first step in modern computable analysis, Turing himself never followed up this lead.
Nevertheless, he was always mindful of continuous mathematics, which entered into
much of his mathematical work.

Passing to Turing’s work in logic after 1936, readers of this volume will be familiar
with his ordinal logics (Turing 1939), with new ideas now known as relative com-
putability and Turing degrees. The question I will address, however, is that of what
connection the logical had with the physical. Feferman (2001) sees the work, which
was Turing’s 1938 Ph.D. thesis at Princeton, as being a diversion into purely math-
ematical logic. But Newman (1955) emphasised the interpretation of Turing’s work
in terms of the mental ‘intuition’ required to see the truth of a formally unprovable
Gödel sentence. I would therefore see Turing as to some extent trying to follow his
1936 analysis of a mind carrying out a mechanical process, with an analysis of a
mind when not so restricted.

But if Turing was seriously thinking about mental operations, we may ask what Tur-
ing thought the brain was doing when it ‘saw the truth’ in a manner that could not
be modelled computably. In 1936–1939 Turing wrote nothing concerning the phys-
ical brain, and this question may seem too fanciful to consider. But it is not, for we
know he brought to the 1930s an older fascination with that fundamental problem of
science, the conflict of free will and physical determinism. His juvenile but highly
serious and deeply felt essay ‘Nature of Spirit’ (Turing c. 1932), influenced by Ed-
dington’s views, held that the brain was governed by quantum-mechanical physics,
and that one could thereby rescue human free will from Laplacian predictability. Did
these youthful thoughts influence his ideas of intuition in 1938, or had he long since
dropped them? We can only conjecture.

In contrast, we do know that in 1937–1939 Turing’s yen for physical engineering
was strong, even though he was very busy and prolific with algebra and analysis. His
zeta-function machine involved cutting cogwheels to effect an approximation to a
Fourier series; it involved both discrete and continuous elements. His relay multiplier
was closer to the Turing machine, being a discrete system to effect binary multipli-
cation. And this eccentricity, designed with a cipher system in mind, certainly paid
off.

8 Andrew Hodges

On 1 November 1939, the Bletchley Park cryptanalysts (Knox et al. 1939) reported
on the attack on naval Enigma messages to be made by ‘the machine now being
made at Letchworth, resembling, but far larger than the Bombe of the Poles (su-
perbombe machine).’ It would be hard to overstate the significance of this machine
to the course of the Second World War, or the miracle of Turing, a logician with a
penchant for practical implementation, being in exactly the right place at the right
time—at least from the British point of view. In 1948 Turing wrote of how ma-
chinery was generally considered as limited to straightforward, repetitive tasks until
‘about 1940’, and it can hardly be doubted that by citing that date he was alluding
to the impact of the ‘superbombe’—the Turing-Welchman Bombe with its stunning
parallel logic for solving the plugboard complication of the Enigma enciphering ma-
chine used for German military communications. From that time onwards, Turing
led the way at Bletchley Park in showing the power of algorithms. Some of these
were implemented on physical machines, others through people carrying out pro-
cesses such as the ‘Banburismus’ that exploited his new Bayesian inference methods
(Good 1992, Good 1993, Good 2001). Turing’s mechanization of judgment through
quantified ‘weight of evidence’ (essentially the same as Shannon’s measure) was
perhaps a key step in persuading him of the scope for the mechanization of human
intelligence. In 1943, he discussed such ideas with Shannon, and in 1944 he was
speaking more concretely of ‘building a brain’ to Donald Bayley his electronic as-
sistant.

It is striking to see those words ‘purely mechanical’, as used by Turing in 1938 in his
formal account of computability, now being used to describe operations that seemed
of magical power, as in this description of the electronic Colossus—and, of course,
the statistical theory it used:

It is regretted that it is not possible to give an adequate idea of the fasci-
nation of a Colossus at work: its sheer bulk and apparent complexity; the
fantastic speed of thin paper tape round the glittering pulleys... the wizardry
of purely mechanical decoding letter by letter (one novice thought she was
being hoaxed); the uncanny action of the typewriter in printing the correct
scores without and beyond human aid . . . (Anon 1945)

As with his contemporaries in the whole ‘cybernetic’ movement, wartime impor-
tance and success imbued Turing in the late 1940s with a sense of the power of
science and engineering. There is an obvious difference between his pre-war and
post-war discussion of computing. Whilst in 1936 he had limited the discussion to
that of a human being carrying out a mechanical process, from 1945 onwards he
took the view that all mental processes fell within the scope of computable opera-
tions, famously getting to sonnet-appreciation in (Turing 1950). Turing’s use of the
word ‘brain’ after 1943 indicates that he had by then decided that the scope of the
computable could be broadened. The ground had already been laid in 1936, by the
bold argument that a process need not actually be written down in ‘instruction notes’,
but could be embodied in ‘states of mind’. But Turing’s post-war views still marked
a definite shift. For they implied a definite rejection of the view that uncomputable

Alan Turing, Logical and Physical 9

‘intuitive’ steps are taken by the human mind when it recognises true but formally
unprovable Gödel statements.

One sentence in Turing’s proposal for the ACE computer (Turing 1946) is evidence
of this shift: it is a claim that a computer might play ‘very good chess’ if ‘occasional
serious mistakes’ were allowed. This cryptic reference to mistakes was amplified and
clarified by the argument of (Turing 1947) that once the possibility of mistakes is al-
lowed, Gödel’s theorem becomes irrelevant. According to this argument, true ‘seeing
of truth’ is not actually expected of people, but only a good attempt. As Turing put
it, on the principle of ‘Fair Play for Machines’, the same standard should be applied
to a computer and its mistakes likewise forgiven. Many people see this ‘mistakes’
argument as vital to Artificial Intelligence now—e.g., from different sides, Davis
(Davis 2000) and Penrose (Penrose 1994). It was essential for Turing’s developing
machine-intelligence ideas to find a reason to reject the Gödelian view that truth-
seeing intuition is an actual uncomputable step taken by the mind. (It is no surprise
that Gödel later objected to Turing’s theory of the mind, although he had originally
endorsed Turing’s definition of computability.) Turing’s use of the word ‘brain’—as
opposed to the ‘states of mind’ in 1936—also indicates his renewed interest in its
physical nature.

In 1945–1946, however, Turing was busy on the physical side of the new computer,
the practical universal computing machine as he called it. The Delilah gave him
hands-on practice in electronics that he extended into studying the physics of delay
lines. His ACE report gave detailed accounts of possible physical storage mecha-
nisms. His vision for future software—the vision of coding all known processes, and
allowing the machine itself to take over all routine aspects of the coding—was more
important than hardware. But this too showed interest from the start in applications
to continuous mathematics, to which we now turn.

3 Everything is really continuous

Turing is best known to the public for the Turing Test: its drama and wit, rules, and
role-play have fascinated a wide audience. But behind this lay the very much less
glamorous idea of the discrete machine model, to which Turing devoted at least
as much attention. The theory was prepared in (Turing 1948) with his definition
of ‘controlling’ as opposed to ‘active’ machinery. Turing pointed out that it is the
information-theoretic or logical structure that we are interested in, not the partic-
ular form of matter and physical action that implements it. In his radio broadcast
(Turing 1952) he gave the famous line, ‘We are not interested in the fact that the
brain has the consistency of cold porridge. We don’t want to say “This machine’s
quite hard, so it isn’t a brain, so it can’t think.” ’ No one has ever claimed that a uni-
versal Turing machine could take over the functions of an ‘active’ machine, of which
Turing’s example was ‘a bulldozer’.

10 Andrew Hodges

Turing then classified the machines he was interested in as either discrete or contin-
uous. It should be noted that Turing’s examples of ‘machines’ were physical objects.
It is also a non-trivial point that he made no mention of discrete machines calling on
uncomputable ‘oracles’, although if such theoretical constructs had been on his mind,
he had every opportunity to define them and classify them as a type of machine in this
paper. On the contrary, Turing dismissed what he called the Mathematical Argument
against machine intelligence, i.e., the argument from the existence of algorithmically
unsolvable problems. Those who claim to detect references to uncomputable func-
tions in his major 1948 and 1950 papers have to explain why Turing so perversely
threw readers off the scent by giving short shrift to the significance of uncomputabil-
ity, whilst emphasising the computable operations of a digital computer. It is now a
popular idea to see an infinite random sequence as a source of uncomputable data.
When Turing discussed random input, however, he gave the most cursory description
of what this implied, saying that the (pseudo-random, computable) digits of π would
do, or perhaps a ‘roulette wheel’—i.e., a physical system with sensitive dependence
on initial data.

Similarly, having sketched his various networks of logical gates, Turing stated the
strategy of trying them out on a computer. (Oddly, it appears that he never did so
when the Manchester computer became available to him, but Teuscher (2000) has
performed a thorough investigation.) Turing stressed that the point of these new
ideas was to gain insight into the apparently non-mechanical aspects of mind. Had
he wished to associate these new ideas with the uncomputable ‘intuition’ of 1938, he
could have said so; instead, he placed them firmly within the realm of what could be
done with computers, by the modification of programs through ‘learning’ processes.
He emphasised the surprising power of the computable, and indeed of the entirely
finite. The infinitude that comes into Turing’s discussion in 1950 is the theoretical in-
finitude of a Turing machine tape, i.e., all within the scope of computability.1

When Turing defined continuous machines, was he trying to escape from this prison
of computability? Not at all, for his central interest was a thesis about the brain,
claiming it as a continuous machine that can effectively be regarded as discrete, and
then simulated by a computer.

1 The description of digital computers in (Turing 1950) seems to have confused readers such
as Copeland (2000), who places great weight on an apparent allusion to machines with
infinitely many states. Turing focusses on a practical, finite, computer and considers all its
storage as internal to the machine. It has no external ‘tape’. This simplified semi-popular
account makes it awkward for Turing to indicate the full scope of computability, in which
an unlimited external tape is essential. Turing does it by discussing a ‘theoretical’ exten-
sion to ‘unlimited store’, carefully explaining that only a finite amount can be used at any
time. As this store clearly includes the unlimited tape of the standard Turing machine de-
scription, his reference to a ‘theoretical’ computer with ‘infinite’ store is all within the
scope of computability. Turing’s reference to machines with ‘finitely many states’ is a ref-
erence to those Turing machines that only use a finite portion of tape, i.e., totally finite ma-
chines. Indeed, his emphasis was on the capacity of such finite machines, confirmed by his
(low) numerical estimate of the number of bits of storage required. See also Hodges (2006).

Alan Turing, Logical and Physical 11

It is worth noting that Turing’s several references to everything being ‘really’ con-
tinuous were based on considerable experience with continuous analysis and math-
ematical physics. His example of a continuous machine was ‘a telephone’, but few
of his readers would have guessed at the sophistication of the relationship between
discrete and continuous that had gone into his secret Delilah work. His mathematical
and practical work was full of such relationships. In (Turing 1947) he made a start
on a more abstract account of the relationship by describing discrete states as dis-
joint topological regions in the continuous configuration space of a physical system.
This 1947 talk is also important in that Turing opened by explaining the new digi-
tal computer as superior to the analogue differential analyser, on the principle that
greater accuracy, without limit, could always be achieved by more software. This
was a major strategic question, physicists such as Hartree having devoted much ef-
fort to the construction of differential analysers, and Turing had to know what he
was talking about. Turing also chose the example of solving an ordinary differential
equation to illustrate to mathematicians what a digital computer could do. In this as
in so many other examples, the application of computable processes to the modelling
of the physical world was uppermost in his thought.

But the physical brain was his real centre of interest. In 1948 he classified it as prob-
ably ‘Continuous Controlling, but is very similar to much discrete machinery’, and
that ‘there seems every reason to believe’ that brains could effectively be treated as
discrete. One such reason was stated in (Turing 1950) in a section on ‘the Argument
from Continuity in the Nervous System’. It is worth noting that this is an argument
against the thesis that the brain, as a physical system, can be modelled by a digital
computer. Thus Turing’s answer to this argument gives his reasons for saying that
the brain could in principle be so simulated. The answer he gave is perhaps not what
readers would have expected. For it was not an argument from the discrete neurons
and their gate-like behaviour. Instead, Turing drew attention to a general feature of
non-trivial continuous systems:

The displacement of a single electron by a billionth of a centimetre at
one moment might make the difference between a man being killed by an
avalanche a year later, or escaping. It is an essential property of the me-
chanical systems which we have called ‘discrete state machines’ that this
phenomenon does not occur.

Although Poincaré had long before pointed out what is now called the ‘butterfly
effect’ of sensitive dependence on initial conditions, this breakdown of effective pre-
dictability was not then as well known as it is now. In this discussion of brain simu-
lation Turing has apparently assumed as obvious the general idea of discrete approx-
imation through finite-difference methods, as he had explained in 1947, and jumped
immediately to discuss this more advanced problem that very few in 1950 would
have thought of posing—that for the brain ‘a small error in the information about the
size of a nervous impulse impinging on a neuron, may make a large difference to the
size of the outgoing impulse.’ (It was, perhaps, really his own objection that he was
answering.) Turing’s argument was that the details of such chaotic effects are of no

12 Andrew Hodges

functional significance, so that one could simulate their effect within a discrete state
machine just by random choices.2

Nowadays one would see Turing’s treatment of continuous dynamical systems and
randomness as inadequate; just a shadow of future investigations in computable anal-
ysis, analogue computing, and the intricate analysis of chaotic phenomena. But it
does clearly illustrate the way he related the concept of computability to very gen-
eral physical mechanisms.

4 Back to the nature of the physical world

Turing’s work in morphogenesis, which got going after 1950 with what was one of
the first examples of computer use in serious scientific research, might perhaps have
led him to study chaotic phenomena, if he had wished to follow that route. It seems,
however, that his interest remained entirely on the special stable solutions relating to
biological structures that emerged by numerical methods from his partial differential
equations. But the germ of another physical idea was developing. It was enunciated in
a BBC radio talk on ‘Can a digital computer think?’ (Turing 1951). This was mainly
a précis of his 1950 paper, though this time with a completely explicit programme
of simulating the physical brain on a computer. Turing explained the principle that
a universal machine could simulate any machine but added a new note: this would
only be possible for machines:

of the sort whose behaviour is in principle predictable by calculation. We
certainly do not know how any such calculation should be done, and it has
even been argued by Sir Arthur Eddington that on account of the Indetermi-
nacy Principle in Quantum Mechanics no such prediction is even theoreti-
cally possible.

It was Copeland (Copeland 1999) who drew attention to the seriousness of this sug-
gestion of Turing that quantum-mechanical uncertainty creates a problem for Turing
machine simulation. His sentence certainly marks a change of view from 1950, be-
cause then Turing had answered the ‘continuity of the nervous system’ argument
without mentioning this deeper problem. It indicates a new quest for a more funda-
mental analysis. Turing only wrote this one sentence on the relationship of computa-
tion to quantum mechanics, so we know no more of when or why he had decided that
it now had to be taken more seriously. It should be noted that Turing does not actu-
ally assert a view of his own but attributes a view to Eddington; indeed the words ‘it
has even been argued’ might suggest that he saw it as a rather fanciful suggestion of
Eddington’s. Nevertheless it seems that he did take it seriously as a further argument
against machine intelligence.

2 Penrose (1989, p. 173) has a similar conclusion that chaotic effects are of no ‘use’ to the
brain as regards its function for thought or intelligence.

Alan Turing, Logical and Physical 13

The reason for thinking this is that in 1953—regardless of all his problems with crim-
inal trial, punishment, and surveillance—Turing tried to formulate ‘a new quantum
mechanics’, suggesting there was something wrong with the standard axioms he had
learned from von Neumann in 1933. Moreover, he focussed on the principle of wave-
function ‘reduction’ that underlies the indeterminacy or uncertainty principle. In his
last months he came up with the ‘Turing Paradox’ (Gandy 1954)—that the standard
principles of quantum mechanics imply that in the limit of continuous observation a
quantum system cannot evolve. The few remarks reported by Gandy suggest that he
was trying to make his quantum mechanics more finitistic, so it seems very probable
that he was hoping to defeat this ‘Eddington argument’, but we cannot tell where his
ideas might have led if they had not been cut off by death.

It is striking, given Eddington’s influence on his youthful ideas, that Turing returned
to this source. It is a puzzle as to why he had not done so before, for instance in the
1948 discussion where he examined thermodynamic and other physical constraints
on computation. This is yet another unanswerable question. It is striking also that the
argument Turing attributed to Eddington has become, since the 1980s, the Penrose
argument. Penrose has located in wave-function reduction a place where there is
room for some unknown physical law that cannot be simulated by a computable
process and says that this could underlie the physical function of the brain. This
is rather like a serious development of the view Turing took in his youthful essay of
1932, which perhaps Turing considered afresh when pondering his ‘paradox’.

Turing’s ‘paradox’, later known as the ‘watched pot problem’ in quantum measure-
ment theory, is now called the Quantum Zeno Effect and is relevant to the new tech-
nology of quantum ‘interaction-free measurement’. This points to the evolving ques-
tion of what computation means, when twentieth-century physics is taken seriously.
Turing was galloping ahead in 1953–1954: learning about spinors and tensors for
representing particles and gauge theory for forces. He was as well prepared in 1954
as he had been in 1935 for a new and unpredictable burst of advanced mathematics
put to ‘applied’ use. Some people reject the idea of Turing ever shifting his views,
but change and development is typical of the creative life of science. Discovery and
experience oblige it. One paradigm shift after another, not a static ‘thesis’, to be
held and defended as a dogmatic ‘position’, has characterised the development of
twentieth-century physics. In Turing’s spirit one should expect and welcome new
computational paradigms, if soundly based on physical reality.

References

[Anon 1945] Anon (1945), General Report on Tunny, p. 327. This internal GCHQ report of
1945 was unsigned but is attributed to I. J. Good, D. Michie and G. Timms. Available in the
National Archives, HW 25

[Britton 1992] J. L. Britton (1992), Introduction and notes to Turing’s note on normal num-
bers. In J. L. Britton (ed.) The Collected Works of A. M. Turing: Pure Mathematics. North-
Holland, 1992

14 Andrew Hodges

[Champernowne 1933] D. G. Champernowne (1933), The construction of decimals normal
in the scale of ten. J. Lond. Math. Soc. 8:254–260

[Church 1937] A. Church (1937), Review of Turing (1936). J. Symbolic Logic 2:42–3
[Copeland 1999] B. J. Copeland (1999), A lecture and two radio broadcasts on machine in-

telligence by Alan Turing. In K. Furukawa, D. Michie, and S. Muggleton (eds.), Machine
Intelligence 15. Oxford University Press, 1999

[Copeland 2000] B. J. Copeland (2000), Narrow versus wide mechanisms: including a re-
examination of Turing’s views on the mind-machine issue. J. Philos. 96:5–32

[Davis 2000] M. Davis (2000), The Universal Computer. Norton, 2000
[Feferman 2001] S. Feferman (2001), Preface to ‘Systems of logic based on ordinals’. In R.

O. Gandy and C. E. M. Yates (eds.) The Collected Works of A. M. Turing: Mathematical
Logic. North-Holland, 2001

[Gandy 1954] R. O. Gandy (1954), letter to M. H. A. Newman, available at
www.turingarchive.org, item D/4. Text in R. O. Gandy and C. E. M. Yates (eds.) The Col-
lected Works of A. M. Turing: Mathematical Logic. North-Holland, 2001

[Good 1992] I. J. Good (1992), Introductory remarks for the article in Biometrika 66 (1979),
‘A. M. Turing’s statistical work in World War II’. In J. L. Britton (ed.) The Collected Works
of A. M. Turing: Pure Mathematics. North-Holland, 1992

[Good 1993] I. J. Good (1993), Enigma and Fish. In F. H. Hinsley and A. Stripp (eds.) Code-
breakers. Oxford University Press, 1993

[Good 2001] I. J. Good (2001), Commentary on Turing’s manuscript ‘Minimum cost sequen-
tial analysis’. In R. O. Gandy and C. E. M. Yates (eds.) The Collected Works of A. M.
Turing: Mathematical Logic. North-Holland, 2001

[Hodges 1983] A. Hodges (1983), Alan Turing: the Enigma. Burnett, London; Simon &
Schuster; new edition Vintage, 1992

[Hodges 2006] A. Hodges (2006), The essential Turing, book review. Notices Amer. Math.
Soc. 53:1190–1199

[Knox et al. 1939] A. D. Knox, P. F. G. Twinn, W. G. Welchman, A. M. Turing and
J. R. Jeffreys (1939), Report dated 1 November 1939. In National Archives, HW 14/2

[Newman 1955] M. H. A. Newman (1955), Alan Mathison Turing. Biographical memoirs of
Fellows of the Royal Society 1:253–263

[Penrose 1989] R. Penrose (1989), The Emperor’s New Mind. Oxford University Press, 1989
[Penrose 1994] R. Penrose (1994), Shadows of the Mind. Oxford University Press, 1994
[Teuscher 2000] C. Teuscher (2000), Turing’s Connectionism, an Investigation of Neural Net-

work Architectures. Springer, 2002. See also C. Teuscher, Turing’s connectionism, in C.
Teuscher (ed.) Alan Turing: Life and Legacy of a Great Thinker. Springer, 2004

[Turing c. 1932] A. M. Turing (c. 1932), Handwritten essay: Nature of Spirit. Photocopy
available in www.turingarchive.org, item C/29. Text in (Hodges 1983, p. 63)

[Turing 1936] A. M. Turing (1936), On computable numbers, with an application to the
Entscheidungsproblem. Proc. London Math. Soc. (2) 42:230–265

[Turing 1936?] A. M. Turing (1936?), A note on normal numbers, manuscript and typescript
available at www.turingarchive.org, item C/15. Text in J. L. Britton (ed.) The Collected
Works of A. M. Turing: Pure Mathematics. North-Holland, 1992

[Turing 1937] A. M. Turing (1937), On computable numbers, with an application to the
Entscheidungsproblem. A correction. Proc. London Math. Soc. (2) 43:544–546

[Turing 1939] A. M. Turing (1939) Systems of logic based on ordinals. Proc. London Math.
Soc. (2) 45:161–228

[Turing 1942] A. M. Turing (1942), typescript ‘Report on cryptographic machinery available
at Navy Department, Washington’, dated 28 November 1942, in the National Archives, HW
57/10

Alan Turing, Logical and Physical 15

[Turing 1944] A. M. Turing (1944), Speech System ’Delilah’ — Report on Progress, type-
script dated 6 June 1944. I am indebted to Ralph Erskine for locating this document in the
National Archives, HW 62/2. A description of the Delilah, with photographs, was given in
(Hodges 1983)

[Turing 1946] A. M. Turing (1946), Proposed electronic calculator, copy of typescript avail-
able at www.turingarchive.org, item C/32. Text published in various forms, e.g. in D. C. Ince
(ed.) The Collected Works of A. M. Turing: Mechanical Intelligence. North-Holland, 1992

[Turing 1947] A. M. Turing (1947), Lecture to the London Mathematical Society, 20 Febru-
ary 1947, typescript available at www.turingarchive.org, item B/1. Text published in various
forms, e.g. in in D. C. Ince (ed.) The Collected Works of A. M. Turing: Mechanical Intelli-
gence. North-Holland, 1992

[Turing 1948] A. M. Turing (1948), Intelligent machinery, National Physical Laboratory re-
port, typescript available at www.turingarchive.org, item C/11. Text published in various
forms, e.g. in B. J. Copeland (ed.) The Essential Turing. Oxford University Press, 2004

[Turing 1950] A. M. Turing (1950), Computing machinery and intelligence. Mind 59:433–
460

[Turing 1951] A. M. Turing (1951), Can digital computers think? BBC talk, typescript avail-
able at www.turingarchive.org, item B/5. Text published in B. J. Copeland (ed.) The Essen-
tial Turing. Oxford University Press, 2004

[Turing 1952] A. M. Turing (1952), Can automatic calculating machines be said to think?,
Radio discussion, typescript available at www.turingarchive.org, item B/6. Text published
in B. J. Copeland (ed.) The Essential Turing. Oxford University Press, 2004

Computability and Numberings

Serikzhan Badaev1 and Sergey Goncharov2

1 Kazakh National University, Almaty 050038, Kazakhstan badaev@kazsu.kz
2 Institute of Mathematics of Siberian Branch of Russian Academy of Sciences,

Novosibirsk 6300090, Russia gonchar@math.nsc.ru

Introduction

The theory of computable numberings is one of the main parts of the theory of
numberings. The papers of H. Rogers [36] and R. Friedberg [21] are the starting
points in the systematical investigation of computable numberings. The general no-
tion of a computable numbering was proposed in 1954 by A.N. Kolmogorov and
V.A. Uspensky (see [40, p. 398]), and the monograph of Uspensky [41] was the
first textbook that contained several basic results of the theory of computable num-
berings. The theory was developed further by many authors, and the most impor-
tant contribution to it and its applications was made by A.I. Malt’sev, Yu.L. Ershov,
A. Lachlan, S.S. Goncharov, S.A. Badaev, A.B. Khutoretskii, V.L. Selivanov,
M. Kummer, M.B. Pouer-El, I.A. Lavrov, S.D. Denisov, and many other authors.

S.S. Goncharov and A.T. Nurtazin found applications of the theory of computable
numberings to the theory of computable models, more precisely, to the problem of
decidability of prime and saturated models [30]. Later S.S. Goncharov applied com-
putable numberings of families of partial computable functions to the problem of
characterizing autostability on the base of Scott’s families [22] and established the
existence of models with finite algorithmic dimension (on the base of the duality,
founded by him, between the problem of the possible number of computable Fried-
berg numberings for families of c.e. sets and the problem of the existence of models
with finite algorithmic dimension) by constructing families of c.e. sets with any finite
number of Friedberg numberings up to equivalence [23, 24]. The problems arising
in

• estimate of the complexity of isomorphisms between different representations of
computable models,

• description of the autostable models,

• classification of the definable relations in computable models, etc.

20 Serikzhan Badaev and Sergey Goncharov

led to investigation of computable numberings not only for families of partial com-
putable functions and c.e. sets but also for families of constructive objects of a more
general nature. In addition, in computability theory, one meets uniform computa-
tions for families of a special kind of relations and functions having high algorithmic
complexity, and in the theory of computable models, very often we have to deal with
computable classes of computable models.

All this was a strong motivation for S.S. Goncharov and A. Sorbi to propose in 1997 a
new approach to the notion of computable numbering for general families of objects,
which admit a constructive description in formal languages with a Gödel numbering
for formulas [31].

Since then a lot of problems have been considered in the study of computable num-
berings for families of sets in the arithmetical hierarchy (see [7]–[15], and [33]–[35])
and in the hierarchy of Ershov (see [6], [16], [29], and [39]). Applications of gen-
eralized computable numberings were also pursued. The paper of S.S. Goncharov
and J. Knight [27] offered an approach to the classification problem based on com-
putable Friedberg numberings. And, in [26], and [28], computable numberings in all
levels of the hyperarithmetical hierarchy, including the infinite ones, already have
been applied to study problems in the theory of computable models.

In this paper, we study some problems relative to computable numberings in the
sense of Goncharov–Sorbi for families of sets in the hyperarithmetical hierarchy. In
section 1, we introduce a notion of computable numbering of a family of hyperarith-
metical sets. In section 2, we continue to go along the line of research devoted to the
problem of the isomorphism types of Rogers semilattices for families of arithmetical
sets, which was initiated in the papers [7], [11]–[14].

We refer to the handbooks [37], [38], and [5] for the notions and standard notations
on computability theory and computable infinite formulas. Undefined notions of the
theory of numberings can be found in [18], and [19]. For more background on gen-
eralized computable numberings, see the articles [7], and [9].

1 Computable numberings in the hyperarithmetical hierarchy

A surjective mapping ν of the set ω of natural numbers onto a nonempty set A is
called a numbering of A. Suppose that A is a family of objects that admit construc-
tive descriptions. By this we mean that one can define a language L (henceforth
identified with a corresponding set of “well-formed formulas”) and an interpretation
of (fragments of) this language via an onto partial mapping i : L −→ A. For any ob-
ject a ∈ A, each formula Φ of L such that i(Φ) = a is interpreted as a “description”
of a. Suppose further that G : ω −→ L is a Gödel numbering.

Computability and Numberings 21

Following [31], we propose:

Definition 1.1. A numbering ν of A is called computable in L with respect to an
interpretation i if there exists a computable mapping f such that ν = i ◦G ◦ f .

It is immediate to see that Definition 1.1 does not depend on the choice of the Gödel
numberingG. Hence, via identification of L with ω through some fixed Gödel num-
bering, the above definition states that ν is computable if there is some computable
function f from ω to L such that ν = i ◦ f.

Definition 1.1 has a wide scope of applications, based on suitable choices of L and i.
Let’s, at first, consider the families of arithmetical sets. As languageLwe take in this
case the collection of arithmetical first-order formulas in the signature 〈+, ·, 0, s,�〉,
and i will be a mapping associating each formula with the corresponding set defined
by that formula in the standard model N of Peano arithmetic. For v ∈ N , denote
by v an arithmetic term defining v, that is, the term s(s(. . . s(0) . . .)), in which the
symbol s occurs v times. Then A ∈ Σ0

n+1 if and only if there exists an arithmetic
Σn+1 formula Φ(v) such that

v ∈ A⇔ N |= Φ(v).

IfA is a family of Σ0
n+1 sets, then, by [31, Proposition 2.1], a numbering ν: N → A

is computable with respect to interpretation i if and only if

{〈m, v〉 | v ∈ ν(m)} ∈ Σ0
n+1.

Thus, despite the strong hierarchy theorem, [37, §14.5], a computable numbering
ν of a family A ⊆ Σ0

n+1 may be thought of as an enumeration procedure for the
sequence ν(0), ν(1), . . . of Σ0

n+1 sets, which is uniformly computable with respect
to the oracle ∅(n).

It seems promising to generalize in a straightforward manner this description of a
computable numbering ν in terms of relative computability of the relation {〈m, v〉 |
v ∈ ν(m)} for families of sets from any level of the arithmetical hierarchy, to fami-
lies from any arbitrary level of the hyperarithmetical hierarchy.

Classes of the hyperarithmetical hierarchy

We need some notions from the textbook [37] to make our paper self-contained. First
we remember Kleene’s system of notations for computable ordinals. This system
consists of a set O of notations, together with a partial ordering <O.

The ordinal 0 gets notation 1.

If a is a notation for α, then 2a is a notation for α + 1. Then a <O 2a, and also, if
b <O a, then b <O 2a.

22 Serikzhan Badaev and Sergey Goncharov

Suppose α is a limit ordinal. If ϕe is a total function, giving notations for an in-
creasing sequence of ordinals with limit α, then 3 · 5e is a notation for α. For all n,
ϕe(n) <O 3 · 5e, and if b <O ϕe(n), then b <O 3 · 5e.

The sequence of oracles {∅(n)}n∈ω is extended with the family of sets H(a), a ∈ O,
by transfinite induction on the ordinals |a|O as follows.

(1) H(1) = ∅,

(2) H(2a) = H(a)′,

(3) H(3 · 5e) = {〈u, v〉 | u <O 3 · 5e & v ∈ H(u)}.

Now, following Kleene, we define the classes Σ0
α, Π

0
α, Δ

0
α of the hyperarithmetical

hierarchy for all computable ordinals α ≥ ω. For infinite α, a relation is said to be
Σ0

α, Π
0
α, or Δ0

α if it is, respectively, c.e., co-c.e., or computable relative to H(a),
for some a ∈ O with |a|O = α. By a theorem of Spector, such a relation will be
c.e., co-c.e., or computable relative to H(a) for every a ∈ O with |a|O = α. It is
important for us to recall the well-known lack of uniformity in the definition of the
classes Σ0

α, Π
0
α, Δ

0
α when we pass from finite to infinite computable ordinals. For

finite α, say α = n, the Σ0
n relations are the ones that are c.e. relative to H(a) where

|a| is n− 1. There is the same lack of uniformity for Π0
α and Δ0

α relations.

If α is a computable limit ordinal and a ∈ O is a notation for α, then for every
n ∈ ω, the classes of the hyperarithmetical hierarchy may be also defined by H(a)–
forms.

• Σ0
α+n = Σ

H(a)
n+1 ,

• Π0
α+n = Π

H(a)
n+1 ,

• Δ0
α+n = Δ

H(a)
n+1 .

We often use relativized forms of the sets H(a). LetX be any set of natural numbers.
Then

(1) HX(1) = X,

(2) H(2a) = HX(a)′,

(3) H(3 · 5e) = {〈u, v〉 | u <O 3 · 5e & v ∈ HX(u)}.

We will need some details of Kleene’s notion of partial recursive function relative to
an oracle X , as is done in [37, § 9.2.]:

ϕX
z = {〈x, y〉 | ∃u∃v

(
〈x, y, u, v〉 ∈ Wρ(z) & Du ⊆ X & Dv ⊆ X

)
}; (1)

here ρ(z) is a computable function with some special properties.

Computability and Numberings 23

Ash–Knight’s classification of the infinitary computable formulas

Let α be any constructive ordinal, and let A be a family of Σ0
α sets. Our aim is to

show that a numbering ν: N → A is computable in the sense of Goncharov–Sorbi if
and only if

{〈m, v〉 | v ∈ ν(m)} ∈ Σ0
α.

But we still have not defined the notion of a computable numbering for a family
A ⊆ Σ0

α, for constructive ordinals α ≥ ω. To do this, we need to specify a language
suitable for descriptions of Σ0

α sets, as well as an interpretation of these descrip-
tions.

Evidently, we cannot restrict our descriptions to finite first-order formulas of arith-
metics. We need a language with more expressive opportunities, namely, the lan-
guage Lω1ω with countable disjunctions and conjunctions. Indeed, to keep valid
very productive tools like the compactness theorem, one is forced to consider some
admissible fragments of the language Lω1ω. We will give an inductive definition
of a language of computable infinitary formulas that has been used to characterize
isomorphism types of computable models in terms of so-called Scott’s rank (see
[5]).

We follow [5] to give a classification of the family of computable infinitary for-
mulas for any computable signature. Let {xi : i ∈ ω} be a countable set of vari-
ables of a language L. Computable infinitary formulas are classified as computable
Σα, or computable Πα, for various computable ordinals α. Roughly speaking, they
are infinitary formulas in which the disjunctions and conjunctions are over c.e. sets.
In predicate formulas, only finitely many free variables are allowed, and for both
predicate and propositional languages, only formulas in normal form are consid-
ered.

To each formula Φ, we associate a tuple of variables x, including the free variables
of Φ. We define the class of computable infinitary formulas by induction on the com-
plexity, which is a computable ordinal. The computable Σ0– and Π0–formulas are
the finitary open formulas.

For a computable ordinal α > 0, a computable Σα formula Φ(x) is the disjunction
of a c.e. set of formulas of the form (∃y)ψ, where ψ is a computableΠβ formula for
some β < α and y includes the variables of ψ that are not in x (y may also include
some variables from x).

Similarly, a computableΠα formulaΦ(x) is the conjunction of a c.e. set of formulas
of the form (∀y)ψ, where ψ is a computable Σβ formula for some β < α and y
includes the variables of ψ not in x.

The informal notions given above are sufficient for us, but, for α ≥ 2, they are not
precise. We refer to the textbook of C. Ash and J. Knight [5] for formal definitions
as well as for their original Gödel numbering of the family of computable infinitary
formulas.

24 Serikzhan Badaev and Sergey Goncharov

Infinitary computable formulas have remarkable properties and have many appli-
cations in computable model theory (see [1]–[5], and [26]). For instance, we can
illustrate this by the following two statements.

Proposition 1.2 ([5],[26]). If A, B are computable structures satisfying the same
computable infinitary sentences, then A ∼= B.

Proposition 1.3 ([5],[26]). Suppose a, b are tuples satisfying the same computable
infinitary formulas in a computable structure A. Then there is an automorphism of
A taking a to b.

To study Scott’s ranks and the problems of auto-stability and algorithmic dimen-
sion as well as definability problems for computable structures, one has to extend
the notion of a computable numbering for families of sets from finite levels of the
arithmetical hierarchy to a notion of computable numbering for families of sets from
infinite levels of the hyperarithmetical hierarchy [28].

Relations definable by computable infinitary formulas

Theorem 1.4 ([5, Theorem 7.5 (a)]). For any computable structure A, if Φ is a
computable Σα formula, then ΦA is in the class Σ0

α, and if Φ is a computable Πα

formula, then ΦA is in the class Π0
α of the hyperarithmetical hierarchy. Moreover,

uniformity holds.

Therefore, every relation definable in the standard model N of arithmetic by an in-
finitary computable Σα or a Πα formula is, respectively, a Σ0

α or a Π0
α set. We will

show that there are no new definable relations in N.

Lemma 1.5. For every computable ordinal α, if a ∈ O is a notation for α, then
H(2a) is definable in N by a Σα formula, which is computable uniformly in a.

Proof. We prove this lemma by transfinite induction on α. The statement of the
lemma holds for any finite ordinal α (see [37]).

Let a = 3 · 5e for some e. Then

x ∈ H(2a)⇔ ∃y∃u∃v
(
〈x, y, u, v〉 ∈Wρ(x) & Du ⊆ H(a) & Dv ⊆ H(a)

)
.

Since H(a) = {〈b,m〉 | b <O a & m ∈ H(b)}, it follows that

x ∈ H(a)⇔ (∃b <O a)∃m (x = 〈b,m〉 & m ∈ H(b)) .

The relation x = 〈b,m〉 & m ∈ H(b) is definable in a N by Σβ formula ψb(x,m)
for some ordinal β = |b|O, which is less than the limit ordinal α. We can consider

Computability and Numberings 25

ψb(x,m) as aΠβ+1 formula, which is computable uniformly in b. Therefore the rela-
tion x ∈ H(a) is definable in N by an infinite disjunction of formulas ∃mψb(x,m)
over the c.e. set {b | b <O a}. So the relation Du ⊆ H(a) is definable by a Σα

formula computable uniformly in a and u.

It is also true that

x �∈ H(a) ⇔ (∀b <O a)∀m(x �= 〈b,m〉)∨

(∃b <O a)∃m (x = 〈b,m〉 & m �∈ H(b)) .

The relation x = 〈b,m〉 & m �∈ H(b) is definable in N by a Πβ formula θb(x,m)
for some ordinal β = |b|O that is less than the ordinal α. By induction, θb(x,m) is
computable uniformly in b and therefore the relation x �∈ H(a) is definable in N by
an infinite disjunction of formulas ∃mθb(x,m) over the c.e. set {b | b <O a} and one
Π1 formula. So the relation Dv ⊆ H(a) is definable by a Σα formula computable
uniformly in a and v.

Gathering all the facts proved above we obtain that the relation x ∈ H(2a) is defin-
able in N by a Σα formula, which is computable uniformly on a.

Finally suppose that α is infinite and a = 2b for some b. By induction we have that
the relation x ∈ H(a) is definable in N by a Σβ formula where β = |b|O . As in the
previous case we have

x ∈ H(2a)⇔ ∃y∃u∃v
(
〈x, y, u, v〉 ∈Wρ(x) & Du ⊆ H(a) & Dv ⊆ H(a)

)
.

By the definitions we obtain that the relation Du ⊆ H(a) is definable in N by a
finite conjunction of Σβ formulas, and therefore, it is definable by a Σα formula
computable uniformly in u and a. Similarly the relation Dv ⊆ H(a) is presented
by a finite conjunction of Πβ formulas, and therefore, it is definable in N by a Σα

formula that is computable uniformly in v and a. Taking infinite disjunction over all
u, v, and y such that 〈x, y, u, v〉 ∈ Wρ(x), we conclude that in this case the relation
x ∈ H(2a) is also definable in N by a Σα formula that is computable uniformly on
a. ��

Theorem 1.6. For every computable ordinal α and every set X from the class Σ0
α of

the hyperarithmetical hierarchy,X is definable in N by an infinitary computableΣα

formula.

Proof. The claim of the theorem is true for any finite ordinal. Suppose that α is a
computable infinite ordinal, and let a be a notation for α. Let X ∈ Σ0

α. Then X is
c.e. relative to H(a), and hence, X is 1-reducible to (H(a))′ = H(2a). If f is a
computable function that does the reduction of X to H(a), then

∀x(x ∈ X ⇔ ∃y(y = f(x) & y ∈ H(2a)).

Now Lemma 1.5 implies that X is definable in N by a computable an infinitary Σα

formula. ��

26 Serikzhan Badaev and Sergey Goncharov

Corollary 1.7. For every computable ordinal α and every set X ∈ ω, X ∈ Σ0
α if

and only if X is definable in N by an infinitary computable Σα formula.

Hyperarithmetical numberings

LetL be the family of infinitary computable formulas. We will denote by Φ the Gödel
numbering of L given by C. Ash and J. Knight in [5].

Definition 1.8. Let α be a computable ordinal. A numbering ν of a family A ⊆ Σ0
α

is calledΣ0
α– computable if there exists a computable function f such that {Φf(i)|i ∈

ω} is a set of Σα formulas of Peano arithmetic and

ν(m) = {x ∈ ω | N |= Φf(m)(x)};

here x stands for the numeral for x. The set of Σ0
α– computable numberings of A

will be denoted by Com0
α(A).

In other words, a Σ0
α– computable numbering is just a computable numbering in the

sense of Definition 1.1.

Theorem 1.9. A numbering ν of a family A ⊆ Σ0
α is Σ0

α– computable if and only if
{〈m,x〉 | x ∈ ν(m)} is Σ0

α.

Proof. ⇒. Let f be a computable function such that {Φf(i)|i ∈ ω} is a set of Σα

formulas and for all x,m

x ∈ ν(m) ⇔ N |= Φf(m)(x).

Let θ(m,x) be the infinite disjunction
∨

n∈ω

(m = f(n) & Φf(n)(x)).

Every Φf(n) is a Σα formula; i.e., Φf(n) is a disjunction of formulas of form
∃yΨg(n,i) over some c.e. set Wh(n):

Φf(n) =
∨

i∈Wh(n)

∃yΨg(n,i).

The functions g, h are computable (see [5]), and for every n and every i, Ψg(n,i) is
a Πβ formula with β < α. Therefore, θ(m,x) is the disjunction of the formulas
∃y(m = f(n) & Ψg(n,i)) over a c.e. set, and hence, θ is a Σα formula. By Theo-
rem 1.4, the set {〈m,x〉 | x ∈ ν(m)} is Σ0

α.

⇐. Let {〈m,x〉 | x ∈ ν(m)} be Σ0
α. By Theorem 1.6, there exists a Σα formula

η(m,x) such that

Computability and Numberings 27

x ∈ ν(m) ⇔ N |= η(m,x).

It is easy to check by transfinite induction on the ordinal notations that, for every
m ∈ ω, the formula η(m, x), of one free variable x, is Σα. Obviously, an index of
this formula can be effectively found, uniformly from m. ��

Corollary 1.10. A numbering ν of a family A ⊆ Σ0
α is Σ0

α– computable if and only
if {〈m,x〉 | x ∈ ν(m)} is definable in N by some Σα formula.

Numbering ν : ω �→ A of a family A of hyperarithmetical sets is also called
hyperarithmetical if {〈m,x〉 | x ∈ ν(m)} is definable in N by some computable
(infinitary) formula of Peano arithmetic. A family A for which Com0

α(A) �= ∅ is
called Σ0

α– computable. If the ordinal α is finite, then we usually use use the term
arithmetical numbering.

The function f in Definition 1.8 can be chosen Σ0
α computable because in the defi-

nition of Σα formulas, one can replace disjunctions over c.e. sets with disjunctions
over hyperarithmetical sets (see [5, Proposition 7.11]).

We now revise some of the basic definitions of the theory of numberings. Two num-
berings ν, μ ofA can be compared by defining ν ≤ μ (ν is reducible to μ) if there is
a computable function f such that ν = μ◦f . Two numberings ν and μ are equivalent
(written ν ≡ μ) if ν ≤ μ and μ ≤ ν.

The equivalence ≡ partitions the set Com0
α(A) into the equivalence classes deg(μ)

of all Σ0
α– computable numberings μ of A, thus originating a quotient structure,

denoted by R0
α(A). The latter forms an upper semilattice under the partial ordering

induced by≤, where the join of two numberings ν and μ is defined by (ν⊕μ)(2n) =
ν(n) and (ν ⊕ μ)(2n + 1) = μ(n) induces the least upper bound of deg(μ) and
deg(ν). R0

α(A) is called the Rogers semilattice of A.

2 Isomorphism types of Rogers semilattices

One of the global aims of the theory of computable numberings is to investigate the
isomorphism types of the Rogers semilattices. Furthermore, we will consider non-
trivial families of sets only, i.e., families that contain at least two sets. As the first
stage of this research we study the differences in the isomorphism types of Rogers
semilattices of computable numberings for the families of sets lying in different lev-
els of the arithmetical hierarchy (see [11]–[14]). The strongest result that has been
obtained in this direction is as follows. For every two nontrivial families of sets taken
from two different finite levels of the arithmetical hierarchy, if the gap in the levels
is not less than 3, then the corresponding Rogers semilattices of computable num-
berings are not isomorphic [14]. Roughly speaking, we try to extend this statement
to the families of sets taken from infinite levels of the hyperarithmetical hierarchy.
We should note that this is mainly a straightforward relativization of the proofs from
[14].

28 Serikzhan Badaev and Sergey Goncharov

Theorem 2.1. For any computable ordinals α > 0 and β and for every Σ0
α– com-

putable family A and every nontrivial Σ0
β– computable family B, if α+ 3 ≤ β, then

the Rogers semilatticesR0
α(A) andR0

β(B) are not isomorphic.

Proof. Let α > 0 and β be any computable ordinals such that β ≥ α + 3. Let
a, b ∈ O stand for some notations of ordinals α and α + 3, respectively. Let A be
any Σ0

α– computable family, and let B be a Σ0
β– computable family, which contains

at least two sets.

We will construct in the Rogers semilattice R0
β(B) an interval that forms a Boolean

algebra not isomorphic to any interval in the Rogers semilatticeR0
α(A).

For the ease of the reader we recall only necessary notions and statements that allow
us to formulate the requirements for constructing the desired interval.

Definition 2.2. If ρ is a numbering of a familyA, and C is a nonempty c.e. set, with
f a computable function such that range(f) = C, then we define ρC � ρ ◦ f .

The definition does not depend on f : If we define ρC starting from any other com-
putable function g such that range(g) = C, then we get a numbering that is equiv-
alent to the one given by f . The assignment C �→ ρC from c.e. sets to numberings
(up to equivalence of numberings) is called Lachlan operator.

Lemma 2.3. For every pair A,B of c.e. sets and for every pair of numberings τ, ρ,
we have:

(1) The following are equivalent:

(a) ρA � ρB;

(b) there is a partial computable function ϕ satisfying dom(ϕ) ⊇ A, ϕ[A] ⊆ B
and for all x ∈ A, ρ(x) = ρ(ϕ(x));

(2) if A ⊆ B, then ρA � ρB;

(3) if ρA � ρB , then ρB ≡ ρA∪B;

(4) if τ � ρ, then τ ≡ ρC for some c.e. set C;

(5) if τ � ρ, and τ ≡ ρC , for some c.e. set C, then for every γ such that τ � γ � ρ
there exists a c.e. set D with C ⊆ D and γ ≡ ρD;

(6) ρA∪B ≡ ρA ⊕ ρB .

Proof. See Lemma 2.2 in [10]. ��

In what follows, the symbol [η, θ] denotes the following interval of degrees in
R0

α(A):
[η, θ]� {deg(μ) | η ≤ μ ≤ θ}.

Computability and Numberings 29

Now we estimate the complexity of any interval of Rogers semilatticeR0
α(A) if it is

Boolean algebra. The notion of an X– computable Boolean algebra plays a key role
in establishing our claim. Recall (see [25]) that a Boolean algebra A is called X–
computable if its universe, operations, and relations are X– computable.

Lemma 2.4. Let η, θ ∈ Com0
α(A). If [η, θ] is a Boolean algebra, then it is H(b)–

computable.

Proof. Given η and θ as in the hypothesis of the lemma, we first observe that by (4)
and (5) of Lemma 2.3 there exists a c.e. set C such η ≡ θC and

[η, θ] = {deg(θX) | X is c.e. and X ⊇ C}.

For every i, let Ui � C ∪Wi. This gives an effective listing of all c.e. supersets of
C. By Lemma 2.3 (1b), for every i, j, we have θUi � θUj if and only if

∃p[∀x(x ∈ Ui ⇒ ∃y(ϕp(x) = y & y ∈ Uj))

& ∀x∀y(x ∈ Ui & ϕp(x) = y ⇒ θ(x) = θ(y))].

Since θ ∈ Com0
α(A), this implies, by Theorem 1.9, that the binary relation z ∈ θ(x)

is c.e. relative to the oracle H(a). Therefore, the binary relation θ(x) = θ(y) is a
∀∃–predicate relative to the oracle H(a).

Simple calculations show now that θUi � θUj is a Σ0
α+2– relation in i, j.

Let us consider the equivalence relation ε on ω defined by

(i, j) ∈ ε⇔ θUi � θUj & θUj � θUi .

Let B � {x | ∀y(y < x ⇒ (x, y) /∈ ε)}. Define a bijection ψ1 : B → [η, θ], by
letting ψ1(i) = deg(θUi), for all i ∈ B. It is evident that ψ1 induces on B a partially
ordered set B, which is a Boolean algebra isomorphic to [η, θ]. The interval B is
an H(b)– computable partially ordered set since (H(a))′′′ = H(b). It follows from
[17] (see also [25, Theorem 3.3.4]) that B with respect to the corresponding Boolean
operations is H(b)-computable too. ��

Lemma 2.5 (L. Feiner). Let F be a computable atomless Boolean algebra. Then
for every X there is an ideal J such that J is X– c.e. and the quotient F/J is not
isomorphic to any X– computable Boolean algebra.

Proof. See [20]. ��

Below, we will use the following notations. For a given c.e. set H , {Vi | i ∈ ω}
denotes an effective listing of all c.e. supersets of the set H defined, for instance, by
Vi � H ∪Wi, for all i. We will assume for convenience that V0 = H . Let εH stand
for the distributive lattice of the c.e. supersets of H . For a given c.e. set V ⊇ H ,

30 Serikzhan Badaev and Sergey Goncharov

let V ∗ denote the image of V under the canonical homomorphism of εH onto ε∗H
(i.e., εH modulo the finite sets), and let ⊆∗ denote the partial ordering relation of
ε∗H . Obviously, if J is an ideal in εH , then J∗ � {V ∗ | V ∈ J} is an ideal in ε∗H .

As is known (see, for instance, [25]), if A is a Boolean algebra and J is an ideal
of A, then the universe of the quotient Boolean algebra A/J is given by the set of
equivalence classes {[a]J | a ∈ A} under the equivalence relation ≡J given by

a ≡J b⇔ ∃c1, c2 ∈ J(a ∨ c1 = b ∨ c2),

and the partial ordering relation is given by

[a]J ≤J [b]J ⇔ a− b ∈ J,

where a− b stands for a ∧ ¬b.

Lemma 2.6. Let B be a Σ0
β– computable family, μ ∈ Com0

β(B), and let H be any
c.e. set such that μ(H) = B and ε∗H is a Boolean algebra. Let ψ2 : εH −→ [μH , μ]
be the mapping given by ψ2(Vi) = deg(μVi) for all i, and let I be any ideal of εH .
Then ψ2 induces an isomorphism of ε∗H/I

∗ onto [μH , μ] if and only if for every i, j

(1) Vi ∈ I ⇒ μVi � μH ;

(2) Vi − Vj /∈ I ⇒ μVi � μVj (where Vi − Vj � (Vi \ Vj) ∪H).

Proof. See Lemma 4 in [14]. ��

By Lemma 2.4, all Boolean intervals of R0
α(A) are H(b)– computable Boolean al-

gebras. Therefore, to show the theorem, it is sufficient:

(i) to consider a computable atomless Boolean algebra F and an ideal J of F as in
Feiner’s Lemma such that J is c.e. in H(b) and F/J is not isomorphic to any
H(b)– computable Boolean algebra,

(ii) to find Σ0
β– computable numberings ν and μ of B such that the interval [ν, μ] of

R0
β(B) is a Boolean algebra isomorphic to F/J .

First, we consider item (i) above. Let F be a computable atomless Boolean algebra.
According to a famous result of Lachlan [32], there exists a hyperhypersimple set H
such that ε∗H is isomorphic to F. We fix such a set H .

We refer to the textbook of Soare [38] for the details of a suitable isomorphism χ of
ε∗H onto F. We only notice that starting from a computable listing {b0, b1, . . .} of the
elements of F, one can find a Σ0

3– computable Friedberg numbering {B0, B1, . . .}
of a subfamily of the family εH such that ε∗H = {B∗0 , B∗1 , . . .} and χ(B∗i) = bi.

We will use the techniques for embedding posets into intervals of Rogers semilat-
tices, which have been developed in [10]. Let J be any H(b) –c.e. ideal of F satis-
fying the conclusions of Lemma 2.5, and let Ĵ = {j ∈ ω | bj ∈ J}. Then Ĵ is an

Computability and Numberings 31

H(b) –c.e. set, I∗ � {B∗j | j ∈ Ĵ} is an ideal of ε∗H , and F/J is isomorphic to
ε∗H/I

∗. So, instead of the Boolean algebra F/J in item (ii) above, we can consider
ε∗H/I

∗.

Let I � {V | V ∈ εH & V ∗ ∈ I∗}, and let Î = {i ∈ ω | V ∗i ∈ I∗}. Obviously, I
is an ideal of εH .

Lemma 2.7. The relations “Vi ∈ I” (equivalently: “i ∈ Î”), in i, and “Vi − Vj ∈
I”, in i, j, are both H(b) –c.e.

Proof. Straightforward relativization of the proof of Lemma 5 in [14]. ��

Since β ≥ α + 3 we can use the oracle H(b) and apply Lemma 2.6 to construct a
suitable numbering μ of B and consider the corresponding mapping ψ2 that will give
us an isomorphism of ε∗H/I

∗ onto the interval [μH , μ].

The requirements

First of all, we need the numbering μ to satisfy the requirement:

B : μ[H] = B

to guarantee that μH is a numbering of the whole family B. Then in view of
Lemma 2.6, we must satisfy, for every i, j, p, the requirements:

Pi : Vi ∈ I ⇒ μVi � μH ,

Ri,j,p : Vi − Vj �∈ I ⇒ μVi � μVj via ϕp,

where by “μVi � μVj via ϕp” we mean that ϕp does not reduce μVi to μVj in the
sense of Lemma 2.3(1b).

We take any numbering ν ∈ Com0
β(B) and try to construct a numbering μ that

meets the above requirements B, Pi, Ri,j,p. Evidently, to get μ ∈ Com0
β(B) starting

from any uniform enumeration of the numbering ν, we have to avoid using oracles
that are stronger than the oracles used in ν–computations. Since β ≥ α + 3, the
oracles relative to which we can make uniform computations in the numbering ν
have complexity at least H(b). This lower complexity boundary for the oracles that
we intend to use in our strategies to construct μ is essential. And this forces us to
partition the rest of the proof into two cases.

CASE 1 β > α + 3. In this case we can even use oracles of complexity equal
to or greater than H(2b). And Lemma 2.7 implies that the conditions Vi ∈ I or
Vi − Vj /∈ I in the requirements Pi and Ri,j,p are effectively recognizable by any
oracle of complexity equal or higher than H(2b). The strategies and the construction

32 Serikzhan Badaev and Sergey Goncharov

for building the numberingμ in this case are relativized versions of the corresponding
strategies and construction from [14, Theorem 1].

CASE 2 β = α + 3. In this case we use only oracle H(b). Lemma 2.7 implies
that a condition Vi ∈ I is eventually recognizable by this oracle. As to the negative
condition Vi − Vj /∈ I in the requirement Ri,j,p, we constantly try to destroy the
reducibility μVi � μVj via ϕp until (if ever) the condition Vi − Vj ∈ I is eventually
recognized by the oracle H(b).

We refer to [14, Theorem 2] for the corresponding versions of the strategies and the
construction in the setting of the arithmetical hierarchy. ��

Acknowledgments

The first author was partially supported by the State grant of Kazakhstan “The Best
Teacher of Higher Education, 2005.” The second author was partially supported
by the RFBR grant 05-01-00819 and a grant from the scientific schools of Russia
4413.2006.1

References

1. Ash, C. J.: Categoricity in hyperarithmetical degrees. Annals of Pure and Applied Logic,
34, 1–14 (1987)

2. Ash, C. J., Knight, J. F.: Pairs of computable structures. Annals of Pure and Applied
Logic, 46, 211–234 (1990)

3. Ash, C. J., Knight, J. F.: Possible degrees in computable copies. Annals of Pure and
Applied Logic, 75, 215–221 (1995)

4. Ash, C. J., Knight, J. F.: Possible degrees in computable copies II. Annals of Pure and
Applied Logic, 87, 151–165 (1997)

5. Ash, C. J., Knight, J. F.: Computable Structures and the Hyperarithmetical Hierarchy.
Elsevier Science, Amsterdam (2000)

6. Badaev, S. A.: On Rogers semilattices. Lecture Notes in Computer Science, 3959, 704–
706 (2006)

7. Badaev, S. A., Goncharov, S. S.: Theory of numberings: open problems. In: Cholak, P.,
Lempp, S., Lerman, M., Shore, R. (eds) Computability Theory and its Applications. Con-
temporary Mathematics, 257. American Mathematical Society, Providence (2000)

8. Badaev, S. A., Goncharov, S. S.: Rogers semilattices of families of arithmetic sets. Alge-
bra and Logic, 40, 283–291 (2001)

9. Badaev, S. A., Goncharov, S. S., Sorbi, A.: Completeness and universality of arithmeti-
cal numberings. In: Cooper, S. B., Goncharov, S. S. (eds) Computability and Models.
Kluwer/Plenum Publishers, New York (2003).

10. Badaev, S. A., Goncharov, S. S., Podzorov, S.Yu., Sorbi, A.: Algebraic properties of
Rogers semilattices of arithmetical numberings. In: Cooper, S. B., Goncharov, S. S. (eds)
Computability and Models. Kluwer/Plenum Publishers, New York (2003)

Computability and Numberings 33

11. Badaev, S. A., Goncharov, S. S., Sorbi, A.: Isomorphism types and theories of Rogers
semilattices of arithmetical numberings. In: Cooper, S. B., Goncharov, S. S. (eds) Com-
putability and Models. Kluwer/Plenum Publishers, New York (2003)

12. Badaev, S. A., Goncharov, S. S., Sorbi, A.: Elementary properties of Rogers semilattices
of arithmetical numberings. In: Downey, R., Ding, D., Tung, S. H., Qiu, Y. H., Yasugi, M.,
Wu, G. (eds) Proceedings of the 7-th and 8-th Asian Logic Conferences. World Scientific,
Singapore (2003)

13. Badaev, S. A., Goncharov, S. S., Sorbi, A.: On elementary theories of Rogers semilattices.
Algebra and Logic, 44, 143–147 (2005)

14. Badaev, S. A., Goncharov, S. S., Sorbi, A.: Isomorphis types of Rogers semilattices for
the families from different levels of arithmetical hierarchy. Algebra and Logic, 45, 361–
370 (2006)

15. Badaev, S. A., Podzorov, S.Yu.: Minimal coverings in the Rogers semilattices of Σ0
n–

computable numberings. Siberian Mathematical Journal, 43, 616–622 (2002)
16. Badaev, S. A., Talasbaeva Zh. T.: Computable numberings in the Hierarchy of Ershov. In:

Goncharov, S.S., Ono, H., Downey, R. (eds) Proceedings of 9-th Asian Logic Conference.
World Scientific Publishers, Singapore (2006)

17. Dzgoev, V. D.: Constructive enumerations of Boolean lattices. Algebra and Logic, 27,
395–400 (1988)

18. Ershov, Yu.L.: Theory of Numberings. Nauka, Moscow (1977).
19. Ershov, Yu.L.: Theory of numberings. In: Griffor, E. R. (ed) Handbook of Computability

Theory. North-Holland, Amsterdam (1999)
20. Feiner, L.: Hierarchies of Boolean algebras. Journal of Symbolic Logic, 35, 365–374

(1970)
21. Friedberg, R. M.: Three theorems on recursive enumeration. Journal of Symbolic Logic,

23, 309–316 (1958)
22. Goncharov, S. S.: The quantity of nonautoequivalent constructivizations. Algebra and

Logic, 16, 169–185 (1977)
23. Goncharov, S. S.: Computable single-valued numerations. Algebra and Logic, 19, 325–

356 (1980)
24. Goncharov, S. S.: On the problem of number of non-self-equivalent constructivizations.

Algebra and Logic, 19, 401–414 (1980)
25. Goncharov, S. S.: Countable Boolean Algebras and Decidability. Plenum, Consultants

Bureau, New York (1997).
26. Goncharov, S. S.: Computability and computable models. In: Mathematical Problems in

Applied Logic II. Springer, Heidelberg (2007)
27. Goncharov, S. S., Knight, J. F.: Computable structure/non-structure theorems. Algebra

and Logic, 41, 351–373 (2002)
28. Goncharov, S. S., Harizanov, V. S., Knight, J. F., McCoy, C., Miller, R. G., Solomon, R.:

Enumerations in computable structure theory. Annals of Pure and Applied Logic, 136,
219–246 (2005)

29. Goncharov, S. S., Lempp, S., Solomon, D. R.: Friedberg numberings of families of n-
computably enumerable sets. Algebra and Logic, 41, 81–86 (2002)

30. Goncharov, S. S., Nurtazin, A. T.: Constructive models of complete solvable theories.
Algebra and Logic, 12, 67–77 (1973)

31. Goncharov, S. S., Sorbi, A.: Generalized computable numerations and non-trivial Rogers
semilattices. Algebra and Logic, 36, 359–369 (1997)

32. Lachlan, A. H.: On the lattice of recursively enumerable sets. Transactions of the Amer-
ican Mathematical Society, 130, 1–37 (1968)

34 Serikzhan Badaev and Sergey Goncharov

33. Podzorov, S.Yu.: Initial segments in Rogers semilattices of Σ0
n–computable numberings.

Algebra and Logic, 42, 121–129 (2003)
34. Podzorov, S.Yu.: Local structure of Rogers semilattices of Σ0

n–computable numberings.
Algebra and Logic, 44, 82–94 (2005)

35. Podzorov, S.Yu.: On the definition of a Lachlan semilattice. Siberian Mathematical Jour-
nal, 47, 315–323 (2006)

36. Rogers, H.: Gödel numberings of partial computable functions. Journal of Symbolic
Logic, 23, 49–57 (1958)

37. Rogers, H.: Theory of Recursive Functions and Effective Computability. McGraw-Hill,
New York (1967)

38. Soare, R. I.: Recursively Enumerable Sets and Degrees. Springer-Verlag, Berlin Heidel-
berg (1987)

39. Talasbaeva, Zh.T.: Positive numberings of families of sets in the Ershov hierarchy. Alge-
bra and Logic, 42, 413–418 (2003)

40. Uspensky, V. A.: Kolmogorov and mathematical logic. Journal of Symbolic Logic, 57,
385–412 (1992)

41. Uspensky, V. A.: Lectures on Computable Functions. Fiz-MatGiz, Moscow (1960)

Computation as Conversation

Johan van Benthem

Institute for Logic, Language & Computation (ILLC), University of Amsterdam,
Amsterdam, the Netherlands
johan@science.uva.nl
and
Department of Philosophy, Stanford University, Stanford, CA, U.S.A.
johan@csli.stanford.edu

Summary. Against the backdrop of current research into ‘logical dynamics’ of information,
we discuss two-way connections between conversation and computation, leading to a broader
perspective on both.

1 Information flow for children and logical dynamics

The Amsterdam Science Museum NEMO organizes regular Kids’ Lectures on Sci-
ence.1 Imagine 60 children aged around 8 sitting in a small amphitheatre—with par-
ents present in the wings, but not allowed to speak. Last February, it was my pleasure
to give one on Logic. While preparing for the event, I got more and more worried.
How does one talk logic to such an audience, without boring or upsetting them? Was
there anything in common between children that age and the abstractions that drive
one’s university career? How to even start? My first question was this:

The Restaurant In a restaurant, your father has ordered Fish, your mother
ordered Vegetarian, and you have Meat. Out of the kitchen comes some new
person with the three plates. What will happen? The children got excited,
many little hands were raised, and one said: “He asks who has the Meat”.
“Sure enough”, I said: “He asks, hears the answer, and puts the plate. What
happens next?” Children said, “He asks who has the Fish!” Then I asked
once more what happens next? And now one could see the Light of Reason
start shining in those little eyes. One girl shouted: “He does not ask!” Now,
that is logic

1 See http://www.nemo-amsterdam.nl/.

36 Johan van Benthem

After that, we played a long string of scenarios, including card games, Master Mind,
and Sudoku, and we discussed what best questions to ask and conclusions to draw.2

In my view, the Restaurant is about the simplest realistic logical scenario. Several ba-
sic informational actions take place intertwined: questions, answers, and inferences,
and the setting crucially involves more than one agent. Moreover, successive speech
acts can be analyzed for their informational content once they have taken place, but
they can also be planned beforehand: what best to ask, and how best to answer? The
program of ‘Logical Dynamics’ (van Benthem 1996) is about identifying and ana-
lyzing such scenarios, moving, in particular, the information-carrying events into the
logical systems themselves. And once we take that view, we need a congenial ac-
count of computation. What happens during a conversation is that information states
of children—singly and in groups—change over time, in a systematic way triggered
by various communicative events. In this universe of states and possible transitions
between them, the long experience of computer scientists in modeling computation
becomes relevant, from Turing’s first ‘single-minded’ computers to dealing with the
multi-agent Internet. Please note that this is not a matter of computational ‘imple-
mentation’, the subservient stance some computer scientists assume vis-a-vis other
academic disciplines. We care rather about fundamental ideas and the general cul-
tural contribution of Informatics.

This paper is largely a discussion of known results and what they mean or suggest in
a broader setting. Proofs and further details are found in the cited literature.

2 Multi-agent information models and epistemic logic

The first step in modeling conversation is a good notion of state and, hence, the
‘static component’ of the total enterprise. For simple scenarios like the above, a log-
ical apparatus exists, viz. epistemic logic (Hintikka 1962, Fagin et al. 1995). In the
Restaurant scenario, the initial information state for the waiter from the kitchen had
six possible arrangements for the three dishes over the three of us. As far as the
new waiter is concerned, all are options, and he only ‘knows’ what is true in all
of them. The new information that I have the Meat reduces this uncertainty to only
two: ‘Fish-Vegetarian’ or ‘Vegetarian-Fish’ for my father and mother. Either way, the
waiter now knows that I have the Meat. Then hearing that my father has the Fish re-
duces this to one single option: the waiter has complete information about the correct
placement of the dishes and does not need to ask any further question, even though
he may still have to perform an inference to make this vivid to himself:

2 The program included a Magic session with a card trick that failed to defy Logic in the
end—plus a nonscheduled case of crying, a less common speech act in Academia. But that
is another story.

Computation as Conversation 37

State 1 State 2 State 3

6 2 1Child has Meat Father has Fish

Epistemic logic: language and models Here is some basic epistemic logic, as far as
needed here. The syntax has a classical propositional base with added modal opera-
torsKiφ (‘i knows that φ’) and CGφ (‘φ is common knowledge in groupG’):

p | ¬φ |φ ∨ ψ |Kiφ |CGφ.

The states of our informational processes are models for this language, i.e., triples
M = (W, {∼i | i ∈ G}, V) where W is a set of worlds, the ∼i are binary acces-
sibility relations between worlds that agent i cannot distinguish as viable candidates
for the real situation3, and V is a propositional valuation. The fundamental epistemic
truth condition for knowledge of an agent is then as follows:

M , s |= Kiφ iff for all t with s ∼i t : M , t |= φ.

This language can define an existential dual of knowledge ¬Kj¬φ (or 〈j〉φ): agent
j considers it possible that φ, plus other useful expressions such as Kjφ ∨ Kj¬φ:
agent j knows whether φ. In particular, multi-agent interaction is a crucial feature.
For example, in asking a ‘normal’ question, a questioner Q conveys he does not
know if φ: ¬KQφ ∧ ¬KQ¬φ. Moreover, usually he also thinks that the addressee
A might know, which can be stated as an iterated two-agent assertion 〈Q〉(KAφ ∨
KA¬φ).

State transitions: information flow and model update Levels of knowledge about
others occurred in the second scenario that was played with the children in NEMO:

The Cards Three cards were given to three volunteers who stepped up: 1 got
Red, 2 White, and 3 Blue. Each child could see his or her own card but not
those of the others (I was circling my little volunteers to make sure). Child
2 was allowed one question, and she asked 1: “Do you have the blue card?”
1 answered truthfully: “No”. Which child figured out what in this process?

I asked beforehand, and all said they knew nothing. I asked again right after the
question, and now Child 1 said he knew the cards. His reasoning, as whispered to
me: “She would not have asked if she had the blue card herself. So, 3 has it.” After
the answer was given, children 1 and 2 said they knew the cards and 3 still did not.
But (with a little help) 3 did understand why the others knew the cards.

All this can be analyzed in words, but here is how things would look in an epis-
temic state transition framework. The initial situation again has six options, and the
uncertainty lines indicate what players hold possible from where they are:

3 One often takes these relations to be equivalence relations, but this is optional.

38 Johan van Benthem

bwr wbr

brw wrb

rwb rbw1

2

1

2

1

2 3

3
3

2’s question, seen as informative4, eliminates all worlds with second position ‘b’:

brw wrb

bwr

rwb
2

3

2

1

We see at once that, in the real world rwb, 1 has no uncertainty line going out, and
hence he knows the cards there. (We also see that 3 knows this, as it happens at both
rwb and wrb.) Next, 1’s answer eliminates all worlds with first position ‘b’:

rwb

wrb

3

This reflects the final situation of the children.

Group knowledge Once again, multi-agent interaction is crucial. Indeed, the chil-
dren even achieve a new level of knowledge that is sui generis, viz. common knowl-
edge: in addition to what they know about the facts of the situation, they also know
that the others know, and so on, up to any iteration. Common knowledge occurs
in philosophy, linguistics, and economics as a prerequisite for coordinated action.
Technically, this new notion is defined as follows over our models:

M , s |= CGφ iff for all t that are reachable from s by some

finite sequence of ∼i steps (i ∈ G): M , t |= φ.

This multi-agent view may seem far from standard logic and computation where
single agents draw inferences or make calculation steps. But real argumentation is an
interactive process, and even in the heartland of computation, very early on, Turing
emphasized the crucial social character of using computers and learning.5

4 Taking questions in this innocent way need not be sensible in the setting of real games!
5 cf. (Turing 1950). Wilfried Sieg explained to me how Turing emphasized social learning.

Computation as Conversation 39

Belief and other attitudes of agents Knowledge is just one informational attitude of
agents. One can also model beliefs, probabilities, and so on, using a broader variety
of accessibility relations. A simple epistemic structure suffices for our aims, but we
will mention less simplistic versions with agents’ beliefs occasionally.

Summarizing then, our initial NEMO example is not ‘child’s play’. Conversational
scenarios are a basic human ability involving sophisticated interactive knowledge
that needs to be understood in depth. And thus, they provide a rich subject of study
for Informatics, where logical and computational notions make good sense.

3 Conversation as computation: update actions

Communicative events range from simple public statements to complex private ones:
recall my whispered conversation with child 1. And much more subtle scenarios exist
in our lives. To move this inside our logic, we need an explicit account of relevant
actions and their effects. Here a powerful metaphor comes into play:

Conversation is Computation!

Conversation is really an interactive form of computation, much as present-day com-
putational systems have many agents engaged in a wide variety of tasks. Technically,
then, conversational processes, and communication in general, may be modeled us-
ing existing systems from the computational tradition. In this paper, we will focus
mainly on dynamic logic, originally developed as a logical account of programs and
their effects (Pratt 1976), which has gradually evolved into a general theory of action.
We start with the simplest mechanism of information flow.

Public announcement as world elimination Public announcements of true propo-
sitions P change the current situation as follows. For any model M , world s, and
formula P true at s, (M |P, s) (M relativized to P at s) is the submodel of M
whose domain is the set {t ∈M |M , t |= P}. In a picture, one goes

s s

P ¬P

from M to M |P

Crucially, truth values of formulas may change in such an update step: most notably,
because agents who did not know that P now do after the announcement. This truth
value change can be quite subtle over time, including even cases where statements
make themselves false.6 One needs logics to keep this all straight.

Product update with event models Whispering is a public announcement in a sub-
group of a larger group, but it is only partially observable to the others. Hiding, se-
crets, and limited observation are ubiquitous in everyday communication. Consider
6 Truly announce P = “You do not know that p, but it is really true” – and P becomes false.

40 Johan van Benthem

your email. The epistemic-dynamic role of cc is a public announcement. But the
more sophisticated button bcc achieves a partial announcement that can even mis-
lead other participants. More complex scenarios arise in computer security and in
the arena of games, which are often designed to manipulate information flow. Partial
observation of events may be analyzed as the following construction for changing
models (Baltag et al. 1998). Scenarios where information flows in different ways for
different agents can be represented in

Event models A = (E, {∼i | i ∈ G}, {PREe | e ∈ E}).

HereE collects all relevant events. The uncertainty relations∼i encode which events
agents cannot distinguish. For example, when the children checked their cards, the
girl with the white card could not tell ‘1’s seeing red’ from ‘1’s seeing blue’. Now,
information flow occurs because events e have preconditions PREe for their oc-
currence (say, my having a red card, not knowing the answer to my question, etc.).
When you observe an event, you learn that something must have been the case for
this to happen.

The following Update Rule encodes the resulting mechanism of information flow:

For any epistemic model (M , s) and event model (A, e), the product model
(M ×A, (s, e)) has a distinguished new world (s, e), and then

(a) a domain {(s, e) | s a world in M , e an event in A, (M , s) |= PREe},

(b) accessibility relations (s, e) ∼i (t, f) iff both s ∼i t and e ∼i f ,

(c) the valuation for atomic formulas p at (s, e) is that for s in M .7

Product update models a wide variety of information scenarios. And the universe
of models with product update M ×A has a rich logical and computational struc-
ture.8

Belief and other dynamic phenomena Knowledge was just one feature in infor-
mation flow. If we also model agents’ beliefs and expectations, product update can
describe events affecting belief, including misleading actions, leading to false beliefs.
Moreover, we need not just record information update. We can also model belief re-
vision, a more agent-dependent phenomenon, which can depend on very different
‘policies’ for different types of agent, more conservative or more radical.9

7 This stipulation of ‘inertia’ basically says that physical facts do not change under communi-
cation. This constraint can be lifted easily to let the system deal with genuine nonepistemic
world change.

8 Unlike with world elimination, epistemic product models can now get larger under up-
date. But there is a counteracting force to this growth in complexity, as later models
may be bisimilar with earlier ones, making the iterated epistemic long-term process cy-
cle (van Benthem 2006C).

9 Different policies even multiply when we define updates for further relevant phe-
nomena in communication and interaction, such as changes in preferences or goals
(van Benthem & Liu 2005).

Computation as Conversation 41

4 Dynamic-epistemic logics of informative events

Given all these interesting actions that transform epistemic models, we want to study
them explicitly. Now, keeping track of truth value changes for epistemic assertions
can be as tricky as finding out what a particular program achieves over time. Thus,
it is useful to keep track of both the statics and the dynamics in one logical calcu-
lus. Relevant frameworks from the computational literature include temporal logic,
process algebra, or linear logic. Here, we choose dynamic logic (Kozen et al. 2000)
with its two levels of expressions π for programs and propositions φ describing the
successive states produced by these. The main operator of the language is

[π]φ : “after any successful execution of π, φ holds in the resulting state”.

This language stays close to that of modal logic, the lingua franca of much of compu-
tational logic, and it treats dynamic processes as being equivalent up to bisimulation,
probably the most widely used notion of process equivalence. Still, this section is not
meant as propaganda for any approach but as a demonstration of how computational
logic of conversation and much more is entirely feasible.

Dynamic epistemic logic of public announcement The language of public an-
nouncement logic PAL is the epistemic language with added action expressions:

Formulas P : p | ¬φ |φ ∨ ψ |Kiφ |CGφ | [A]φ

Action expressions A : P !

Here, treating announcements as actions and having them explicitly inside modalities
of the language comes from dynamic logic. The semantics is this:

M , s |= [P !]φ iff if M , s |= P , then M |P, s |= φ.

There is a complete calculus of information flow under public announcement—i.e.,
a complete logic of basic communication (Plaza 1989, Gerbrandy 1999):

Theorem. PAL without common knowledge is axiomatized completely by the usual
laws of epistemic logic plus the following reduction axioms:

[P !]q ↔ (P → q) for atomic facts q

[P !]¬φ↔ (P → ¬[P !]φ)

[P !](φ ∧ ψ) ↔ ([P !]φ ∧ [P !]ψ)

[P !]Kiφ↔ (P → Ki[P !]φ).

Methodology These axioms describe conversation in an elegant style, analyzing
effects of assertions in a compositional way by recursion on the ‘postconditions’
behind the dynamic modalities. Thus, they reduce every formula of our dynamic-
epistemic language eventually to a formula in the static epistemic language (cf. the

42 Johan van Benthem

‘regression procedure’ of (Reiter 2001)). In terms of the logic, the reduction pro-
cedure shows that PAL is decidable, since the static epistemic base logic is decid-
able.10

This method of ‘dynamification’ applies to a wide range of informational events.
First, choose a static language with models that represent information states for
groups of agents. Next analyze the relevant informational events as update models
changing the static ones. These updates are then described explicitly in a dynamic ex-
tension of the language, which can also state the effects of events using propositions
that hold after their occurrence. The resulting logics have a two-tier setup:

static basic logic dynamic extension

At the static level, one gets a complete axiom system for one’s chosen models. The
computational analysis then adds a set of dynamic reduction axioms for effects of
events. Thus every formula is equivalent to a static one—and hence, if the static base
logic is decidable, so is its dynamic extension. In principle, this modular dynamic
epistemic design is independent from specific properties of the static models. For ex-
ample, the PAL axioms do not depend on assumptions about epistemic accessibility
relations. Its completeness theorem holds just as well if the static models are arbi-
trary, validating the minimal modal logic K as some minimal logic of belief.

Technical issues Sometimes, treating conversation as computation changes our
ideas about an underlying static system. For example, the completeness theorem
for PAL omits common knowledge after announcements. To get a reduction ax-
iom for formulas [P !]CGφ, one must enrich epistemic logic beyond its standard
version, cf. (van Benthem et al. 2005). Conditional common knowledge CG(P, φ)
says that φ is true in all worlds reachable via some finite path of accessibilities
running entirely through worlds with P . Then we get the valid reduction law:
[P !]CGφ ↔ CG(P, [P !]φ). Conditional common knowledge is not definable in the
basic epistemic language, but it is bisimulation-invariant, and completeness proofs
are easily generalized.11 There is an analogy here with conditional assertions φ⇒ ψ
in belief revision, which state what we would believe were the antecedent to be
considered (van Benthem 2006A). PAL has a modal bisimulation-based model the-
ory, with many interesting issues of expressive power and computational complex-
ity.12

General dynamic epistemic logic A more general product update for communica-
tive and observational scenarios can also be dealt with in this dynamic logic format.
The language of dynamic-epistemic logic (DEL) has the following syntax:

10 This reduction does not settle computational complexity: basic epistemic logic is Pspace-
complete, but translation via the axioms may increase the length of formulas exponentially.
cf. Section 6.

11 Indeed, PAL with conditional common knowledge is axiomatized completely by adding
just one more valid reduction law [P !]CG(φ, ψ) ↔ CG(P ∧ [P !]φ, [P !]ψ).

12 cf. (van Benthem 2006D) for a survey of many open problems in this area.

Computation as Conversation 43

p | ¬φ |φ ∨ ψ |Kiφ |CGφ | [A, e]φ :

with (A, e) any event model with actual event e. The semantic key clause is

M , s |= [A, e]φ iff M ×A, (s, e) |= φ.

(Baltag et al. 1998) then showed completeness in this wider setting:

Theorem. DEL is effectively axiomatizable and decidable.

The key reduction axiom is the one extending that for public announcement:

[A, e]Kiφ↔ PREe → ∧{Ki[A, f]φ)) | f ∼i e in A}.

Further challenges Again consider common knowledge or belief. Just try to figure
out what common beliefs hold in the following email scenario. Agent 1 sent message
e, but in such a way that the other agent 2 believes that message f was sent:

e f

1

2

1

2

(van Benthem et al. 2005) extends DEL to a logic LCC using ideas from dynamic
logic and μ-calculus to get complete sets of axioms for such scenarios.13

Dynamic logics for belief revision and preference change The above format
also provides complete logics for events of belief revision and even more general
preference change. These involve conditional beliefs and compositional axioms for
changes in them after ‘hard facts’ such as public announcements P ! or ‘soft facts’:
weaker triggers for belief revision ⇑P that may be overridden later on.14

Model change and other dynamic frameworks The general idea behind update
mechanisms for knowledge or belief is definable model change. One selects or even
creates new individual objects (the worlds) out of old ones and then redefines the
relevant relations between them. There are other systems than dynamic logic in the

13 Another relevant issue is the ‘view of agents’ in product update. They satisfy Perfect
Memory and No Miracles: learning only occurs through observation of suitable events.
(van Benthem & Liu 2004) shows that this is complete—(Liu 2006) looks at much greater
diversity of epistemic agents.

14 Just to show the format, here are two reduction axioms for new beliefs after hard and soft
triggers: [P !]Bi(φ |ψ) ↔ P → Bi([P !]φ |P ∧ [P !]ψ), [⇑P]B(φ |ψ) ↔ (E(P ∧
[⇑P]ψ)∧B([⇑P]φ |P ∧ [⇑P]ψ))∨B([⇑P]φ | [⇑P]ψ). Here E is the existential modality
“in at least one world”. For details, cf. (van Benthem 2006A, Baltag & Smets 2006).

44 Johan van Benthem

computational literature with a similar flavour. For example, process algebra is a
family of calculi for constructing new processes out of given ones. Indeed, our prod-
uct update M × A respects bisimulation in the standard process-algebraic sense.
In our view, DEL is a nice calculus of model change intermediate between dynamic
logic and process algebra, which combines an ‘external language’ for defining pro-
cesses with an ‘internal language’ describing properties of states within these pro-
cesses. Merging major computational process paradigms may be a good idea in gen-
eral.

5 Program structures in conversation

Genuine computation involves control over long sequences of actions. Likewise,
conversation involves many assertions governed by program constructions. When
talking with our dean, we first praise the current state of the Faculty of Science and
then ask for funding. And what we say depends on his current state. We commis-
erate when he looks troubled and joke when he looks happy. Finally, there is an
iterative process of ‘flattery’. We keep saying nice things until his brow clears and
the right moment for our funding request has come. Thus, conversation involves
all the basic operations from sequential programming: (a) sequential composition
;, (b) guarded choice IF . . . THEN . . . ELSE . . . , and (c) guarded iterations WHILE
. . . DO

A much-quoted concrete example is the puzzle of the ‘Muddy Children’:

After playing outside, two of three children have mud on their foreheads.
They all see the others, but not themselves, so they do not know their own
status. Now their father comes and says: “At least one of you is dirty”. He
then asks: “Does anyone know if he is dirty?” The children answer truth-
fully. As this question–answer episode repeats, what will happen?

Nobody knows in the first round. Next, the muddy children argue as follows. ‘If
I were clean, the one dirty child I see would have seen only clean kids, and so she
would have known that she was dirty. But she did not. So I must be dirty, too!’ Thus
both know their status in the second round. The third child knows it is clean one
round later. The puzzle easily extends to more clean and dirty children.15

Clearly, all three preceding program constructions occur here: sequential assertion,
guarded action (children must respond differently depending on what they know),
and iteration: the process repeats until common knowledge is achieved.

Adding full dynamic logic To analyze complex conversations, PAL or DEL must
be extended with propositional dynamic logic PDL, which has a test operation ?φ on

15 For a concrete update sequence describing this scenario, cf. (Fagin et al. 1995,
van Benthem 2006C).

Computation as Conversation 45

propositions, plus the three regular operations of sequential composition ;, choice ∪,
and iteration ∗. We display the major valid axioms here16:

(a) [φ?]ψ ↔ (φ→ ψ),
(b) [π1;π2]φ↔ [π1][π2]φ,
(c) [π1 ∪ π2]φ↔ ([π1]φ ∧ [π2]φ),
(d) [π∗]φ↔ (φ ∧ [π][π∗]φ),

and

(e) (φ ∧ [π∗](φ→ [π]φ)) → [π∗]φ.
These axioms work by recursion on the first argument of our modal statements [π]φ,
rather than the second. It is known that PDL as a system of arbitrary actions is com-
pletely axiomatized by these principles—and indeed, it is decidable.17

Further constructions But conversation also involves other program operations.
It is crucial to the Muddy Children puzzle that the children answer simultaneously.
This is parallel composition of individual actions, as in distributed computing and
process algebra. PAL treats simultaneous speech as announcing a conjunction, and
thus (φ ∧ ψ)! is a simple analogue of a parallel composition φ! || ψ!.18

Temporal logic All this eventually embeds dynamic epistemic logics into broader
epistemic temporal logics over branching trees of events (Fagin et al. 1995) and
(Parikh & Ramanujam 2003). The latter links up with another process view in com-
puter science, viz. temporal logics in the style of Pnueli, Clarke, and others. cf.
(van Benthem & Pacuit 2006) for connections with our current setting.

6 Complexity of logical tasks

Computation involves a balance between representation and processing of data, and
so do logical systems. Although dynamic epistemic logics provide a rich account of
effects of events that carry information, their expressive power has a price in terms
of computational complexity. Indeed, any logical system can be used for a variety of
core tasks that all involve computational complexity.

Model checking We start with model checking, i.e., determining whether M , s |= φ
for a given model M and formula φ. For basic epistemic logic, this task is P-
time in the size of formulas and models (Vardi 1997). In our conversational set-
ting, model checking DEL-formulas corresponds to computing the effects of infor-
mational events in a given informational situation. (van Benthem et al. 2005) shows
16 The axioms for π∗ say that a universal modality [π∗] is a greatest fixed-point operator.
17 Combining PDL with epistemic logic into a richer version of DEL will involve recursions

on both actions and postconditions. The precise nature of this joint approach remains to be
understood.

18 No explicit axiomatization is known yet for this parallel operator || in PAL or DEL.

46 Johan van Benthem

that model-checking complexity remains P-time for arbitrary formulas φ of DEL. 19

Thus, verifying the effects of a given conversational plan is an easy task.

Satisfiability But the more ambitious task is conversation planning: how do we set
up a setting in order to achieve certain desired effects? This can still be cast as a
model checking problem when the epistemic ‘space’ is given beforehand (see be-
low), but in general one asks for the existence of some information model satisfying
some specified properties. This is the problem of satisfiability (SAT): when does a
given formula have a model? The SAT problem for basic epistemic logic is Pspace-
complete. The axioms for PAL provide a SAT reduction to this system, but given
the shape of the axioms, this might be exponential. (Lutz 2005) provides a better
reduction that shows that SAT complexity for PAL remains Pspace-complete.20 Al-
though this might suggest that dynamifying a base logic does not affect complexity,
further dynamic epistemic logics still have surprises in store. In particular, the above
combination of PAL with the program operations of dynamic logic PDL, i.e., the
combination of two systems, each of which are decidable, leads to a surprise:

Theorem. (Miller & Moss 2005) PAL with PDL operations is undecidable.21

More concretely, designing puzzles like Muddy Children and solving conversation
planning problems in them can be extremely hard!

Complexity of further tasks? Besides standard model checking and satisfiability,
there may be other natural complexity issues for dynamic-epistemic logics. For in-
stance, a set of admissible assertions, or a more general conversational protocol over
some given initial model, generates a model M with all possible trajectories for an
informational process. In such a model, we can ask for conversational plans achiev-
ing intended effects, say in the form of PDL programs as above that are guaranteed
to move from the initial state to some state satisfying some goal proposition φ. The
resulting intermediate model-checking problems asks whether an executable PDL
program π exists such that [π]φ holds at the current state s in the given model M .
This is not quite ordinary model-checking, but it is not full-fledged SAT either. Here
is another variant issue. What actions are worth counting in our update setting? For
instance, is there an analogue of the computational notion of communication com-
plexity defined in (Yao 1979)? Finally, on the more empirical side, once partial ob-
servation of events is considered as in DEL, one expects intuitive complexity jumps
from public to private announcement, or from speaking the truth to lying. But so far,
not all relevant intuitions and empirical folk wisdom about such thresholds have been
turned into precise mathematics yet.

Danger zones Many authors have explained (Halpern & Vardi 1989, Marx 2006,
van Benthem & Blackburn 2006, van Benthem & Pacuit 2006) how modal logics
practice the art of ‘living dangerously’ at the edge of undecidability. With expressive

19 This complexity is EXPTIME for the full language with all PDL operations.
20 The SAT-complexity for DEL probably remains the same.
21 The proof uses infinite epistemic models: it is not known whether it holds with just finite

models.

Computation as Conversation 47

power tree-oriented, they are decidable guarded-quantifier formalisms. But when
dangerous patterns become definable, in particular two-dimensional grids with two
confluent relations, they tend to become undecidable—and may even incur non-
arithmetical complexity. In a dynamic epistemic setting, geometric confluence re-
flects commutativity laws for modalities (Halpern & Vardi 1989, van Benthem 2001)
that may make logics undecidable—though the precise recipe for disaster is delicate.
For knowledge and action, an equivalence between K[e]φ (knowing that an event e
produces a certain result φ) and [e]Kφ (an event e’s producing knowledge that φ)
amounts to the semantic condition that agents have perfect memory. Thus, writing
logics for well-endowed idealized agents can drive up complexity!

7 Reversing the direction: computation as conversation

We have amply shown by now how conversation can be viewed as computation, lead-
ing to interesting issues that can be studied by combining techniques from philosoph-
ical and computational logic. But this link also suggests an inversion in perspective.
In particular, lower bound results concerning complexity often establish that some
other problem of known complexity can be reduced to the current one. And though
these reductions may be technical, usually, they convey a lot more useful informa-
tion, often of a semantic nature—and hence, they establish stronger analogies than
mere ‘equi-difficulty’. To see this more concretely, take our analysis of conversa-
tion as a form of computation. The simple point that we wish to make now is that
complexity analysis, as available in known results, also allows us to view

Computation as Conversation!

Realizing computation as conversation High-complexity results are often taken to
be bad news, as they say that some logical task is hard to perform. But the good
news here is that, by the very same token, an interesting transfer happens: the logic
manages to encode significant problems with mathematical content. For instance,
consider the famous result that SAT in propositional logic is NP-complete. Reversing
the perspective, this result also means that solving just one basic logical task has
universal computational power for a large class of problems encountered in practice.
Moreover, the proof of NP-completeness for propositional SAT even gives a simple
translation from arbitrary computational tasks to logical ones.22 The same reversal
applies to other complexity classes. For example, Pspace-complete is the solution
complexity for many natural games (Papadimitriou 1994, van Emde Boas 2002) and,
hence, being able to solve SAT problems in our base logic, i.e., the ability to create
consistent epistemic scenarios suffices for solving lots of games.

Now, in this same light, consider the above result from (Miller & Moss 2005). What
they prove is essentially that each tiling problem—and hence also each significant

22 A course in propositional logic is at the same time one in universal computation, if only
you knew the key

48 Johan van Benthem

problem about computability by Turing machines—can be reduced effectively to a
SAT problem in PAL + PDL. I literally take this result to mean the following:

Conversation has Universal Computing Power Any significant compu-
tational problem can be realized as one of conversation planning.

Even so, in this technical sense, ‘computation as conversation’ is mainly a metaphor.
In what follows, I take one more step, which does not require us to ‘take sides’.

8 Merging computation and conversation

The real benefit of bringing together computation and conversation is not reduction
of one to the other. It is creating a broader theory with interesting new questions.
In particular, a theory of computation that absorbs ideas from conversation must
incorporate the dynamics of information flow and social interaction. We will mainly
discuss one way of doing this here. It starts from known algorithms and then adds
further structure. We proceed by a series of examples, as our aim is merely to show
how many new questions can be asked at once in this setting, without established
answers. At the end, we note a few more general trends.

Epistemizing algorithms Consider the basic computational issue of Graph Reach-
ability (GR). Given a graph G with distinguished points x, y, is there a chain
of directed arrows in G leading from x to y? This task can be solved in Ptime
in the size of the graph: there are fast quadratic-time algorithms finding a path
(Papadimitriou 1994). The same analysis holds for the task of reachability of some
point in G satisfying a general goal condition φ. GR models search problems in
general, and the solution algorithm performs two closely related tasks: determining
whether a route exists at all, and giving us an actual plan to get from x to y. We
consider various ways of introducing knowledge and information.

Knowing you have made it Suppose you are an agent trying to reach a goal region φ
but with only limited observation of the graph in which you are moving. In particular,
you need not know, at any point x, at which precise location you are. Thus, the graph
G is now a model (G,R,∼) with accessibility arrows but also epistemic uncertainty
links between nodes. A first epistemization of GR merely asks for the existence of
some plan that will lead you to a point that you know to be in the goal region φ.
(Brafman et al. 1993) analyzes a practical setting for this, with a robot whose sensors
do not tell her exactly where she is standing. In this case, it seems reasonable to add a
test to the task, inspecting current nodes to see whether we are definitely in the goal
region: Kφ. Given the P-time complexity of model checking for modal-epistemic
languages, the new search task remains P-time.

Having a reliable plan In this setting, further issues arise. What about the plan it-
self? If we are to trust it, should not we require that we know it to be successful? Con-
sider the following graph, with an agent at the root trying to reach a φ-point:

Computation as Conversation 49

φ

The dotted line indicates the agent cannot tell the two intermediate positions apart.
A plan that achieves the goal is Up ; Across. But after following one part of this,
the agent no longer knows where he is and, in particular, whether moving Across
will reach the φ-point, or rather moving Up. Let us first formulate the requirement.
Suppose for simplicity that a plan is just a finite sequence a of arrows. We may then
require initial knowledge that this will work: K[a]Kφ. But this is just at the start:
we may also want to be sure at all intermediate stages that the remainder of the plan
will work. This would require truth of all formulas

[a1]K[a2]Kφ, where a = a1;a2
23

The existence of such a ‘transparent’ plan can still be checked in Ptime, since the
number and size of the relevant assertions only increases polynomially. But this
quickly gets more complex with plans defined by more complex PDL programs.
It is not obvious how to even define the right notion of epistemic reliability, and we
suspect that it may lead to new languages beyond DEL and PDL.24

Different types of agent But there is more to the epistemic setting in the preceding
example. Note that the agent in the graph has forgotten her first action: otherwise, she
could not be uncertain between the two nodes in the middle. Our earlier DEL-style
agents with Perfect Recall would not be in this mess, as they can only have un-
certainties about what other agents did. And the earlier mentioned commutation law
K[a]φ→ [a]Kφwhich holds for them will automatically derive intermediate knowl-
edge from initial knowledgeK[a]Kφ. But there are many kinds of epistemic agent:
with perfect recall, with finite memory bounds, etc.25 Thus, epistemized algorithms
naturally go together with questions about what sorts of agents are to be running
them—and the complexity of these tasks-for-agents can vary accordingly.

Epistemic plans But also, in an epistemic setting, the notion of a plan itself requires
further thought. A plan is a sort of program that can react to circumstances, via con-
ditional instructions such as IF α THEN do a ELSE b. The usual understanding of
the test condition α is that one finds out if it holds and then chooses an action ac-
cordingly. But for this to work, the agent has to be able to perform that test! Say,

23 If an agent has Perfect Recall,K[a]φ implies [a]Kφ, and the initial formula implies all the
others. But for bounded agents, our distinction makes sense.

24 As in (van Benthem 2001), some version of the epistemic μ-calculus may be needed, at
least for reliable strategies of players in a game. These are related to the ‘uniform strategies’
of game theory.

25 No standard taxonomy of this diversity exists yet: cf. (Liu 2006) for a first overview.

50 Johan van Benthem

we ask a computer to check the current value of some variable or a burglar to check
whether the safe has a Yale lock or some inferior brand. But in the above graph,
the plan ‘IF you went Up, THEN move Across ELSE move Up’, though correct as
an instruction for reaching the goal, is no use, as the agent has no way of deciding
which alternative holds. There are two ways of dealing with this. One is to include
knowledge into programs (Fagin et al. 1995). We make actions dependent on con-
ditions like ‘the agent knows α’ that can always be decided, provided agents have
epistemic introspection.26 Suitable epistemic programs are automatically transparent
in the above sense (van Benthem 2001). The other option is to define a notion of
‘executable plan’ in an epistemic model M , making sure that agents can find out
whether a test condition holds at any stage where this is needed. But so far, I have
not found a definition for epistemic executability that satisfies me.

Dynamifying static logics: update actions Finding out whether a proposition holds
involves actions of communication or observation, and hence, we move beyond epis-
temized static logics to dynamic ones. Then we could model the above test condi-
tions α as explicit actions of asking whether α holds. This requires richer multi-agent
models, though, where one can query other agents, or perhaps Nature, about certain
things. We will not pursue this topic here, but the logic DEL in this paper is a show-
case of ‘dynamification’. Thus, it should be well suited for analyzing dynamified
algorithms—and so are epistemic variants of PDL or the μ-calculus.27

Multi-agent scenarios and interactive games Several epistemic scenarios in the
preceding discussion suggest adding more than one agent, moving from traditional
lonely algorithmic tasks to more social ones. For example, reaching a goal and
knowing that you are there naturally comes with variants where others should
not know where you are. Examples in the literature include the ‘Moscow Puz-
zle’ (van Ditmarsch 2002), where people have to tell each other the cards that they
have without letting a third party present know the solution. Card games, or the
earlier-mentioned use of email, provide many further examples. This social inter-
active perspective comes out even more in the setting of games and interaction be-
tween different players. Indeed, games have been proposed as a very general model
of computation (Abramsky 2006), and new logical questions about them abound
(van Benthem 2005B).

Reachability and sabotage Turning algorithms into games involves the ‘prying
apart’ of existing algorithms into games with different roles for different agents.
Early examples are logic games in the style of Lorenzen, Ehrenfeucht, or Hin-
tikka (cf. the survey in (van Benthem 1999)). A more algorithmic example is in
(van Benthem 2005A). Consider again Graph Reachability. The following picture
gives a travel network between two European capitals of logic and computation:

26 Interestingly, some heuristic algorithms in (Gigerenzer & Todd 1999) have this flavour.
27 An extreme case of this setting are pure information games, where all moves are actions of

asking questions and giving answers, and players go for goals like ‘being the first to know’.

Computation as Conversation 51

Brussels

Amsterdam

Luxemburg Koblenz

Saarbruecken

train

plane
taxi

It is easy to plan trips either way. But what if the transportation system breaks down
and a malevolent demon starts canceling connections, anywhere in the network? At
every stage of our trip, let the demon first take out one connection. Now we have a
two-player sabotage game, and the question is who can win it where. Some simple
reasoning will show that, from Saarbruecken, a German colleague still has a winning
strategy. But the Dutch situation is less rosy: Demon has the winning strategy.

This example suggests a general transformation for any algorithmic task. It becomes
a sabotaged one when it is cast as a game with obstructing players. This raises several
new questions, e.g., about logical languages describing these games, and players’
plans (strategies) in them. In particular, how does the computational complexity of
the original task change when we need to solve the new game? For sabotaged Graph
Reachability, it has been shown in (Rohde 2005) that this complexity moves up from
low P-time to Pspace-completeness. That is, the problem now takes a polynomial
amount of memory space, which makes it of the complexity of Go or Chess.28

Catch Me If You Can But there is no general rule predicting when a newly created
game becomes more complex than its algorithmic ancestor. Again consider graphs,
the setting par excellence for algorithmic tasks, but now with another game variant of
GR. ‘Obstruction’ could also mean that some other player tries to catch me en route,
making it impossible for me to continue. It is easy to cast this as a game, too:

Starting from an initial position (G, x, y) with me located at x and you at
y, I move first, then you, and so on. I win if I reach my goal region in some
finite number of moves without meeting you. You win in all other cases.29

This game, too, is very natural, and it models a wide variety of realistic situa-
tions, such as warfare, or avoiding certain people at receptions.30 But this time, the

28 Link cutting games also have other interesting interpretations. (van Benthem 2006B) has a
variant dual to the above where a Teacher tries to trap a Student into reaching a certain state
of knowledge.

29 Thus, you win: if you catch me before I am in the goal region, if I get stuck, or if the game
continues indefinitely. Other natural ways of casting these conditions would allow draws.

30 Fabius Maximus Cunctator tried to win a war by avoiding his enemy Hannibal throughout.

52 Johan van Benthem

computational complexity stays lower.31 Solving Catch Me If You Can still only takes
Ptime in the size of the graph! This can be seen by the analysis of the analogous
‘Cat & Mouse’ game in (Greenlaw et al. 1991).32, 33

Adding knowledge and observation again In actual warfare, catching games natu-
rally involves limited observation and partial knowledge. In such games of imperfect
information, players need not be able to see where the others are, and solution com-
plexity may go up to Pspace and beyond. (Sevenster 2006) is an extensive study of
various epistemized algorithms in this setting, using connections with the ‘IF logic’
of (Hintikka & Sandu 1997) to clarify their properties. In particular, he shows that
the situation is delicate. For example, consider that mild form of warfare called the
game of ‘Scotland Yard’. Here the invisible player who tries to avoid getting caught
has to reveal her position after every k moves for some fixed k. But then the game can
be turned into one of perfect information by re-encoding players’ moves making k-
sequences of old moves into single steps. (van Benthem 2001, van Benthem 2005B)
study many other aspects of merging DEL with game theory.34

Rephrasing the issues in game theory? From a genuine game-theoretic viewpoint,
many other questions may become relevant, however. For example, Sevenster’s ma-
jor complexity results are in the IF tradition of asking whether some player has a
winning strategy even when hampered by lack of knowledge. But the most crucial
feature of finite games of imperfect information, both mathematically and in practice,
is the existence of something more delicate: Nash equilibria in mixed strategies, let-
ting players choose moves with certain probabilities. Maybe it is the resulting game
values that we should be after for gamified algorithms. Thus, gamification as gen-
eralized computation should also make us pause and think about the most natural
counterparts to the properties of algorithms when they were still pure.

This is just one of many issues when we take game structure seriously. Imper-
fect information games also invite explicit events of observation and communi-
cation (Osborne & Rubinstein 1994, van Benthem 1999, van Benthem 2001). More-
over, they fit naturally with the parallel action mentioned earlier, as much of game
theory is about simultaneous choice of moves by players. And then: why two play-
ers, and not more? For example, even inside the heartland of logic games, it has been
proposed that argumentation, often cast as a tennis match, really needs a ‘Proponent’,
an ‘Opponent’, and a Judge. Thus, our view of algorithms in a social setting naturally

31 The difference with the Sabotage game is that the graph remains fixed during the game.
32 I owe this reference to Merlijn Sevenster, who also points out the finer complexity differ-

ence that Reachability is NL-complete, whereas Cat & Mouse is Ptime-complete.
33 A direct argument is as follows. The game can be recast as a graph game over an extended

graph with positions (G, x, y) counting players’ moves as described while allowing you
‘free moves’ when I am caught or get stuck. Now we let you win if you can keep moving
forever. It is known that graph games like this can be solved in Ptime. One can see this as
a modal model-checking problem for formulas <>n T with n the graph size.

34 (van Otterloo 2005, van Benthem 2007) study extensive games with explicit actions of an-
nouncing relevant facts or even players’ intentions concerning their future moves.

Computation as Conversation 53

merges computer science, logic, and game theory with new links and new research
questions running all across.

9 Toward a general theory: transformations and merges

Our discussion in the preceding section has been just a bunch of examples, trying to
convey the pleasure of exploring an interactive epistemic viewpoint on computation.
But it also suggests several more systematic topics.

Epistemizing logics One broad concern is the design of appropriate logical lan-
guages for these new structures. This might seem a simple matter of combining
components like dynamic and epistemic logic, but it can be much more interest-
ing.35 Next, relevant tasks for these languages can fall into the cracks of the standard
notions of complexity. For example, natural planning problems seem intermediate
between model checking and satisfiability. They ask, in a given model M with state
s, whether some epistemic plan exists that takes us from s to the set of goal states.
Thus, epistemizing logics is a nontrivial exercise, when done with a heart.

Epistemizing and gamifying algorithms Next, there is the issue of finding general
transformations on algorithms behind the above examples. Instead of botany, one
would want general results on what these do to the solution complexity of the original
task. The dissertations (Rohde 2005, Sevenster 2006) were the first steps.

A bit quixotically, what we are doing here can be seen as dynamification once more,
but now at a meta-level. We have been using dynamic viewpoints to transform given
problems in their original guise, and now, we are trying to make that process it-
self into an object of logical study. This is one way of seeing more unity in the di-
verse examples and logics that arise when ‘computation and conversation’ are mixed
together. But there are other ways. In particular, promising convergences can be
observed between various systems for describing ‘computation and conversation’,
witness the comparison among dynamic epistemic logic, epistemic temporal logic,
modal product logics, and other paradigms in (van Benthem & Pacuit 2006). More
generally, one broad aim of theory construction in this arena is as follows:

Epistemized process theory Moving toward fundamental theories of computation
and bringing in explicit considerations of observation and conversation suggest epis-
temic versions of existing process theories, such as Process Algebra. As the latter
includes an explicit account of ‘communication channels’, making the connection
seems appropriate.36 The same points apply to interaction and game semantics for

35 For example, (van Benthem 1999) shows how even the issue of finding ‘the epistemic ver-
sion’ of propositional dynamic logic is not at all simple, as DEL suggests a two-level ap-
proach, providing both states and arrows with uncertainty relations, giving us a range of
options for matching logical languages.

36 (Dechesne & Wang 2007) compares renderings of communication scenarios in DEL and
Process Algebra.

54 Johan van Benthem

computation. For example, standard models for linear logic achieve nondeterminacy
by moving to infinite games. But nondeterminacy reigns in simple finite games with
imperfect information, suggesting epistemic versions of linear game semantics. Also,
strategies in linear logic crucially involve switching across games, and using infor-
mation about moves in one to make the best moves in the other (Abramsky 2006),
which is again well within our circle of ideas.37 Of course, as we noted, there is also
the issue of how all this relates to existing game theory. Perhaps, the current contacts
among logic, computer science, and game theory may be viewed as preliminaries to
a new theory with aspects of all three.

10 Conclusions

This paper fits in a broad current trend. Bringing together computation and broader
information-based activities of conversation and communication is in the air, and
it has been there for at least two decades. It may be seen with the epistemic anal-
yses of communication protocols in (Fagin et al. 1995), with calculi of distributed
computing like Milner’s CSP, and of course, with modern theories of agents and in-
telligent information systems. We have tried to show here that this trend is more than
a metaphor by pointing at concrete logics that deal with it, and at a sequence of inter-
esting new issues that arise when we merge the two agendas systematically. To some,
the resulting theory may look strange at first, as it combines hard-core computational
logic with epistemic logics from the ‘softer’ philosophical tradition—something that
may look even more outrageous when we add, not just knowledge, but also agents
more ephemeral beliefs, and who knows, even their intentions and most intimate de-
sires. Still, we think computation plus information update and belief revision is a
perfectly viable marriage. It is rich in theory, and also, it fits very well with modern
computation in societies of interacting agents. Indeed, recent research programs like
‘social software’ (Parikh 2002) even take this into activist mode and propose not just
analyzing existing social procedures in this style but even designing new better ones.
In this, social software is like ‘mechanism design’ in game theory but pursued by
sophisticated computational techniques.

As a counter-point to such ‘soft’ social settings, it needs to be said that the Dynamic
Turn advocated in this paper is also observable in hard-core areas like physics. Re-
cent interfaces between computer science and quantum mechanics emphasize the
dynamic interactions of observing agents with physical systems in operator-based
Hilbert spaces. Accordingly, systems of dynamic logic and game semantics for linear
logics are crossing over from computation to the foundations of physics, as well as
the practices of quantum computation. (Abramsky & Coecke 2004, Baltag & Smets
2004), and some entries in (Rahman et al. 2004) are samples of this trend. For what
this might mean in a broader information theory, cf. (Abramsky 2006).

37 In recursion theory, a precursor is (Condon 1988) on Turing machines run by agents with
limited observation—though for specialized complexity-theoretic purposes.

Computation as Conversation 55

Another way of stating the main point of this paper is that computation is a per-
vasive and fundamental category across the sciences and humanities, provided we
cast it in its proper generality, linking up with epistemic logics broadly construed. In
one direction, our dynamic epistemic systems show how this introduces significant
computational models into the study of what used to be thought of as preserves for
linguists and philosophers. In the opposite direction, we can ‘epistemize’ and ‘dy-
namify’ existing logics and algorithms, to get interesting broader theories. Returning
to our Introduction, it should be clear that this is much more than ‘implementation’
in an auxiliary sense, but rather a way of letting fundamental ideas from computer
science play the central academic role that they so clearly deserve.

Despite all these grand perspectives, this paper was written by a logician, as biased—
Heaven knows—as the next person. This may be a good place for a disclaimer. De-
spite the amount of space devoted to dynamic epistemic logic in this paper, we have
used it mainly as a ‘search-light system’ for interesting phenomena, not as the final
word on the structure and flow of information. Indeed, even from the viewpoint of the
NEMO Restaurant, we have still missed crucial aspects of the children’s activities!
The waiter or the card players do not just update with new information, but they also
infer things already at their disposal. But valid conclusions from existing informa-
tion do not change a current DEL information state. To describe this finer dynamics,
another process structure is needed.38 Likewise, our discussion of testing conditions
for algorithms or games suggests that we have left out the dynamics of evaluation
(van Benthem 1996). The logical core tasks of inference and model-checking have
their own dynamics, which goes beyond our framework here. Thus, even the logical
foundations of information and computation remain wide open.39

Finally, what about Computing in Europe? I would like to believe that a broad stance
on any subject matter, reflecting a certain erudition beyond one’s immediate spe-
cialty is a crucial aspect of European culture. The view of computation offered in
this paper qualifies. Also, pursuing theoretical interests without immediate practical
gain seems a well-established European value, even though I admit it may be one
of the old leisure class, rather than one of the hectic yuppies of today. But in this
summer season, it is another image that intrigues me, based on just one passage in
this paper. The undecidability of dynamic epistemic logic with iteration shows how
the most difficult computational problems can be solved in successful conversation.
Thus, what is going on at, say, all those Parisian terraces as I write these lines, on the
last day of the Tour de France, is one gigantic parallel computer. ‘Computing’ usu-
ally evokes an image of boring machines, or even more boring nerds. Wouldn’t it be
great if Computing in Europe were the Art of Conversation in the Old World?

38 This can be done, but no consensus exists. (van Benthem 1996, Chapter 11) dynamifies
Herbrand models for Prolog to model such inferential steps, whereas (Abramsky 2006)
presents a more general universe of abstract information states, where inference or compu-
tation steps do increase information.

39 cf. the forthcoming Handbook of the Philosophy of Information, P. Adriaans & J. van Ben-
them, eds., 2007.

56 Johan van Benthem

Acknowledgement. I would like to thank various audiences that have been exposed
to these ideas, at the ESF Workshop ‘Games and Verification’ in Cambridge 2006,
the ESSLLI Workshop on ‘Knowledge and Rationality’ in Malaga 2006, the Project
‘Games, Action & Social Software’ at NIAS Wassenaar 2006, and two Indian Logic
Conferences held in Kolkata and Mumbai 2007. In particular, I would like to thank
Merlijn Sevenster for helpful comments on complexity and games and Andrea Sorbi
for expert editorial help far beyond the call of duty.

References

[Abramsky 2006] Abramsky S. (2006) Information, Processes, and Games. To appear in
Adriaans P., van Benthem J. (eds.), Handbook of the Philosophy of Information. Elsevier
Science Publishers, Amsterdam

[Abramsky & Coecke 2004] Abramsky S., Coecke B. (2004) A Categorical Semantics of
Quantum Protocols. In Proceedings of the 19th Annual IEEE Symposium on Logic in Com-
puter Science (LiCS ‘04), IEEE Computer Science Press

[Baltag et al. 1998] Baltag A., Moss L., Solecki S. (1998) The Logic of Public Announce-
ments, Common Knowledge and Private Suspicions. In Proceedings TARK 1998, Morgan
Kaufmann Publishers, Los Altos, 43–56

[Baltag & Smets 2004] Baltag A., Smets, S. (2004) The Logic of Quantum Programs. In Pro-
ceedings of the 2nd International Workshop on Quantum Programming Languages, TUCS
General Publication No 33, Turku Center for Computer Science. Extended version: LQP:
The Dynamic Logic of Quantum Information. Oxford Computing Lab & Philosophy, Free
University Brussels

[Baltag & Smets 2006] Baltag A., Smets S. (2006) Dynamic Belief Revision over Multi-
Agent Plausibility Models. In Proceedings LOFT 2006, Department of Computing, Uni-
versity of Liverpool

[van Benthem 1996] van Benthem J. (1996) Exploring Logical Dynamics. CSLI Publications,
Stanford

[van Benthem 1999] van Benthem J. (1999) Logic in Games. Lecture Notes, ILLC Amster-
dam

[van Benthem 2001] van Benthem J. (2001) Games in Dynamic Epistemic Logic. In Bo-
nanno G., van der Hoek W. (eds.) Bulletin of Economic Research, 53:4, 219–248

[van Benthem 2005A] van Benthem J. (2005) An Essay on Sabotage and Obstruction. In
D. Hutter (ed.), Mechanizing Mathematical Reasoning, Essays in Honor of Jörg Siekmann
on the Occasion of his 69th Birthday. Springer, LNCS, 2605:268–276

[van Benthem 2005B] van Benthem J. (2005) Open Problems in Logic and Games. In Arte-
mov S., Barringer H., d’Avila Garcez A., Lamb L., Woods J. (eds.) Essays in Honour of
Dov Gabbay. King’s College Publications, London, 229–264

[van Benthem 2006A] van Benthem J. (2006) Dynamic Logic of Belief Revision. ILLC Tech
Report, DARE electronic archive, University of Amsterdam. To appear in J. Applied Non-
Classical Logics

[van Benthem 2006B] van Benthem J. (2006) Living With Rational Animals. Invited Lecture
at Workshop on Knowledge and Rationality, 18th ESSLLI Summer School, Malaga

[van Benthem 2006C] van Benthem J. (2006) One is a Lonely Number: On the Logic of
Communication. In: Chatzidakis Z., Koepke P., Pohlers W. (eds.) Logic Colloquium ’02.
ASL and A.K. Peters, Wellesley MA, 96–129

Computation as Conversation 57

[van Benthem 2006D] van Benthem J. (2006) Open Problems in Update Logic. In Gabbay
D., Goncharov S., Zakharyashev M. (eds.) Mathematical Problems from Applied Logic I.
Springer, New York, Novosibirsk, 137–192

[van Benthem 2007] Rationalizations and Promises in Games. Bejing Philosphical Review,
Chinese Academy of Social Sciences

[van Benthem et al. 2005] van Benthem J., van Eijck J., Kooi B. (2005) A Logic for Commu-
nication and Change. ILLC & CWI Amsterdam & philosophy department, Groningen. First
version in van der Meijden R. et al. (eds.) Proceedings TARK 2005, Singapore. Extended
version in: Inform. and Comput. 2006

[van Benthem & Blackburn 2006] van Benthem J., Blackburn P. (2006) Modal Logic: A Se-
mantic Perspective. Tech Report, ILLC, Amsterdam. In: Blackburn P., van Benthem J.,
Wolter F. (eds.) Handbook of Modal Logic. Elsevier, Amsterdam, 2007

[van Benthem & Liu 2004] van Benthem J., Liu F. (2004) Diversity of Logical Agents in
Games. Philosophia Scientiae 8:2, 163–178

[van Benthem & Liu 2005] van Benthem J., Liu F. (2005) Dynamic Logic of Preference Up-
grade. ILLC Tech Report, DARE electronic archive, University of Amsterdam. To appear
in: J. Applied Non-Classical Logics

[van Benthem & Pacuit 2006] van Benthem J., Pacuit E. (2006) The Tree of Knowledge in
Action. Tech Report, ILLC Amsterdam. In: Proceedings AiML 2006, Melbourne

[Brafman et al. 1993] Brafman R., Latombe J-C, Shoham Y. (1993) Towards Knowledge-
Level Analysis of Motion Planning. Proceedings AAAI 1993, 670–675

[Condon 1988] Condon A. (1988) Computational Models of Games. PhD Thesis. Computer
Science Department, University of Washington

[Dechesne & Wang 2007] Dechesne F., Wang Y. (2007) Dynamic Epistemic Verification of
Security Protocols. In van Benthem J., Ju S., Veltman F. (eds.) A Meeting of the Minds.
Proceedings LORI, Bejing 2007. College Publications, London, 129–143

[van Ditmarsch 2002] van Ditmarsch H. (2002) Keeping Secrets with Public Communication.
Department of Computer Science. University of Otago

[van Emde Boas 2002] van Emde Boas P. (2002) Models for Games and Complexity. Lecture
Notes. ILLC, Amsterdam

[Fagin et al. 1995] Fagin R., Halpern J., Moses Y., Vardi M. (1995) Reasoning about Knowl-
edge. MIT Press, Cambridge (Mass.)

[Gerbrandy 1999] Gerbrandy J. (1999) Bisimulations on Planet Kripke. Dissertation DS-
1999-01. Institute for Logic, Language and Computation. University of Amsterdam

[Gigerenzer & Todd 1999] Gigerenzer G., Todd P. M., ABC Research Group (1999) Simple
Heuristics That Make Us Smart. Oxford University Press

[Greenlaw et al. 1991] Greenlaw R., Hoover H., Ruzzo W. (1991) A Compendium of Prob-
lems Complete for P. University of Alberta, Computer Science Department, Technical Re-
port 91–11

[Halpern & Vardi 1989] Halpern J., Vardi M. (1989) The Complexity of Reasoning about
Knowledge and Time, I: lower bounds. J. Comput. System Sci., 38:1, 195–237

[Hintikka 1962] Hintikka J. (1962) Knowledge and Belief. Cornell University Press, Ithaca
[Hintikka & Sandu 1997] Hintikka J., Sandu G. (1997) Game-Theoretical Semantics, In van

Benthem J., ter Meulen A. (eds.) Handbook of Logic and Language, Elsevier, Amsterdam,
361–410.

[Kozen et al. 2000] Kozen D., Harel D., Tiuryn J. (2000) Dynamic Logic. MIT Press, Cam-
bridge (Mass.)

[Liu 2006] Liu F. (2006) Diversity of Logical Agents. ILLC Research Report, University of
Amsterdam. Presented at Workshop on Bounded Agents, ESSLLI Malaga 2006

58 Johan van Benthem

[Lutz 2005] Lutz C. (2005) Complexity and Succinctness of Public Announcement Logic.
LTCS Report 05-09, Technical University Dresden

[Marx 2006] Marx M. (2006) Complexity of Modal Logics. To appear in Blackburn P., van
Benthem J., Wolter F. (eds.) Handbook of Modal Logic. Elsevier, Amsterdam

[Miller & Moss 2005] Miller J., Moss L. (2005) The undecidability of iterated modal rela-
tivization. Studia Logica, 79:3, 373–407

[Osborne & Rubinstein 1994] Osborne M., Rubinstein A. (1994) A Course in Game Theory.
MIT Press, Cambridge (Mass.)

[van Otterloo 2005] A Security Analysis of Multi-Agent Protocols. Dissertation. Department
of Computing, University of Liverpool, & ILLC, University of Amsterdam, DS-2005-05

[Papadimitriou 1994] Papadimitriou C. (1994) Computational Complexity. Addison-Wesley
[Parikh 2002] Parikh R. (2002) Social Software. Synthese 132:187–211
[Parikh & Ramanujam 2003] Parikh R., Ramanujam R. (2003) A Knowledge Based Seman-

tics of Messages. CUNY New York & Chennai, India. In van Benthem J., van Rooy R.
(eds.) Special Issue on Information Theories, J. Logic Lang. Inform., 12:4, 453–467

[Plaza 1989] Plaza J. (1989) Logics of Public Announcements. In Proceedings 4th Interna-
tional Symposium on Methodologies for Intelligent Systems

[Pratt 1976] Pratt V. (1976) Semantical Considerations on Floyd-Hoare Logic. In Proceedings
17th Ann. IEEE Symposium on Foundations of Computer Science, 109–121

[Rahman et al. 2004] Rahman S., Gabbay D., Van Bendegem J-P , Symons J. (2004) Logic,
Epistemology, and the Unity of Science, Vol. I. Kluwer, Dordrecht

[Reiter 2001] Reiter R. (2001) Knowledge in Action. MIT Press, Cambridge (Mass.)
[Rohde 2005] Rohde Ph. (2005) On Games and Logics over Dynamically Changing Struc-

tures. Dissertation. Rheinisch-Westfälische Technische Hochschule Aachen
[Sevenster 2006] Sevenster M. (2006) Branches of Imperfect Information: Logic, Games, and

Computation. Dissertation DS-2006-06. ILLC Amsterdam
[Turing 1950] Turing A. M. (1950) Computing machinery and intelligence. Mind 59:433–

460
[Vardi 1997] Vardi M. (1997) Why is Modal Logic So Robustly Decidable?. In Immerman

N., Kolaitis Ph. (eds.) Descriptive Complexity and Finite Models. American Mathematical
Society.

[Yao 1979] Yao A. C. (1979) Some Complexity Questions Related to Distributed Computing.
In Proceedings of the 11th STOC, 209–213

Computation Paradigms in Light of Hilbert’s Tenth
Problem

Yuri Matiyasevich∗

Steklov Institute of Mathematics, St. Petersburg 191023, Russia
yumat@pdmi.ras.ru
http://logic.pdmi.ras.ru/~yumat

Summary. This is a survey of a century-long history of interplay between Hilbert’s tenth
problem (about solvability of Diophantine equations) and different notions and ideas from
Computability Theory. The present paper is an extended version of [83].

1 Statement Of The Problem: Intuitive Notion Of
Algorithm

In the year 1900, the prominent German mathematician D. Hilbert delivered to the
Second International Congress of Mathematicians (held in Paris) his famous lecture
titled Mathematische Probleme [41]. There he put forth 23 (groups of) problems
that were, in his opinion, the most important open problems in mathematics that the
pending 20th century would inherit from the passing 19th century. Problem number
10 was stated as follows:

10. Entscheidung der Lösbarkeit einer diophantischen Gleichung.
Eine diophantische Gleichung mit irgendwelchen Unbekannten und mit

ganzen rationalen Zahlkoefficienten sei vorgelegt: man soll ein Verfahren
angeben, nach welchem sich mittels einer endlichen Anzahl von Operatio-
nen entscheiden läßt, ob die Gleichung in ganzen rationalen Zahlen lösbar
ist. 2

∗ The author is very grateful to Martin Davis and Grant Olney Passmore for their comments
that corrected English and improved the presentation. Support from the Council for Grants
of the President of the Russian Federation under grant NSh-8464.2006.1 is also acknowl-
edged.

2 10. Determination of the Solvability of a Diophantine Equation. Given a Diophantine
equation with any number of unknown quantities and with rational integral numerical co-
efficients: Devise a process according to which it can be determined by a finite number of
operations whether the equation is solvable in rational integers.

60 Yuri Matiyasevich

A Diophantine equation is an equation of the form

P (x1, . . . , xm) = 0 (1)

where P is a polynomial with integer coefficients. Hilbert raised the question about
solving Diophantine equations in “rational integers” that were nothing else but num-
bers 0,±1,±2, . . . , which we will call just integers. In the last section of the paper,
we will investigate a more general version of the problem in which solutions are
allowed to be arbitrary “algebraic integers.”

A method demanded by Hilbert would allow us to recognize also solvability of Dio-
phantine equations in natural numbers 0, 1, 2, . . . , namely, equation (1) has a solu-
tion in natural numbers if and only if equation

P (p2
1 + q21 + r21 + s21, . . . , p

2
m + q2m + r2m + s2m) = 0 (2)

has a solution in arbitrary integers. Without lost of generality in this paper, we will
deal with solving Diophantine equations in natural numbers, and respectively, all
italic lowercase Latin letters will range over 0, 1, 2, . . . (unless otherwise speci-
fied).

Since Diophantus’s time (3rd century A.D.), number-theorists have found solutions
for plenty of Diophantine equations and have proved the unsolvability of a large
number of other equations. However, for different classes of equations, or even for
different individual equations, one had to invent different specific methods. In the
tenth problem, Hilbert asked for a universal method for recognizing the solvability
of Diophantine equations; i.e., in modern terminology, the tenth problem is a decision
problem (the only one among the 23 problems).

Note that Hilbert did not use the word “algorithm” in his statement of the tenth prob-
lem. Instead, he used the rather vague wording “a process according to which it can
be determined by a finite number of operations ...”. Although he could have used
the word “algorithm,” it would not really have helped much to clarify the statement
of the problem because, at that time, there was no rigorous definition of the gen-
eral notion of an algorithm. What existed was a number of examples of particular
mathematical algorithms (such as the celebrated Euclidean algorithm for finding the
greatest common divisor of two integers) and an intuitive conception of an algorithm
in general.

Does this imply that Hilbert’s tenth problem was ill-posed? Not at all. The absence of
a general definition of an algorithm was not in itself an obstacle to finding a positive
solution of Hilbert’s tenth problem. If somebody invented the required “process,” it
would presumably be clear that in fact this process does the job, so an intuitive con-
ception of an algorithm would be sufficient for positive solution of the tenth problem,
which was, most likely, Hilbert’s expectation.

It took 70 years before Hilbert’s tenth problem was solved in the negative sense:
There exists no algorithm (i.e., no Turing Machine, no recursive function, and so

Hilbert’s Tenth Problem 61

on) that would tell for an arbitrary Diophantine equation whether it has a solution.
However, the following question naturally arises: would Hilbert accept this technical
result as a “solution” of his problem? The following citation from Hilbert’s address
[41] suggests that he would be completely satisfied by the work done by logicians
with respect to his tenth problem:

Mitunter kommt es vor, daß wir die Beantwortung unter ungenügen-
den Voraussetzungen oder in unrichtigem Sinne erstreben und infolgedessen
nicht zum Ziele gelangen. Es entsteht dann die Aufgabe, die Unmöglichkeit
der Lösung des Problems unter den gegebenen Voraussetzungen und in
dem verlangten Sinne nachzuweisen. Solche Unmöglichkeitsbeweise wur-
den schon von den Alten geführt, indem sie z. B. zeigten, daß die Hy-
potenuse eines gleichschenkligen rechtwinkligen Dreiecks zur Kathete in
einem irrationalen Verhältnisse steht. In der neueren Mathematik spielt
die Frage nach der Unmöglichkeit gewisser Lösungen eine hervorragende
Rolle, und wir nehmen so gewahr, daß alte schwierige Probleme wie der
Beweis des Parallelenaxioms, die Quadratur des Kreises oder die Auflösung
der Gleichungen 5. Grades durch Wurzelziehen, wenn auch in anderem als
dem ursprünglich gemeinten Sinne, dennoch eine völlig befriedigende und
strenge Lösung gefunden haben.

Diese merkwürdige Tatsache neben anderen philosophischen Gründen
ist es wohl, welche in uns eine Überzeugung entstehen läßt, die jeder Math-
ematiker gewiß teilt, die aber bis jetzt wenigstens niemand durch Beweise
gestützt hat–ich meine die Überzeugung, daß ein jedes bestimmte mathe-
matische Problem einer strengen Erledigung notwendig fähig sein müusse,
sei es, daß es gelingt, die Beantwortung der gestellten Frage zu geben, sei
es, daß die Unmöglichkeit seiner Lösung und damit die Notwendigkeit des
Mißlingens aller Versuche dargetan wird.3

3 Occasionally it happens that we seek the solution under insufficient hypotheses or in an
incorrect sense and, for this reason, do not succeed. The problem then arises: to show
the impossibility of the solution under the given hypotheses or in the sense contemplated.
Such proofs of impossibility were effected by the ancients, for instance, when they showed
that the ratio of the hypotenuse to the side of an isosceles triangle is irrational. In later
mathematics, the question as to the impossibility of certain solutions plays a preeminent
part, and we perceive in this way that old and difficult problems, such as the proof of the
axiom of parallels, the squaring of circle, or the solution of equations of the 5th degree
by radicals have finally found fully satisfactory and rigorous solutions, although in another
sense than that originally intended.

It is probably this important fact along with other philosophical reasons that gives rise to
conviction (which every mathematician shares, but which no one has as yet supported by a
proof) that every definite mathematical problem must necessarily be susceptible of an exact
settlement, either in the form of an actual answer to the question asked or by the proof of
the impossibility of its solution and therewith the necessary failure of all attempts.

62 Yuri Matiyasevich

2 Equations: From Words To Numbers

The research directed toward the negative solution started at the end of the 1940s. At
that time A. A. Markov [72] and E. L. Post [102] established, independently, the un-
decidability of the so-called word problem for semigroups. This problem was stated
by A. Thue [120] in 1914 and is known also as Thue’s problem. This was the first
decision problem that arose naturally in mathematics and was finally shown to be
undecidable.

Both Post and Markov were interested in Hilbert’s tenth problem. Post wrote already
in [101] that Hilbert’s tenth problem “begs for an unsolvability proof.” Markov con-
sidered the following approach to Hilbert’s tenth problem to be plausible. Among
decision problems that deal, like the Thue problem, with words, there is one problem
that looks as though it is very close to Hilbert’s tenth problem, namely, the problem
of decidability of word equations. Solving a word equation in the two-letter alphabet
{α0, α1} (which is essentially the general case) can be reduced easily to solving a
particular Diophantine equation thanks to the following fact: every 2×2 matrix with
natural number entries and determinant equal to zero can be represented in a unique
way as the product of matrices A0 =

(
1 0
1 1

)
and A1 =

(
1 1
0 1

)
, and hence, a word

αi1 . . . αin can be represented by the four entries of the matrix Ai1 . . . Ain .

However, this natural approach did not succeed. The reason for this failure was dis-
covered much later: in 1977 G. S. Makanin [70] found a decision procedure for
word equations. Nevertheless, one could try to revive Markov’s idea by considering
a wider class of word equations. In [74] (for further development, see [85]) I intro-
duced a different way of coding words by numbers based on the Fibonacci numbers.
This encoding allows us to express by Diophantine equations not only the equality
of concatenations of several words but also the equality of the lengths of such con-
catenations. Thus, the undecidability of Hilbert’s tenth problem would immediately
follow from the undecidability of systems of equations in words and their lengths,
but the latter remains an open problem.

3 Davis’s Conjecture: From Algorithms To Sets

M. Davis began to tackle Hilbert’s tenth problem at the end of the 1940s (he was in-
spired by the above-cited phrase from the paper of his teacher, Post). He considered
Diophantine sets that are sets of natural numbers having Diophantine representa-
tions, i.e., definitions of the form

a ∈ M⇐⇒ ∃x1 . . . xm[P (a, x1, . . . , xm) = 0] (3)

where P is again a polynomial with integer coefficients, but now one of its variables
is selected as a parameter. Davis’s aim was to give a characterization of the whole
class of Diophantine sets. Computability theory immediately furnishes a condition

Hilbert’s Tenth Problem 63

that is necessary for a set to be Diophantine: every Diophantine set is, evidently,
effectively enumerable. Davis conjectured ([17, 18]) that this necessary condition is
also sufficient:

Davis’s conjecture. A set of natural numbers is Diophantine if and only if it is effec-
tively enumerable.

Effectively enumerable sets can be defined via the notion of an algorithm, but the
concepts can be defined in reverse order: having given an independent definition
of a effectively enumerable set, one can develop the whole theory of computability
in terms of effectively enumerable sets instead of algorithms; examples of such an
approach can be found in G.S. Tseitin’s paper [122] and P. Martin-Löf’s book [73].
Thus Davis’s conjecture opened a way to base computability theory on the number-
theoretical notion of a Diophantine set.

4 Davis’s Conjecture: First Step To The Proof Via
Arithmetization

Davis made the first step to proving his conjecture by showing in [18] that every
effectively enumerable set M has an almost Diophantine representation:

Theorem (M. Davis). Every effectively enumerable set M has a representation of
the form

a ∈M⇐⇒ ∃z∀y≤z∃x1 . . . xm[P (a, x1, . . . , xm, y, z) = 0] (4)

where P is a polynomial with integer coefficients and ∀y≤z is the bounded universal
quantifier “for all y not greater than z.”

A representation of this type became known as the Davis normal form. To obtain
it, Davis started in [18] with a representation of the set M by an arbitrary arith-
metical formula with any number of bounded universal quantifiers. The existence of
such arithmetical formulas for every effectively enumerable set was demonstrated
by K. Gödel in his classical paper [28]. Because of the bound on the universal quan-
tifiers, each such formula defines an effectively enumerable set and, hence, these
formulas could be used as a foundation for Computability Theory.

5 Original Proof Of Davis: Post’s Normal Forms

According to a footnote in Davis’s paper [18], the idea of obtaining the representation
(4) by combining universal quantifiers from a general arithmetic representation was

64 Yuri Matiyasevich

from the (anonymous) referee of the paper. The original proof of Davis (outlined in
[17] and given with details in [20]) was quite different. Namely, Davis arithmetized
Post normal forms. These forms are a special case of more general canonical forms
introduced by Post in [100] as a possible foundation of computability theory (and
the above-cited book [73] uses just Post canonical forms). In contrast to general
canonical forms, normal forms have rules of the very simple form

Px

xQ
(5)

meaning that if a word has a prefix P , one can cut this prefix and add the suffix Q.
Post proved that, despite the simplicity of such rules, normal forms are as powerful
as general canonical forms; the simplicity of rules (5) allowed Davis to perform the
arithmetization using only one universal quantifier.

6 Davis’s Conjecture Proved: Effectively Enumerable Sets Are
Diophantine

It took two decades before Davis’s conjecture became a theorem (for historical de-
tails see, for example, [80]; for an extensive bibliography on Hilbert’s tenth problem
visit [129]). The following weaker result from M. Davis, H. Putnam, and J. Robinson
[21] was a milestone on the way to the proof of Davis’s conjecture:

DPR-Theorem. For every effectively enumerable set M, there exists a representa-
tion of the form

a ∈M ⇐⇒ ∃x1 . . . xm[E(a, x1, x2, . . . , xm) = 0] (6)

where E is an exponential polynomial, i.e., an expression constructed by combining
the variables and particular integers using the traditional rules of addition, multipli-
cation, and exponentiation.

The final step in the proof of Davis’s conjecture was accomplished in [75], and nowa-
days the corresponding theorem is often called the

DPRM-Theorem. The notion of Diophantine set and the notion of effectively enu-
merable set coincide.

Thus a (seemingly narrow) notion from the Number Theory turned out to be equiva-
lent to the very general notion from the Computability Theory.

Hilbert’s Tenth Problem 65

7 Existential Arithmetization I: Turing Machines

Already the very first proof of the DPRM-theorem given in [75] was constructive
in the sense that as soon as an effectively enumerable set M is presented in any
standard form, it is possible to find a corresponding Diophantine representation (3).
According to this proof this should be done in the following four steps:

1. construction of an arithmetical formula with many bounded universal quantifiers;

2. transformation of this formula into Davis normal form (4);

3. elimination of the single bounded universal quantifier at the cost of passing to
exponential Diophantine equations, thus getting an exponential Diophantine rep-
resentation (6);

4. elimination of the exponentiation.

Now that we know that in fact no universal quantifier is necessary at all, it would
be more natural to try to perform the whole arithmetization by using only purely ex-
istential formulas. From a technical point of view, the success of such an approach
crucially depends on the selection of an appropriate device for representation of ef-
fectively enumerable sets.

For the first time such a purely existential arithmetization was achieved in [77] with
the set M being recognized by a Turing machine; a simplified way of constructing
Diophantine representation by arithmetization of Turing machines is presented in
[80]; yet another construction based on Turing machines is given in [9] (see [10] for
a more easily accessible publication).

8 Existential Arithmetization II: Register Machines

When arithmetizing Turing machines, one first has to introduce a method to represent
the content of the tape of the machine by numbers. In this respect another kind of
abstract computing device, register machines, turned out to be more suitable as a
starting point for constructing Diophantine representations. Register machines were
introduced almost simultaneously by several authors: J. Lambek [65], Z. A. Melzak
[90], M. L. Minsky [91, 92], and J. C. Shepherdson and H. E. Sturgis [109]. Like
Turing machines, register machines have very primitive instructions, but in addition,
they deal directly with numbers rather than with words. This led to a “visual proof”
of the simulation of register machines by Diophantine equations (see [56, 57, 58,
82]).

9 Existential Arithmetization III: Partial Recursive Functions

Another classical tool for the foundations of Computability Theory is the notion of a
partial recursive function. Existential arithmetization of these functions was done in

66 Yuri Matiyasevich

[81] where Diophantine representations are constructed inductively, alongside con-
struction of a partial recursive function from the initial functions. To deal with prim-
itive recursion and the minimization operator, it turned out to be useful to generalize
the notion of partial recursive function: instead of dealing, say, with a one-argument
function f , it was more convenient to work with a function F , defined on arbitrary
n-tuples of natural numbers by

F (〈a1, . . . , an〉) = 〈f(a1), . . . , f(an)〉. (7)

10 Universality In Number Theory: Collapse Of Diophantine
Hierarchy

The DPRM-theorem allows the transfer of several ideas from Computability Theory
to Number Theory. One example of such a transfer is the existence of a universal
Diophantine equation, i.e., an equation

U(a, k, y1, . . . , yM) = 0 (8)

with the following property: for an arbitrary Diophantine equation

P (a, x1, . . . , xm) = 0 (9)

there exists an (effectively computable) number kP such that for arbitrary values
of the parameter a, the equation (9) has a solution in x1, . . . , xm if and only if the
equation

U(a, kP , y1, . . . , yM) = 0 (10)

has a solution in y1, . . . , yM . This implies that the traditional number-theoretical hi-
erarchy of Diophantine equations of degree 1, 2, . . . with 1, 2 , . . . unknowns collapses
at some level. Of course, there is a trade-off between the degree and the number of
unknowns. One can construct a universal Diophantine equation of degree d with m
unknowns, where 〈d, m〉 is any of the following pairs:

〈4, 58〉, 〈8, 38〉, 〈12, 32〉, 〈16, 29〉, 〈20, 28〉, 〈24, 26〉, 〈28, 25〉, 〈36, 24〉,

〈96, 21〉, 〈2668, 19〉, 〈2× 105, 14〉, 〈6.6× 1043, 13〉, 〈1.3× 1044, 12〉, (11)

〈4.6× 1044, 11〉, 〈8.6× 1044, 10〉, 〈1.6× 1045, 9〉

(the (easy) best bound d = 4 of degree is from T. Skolem [117]; the best bound
m = 9 of the number of unknowns (non-negative) from the author of [78] is presented
with details by Jones in [51] where also all the “intermediate” pairs (11) are given;
the bound m = 11 in the case of integer solutions is announced by Zh.-W. Sun in
[119]).

As positive results we can mention only the (trivial) decidability of Diophan-
tine equations in one unknown and the decidablity of equations of degree two

Hilbert’s Tenth Problem 67

([33, 34, 114]), so the gap between decidable and undecidable is large. For expo-
nential Diophantine equations, the situation is much better: already three unknowns
are sufficient for undecidability ([79]); moreover, one can confine exponentiation to
the special unary case 2x ([55], see also [80, Sect. 8.2]). This restriction is of interest
because H. Levitz [66] gave a decision procedure for such unary (base-2) exponen-
tial Diophantine equations in one unknown, and so only the case of two unknowns
remains open.

Although the existence of a universal Diophantine equation immediately follows
from the DPRM-theorem and the existence of, say, a universal Turing machine, the
very idea of the existence of such a universal object in the theory of Diophantine
equations seemed quite implausible not only to number-theorists, but to some logi-
cians (see [62]).

The existence of a universal Diophantine equation is an example of a result that is
number-theoretical in its statement, but that was originally proved by tools from
Computability Theory; today such an equation (8) can be constructed by purely
number-theoretical methods (see [80, Ch. 4]).

It is interesting to note the following difference between universal Diophantine equa-
tions and, say, universal Turing machines. The latter typically have a very peculiar
construction, whereas a universal Diophantine equation can have a regular structure.
As soon as we know the mere existence of a universal Diophantine equation of de-
gree d with m unknowns (any pair from equation (11) would suit), we can treat the
equation ∑

i0+···+im≤d

(ki0,...,im − k)ai0yi1
1 . . . yim

m = 0

as universal by agreeing to index Diophantine equations not by a single number as in
equation (10) but by the tuple consisting of all the k’s. If indexing by a single number
is desired, one can combine all these k’s into a single index by using any polynomial
assuming each of its values at most once; for example, the following equation is
universal in the sense of equations (8)–(10):

⎛

⎝
∑

i0+···+im≤d

(zi0,...,im − z)ai0yi1
1 . . . yim

m

⎞

⎠

2

+

⎛

⎝k −
∑

i0+···+im≤d

zi0,...,im

(
z +

∑

i0+···+im≤d

zi0,...,im

)i0(d+1)0+···+im(d+1)m

⎞

⎠

2

= 0

The idea of such a transparent universal Diophantine equation was stated by
N. K. Kossovskii in [61].

68 Yuri Matiyasevich

11 Growth Of Solutions: Speeding Up Diophantine Equations

Another example of a transfer of ideas from Computability Theory to Number The-
ory is as follows. M. Davis [19] used the DPRM-theorem to get for Diophantine
equations an analog of a speed-up theorem of M. Blum [8]. Namely, for every to-
tal computable function α(a, x), one can construct two one-parameter Diophantine
equations

P1(a, x1, . . . , xk) = 0, P2(a, x1, . . . , xk) = 0 (12)

such that

(i) for every value of the parameter a, exactly one of these two equations has a
solution;

(ii) if Diophantine equations

Q1(a, y1, . . . , yl) = 0, Q2(a, y1, . . . , yl) = 0 (13)

are solvable for the same values of the parameter a as, respectively, equations
(12), then one can construct a third pair of Diophantine equations

R1(a, z1, . . . , zm) = 0, R2(a, z1, . . . , zm) = 0 (14)

such that

– these equations are again solvable for the same values of the parameter a as,
respectively, equations (12);

– for all sufficiently large values of the parameter a for every solution y1, . . . , yl

of one of the equations (13), there exists a solution z1, . . . , zm of the corre-
sponding equation (14) such that

y1 + · · ·+ yl > α(a, z1 + · · ·+ zm) (15)

This formulation of a Diophantine speed-up theorem was given in terms of an ar-
bitrary total function for the sake of the greatest generality; by substituting for
α any particular (fast growing) total computable function, one would obtain a
purely number-theoretic result that, however, has never been imagined by number-
theorists.

12 Diophantine Machines: Capturing Nondeterminism

The DPRM-theorem allows one to treat Diophantine equations as computing devices.
This was done in a picturesque way by L. Adleman and K. Manders in [1]. Namely,
they introduced the notion of Non-Deterministic Diophantine Machine, NDDM for
short.

Hilbert’s Tenth Problem 69

A NDDM is specified by a parametric Diophantine equation (9) and works as fol-
lows: on input a, it guesses the numbers x1, . . . , xm and then checks (9); if the equal-
ity holds, then a is accepted.

NDDM

P (a, x1, . . . , xm) ?= 0 ��

� � �

input

a

guess

x1, . . . , xm

YES NO

accept a reject

The DPRM-theorem is exactly the statement that NDDMs are as powerful as, say,
Turing machines; i.e., every set acceptable by a Turing machine is accepted by some
NDDM and, of course, vice versa.

The idea behind the introduction of a new computing device was as follows: in
NDDM we have full separation of guessing and deterministic computation, and the
latter is very simple—just the calculation of the value of a polynomial.

13 Unambiguity: Equations With Unique Solution

NDDMs are essentially nondeterministic computing devices. For such devices, non-
determinism is sometimes fictitious in the sense that at most one path can lead to
accepting; if this is so, one speaks about unambiguous computations. The corre-
sponding property for (exponential) Diophantine representations was called single-
foldness: a representation (3) or (6) is called a single-fold representation if for any
given value of the parameter a, there exists at most one choice of the unknowns
x1, . . . , xm.

The existence of single-fold exponential Diophantine representations for every effec-
tively enumerable set was established in [76] and later was improved to the existence
of single-fold exponential Diophantine representations with only three existential
variables (see [54, 80]).

The existence of single-fold (or even weaker finite-fold) Diophantine representations
is a major open problem; the positive answer would shed light on some difficulties

70 Yuri Matiyasevich

met in Number Theory in connection with effectivization of some results about Dio-
phantine equations (for more details, see, for example, [76, 80]).

Single-fold exponential Diophantine representations have found applications in de-
scriptive complexity (see Section 17 below).

14 Diophantine Complexity: D vs. NP

Although the DPRM-theorem implies that NDDMs are as powerful as any other
abstract computational device, the intriguing crucial question remains open: how
efficient are the NDDMs? Adleman and Manders conjectured that in fact NDDMs
are as efficient as Turing machines.

For the latter there are two natural complexity measures: TIME and SPACE. For
NDDMs there is only one natural complexity measure that plays the role of both
TIME and SPACE. This measure is SIZE, which is the size (in bits) of the smallest
solution of the equation (it is not essential whether we define this solution as the one
with the smallest possible value of max{x1, . . . , xm}, or of x1 + · · ·+ xm).

Adleman and Manders obtained in [1, 71] the first results comparing the efficiency
of NDDMs and Turing machines by estimating the SIZE of a NDDM simulating a
Turing machine with TIME in special ranges.

Imposing bounds on the SIZE, we can define a corresponding complexity class. It
was shown by A. K. Vinogradov and N. K. Kossovskii [125] that in this way one can
define all Grzegorczyk classes starting from E3. Of course, the lower classes are of
greater interest, and what is typical, they turned out to be more difficult.

Adleman and Manders [1, 71] also introduced the class D consisting of all sets M
having representations of the form

a ∈ M ⇐⇒ ∃x1 . . . xm

[
P (a, x1, . . . , xm) = 0 & |x1|+ · · ·+ |xm| ≤ |a|k

]

where |a| denotes, as usual, the (binary) length of a. It is easy to see that D ⊆
NP and the class D is known (see [71]) to contain NP-complete problems, but
otherwise the class D is little understood. Adleman and Manders asked whether
in fact D = NP. Recently Ch. Pollett [98] showed that this is so provided that
D ⊆ co-NLOGTIME and indicated several other ways to tackle the D = NP
question.

R. Venkatesan and S. Rajagopalan [124] considered the Randomized Diophantine
Problem and proved that it is average-case complete; unfortunately, their proof is
conditional, and their assumption (on the existence of a Diophantine equation with a
special property) is equivalent to D = NP.

H. Lipmaa [68] introduced PD, the “deterministic part” of the class D, and used
Diophantine equations for secure information exchange protocols.

Hilbert’s Tenth Problem 71

Arithmetical definitions of the class NP via an analog of the Davis normal form
(4) were given by B. R. Hodgson and C. F. Kent [42, 60] and by S. Yukna [127,
128].

15 Algorithms For Algorithms: Undecidable Properties Of
Programs

Algorithms are implemented in the form of programs. Recognizing the equivalence
of two programs and simplification of programs are important for practice. Of course,
in a general setting, these problems are undecidable, and Hilbert’s tenth problem
shows that they are so even if we restrict ourselves to programs of a very simple
structure. In fact, the following two programs with input values x1,...,xm are
equivalent (and the latter is the simplest program equivalent to the former) if and
only if the corresponding Diophantine equation has no solution:

if P(x1,...,xm)=0 print(0)
then print(1)
else print(0)

This easy fact was remarked by T. Kasami and N. Tokura [59] with the emphasis that
these programs do not contain loops.

However, one of these two programs contains a control structure, if ... then
... else. O. H. Ibarra and B. S. Leininger [44, 45, 46] showed that as soon as
we replace multiplication by integer division, it will be possible to get rid of control
structures and they obtained numerous undecidability results about straight-line pro-
grams, even having small numbers of input and local variables. Some of these results
were quantitively improved by D. Shiryaev [110]; namely, he reduced the number of
variables required for undecidability. It is interesting to note that for this reduction he
used not the mere undecidability of Diophantine equations with a small number of
unknowns but an intermediate technical result from the paper [86] where the number
of unknowns in undecidable Diophantine equations was reduced only to 13.

Other undecidable properties of programs were established with the use of the unde-
cidability of Hilbert’s tenth problem in [7, 35, 38, 40, 47, 104, 126].

16 Parallel Computations: Calculation Of A Polynomial On A
Petri Net

Petri nets and systems of vector addition were introduced as tools for describing
parallel computations. A system of vector addition S consists of a finite set of vectors

72 Yuri Matiyasevich

V1, . . . , Vk of equal size; the components of these vectors are integers. From a given
vector A of the same size with natural number components, one is allowed to go
in one step to any vector A + Vi provided that all components of this sum are also
natural numbers. Repeating such transitions many times, we obtain the set RS(A)
of all vectors reachable from A in the system S.

The containment problem is to decide, given two systems of vector addition S1 and
S2 and an initial vectorA, whetherRS1(A) ⊆ RS2(A); similarly, in the equivalence
problem, one is interested to know whetherRS1(A) = RS2(A).

M. Rabin (unpublished) used the undecidability of (exponential) Diophantine equa-
tions to prove that the containment problem for systems of vector addition (and hence
also for Petri nets, because the latter easily simulate systems of vector addition) is
undecidable (see papers of M. Hack [37] and T. Araki and T. Kasami [3] where also
a stronger result, the undecidability of the equivalence problem for systems of vec-
tor addition, was obtained; for other presentations of these results, see [80, Section
10.2], [106]).

The crucial point in proving these results was a definition (introduced by Rabin) of a
calculation of the values of a function F (x1, . . . , xm) by a system of vector addition.
Namely, a system S is said to calculate this function if F (x1, . . . , xm) is the largest
value of the m+ 1st component of vectors reachable in this system from the vector
〈x1, . . . , xk, 0, . . . , 0〉. Rabin showed that all polynomials with non-negative integer
coefficients are computable in this sense by systems of vector addition. Given an
equation (1), we can find polynomials P1(x1, . . . , xm) and P2(x1, . . . , xm) with
non-negative integer coefficients such that

P 2(x1, . . . , xm) = P2(x1, . . . , xm)− P1(x1, . . . , xm). (16)

Now the equation (1) has no solution in natural numbers if and only if

P1(x1, . . . , xm) + 1 ≤ P2(x1, . . . , xm)

for all values of x1, . . . , xm. Using vector addition, calculating in Rabin’s sense poly-
nomials P1(x1, . . . , xm) + 1 and P2(x1, . . . , xm), one can reduce Hilbert’s tenth
problem to the containment problem for systems of vector addition; the equivalence
problem for such systems requires a more subtle construction.

E. W. Mayr and A. R. Meyer [87] showed that the finite containment and equivalence
problems for Petri nets, being decidable, have complexity that cannot be bounded
by any primitive recursive function. These results were improved by R. R. Howell,
L. E. Rosier, D. T. Huynh, and H.-Ch. Yen in [43].

17 A Step Above Hilbert’s Tenth Problem: Computational Chaos
In Number Theory And Game Theory

Diophantine equations are undecidable. However, every Diophantine set is effec-
tively enumerable, and hence, its descriptive complexity is the least possible: for

Hilbert’s Tenth Problem 73

every polynomial P , the initial segment of the set M from (3), i.e., the intersection
of the set M with the set

{a | a ≤ N} (17)

can be coded by O(log(N)) bits only (it is sufficient to know the cardinality of
this intersection in order to effectively compute the intersection itself). However,
we can reach the maximal descriptive complexity by considering questions that are
only slightly more complicated than those from Hilbert’s tenth problem. G. Chaitin
[14] constructed a one-parameter exponential Diophantine equation such that the
set

{a | ∃∞x1 . . . xm[E(a, x1, x2, . . . , xm) = 0]} (18)

requires N bits (up to an additive constant) for prefix-free coding of its intersection
with the set (17); here ∃∞ means the existence of infinitely many solutions of the
equation. Informally, one can say that the set (18) is completely chaotic.

More recently T. Ord and T. D. Kieu [93] constructed another exponential Diophan-
tine equation that for every value of a has only finitely many solutions, but the parity
of the number of solutions again has completely chaotic behavior in the sense of
descriptive complexity.

The proofs by Chaitin and Ord and Kieu looked like clever but ad hoc tricks. I [84]
made the following generalization: instead of asking whether the number of solutions
is finite/infinite or even/odd, one can ask whether the number of solutions belongs
to any fixed decidable infinite set with infinite complement (with respect to the set
{0, 1, 2, . . . ,∞}).

All these results were obtained for exponential Diophantine equations because they
are based on the existence of single-fold exponential Diophantine representations;
the existence of similar chaos among genuine Diophantine equations is a major open
question.

K. Prasad [103] translated Chaitin’s result from the question about the infinitude of
the number of solutions of an exponential Diopohantine equation to the question
of the infinitude of the number of Nash equilibria in multi-person, noncooperative
games.

18 Unification: It Is Hard To Make Things Equal

Most systems of automatic reasoning are based on algorithms of unification (for
details, see, for example, [4, 115]). Hilbert’s tenth problem itself can be stated as
a unification problem: Given two polynomials P (x1, . . . , xm) and Q(x1, . . . , xm),
can we make them equal by substituting particular natural numbers for the free vari-
ables x1, . . . , xm? Although in the most general settings the unification problem
is undecidable, in applications one usually deals with restricted classes of pairs of

74 Yuri Matiyasevich

terms to be unified. For example, J. A. Robinson [108] presented a unification algo-
rithm for the first-order predicate calculus. Hilbert’s tenth problem was first used in
a new proof of the undecidability of third-order unification given by L. D. Baxter [6]
and then for establishing the undecidability of second-order unification done by W.
D. Golfarb [29].

The difficulty in using Hilbert’s tenth problem for obtaining the undecidability of
unification in logical calculi can be explained as follows: in such calculi we have
to deal with variables (for individual objects, functions, and predicates) in a formal
way, that is without giving any interpretation for them, in particular, we can say
directly neither that individual variables range over integers nor that particular func-
tional symbols denote addition and multiplication. A natural number n can be easily
represented by the term

Tn = F (F (. . . F
︸ ︷︷ ︸

n times

(x) . . .)) (19)

addition n+m corresponds now to substitution of Tm for x in Tn but defining mul-
tiplication requires some trick possible with second-order variables but is impossible
in the first-order case.

For other undecidability results about unification obtained from the undecidability of
Hilbert’s tenth problem, see [5, 11, 12, 22, 26, 69, 121].

19 Simple Set: Diophantine Games Are Difficult

J. Jones [49], based on ideas of M. Rabin [105], introduced Diophantine games.
Suppose that two players, Peter and Ursula, select the values, respectively, of the
parameters a1, . . . , am and of the unknowns x1, . . . , xm in the Diophantine equa-
tion

P (a1, . . . , am, x1, . . . , xm) = 0 (20)

and they do this in turn in the following order: a1, x1, . . . , am, xm. Trivially, the un-
decidability of Hilbert’s tenth problem implies the impossibility to determine, given
a polynomial P , which of the players has a winning strategy. More interesting, even
if we know that Ursula has a winning strategy, this strategy may turn out not to be
effectively computable. For proving this, the mere undecidability of Hilbert’s tenth
problem is not sufficient, one needs the full power of the DPRM-theorem in order
to construct a Diophantine representation for simple sets, the existence of which was
established by Post [101].

It is somewhat surprising that despite the need to use such nontrivial objects as simple
sets, a Diophantine game with uncomputable strategy for Ursula can be defined by
a relatively compact polynomial. Jones [50] showed that this is so for the following
game:

Hilbert’s Tenth Problem 75
{
{a1 + a6 + 1− x4}2 ·

{〈
(a6 + a7)2 + 3a7 + a6 − 2x4

〉2

+
〈[

(x9 − a7)2 + (x10 − a9)2
][

(x9 − a6)2 + (x10 − a8)2((x4 − a1)2

+ (x10 − a9 − x1)2)
][

(x9 − 3x4)2 + (x10 − a8 − a9)2
][

(x9 − 3x4 − 1)2

+ (x10 − a8a9)2
]
− a12 − 1

〉2

+
〈
[x10 + a12 + a12x9a4 − a3]2

+ [x5 + a13 − x9a4]2
〉}
− x13 − 1

}
{a1 + x5 + 1− a5}

{
〈
(x5 − x6)2

+ 3x6 + x5 − 2a5

〉2 +
〈[

(a10 − x6)2 + (a11 − x8)2
][

(a10 − x5)2

+ (a11 − x7)2((a5 − a1)2 + (a11 − x8 − a2)2)
][

(a10 − 3a5)2

+ (a11 − x7 − x8)2
][

(a10 − 3a5 − 1)2 + (a11 − x7x8)2
]
− x11 − 1

〉2

+
〈
[a11 + x11 + x11a10x3 − x2]2 + [a11 + x12 − a10x3]2

〉}
= 0

More results about undecidability and complexity of Diophantine games can be
found in [52, 53, 123].

Another kind of game was introduced by A. H. Lachlan [64] as a possible tool to
establish results about the lattice of effectively enumerable sets. He conjectured that
for these games it can be decided which of the two players has the winning strategy.
He obtained partial results in this direction, but recently M. Kummer [63] proved
many results about the undecidability of Lachlan’s games using the undecidability
of Hilbert’s tenth problem.

K. Prasad [103] proved for “traditional,” multiperson, noncooperative games with
polynomial payoff functions that there is no algorithm to decide whether a game
has a Nash equilibrium in pure strategies; for a similar result for mixed strategies,
one would need single-fold representations (for a definition, see Sect. 13), and thus
currently, undecidability is established only for the case when the payoff functions
are exponential polynomials (for a definition, see Sect. 6).

20 Continuous Variables: Limitations Of Computer Algebra

General systems of computer algebra, such as MATHEMATICA and MAPLE, are ori-
ented for dealing with formulas with variables ranging over continuous domains like
real or complex numbers. Nevertheless, the undecidability of Hilbert’s tenth problem
put a lot of restrictions on what computer algebra systems can do. Here is just one
example from the work of J. Denef and L. Lipshitz [24].

76 Yuri Matiyasevich

Consider the partial differential equation

(1 − t1) · · · (1− tm)P
(
t1

∂

∂t1
, . . . , tm

∂

∂tm

)
Y (t1, . . . , tm) = 1 (21)

where P is a polynomial with integer coefficients. It is easy to verify that if it has a
power series solution

Y (t1, . . . , tm) =
∑

x1,...,xm

cx1,...,xmt
x1
1 . . . txm

m (22)

then
cx1,...,xmP (x1, . . . , xm) = 1 (23)

Thus the differential equation (21) has a solution if and only if the Diophantine equa-
tion

P (x1, . . . , xm) = 0 (24)

has no solution, and hence, no computer algebra system can tell, given a polynomial
P , whether the differential equation (21) has a solution.

More examples of the use of (exponential) Diophantine equations for establishing
undecidability results in continuous domains can be found in [2, 13, 16, 25, 32, 94,
107, 116, 118] (see also [80, Ch. 9]).

21 DNA Recombination And Metabolism: Models Of
Computation Motivated By Biology

Many models of computations are nowadays suggested by biology. Although biol-
ogists are interested in knowing how adequate to nature such models are, computer
scientists are interested in establishing first of all that a new model of computations
is as powerful as are conventional models. The DPRM-theorem turned out to be a
convenient tool for proving the universality of several biologically motivated models
of computations.

The splicing operation was introduced by T. Head [39] as formalization of the
recombination of DNA molecules. A splicing rule is defined by a quadruple of
words 〈U1, U2, U3, U4〉, and it allows transformation of a pair of words of the form
〈x1U1U2x2, y1U3U4y2〉 into the pair 〈x1U1U4x2, y1U3U2y2〉 (for a more motivated,
detailed, and picturesque description of splicing, see Sect. 11 of Gh. Paun’s paper
[95] in this volume). Splicing rules by themselves can generate only regular lan-
guages; however, with some additional controls, they are as powerful as, say, Turing
machines, and P. Frisco [27] used the power of Diophantine equations in a (new)
proof of this fact.

Hilbert’s Tenth Problem 77

Membrane computing, motivated by metabolism in living cells, was introduced by
Paun in 1998 (see Sect. 14 in his paper [95] in this volume). Á. R. Jiménez and
M. J. P. Jiménez [48] and C. Li., Z. Dang, O. H. Ibarra, and H.-Ch. Yen [67] used the
DPRM-theorem in order to establish the computational power of different versions
of membrane computing.

22 Other Kinds Of Impossibilities: Non-Algorithmical
Corollaries Of Algorithmical Results

Most of the examples given above of applications of the DPRM-theorem were of
an algorithmic nature: either one proves undecidability of some decision problem or
one establishes the universality of some device. There are a number of cases where
the undecidability of Hilbert’s tenth problem was used to prove the impossibility of
something essentially different from the existence of an algorithm. To obtain such
corollaries one could contrast Hilbert’s tenth problem with some problem known to
be decidable, and analyze what is the obstacle for reducing Hilbert’s tenth problem
to this other problem.

For example, R. L. Goodstein and R. D. Lee proved in [31] the decidability of the
existence of solutions of equations constructed in terms of the operations

x+ y, x× y, 1
.
− x, x

.
− 1 (25)

and in [30], Goodstein deduced from this that the binary subtraction x
.
− y cannot

be expressed as a composition of operations (25).

Similarly, E. M. Gurari and E. M. Ibarra [36] established the decidability of a special
class of counter machines and deduced from this and the undecidability of Hilbert’s
tenth problem that the language {ui

1u
j
2u

k
3 |k = ij} cannot be recognized by any

machine from this class.

Having established the undecidability of the equivalence problem for straight-line
programs with many inputs and the decidability of this problem for straight-line
programs with a single input and a restricted set of operations, Ibarra and Leininger
[44] concluded that no straight-line program with one input using only operations
from this set computes a map from natural numbers onto the set of all pairs of natural
numbers.

23 Future Research: Back To Diophantus

Most of Hilbert’s 23 problems are in fact groups of related problems. The tenth prob-
lem is, however, stated as a single question. We saw in Section 1 that the method
for recognizing solvability of Diophantine equations in “rational integers” asked by

78 Yuri Matiyasevich

Hilbert explicitly would give us also a method for recognizing solvability of Dio-
phantine equations in natural numbers. Recognizing the solvability of Diophantine
equations in different rings of algebraic integers can also be reduced to Hilbert’s
tenth problem, so implicitly Hilbert asked for many algorithms. But now we know
that there is no algorithm in the case of integer solutions; however, this fact has no
immediate corollaries for other rings because reductions in the other direction are
not obvious.

J. Denef [23] (see also [80, Sect. 7.3]) showed that solving a Diophantine equation
in integers can be reduced to solving another Diophantine equation in Gaussian in-
tegers, that is, numbers of the form a + bi where i =

√
−1 and a and b are real

integers. More precisely, he proved that rational integers have a Diophantine defini-
tion in the ring of Gaussian integers, namely, he constructed a particular Diophantine
equation

P (χ0, χ1, . . . , χm) = 0 (26)

such that

• in every solution of the equation (26) in Gaussian integers χ0, χ1, . . . , χm the
value of χ0 is a rational integer;

• for every rational integer χ0 there exist values of χ1, . . . , χm that together with
this value χ0 produce a solution of the equation (26).

Of course, this reduction gave also a counterpart of the DPRM-theorem for the ring
of Gaussian numbers. If one is interested only in the undecidability of Diophantine
equations in some ring, it would be sufficient to construct a Diophantine model of
integers in this ring.

The result of Denef was extended by different authors to other classes of rings of al-
gebraic numbers (see surveys [96, 111] or the recent book [113] of A. Shlapentokh),
and this did not require any new ideas or methods from Computability Theory. Sur-
prisingly, the general case of a ring of algebraic numbers from finite extension of
rational numbers still remains open, and probably there are deep number-theoretical
obstacles for this. In particular, B. Mazur [88, 89] (for further development, see
[15, 99, 112, 113]) put forward a number of conjectures that imply the impossi-
bility of constructing a Diophantine model of integers in some rings, so solving the
analog of Hilbert’s tenth problem for such rings might require new algorithmical
ideas.

One of these “bad” rings would be (according to Mazur’s conjectures) the ring of all
rational numbers. In fact, Diophantus himself was solving equations neither in inte-
gers nor in natural numbers but in (positive) rational numbers. It is easy to reduce
solvability of Diophantine equations in rational numbers to solvabilty of Diophan-
tine equations in rational integers so a positive solution of the tenth problem would
also have given a method for solving Diophantine equations in rational numbers.
There is a somewhat less evident way to reduce the solvability of Diophantine equa-
tions in rational numbers to the solvabilty of homogeneous Diophantine equations in

Hilbert’s Tenth Problem 79

rational integers, and vice versa (see, for example, [80, Sect. 7.4]). These equations
have many nice properties, and perhaps for this particular subclass of Diophantine
equations, there is a “process” such as Hilbert had asked for in the case of general
Diophantine equations. This is one of the most important open problems closely
related to Hilbert’s tenth problem. Progress in this direction has been modest. The
difficulty might be explained by the fact that conventional proofs of the undecidabil-
ity of Hilbert’s tenth problem heavily use divisibility properties of integers that are
trivial for rational numbers. A possible way (incompatible with Mazur’s conjectures)
to overcome this obstacle is suggested by Th. Pheidas [97].

References

1. Adleman L., Manders K.: Diophantine complexity. In: 17th Annual Symposium on
Foundations of Computer Science, 81–88 (1976)

2. Adler A.: Some recursively unsolvable problems in analysis. Proceedings of the Amer-
ican Mathematical Society, 22(2):523–526 (1969)

3. Araki, T., Kasami, T.: Some undecidable problems for Petri nets. Systems-Computers-
Controls, 7(1):20–28 (1976); Japanese original: Denshi Tsushin Gakkai Ronbunshi,
59D:25–32 (1976)

4. Baader, F., Siekmann, J. H.: Unification theory. In: Handbook of Logic in Artificial
Intelligence and Logic Programming, Vol. 2, 41–125, Oxford Univ. Press, New York
(1994)

5. Baaz, M.: Note on the existence of most general semi-unifier. Arithmetic, Proof Theory,
and Computational Complexity (Prague, 1991), 20–29, Oxford Logic Guides, Vol. 23,
Oxford Univ. Press, New York (1993)

6. Baxter, L. D.: The undecidability of the third order dyadic unification problem. Infor-
mation and Control, 38(2):170–178 (1978)

7. Bezem, M., Keuzenkamp, J., Undecidable goals for completed acyclic programs. New
Generation Comp. 12:209–213 (1994)

8. Blum M.: A machine-independent theory of the complexity of recursive functions. Jour-
nal of the ACM, 14(2):322–336 (1967)

9. Boas, P. van E.: Dominos are forever. In: Priese, L. (ed) Report on the 1st GTI-work-
shop, Reihe Theoretische Informatik, Universität-Gesamthochschule Paderborn, 75–95
(1983)

10. Boas, P. van E.: The convenience of tillings. Lect. Notes Pure Appl. Math. 187:331–363
(1997)

11. Bockmayr, A.: A note on a canonical theory with undecidable unification and matching
problem. Journal of Automated Reasoning, 3(4):379–381 (1987)

12. Burke, E. K.: The undecidability of the unification problem for nilpotent groups of class
� 5. J. London Math. Soc. (2). 48:52–58 (1993)

13. Caviness B. F.: On canonical forms and simplification. Journal of the ACM, 17(2):385–
396 (1970)

14. Chaitin G.: Algorithmic Information Theory. Cambridge University Press, Cambridge,
England (1987)

15. Cornelissen, G., Zahidi, K.: Topology of Diophantine sets: remarks on Mazur’s conjec-
tures. Contemp. Math., 270:253–260 (2000)

80 Yuri Matiyasevich

16. Da Costa, N. C. A., Doria, F. A.: Undecidability and incompleteness in classical mechan-
ics. Int. J. Theor. Physics, 30(8):1041–1073 (1991)

17. Davis M.: Arithmetical problems and recursively enumerable predicates (abstract).
J. Symbolic Logic, 15(1):77–78 (1950)

18. Davis M.: Arithmetical problems and recursively enumerable predicates. J. Symbolic
Logic, 18(1):33–41 (1953)

19. Davis M.: Speed-up theorems and Diophantine equations. In Rustin R. (ed.) Courant
Computer Science Symposium 7: Computational Complexity, 87–95. Algorithmics
Press, New York (1973)

20. Davis M.: Computability and Unsolvability. Dover Publications, New York (1982)
21. Davis, M., Putnam, H., Robinson, J.: The decision problem for exponential Diophantine

equations. Ann. Math. (2), 74:425–436 (1961). Reprinted in Feferman, S. (ed.) The
collected works of Julia Robinson, Collected Works, 6, American Mathematical Society,
Providence, RI (1996)

22. Degtyarev, A., Voronkov, A.: Simultaneous rigid E-unification is undecidable. Lecture
Notes in Computer Science, 1092:178–190 (1996)

23. Denef, J.: Hilbert’s Tenth Problem for quadratic rings. Proc. Amer. Math. Soc.,
48(1):214–220 (1975)

24. Denef, J., Lipshitz, L.: Power series solutions of algebraic differential equations. Math-
ematische Annalen, 267(2):213–238 (1984)

25. Denef, J., Lipshitz, L.: Decision problems for differential equations. J. Symbolic Logic,
54(3):941–950 (1989)

26. Farmer, W. M.: Simple second-order languages for which unification is undecidable.
Theoretical Computer Sci., 87:25–41 (1991)

27. Frisco, P.: Diophantine equations and splicing: a new demonstration of the generative
capacity of H systems. Lect. Notes Computer Science, 2054:43–52 (2001)

28. Gödel, K.: Über formal unentscheidbare Sätze der Principia Mathematica und ver-
wandter Systeme. I. Monatsh. Math. und Phys. 38(1):173–198 (1931)

29. Goldfarb, W., D.: The undecidability of the second-order unification problem. Theoret-
ical Computer Science, 13(2):225–230 (1981)

30. Goodstein, R. L.: Hilbert’s tenth problem and the independence of recursive difference.
J. London Math. Soc. (Second Series), 10(2):175–176 (1975)

31. Goodstein, R. L., Lee, R. D.: A decidable class of equations in recursive arithmetic.
Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 12:235–239
(1966)

32. Grigor’ev, D. Yu., Singer, M. F.: Solving ordinary differential equations in terms of series
with real exponents. Trans. Amer. Math. Soc., 327(1):329–351 (1991)

33. Grunewald, F., Segal, D.: How to solve a quadratic equation in integers. Math. Proc.
Cambridge Philos. Soc., 89(1):1–5 (1981)

34. Grunewald, F., Segal, D.: On the integer solutions of quadratic equations. Journal of the
Reine Angew. Math., 569:13–45 (2004)

35. Gurari E. M.: Decidable problems for powerful programs. J. ACM, 32(2):466–483,
(1985)

36. Gurari, E. M., Ibarra, O. H., Two-way counter machines and Diophantine equations,
J. ACM, 29(3):863–873 (1982)

37. Hack, M.: The equality problem for vector addition systems is undecidable. Theoretical
Computer Science, 2(1):77–95 (1976)

38. Harel, D., Pnueli, A., Stavi, J.: Propositional dynamic logic of nonregular programs.
Journal Computer and System Sciences, 26(2):222–243 (1983)

Hilbert’s Tenth Problem 81

39. Head, T.: Formal language theory and DNA: An analysis of the generative capacity of
specific recombinant behavior. Bull. Math. Biology, 49 (1987)

40. Hickey, T., Mudambi, S.: Global compilation of Prolog. J. Logic Programming, 7:193–
230 (1989)

41. Hilbert, D.: Mathematische Probleme. Vortrag, gehalten auf dem internationalen Math-
ematiker Kongress zu Paris 1900. Nachr. K. Ges. Wiss., Göttingen, Math.-Phys.Kl.
253-297 (1900). See also Hilbert, D.: Gesammelte Abhandlungen, Springer, Berlin 3
(1935) (Reprinted: Chelsea, New York (1965)). English translation: Bull. Amer. Math.
Soc., 8:437–479 (1901-1902); reprinted in: Browder (ed.) Mathematical Developments
arising from Hilbert Problems, Proceedings of Symposia in Pure Mathematics 28, Ame-
rican Mathematical Society, 1–34 (1976)

42. Hodgson, B. R., Kent, C. F.: A normal form for arithmetical representation of NP -sets.
J. Computer System Sci., 27(3):378–388 (1983)

43. Howell, R. R., Rosier, L. E., Huynh, D. T., Yen H.-Ch.: Some complexity bounds for
problems concerning finite and 2-dimensional vector addition systems with states. The-
oretical Computer Science, 46(2–3):107–140 (1986)

44. Ibarra, O. H., Leininger, B. S.: The complexity of the equivalence problem for straight-
line programs. Conference Proceedings of the Twelfth Annual ACM Symposium on
Theory of Computing, Los Angeles, California, 273–280 (1980)

45. Ibarra, O. H., Leininger, B. S.: Straight-line programs with one input variable. SIAM
Journal on Computing, 11(1):1–14 (1982)

46. Ibarra, O. H., Leininger, B. S.: On the simplification and equivalence problems for
straight-line programs, J. ACM, 30(3):641–656 (1983)

47. Ibarra, O. H., Rosier L. e.: The equivalence problem and correctness formulas for a
simple class of programs. Lecture Notes Comp. Sci., 176:330–338 (1984)

48. Jiménez, Á. R., Jiménez, M. J. P.: Generation of Diophantine sets by computing P sys-
tems with external output. Lect. Notes Comp. Sci., 2509:176–190 (2002)

49. Jones, J. P.: Recursive undecidability—an exposition. Amer. Mathem. Monthly,
81(7):724–738 (1974)

50. Jones, J. P.: Some undecidable determined games. International Journal of Game The-
ory, 11(2):63–70 (1982)

51. Jones, J. P.: Universal Diophantine equation. J. Symbolic Logic 47:549–571 (1982)
52. Jones, J. P.: Computational complexity of winning strategies in two players polynomial

games (in Russian). Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matem-
aticheskogo Instituta im. V. A. Steklova AN SSSR (LOMI), 192:69–73 (1991)

53. Jones, J. P., Fraenkel, A.S.: Complexities of winning strategies in Diophantine games. J.
Complexity, 11:435–455 (1995)

54. Jones, J. P., Matijasevič, Ju. V.: Exponential Diophantine representation of recursively
enumerable sets. In: Stern, J. (ed) Proceedings of the Herbrand Symposium: Logic
Colloquium’81, Studies in Logic and the Foundations of Mathematics, 107:159–177,
North Holland, Amsterdam (1982)

55. Jones, J. P., Matijasevič, Ju. V.: A new representation for the symmetric binomial coef-
ficient and its applications. Annales Sci. Mathém. du Québec, 6(1):81–97 (1982)

56. Jones, J. P., Matijasevič, Ju. V.: Direct translation of register machines into exponen-
tial Diophantine equations. In: Priese, L. (ed) Report on the 1st GTI-workshop, Reihe
Theoretische Informatik, Universität-Gesamthochschule Paderborn, 117–130 (1983)

57. Jones, J. P., Matijasevič, Ju. V.: Register machine proof of the theorem on exponen-
tial Diophantine representation of enumerable sets. J. Symbolic Logic, 49(3):818–829
(1984)

82 Yuri Matiyasevich

58. Jones, J. P., Matijasevič, Ju. V.: Proof of recursive unsolvability of Hilbert’s tenth prob-
lem. Amer. Math. Monthly, 98(8):689–709 (1991)

59. Kasami, T., Nobuki, T.: Equivalence problem of programs without loops. Systems-
Computers-Controls, 2(4):83–84 (1971); Japanese original: Denshi Tsushin Gakkai
Ronbunshi, 54-C:657–658 (1971)

60. Kent, C. F., Hodgson, B. R.: An arithmetical characterization of NP. Theor. Computer
Science, 21(3):255–267 (1982)

61. Kosovskiı̆, N. K.: On Diophantine representations of the sequence of solutions of Pell
equation. Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematich-
eskogo Instituta im. V. A. Steklova AN SSSR (LOMI), 20:49–59 (1971)

62. Kreisel, G., Davis, M., Putnam, H., Robinson, J.: The decision problem for exponential
Diophantine equations. Mathem. Reviews, 24: #A3061, 573 (1962)

63. Kummer, M.:The complexity of recursion theoretic games. Trans. Amer. Math. Soc.,
358:1, 59–86 (electronic) (2006)

64. Lachlan, A. H.: On some games which are relevant to the theory of recursively enumer-
able sets. Ann. Math. (2), 91:291–310 (1970)

65. Lambek, J.: How to program an infinite abacus. Canad. Math. Bull., 4:295–302 (1961)
66. Levitz, H.: Decidability of some problem pertaining to base 2 exponential Diophan-

tine equations, Zeitschrift Mathematische Logik Grundlagen Mathematik, 31(2):109–
115 (1985)

67. Li, C., Dang, Z., Ibarra, O. H., Yen, H.-Ch.: Signaling P systems and verifications prob-
lem. Lecture Notes Comput. Sci., 3580:1462–1473 (2005)

68. Lipmaa, H.: On Diophantine complexity and statistical zero-knowledge arguments. Lec-
ture Notes Computer Science, 2894:398–415 (2003)

69. Livesey, M., Siekmann, J., Szabó, P., and Unvericht, E.: Unification problems for com-
binations of associativity, commutativity, distributivity and idempotence axioms. In:
William H. J., Jr. (ed), Proceedings of the Fourth Workshop on Automated Deduction,
175–184, Austin, Texas, (1979)

70. Makanin, G. S.: The problem of solvability of equations in a free semigroup (in Russian).
Math. Sbornik, 103:147–236 (1977); English transl. in: Math. USSR Sbornik, Math.
USSR Sbornik, 32(2):129–198 (1977)

71. Manders, K. L., Adleman, L.: NP-complete decision problems for binary quadratics.
J. Comput. System Sci., 16(2):168–184 (1978)

72. Markov, A. A.: Impossibility of certain algorithms in the theory of associative systems
(in Russian), Dokl. Akad. Nauk SSSR, 55(7):587–590 (1947). Translated in: Compte
rendus de l’Académie des Sciences de l’U.R.S.S., 55:583–586 (1947)

73. Martin-Löf, P. Notes on Constructive Mathematics. Almqvist & Wikseil, Stockholm
(1970)

74. Matiyasevich, Yu. V.: The connection between Hilbert’s tenth problem and systems of
equations between words and lengths (in Russian), Zap. nauch. Seminar. Leningr. otd.
Mat. in-ta AN SSSR, 8:132–144 (1968). English translation: Seminars in Mathematics,
V. A. Steklov Mathematical Institute, 8:61–67 (1970)

75. Matiyasevich, Yu. V.: Enumerable sets are Diophantine (in Russian). Dokl. AN SSSR,
191(2):278–282 (1970); Translated in: Soviet Math. Doklady, 11(2):354–358

76. Matiyasevich, Yu. V.: Existence of noneffectivizable estimates in the theory of expo-
nential Diophantine equations (in Russian). Zapiski Nauchnykh Seminarov Leningrad-
skogo Otdeleniya Matematicheskogo Instituta im. V. A. Steklova AN SSSR (LOMI),
40:77–93 (1974); Translated in: Journal of Soviet Mathematics, 8(3):299–311 (1977)

Hilbert’s Tenth Problem 83

77. Matiyasevich, Yu. V.: A new proof of the theorem on exponential Diophantine represen-
tation of enumerable sets (in Russian). Zapiski Nauchnykh Seminarov Leningradskogo
Otdeleniya Matematicheskogo Instituta im. V. A. Steklova AN SSSR (LOMI), 60:75–92
(1976); Translated in: Journal of Soviet Mathematics, 14(5):1475–1486 (1980)

78. Matiyasevich, Yu. V.: Some purely mathematical results inspired by mathematical logic,
In: Proceedings of Fifth International Congress on Logic, Methodology and Philosophy
of science, London, Ontario, 1975, Reidel, Dordrecht, 121–127 (1977)

79. Matiyasevich, Yu. V.: Algorithmic unsolvability of exponential Diophantine equations
in three unknowns (in Russian), In: Markov, A.A., Homich V.I. (eds), Studies in the
Theory of Algorithms and Mathematical Logic, Computing Center Russian Academy
Sci., Moscow, 69–78 (1979); Translated in Selecta Mathematica Sovietica, 3:223–232
(1983/1984)

80. Matiyasevich, Yu. V.: Desyataya Problema Gilberta. Fizmatlit, Moscow, (1993). English
translation: Hilbert’s Tenth Problem. MIT Press, Cambridge, MA (1993). French trans-
lation: Le dixième Problème de Hilbert, Masson, Paris Milan Barselone (1995). URL:
http://logic.pdmi.ras.ru/~yumat/H10Pbook,

81. Matiyasevich, Yu.: A direct method for simulating partial recursive functions by Dio-
phantine equations. Annals Pure Appl. Logic, 67:325–348 (1994)

82. Matiyasevich, Yu.: Hilbert’s tenth problem: what was done and what is to be done Con-
temporary mathematics, 270:1–47, (2000)

83. Matiyasevich, Yu.: Hilbert’s tenth problem and paradigms of computation, Lecture
Notes Computer Science, 3526:310–321 (2005)

84. Matiyasevich, Yu.: Diophantine flavor of Kolmogorov complexity. Trans. Inst. Informat-
ics and Automation Problems National Acad. Sciences of Armenia, 27:111–122 (2006)

85. Matiyasevich, Yu.: Word Equations, Fibonacci Numbers, and Hilbert’s Tenth Problem.
URL: http://logic.pdmi.ras.ru/~yumat/Journal/jcontord.htm

86. Matijasevič, Yu., Robinson, J.: Reduction of an arbitrary Diophantine equation to one
in 13 unknowns. Acta Arithmetica, 27:521–553 (1975)

87. Mayr E. W., Meyer, A. R.: The complexity of the finite containment problem for Petri
nets. Journal of the ACM, 28(3):561–576 (1981)

88. Mazur, B.: The topology of rational points. Experimental Mathematics, 1(1):35–45
(1992)

89. Mazur, B.: Questions of decidability and undesidability in Number Theory. J. Symbolic
Logic, 59(2):353–371 (1994)

90. Melzak, Z. A.: An informal arithmetical approach to computability and computation.
Canad. Math. Bull., 4:279–294 (1961)

91. Minsky, M. L.: Recursive unsolvability of Post’s problem of “tag” and other topics in
the theory of Turing machines. Ann. of Math. (2), 74:437–455 (1961)

92. Minsky, M. L.: Computation: Finite and Infinite Machines. Prentice Hall, Englewood
Cliffs, NJ (1967)

93. Ord, T., Kieu, T. D.: On the existence of a new family of Diophantine equations for Ω.
Fundam. Inform. 56(3):273–284 (2003)

94. Pappas, P.: A Diophantine problem for Laurent polynomial rings. Proceedings of the
American Mathematical Society, 93(4):713–718 (1985)

95. Paun, Gh.: From cells to (silicon) computers, and back. This volume, pages 343–371
96. Pheidas, Th., Zahidi, K.: Undecidability of existential theories of rings and fields: a

survey. Contemp. Math., 270:49–105 (2000)
97. Pheidas, Th.: An effort to prove that the existential theory ofQ is undecidable. Contemp.

Math., 270:237–252 (2000)

84 Yuri Matiyasevich

98. Pollett, Ch.: On the bounded version of Hilbert’s tenth problem. Arch. Math. Logic,
42(5):469–488 (2003)

99. Poonen, B.: Hilbert’s tenth problem and Mazur’s conjecture for large subrings of Q.
J. Amer. Math. Soc., 16(4):981–990 (2003)

100. Post, E. L.: Formal reductions of the general combinatorial decision problem. Amer. J.
Math., 65:197–215 (1943); reprinted in: The Collected Works of E. L. Post, Davis, M.
(ed), Birkhäuser, Boston (1994).

101. Post, E. L.: Recursively enumerable sets of positive integers and their decision prob-
lems. Bull. Amer. Math. Soc., 50:284–316 (1944); reprinted in: The Collected Works of
E. L. Post, Davis, M. (ed), Birkhäuser, Boston (1994).

102. Post, E. L.: Recursive unsolvability of a problem of Thue. J. Symbolic Logic, 12:1–
11 (1947); reprinted in: The Collected Works of E. L. Post, Davis, M. (ed), Birkhäuser,
Boston (1994).

103. Prasad, K.: Computability and randomness of Nash equilibrium in infinite games.
J. Mathem. Economics, 20(5):429–442 (1991).

104. Reif, J. H., Lewis, H. R.: Efficient symbolic analysis of programs, J. Computer System
Sci., 32(3):280–314 (1986)

105. Rabin M. O.: Effective computability of winning strategies. In: Dresher, M., Tucker,
A. W., Wolff, P. (eds), Contributions to the Theory of Games. Volume III, Annals of
Mathematics Studies, 39:147–157 Princeton University Press, Princeton, NJ (1957)

106. Reutenauer, Ch., Aspect Math’ematiques des R’eseaux de Pétri. Masson, Paris Milan
Barcelone Mexico (1989); Engl. transl: The Mathematics of Petri Nets, Prentice-Hall,
Englewood Cliffs, NJ (1990)

107. D. Richardson, Some undecidable problems involving elementary functions of a real
variable. J. Symbolic Logic, 33(4):514–520 (1968)

108. Robinson, J. A.: A machine-oriented logic based on the resolution principle, J. Assoc.
Comput. Mach. 12:23–41 (1965)

109. Shepherdson, J. C., Sturgis, H. E.: Computability of recursive functions, J. ACM
10(2):217–255 (1963)

110. Shirayev, D. V.: Undecidability of some decision problems for straight-line programs (in
Russian), Kibernetika, 1:63–66 (1989)

111. Shlapentokh, A.: Hilbert’s tenth problem over number fields, a survey. Contemp. Math.,
270:107–143 (2000)

112. Shlapentokh, A.: A ring version of Mazur’s conjecture on top[ology of rational points.
Int. Math. Res. Notes, 2003(7):411–423 (2003)

113. Shlapentokh, A.: Hilbert’s Tenth Problem. Diophantine Classes and Extensions to
Global Fields. Cambridge Univ. Press, Cambridge, England (2007)

114. Siegel, C. L.: Zur Theorie der quadratischen Formen. Nachrichten Akademie Wis-
senschaften in Göttingen. II. Mathematisch-Physikalische Klasse, 3:21–46 (1972)

115. Siekmann, J. H., Unification theory. J. Symbolic Comp., 7:207–274 (1989)
116. Singer, M. F.: The model theory of ordered differential fields. J. Symbolic Logic, 43:1,

82–91 (1978)
117. Skolem, Th.: Über die Nicht-charakterisierbarkeit der Zahlenreihe mittels endlich oder

abzählbar unendlich vieler Aussagen mit ausschliesslich Zahlenvariablen, Fundamenta
Mathematicae, 23:150–161 (1934)

118. Stallworth D. T., Roush, F. W.: An undecidable property of definite integrals. Proceed-
ings of the American Mathematical Society, 125(7):2147–2148 (1997)

119. Sun, Zh.-W.: Reduction of unknowns in Diophantine representations. Science in China
(Scientia Sinica) Ser. A., 35(3):257–269 (1992)

Hilbert’s Tenth Problem 85

120. Thue, A.: Problem über Veränderungen von Zeichenreihen nach gegebenen Regeln.
Vid. Skr. I. Mat.-natur. Kl., 10:493–524 (1914). Reprinted in: Thue, A.: Selected Math-
ematical Papers, Oslo (1977)

121. Tiden, E., Arnborg, S.: Unification problems with one-sided distributivity, J. Symbolic
Computation, 3:183–202 (1987)

122. Tseitin, G.S.: A method of presenting the theory of algorithms and enumerable sets
(in Russian). Trudy Matematicheskogo instituta im. V. A. Steklova 72 (1964) 69–99.
English translation in: Am. Math. Soc. Translat., II. Ser. 99:1–39 (1972)

123. Tung, Sh. P. The bound of Skolem functions and their applications. Information and
Computation, 120:149–154 (1995)

124. Sivaramakrishnan Rajagopalan, S.: Average case intractability of matrix and Diophan-
tine problems. Proceedings Twenty-Fourth Annual ACM Symposium Theory Comput.,
Victoria, British Columbia, Canada, 632–642 (1992)

125. Vinogradov, A. K., Kosovskiı̆, N. K.: A hierarchy of Diophantine representations of
primitive recursive predicates (in Russian). Vychislitel’naya tekhnika i voprosy kiber-
netiki, no. 12, 99–107. Lenigradskiı̆ Gosudarstvennyı̆ Universitet, Leningrad (1975)

126. Wolfson, O.: Parallel evaluation of Datalog programs by load sharing. J. Logic Program-
ming, 12:369–393 (1992)

127. Yukna, S.: Arithmetical representations of classes of computational complexity (in Rus-
sian). Matematicheskaya logika i eë primeneniya, no. 2, 92–107, Institut Matematiki i
Kibernetiki Akademii Nauk Litovskoı̆ SSR, Vil’nyus (1982)

128. Yukna, S.:. On arithmetization of computations (in Russian). Matematicheskaya logika
i eë primeneniya, no. 3, 117–125, Institut Matematiki i Kibernetiki Akademii Nauk
Litovskoı̆ SSR, Vil’nyus (1983)

129. URL: http://logic.pdmi.ras.ru/Hilbert10

Elementary Algorithms and Their
Implementations∗

Yiannis N. Moschovakis1 and Vasilis Paschalis2

1 Department of Mathematics, University of California, Los Angeles, CA 90095-1555,
USA, and Graduate Program in Logic, Algorithms and Computation (MΠΛA),
University of Athens, Panepistimioupolis, 15784 Zografou, Athens, Greece,
ynm@math.ucla.edu

2 Graduate Program in Logic, Algorithms and Computation (MΠΛA), University of
Athens, Panepistimioupolis, 15784 Zografou, Athens, Greece,
pasva@yahoo.com

In the sequence of articles [3, 4, 5, 6, 7], Moschovakis has proposed a mathemati-
cal modeling of the notion of algorithm—a set-theoretic “definition” of algorithms,
much like the “definition” of real numbers as Dedekind cuts on the rationals or that
of random variables as measurable functions on a probability space. The aim is to
provide a traditional foundation for the theory of algorithms, a development of it
within axiomatic set theory in the same way as analysis and probability theory are
rigorously developed within set theory on the basis of the set theoretic modeling of
their basic notions. A characteristic feature of this approach is the adoption of a very
abstract notion of algorithm that takes recursion as a primitive operation and is so
wide as to admit “non-implementable” algorithms: implementations are special, re-
stricted algorithms (which include the familiar models of computation, e.g., Turing
and random access machines), and an algorithm is implementable if it is reducible to
an implementation.

Our main aim here is to investigate the important relation between an (imple-
mentable) algorithm and its implementations, which was defined very briefly in [6],
and, in particular, to provide some justification for it by showing that standard ex-
amples of “implementations of algorithms” naturally fall under it. We will do this in
the context of (deterministic) elementary algorithms, i.e., algorithms that compute
(possibly partial) functions f : Mn ⇀ M from (relative to) finitely many given
partial functions on some set M ; and so part of the paper is devoted to a fairly de-
tailed exposition of the basic facts about these algorithms, which provide the most
important examples of the general theory but have received very little attention in the

∗The research for this article was co-funded by the European Social Fund and National
Resources—(EPEAEK II) PYTHAGORAS in Greece.

88 Yiannis N. Moschovakis and Vasilis Paschalis

general development. We will also include enough facts about the general theory, so
that this paper can be read independently of the articles cited above—although many
of our choices of notions and precise definitions will appear unmotivated without the
discussion in those articles.1

A second aim is to fix some of the basic definitions in this theory, which have
evolved—and in one case evolved back—since their introduction in [3].

We will use mostly standard notation, and we have collected in the Appendix the
few, well-known results from the theory of posets to which we will appeal.

1 Recursive (McCarthy) programs

A (pointed, partial) algebra is a structure of the form

M = (M, 0, 1,Φ) = (M, 0, 1, {φM}φ∈Φ), (1)

where 0, 1 are distinct points in the universe M , and for every function constant
φ ∈ Φ,

φM : Mn ⇀M

is a partial function of some arity n = nφ associated by the vocabulary Φ with the
symbol φ. The objects 0 and 1 are used to code the truth values, so that we can
include relations among the primitives of an algebra by identifying them with their
characteristic functions,

χR(�x) = R(�x) =

{
1, if R(�x),
0, otherwise.

Thus R(�x) is synonymous with R(�x) = 1.

Typical examples of algebras are the basic structures of arithmetic

Nu = (N, 0, 1, S, Pd), Nb = (N, 0, 1, parity, iq2, em2, om2)

which represent the natural numbers “given” in unary and binary notation. Here
S(x) = x + 1, Pd(x) = x−· 1 are the operations of successor and predecessor,
parity(x) is 0 or 1 accordingly as x is even or odd, and

iq2(x) = the integer quotient of x by 2, em2(x) = 2x, om2(x) = 2x+ 1

are the less familiar operations that are the natural primitives on “binary numbers.”
(We read em2(x) and om2(x) as even and odd multiplication by 2.) These are total

1 An extensive analysis of the foundational problem of defining algorithms and
the motivation for our approach is given in [6], which is also posted on
http://www.math.ucla.edu/∼ynm.

Elementary Algorithms and Their Implementations 89

algebras, as is the standard (in model theory) structure on the natural numbers N =
(N, 0, 1,=,+,×) on N. Genuinely partial algebras typically arise as restrictions of
total algebras, often to finite sets: if {0, 1} ⊆ L ⊆M , then

M�L = (L, 0, 1, {φM�L}φ∈Φ),

where, for any f : Mn ⇀M ,

f �L(x1, . . . , xn) = w ⇐⇒ x1, . . . , xn, w ∈ L & f(x1, . . . , xn) = w.

The (explicit) terms of the language L(Φ) of programs in the vocabulary Φ are de-
fined by the recursion

A :≡ 0 | 1 | vi | φ(A1, . . . , An) | pn
i (A1, . . . , An)
| if (A0 = 0) then A1 else A2, (Φ-terms),

where vi is one of a fixed list of individual variables; pn
i is one of a fixed list of n-ary

(partial) function variables; and φ is any n-ary symbol in Φ. In some cases we will
need the operation of substitution of terms for individual variables: if �x ≡ x1, . . . , xn

is a sequence of variables and �B ≡ B1, . . . , Bn is a sequence of terms, then

A{�x :≡ �B} ≡ the result of replacing each occurrence of xi by Bi.

Terms are interpreted naturally in any Φ-algebra M, and if �x, �p is any list of variables
that includes all the variables that occur in A, we let

[[A]](�x,�p) = [[A]]M(�x,�p)
= the value (if defined) of A in M, with �x := �x, �p := �p. (2)

Now each pair (A,�x, �p) of a term and a sufficiently inclusive list of variables defines
a (partial) functional

FA(�x,�p) = [[A]](�x,�p) (3)

on M , and the associated operator

F ′A(�p) = λ(�x)[[A]](�x,�p). (4)

We view F ′A as a mapping

F ′A : (Mk1 ⇀M)× · · · × (Mkn ⇀M)→ (Mn ⇀M), (5)

where ki is the arity of the function variable pi, and it is easily seen (by induction on
the term A) that it is continuous.

A recursive (or McCarthy) program of L(Φ) is any system of recursive term equa-
tions

A :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

pA(�x) = p0(�x) = A0

p1(�x1) = A1

...
pK(�xK) = AK

(6)

90 Yiannis N. Moschovakis and Vasilis Paschalis

such that p0 ≡ pA, p1, . . . ,pK are distinct function variables; p1, . . . ,pK are the
only function variables that occur in A0, . . . , AK ; the only individual variables that
occur in each Ai are in the list �xi; and the arities of the function variables are such
that these equations make sense. The term A0 is the head of A, and it may be its
only part, since we allow K = 0. If K > 0, then the remaining parts A1, . . . , AK

comprise the body of A. The arity of A is the number of variables in the head term
A0. Sometimes it is convenient to think of programs as (extended) program terms
and rewrite (6) in the form

A ≡ A0 where {p1 = λ(�x1)A1, . . . ,pK = λ(�xK)AK}, (7)

in an expanded language with a symbol for the (abstraction) λ-operator and mutual
recursion. This makes it clear that the function variables p1, . . . ,pK and the occur-
rences of the indivudual variables �xi in Ai (i > 0) are bound in the program A,
and that the putative “head variable” pA does not actually occur in A. An individual
variable z is free in A if it occurs in A0.

To interpret a program A on a Φ-structure M, we consider the system of recursive
equations ⎧

⎪⎨

⎪⎩

p1(�x1) = [[A1]](�x1, �p)
...

pK(�xK) = [[AK]](�xK , �p).
(8)

By the basic Fixed Point Theorem 8.1, this system has a set of least solutions

p1, . . . , pK ,

the mutual fixed points of (the body of) A, and we set

[[A]] = [[A]]M = [[A0]](p1, . . . , pK) : Mn ⇀M.

Thus the denotation of A on M is the partial function defined by its head term from
the mutual fixed points of A, and its arity is the arity of A.

A partial function f : Mn ⇀ M is M-recursive if it is computed by some recursive
program.

Except for the notation, these programs are introduced by John McCarthy in [2].
McCarthy proved that the Nu-recursive partial functions are exactly the Turing-
computable ones, and it is easy to verify that these are also the Nb-recursive partial
functions.

In the foundational program we describe here, we associate with each Φ-program A
of arity n and each Φ-algebra M, a recursor

int(A,M) : Mn �M,

a set-theoretic object that purports to model the algorithm expressed by A on M
and determines the denotation [[A]]M : Mn ⇀ M . These referential intensions of

Elementary Algorithms and Their Implementations 91

X

S

� �x

�
T

s0 f(x)

�

�
input

· · ·

� � output W

Fig. 1. Iterator computing f : X ⇀W .

Φ-programs on M model “the algorithms of M”; taken all together, they are the first-
order or elementary algorithms, with the algebra M exhibiting the partial functions
from (relative to) which any particular elementary algorithm is specified.

It naturally turns out that the Nu-algorithms are not the same as the Nb-algorithms on
N, because (in effect) the choices of primitives in these two algebras codify distinct
ways of representing the natural numbers.

2 Recursive machines

Most of the known computation models for partial functions f : X → W on
one set to another are captured faithfully by the following well-known, general no-
tion:

Definition 2.1 (Iterators). For any two sets X and Y , an iterator (or abstract ma-
chine) i : X � Y is a quintuple (input, S, σ, T, output), satisfying the following
conditions:

(I1) S is an arbitrary (nonempty) set, the set of states of i;

(I2) input : X → S is the input function of i;

(I3) σ : S → S is the transition function of i;

(I4) T ⊆ S is the set of terminal states of i, and s ∈ T =⇒ σ(s) = s;

(I5) output : T → Y is the output function of i.

A partial computation of i is any finite sequence s0, . . . , sn such that for all i < n,
si is not terminal and σ(si) = si+1. We write

s→∗i s′ ⇐⇒ s = s′, or there is a partial computation with s0 = s, sn = s′,

and we say that i computes the partial function i : X ⇀ Y defined by

i(x) = w ⇐⇒ (∃s ∈ T)[input(x) →∗i s & output(s) = w].

92 Yiannis N. Moschovakis and Vasilis Paschalis

For example, each Turing machine can be viewed as an iterator i : N� N, by taking
for states the (so-called) “complete configurations” of i, i.e., the triples (σ, q, i) where
σ is the tape, q is the internal state, and i is the location of the machine, along with the
standard input and output functions. The same is true for random access machines,
sequential machines equipped with one or more stacks, etc.

1, i2:
X � Y with the same input and output sets is any bijection ρ : S1�→S2 of their sets
of states such that the following conditions hold:

(MI1) ρ(input1(x)) = input2(x) (x ∈ X).

(MI2) ρ[T1] = T2.

(MI3) ρ(τ1(s)) = τ2(ρ(s)), (s ∈ S1).

(MI4) If s ∈ T1 and s is input accessible, i.e., input1(x) →∗ s for some x ∈ X ,
then output1(s) = output2(ρ(s)).

The restriction in (MI4) to input accessible, terminal states holds trivially in the nat-
ural case, when every terminal state is input accessible; but it is convenient to allow
machines with “irrelevant” terminal states (much as we allow functions f : X → Y
with f [X] � Y), and for such machines it is natural to allow isomorphisms to disre-
gard them.

For our purpose of illustrating the connection between the algorithm expressed by
a recursive program and its implementations, we introduce recursive machines, per-
haps the most direct and natural implementations of programs.

Definition 2.3 (Recursive machines). For each recursive program A and each Φ-
algebra M, we define the recursive machine i = i(A,M) that computes the partial
function [[A]]M : Mn ⇀M denoted by A as follows.

First we modify the class of Φ-terms by allowing all elements in M to occur in them
(as constants) and by restricting the function variables that can occur to the function
variables of A:

B :≡ 0 | 1 | x | vi | φ(B1, . . . , Bn) | pi(B1, . . . , Bki)
| if (B0 = 0) then B1 else B2 (Φ[A,M]-terms),

where x is any member of M , viewed as an individual constant, like 0 and 1. A
Φ[A,M]-term B is closed if it has no individual variables occurring in it, so that
its value in M is fixed by M (and the values assigned to the function variables
p1, . . . ,pK).

The states of i are all finite sequences s of the form

a0 . . . am−1 : b0 . . . bn−1,

Definition 2.2 (Iterator isomorphism). An isomorphism between two iterators i

Elementary Algorithms and Their Implementations 93

where the elements a0, . . . , am1 , b0, . . . , bn−1 of s satisfy the following condi-
tions:

• Each ai is a function symbol in Φ, or one of p1, . . . ,pK , or a closed Φ[A,M]-
term, or the special symbol ?; and

• Each bj is an individual constant, i.e., bi ∈M .

The special symbol “:” has exactly one occurrence in each state, and that the se-
quences �a,�b are allowed to be empty, so that the following sequences are states
(with x ∈M):

x : : x :

The terminal states of i are the sequences of the form

: w;

i.e., those with no elements on the left of “:” and just one constant on the right; and
the output function of i simply reads this constant w; i.e.,

output(: w) = w.

The states, the terminal states, and the output function of i depend only on M and
the function variables that occur in A. The input function of i depends also on the
head term of A,

input(�x) ≡ A0{�x :≡ �x} : ,

where �x is the sequence of individual variables that occur in A0.

The transition function of i is defined by the seven cases in the Transition Table 1,
i.e.,

σ(s) =

{
s′, if s→ s′ is a special case of some line in Table 1,

s, otherwise,

and it is a function, because for a given s (clearly) at most one transition s → s′ is
activated by s. Notice that only the external calls depend on the algebra M, and only
the internal calls depend on the program A—and so, in particular, all programs with
the same body share the same transition function.

Theorem 2.4. Suppose A is a Φ-program with function variables �p, M is a Φ-
algebra, p1, . . . , pK are the mutual fixed points of A, and B is a closed Φ[A,M]-
term. Then for every w ∈M ,

[[B]]M(p1, . . . , pK) = w ⇐⇒ B : →∗i(A,M) : w. (9)

In particular, with B ≡ A0{�x :≡ �x},

[[A]]M(�x) = w ⇐⇒ A0{�x :≡ �x} : →∗i(A,M) : w,

and so the iterator i(A,M) computes the denotation [[A]]M of A.

94 Yiannis N. Moschovakis and Vasilis Paschalis

Table 1. Transition table for the recursive machine i(A,M).

(pass)
a x :
b →
a : x
b (x ∈M)

(e-call)
a φi :
x
b →
a : φM
i (
x)
b

(i-call)
a pi :
x
b →
a Ai{
xi :≡
x} :
b

(comp)
a h(A1, . . . , An) :
b →
a h A1 · · · An :
b

(br)
a if (A = 0) then B else C :
b →
a B C ? A :
b

(br0)
a B C ? : 0
b →
a B :
b

(br1)
a B C ? : y(
= 0)
b →
a C :
b

• The underlined words are those that trigger a transition and change.
•
x = x1, . . . , xn is an n-tuple of individual constants.
• In the external call (e-call), φi ∈ Φ and arity(φi) = ni = n.
• In the internal call (i-call), pi is an n-ary function variable of A defined by the equation

pi(
x) = Ai.
• In the composition transition (comp), h is a (constant or variable) function symbol with

arity(h) = n.

Outline of proof. First we define the partial functions computed by i(A,M) in the
indicated way,

p̃i(�xi) = w ⇐⇒ pi(�xi) : →∗ : w,

and show by an easy induction on the term B the version of (9) for these,

[[B]]M(p̃1, . . . , p̃K) = w ⇐⇒ B : →∗i(A,M) : w. (10)

When we apply this to the terms Ai{�xi :≡ �xi} and use the form of the internal call
transition rule, we get

[[Ai]]M(�xi, p̃1, . . . , p̃K) = w ⇐⇒ p̃i(�xi) = w,

which means that the partial functions p̃1, . . . , p̃K satisfy the system (8), and in par-
ticular

p1 ≤ p̃1, . . . , pK ≤ p̃K .

Next we show that for any closed term B as above and any system p1, . . . , pK of
solutions of (8),

B : →∗ w =⇒ [[B]]M(p1, . . . , pK) = w;

Elementary Algorithms and Their Implementations 95

this is done by induction of the length of the computation, which establishes the
hypothesis, and setting B ≡ Ai{�xi :≡ �xi}, it implies that

p̃1 ≤ p1, . . . , p̃K ≤ pK .

It follows that p̃1, . . . , p̃K are the least solutions of (8); i.e., p̃i = pi, which together
with (10) completes the proof.

Both arguments appeal repeatedly to the following trivial but basic property of recur-
sive machines: if s0, s1, . . . , sn is a partial computation of i(A,M) and �a∗,�b

∗
are

such that the sequence �a∗s0�b
∗

is a state, then the sequence

�a∗s0�b
∗
, �a∗s1�b

∗
, . . . , �a∗sn

�b
∗

is also a partial computation of i(A,M). ��

3 Monotone recursors and recursor isomorphism

An algorithm is expressed directly by a definition by mutual recursion, in our ap-
proach, and so it can be modeled by the semantic content of a mutual recursion. This
is most simply captured by a tuple of related mappings, as follows.

Definition 3.1 (Recursors). For any poset X and any complete poset W , a (mono-
tone) recursor α : X �W is a tuple

α = (α0, α1, . . . , αK),

such that for suitable, complete posets D1, . . . , DK :

(1) Each part αi : X ×D1 × · · ·DK → Di, (i = 1, . . . , k) is a monotone mapping.

(2) The output mapping α0 : X ×D1 × · · · ×DK →W is also monotone.

The numberK is the dimension of α; the productDα = D1×· · ·×DK is its solution
set; its transition mapping is the function

μα(x,�d) = (α1(x,�d), . . . , αK(x,�d)),

on X ×Dα to Dα; and the function α : X →W computed by α is

α(x) = α0(x,�d(x)) (x ∈ X),

where �d(x) is the least fixed point of the system of equations

�d = μα(x,�d).

By the basic Fixed Point Theorem 8.1,

α(x) = α0(x,�d
κ

α(x)), where �d
ξ

α(x) = μα(x, sup{�d
η

α(x) | η < ξ}), (11)

96 Yiannis N. Moschovakis and Vasilis Paschalis

for every sufficiently large ordinal κ—and for κ = ω when α is continuous. We
express all this succinctly by writing2

α(x) = α0(x,�d)where {�d = μα(x,�d)}, (12)

α(x) = α0(x,�d)where {�d = μα(x,�d)}. (13)

The definition allows K = dimension(α) = 0, in which case3 α = (α0) for some
monotone function α0 : X → W , α = α0, and equation (12) takes the awkward
(but still useful) form

α(x) = α0(x)where { }.

A recursor α is continuous if the mappings αi (i ≤ K) are continuous and discrete
if X is a set (partially ordered by =) and W = Y ∪ {⊥} is the bottom liftup of a set.
A discrete recursor α : X � Y⊥ computes a partial function α : X ⇀ Y .

Definition 3.2 (The recursor of a program). Every recursive Φ-programA of arity
n determines naturally the following recursor r(A,M) : Mn � M⊥ relative to a
Φ-algebra M:

r(A,M) = [[A0]]M(�x,�p)

where {p1 = λ(�x1)[[A1]]M(�x1, �p), . . . , pK = λ(�xK)[[AK]]M(�xK , �p)}. (14)

More explicitly (for once), r(A,M) = (α0, . . . , αK), where Di = (Mki ⇀ M)
(with arity(pi) = ki) for i = 1, . . . ,K , D0 = (Mn ⇀ M), and the mappings
αi are the continuous operators defined by the parts of the program term A by (4);
so r(A,M) is a continuous recursor. It is immediate from the semantics of recursive
programs and (11) that the recursor of a program computes its denotation,

r(A,M)(�x) = [[A]]M(�x) (�x ∈Mn). (15)

Notice that the transition mapping of r(A,M) is independent of the input �x, and so
we can suppress it in the notation:

μr(A,M)(�p) = μr(A,M)(�x,�p) = (α1(�p), . . . , αK(�p)). (16)

2 Formally, “ where ” and “ where ” denote operators that take (suitable) tuples of
monotone mappings as arguments, so that where (α0, . . . , αK) is a recursor and
where (α0, . . . , αn) is a monotone mapping. The recursor-producing operator “ where ”
is specific to this theory and not familiar, but the mapping producing where is one of
many fairly common, recursive program constructs for which many notations are used,
e.g.,

(letrec([d1 α1] . . . [dK αK]) α0) or (d1 = α1, . . . dK = αK) in α0.

3 Here Dα = {⊥} (by convention or a literal reading of the definition of product poset),
μα(x, d) = d, and (by convention again) α0(x,⊥) = α0(x).

Elementary Algorithms and Their Implementations 97

Caution: The recursor r(A,M) does not always model the algorithm expressed by
A on M, because it does not take into account the explicit steps that may be required
for the computation of the denotation of A. In the extreme case, if A ≡ A0 is an
explicit term (a program with just a head and empty body), then

r(A,M) = [[A0]]M(�x)where { }

is a trivial recursor of dimension 0—and it is the same for all explicit terms that define
the same partial function, which is certainly not right. We will put off until Section 7
the correct and complete definition of int(A,M), which models more faithfully the
algorithm expressed by a recursive program. As it turns out, however,

int(A,M) = r(cf(A),M)

for some program cf(A) that is associated canonically with each A, and so the algo-
rithms of an algebra M will all be of the form (14) for suitable A’s.

Definition 3.3 (Recursor isomorphism). Two recursors α, β : X � W (on the
same domain and range) are isomorphic4 if they have the same dimension K ,
and there is a permutation (l1, . . . , lK) of (1, . . . ,K) and poset isomorphisms
ρi : Dα,li → Dβ,i, such that the induced isomorphism ρ : Dα → Dβ on the
solution sets preserves the recursor structures; i.e., for all x ∈ X,�d ∈ Dα,

α0(x,�d) = β0(x, ρ(�d)),

ρ(μα(x,�d)) = μβ(x, ρ(�d)).

In effect, we can reorder the system of equations in the body of a recursor and re-
place the components of the solution set by isomorphic copies without changing its
isomorphism type.

It is easy to check, directly from the definitions, that isomorphic recursors α, β :
X � W compute the same function α = β : X → W ; the idea, of course, is that
isomorphic recursors model the same algorithm, and so we will simply write α = β
to indicate that α and β are isomorphic.

4 The representation of abstract machines by recursors

We show here that the algorithms expressed by abstract machines are represented
faithfully by recursors.

4 A somewhat coarser notion of recursor isomorphism was introduced in [7] to simplify the
definitions and proofs of some of the basic facts about recursors, but it proved not to be a
very good idea. We are reverting here to the original, finer notion introduced in [5].

98 Yiannis N. Moschovakis and Vasilis Paschalis

Definition 4.1 (The recursor of an iterator). For each iterator

i : (input, S, σ, T, output) : X � Y,

as in Definition 2.1, we set

r(i) = p(input(x))
where {p(s) = if (s ∈ T) then output(s) else p(σ(s))}. (17)

This is a continuous, discrete recursor of dimension 1, with solution space the func-
tion poset (S ⇀ Y) and output mapping (x, p) �→ p(input(x)), which models the
tail recursion specified by i.

It is very easy to check directly that for each iterator i : X � Y ,

r(i)(x) = i(x) (x ∈ X), (18)

but this will also follow from the next, main result of this section.

Theorem 4.2. Two iterators i1, i2 : X � Y are isomorphic if and only if the associ-
ated recursors r(i1) and r(i2) are isomorphic.

Proof. By (17), for each of the two given iterators i1, i2,

ri = r(ii) = (valuei, μi),

where for p ∈ Di = (Si ⇀ Y) and x ∈ X ,

valuei(x, p) = p(inputi(x)),
μi(x, p) = μi(p) = λ(s)[if (s ∈ Ti) then outputi(s) else p(τi(s))] : Si ⇀ Y.

Part 1. Suppose first that ρ : S1�→S2 is an isomorphism of i1 with i2, and let
fi : Si ⇀ Y be the least-fixed-points of the transition functions of the two iterators,
so that

fi(s) = outputi(τ
|s|
i (s)) where |s| = the least n such that τn

i (s) ∈ Ti.

In particular, this equation implies easily that

f1(s) = f2(ρ(s)).

The required isomorphism of r1 with r2 is determined by a poset isomorphism of the
corresponding solution sets (S1 ⇀ Y) and (S2 ⇀ Y), which must be of the form

π(p)(ρ(s)) = σs(p(s)) (s ∈ S1), (19)

Elementary Algorithms and Their Implementations 99

by Proposition 8.4. We will use the given bijection ρ : S1�→S2 and bijections σs :
Y�→Y which are determined as follows.

We choose first for each t ∈ T1 a bijection σ∗t : Y�→Y such that

σ∗t (output1(t)) = output2(ρ(t)) (t ∈ T1),

and then we consider two cases:

(a) If f1(s)↑ or there is an input accessible s′ such that s→∗ s′, let σs(y) = y.

(b) If f1(s) ↓ and there is no input accessible s′ such that s →∗ s′, let σs = σ∗t ,
where t = τ

|s|
1 (s) ∈ T1 is “the projection” of s to the set T1.

Lemma. For all s ∈ S1,
στ1(s) = σs (s ∈ S1). (20)

Proof. If f1(s)↑ or there is an input accessible s′ such that s →∗ s′, then τ1(s) has
the same property, and so σs and στ1(s) are both the identity; and if f1(s)↓ and there
is no input accessible s′ such that s→∗ s′, then τ1(s) has the same properties, and it
“projects” to the same t = τn

1 (s) ∈ T1, so that σs = στ1(s) = σ∗t . (Lemma)��

Now π in (19) is an isomorphism of (S1 ⇀ Y) with (S2 ⇀ Y) by Proposition 8.4,
and it remains only to prove the following two claims:

(i) value1(x, p) = value(x, π(p)), i.e., p(input1(x)) = π(p)(input2(x)). This holds
because s = input1(x) is input accessible, and so σs is the identity and

π(p)(input2(x)) = π(p)(ρ(input1(x)) = σs(p(input1(x))) = p(input1(x)).

(ii) π(μ1(p)) = μ2(π(p)); i.e., for all s ∈ S1,

π(μ1(p))(ρ(s)) = μ2(π(p))(ρ(s)). (21)

For this we distinguish three cases:

(iia) s ∈ T1, and it is input accessible. Now (a) applies in the definition of σs so that
σs is the identity and we can compute the two sides of (21) as follows:

π(μ1(p))(ρ(s)) = μ1(p)(s) = output1(s),

μ2(π(p))(ρ(s)) = output2(ρ(s)),

and the two sides are equal by (MI4) whose hypothesis holds in this case.

(iib) s ∈ T1, but it is not input accessible, so that (b) applies. Again

π(μ1(p))(ρ(s)) = σs(μ1(p)(s)) = σs(output1(s)),

μ2(π(p))(ρ(s)) = output2(ρ(s)),

and the two sides are now equal by the choice of σs = σ∗s .

100 Yiannis N. Moschovakis and Vasilis Paschalis

(iic) s /∈ T1. In this case we can use (20):

π(μ1(p))(ρ(s)) = σs(μ1(p)(s)) = σs(p(τ1(s))),

μ2(π(p))(ρ(s)) = π(p)(τ2(ρ(s))) = π(p)(ρ(τ1(s))) = στ1(s)(p(τ1(s)),

and the two sides are equal by (20).

This completes the proof of Part 1.

Part 2. Suppose now that π : (S1 ⇀ Y)�→(S2 ⇀ Y) is an isomorphism of r1 with
r2, so that by Proposition 8.4,

π(p)(ρ(s)) = σs(p(s)) (p : S1 ⇀ Y),

where ρ : S1�→S2 and for each s ∈ S1, σs : Y�→Y . Moreover, since π is a recursor
isomorphism, we know that

p(input1(x)) = π(p)(input2(x)), (22)

π(μ1(p))(ρ(s)) = μ2(π(p))(ρ(s)). (23)

We will use these identities to show that ρ is an isomorphism of i1 with i2.

(a) ρ[T1] = T2, (MI2).

From the definition of the transition maps μi, it follows immediately that outputi =
μi(⊥), and hence

output2 = μ2(⊥) = μ2(π(⊥)) = π(μ1(⊥)) = π(output1);

and then using the representation of π, for all s ∈ S1,

output2(ρ(s)) = π(output1)(ρ(s)) = σs(output1(s)),

so that output1(s)↓ ⇐⇒ output2(ρ(s))↓ , which means precisely that ρ[T1] = T2.

(b) If s = input1(x), then σs is the identity and ρ(s) = ρ(input1(x)) = input2(x),
(MI1).

If t is such that ρ(t) = input2(x), then by (22), for all p,

p(s) = π(p)(input2(x)) = π(p)(ρ(t)) = σt(p(t));

and if we apply this to

p(u) =

{
y, if u = s,

⊥, otherwise,

and consider the domains of convergence of the two sides, we get that t = s, and
hence y = σs(y) and ρ(s) = ρ(t) = input2(x).

Elementary Algorithms and Their Implementations 101

(c) If s is input accessible, then for every t ∈ Y , σs(y) = y.

In view of (b), it is enough to show that if σs is the identity, then στ1(s) is also the
identity. This is immediate when s ∈ T1, since τ1(s) = s in this case. So assume
that s is not terminal, and that σs is the identity, which with (23) gives, for every p,

μ2(π(p))(ρ(s)) = π(p)(μ1(p))(ρ(s)) = σs(μ1(p)(s)) = μ1(p)(s).

If s /∈ T1, then ρ(s) /∈ T2 by (a), and so this equation becomes

π(p)(τ2(ρ(s))) = p(τ1(s)).

If t is such that ρ(t) = τ2(ρ(s)), then this identity together with the representation
of π gives

σt(p(t)) = π(p)(ρ(t)) = π(p)(τ2(ρ(s))) = p(τ1(s));

and, as above, this yields first that t = τ1(s) and then that στ1(s) is the identity.

(d) If s is terminal and input accessible, then output2(ρ(s)) = output1(s), (MI4).

As in (b), and using (c) this time,

output2(ρ(s)) = π(output1)(ρ(s)) = σs(output1(s)) = output1(s).

Finally:

(e) For all s ∈ S1, ρ(τ1(s)) = τ2(ρ(s)).

This identity holds trivially if t ∈ T1, in view of (a), and so we may assume that
t /∈ T1 and apply the basic (23), which with the representation of π yields for all p
and s,

σs(μ1(p)(s)) = μ2(π(p))(ρ(s)) = π(p)(τ2(ρ(s))).

If, as above, we choose t so that ρ(t) = τ2(ρ(s)), this gives

σs(p(τ1(s))) = π(p)(ρ(t)) = σt(p(t));

and by applying this to some p, which converges only on τ1(s), we get t = τ1(s), so
that τ2(ρ(s)) = ρ(t) = ρ(τ1(s)), as required. ��

5 Recursor reducibility and implementations

The notion of simulation of one program (or machine) by another is notoriously slip-
pery: in the relevant Section 1.2.2 of one of the standard (and most comprehensive)
expositions of the subject, van Emde Boas [1] starts with

102 Yiannis N. Moschovakis and Vasilis Paschalis

Intuitively, a simulation of [one class of computation models] M by [an-
other] M ′ is some construction which shows that everything a machine
Mi ∈ M can do on inputs x can be performed by some machine M ′i ∈ M ′

on the same inputs as well;

goes on to say that “it is difficult to provide a more specific formal definition of the
notion”; and then discusses several examples which show “how hard it is to define
simulation as a mathematical object and still remain sufficiently general.”

The situation is somewhat better at the more abstract level of recursors, where a very
natural relation of reducibility of one recursor to another seems to capture a robust
notion of “algorithm simulation.” At the same time, the problem is more important
for recursors than it is for machines: because this modeling of algorithms puts great
emphasis on understanding the relation between an algorithm and its implementa-
tions, and this is defined by a reducibility.

In this section we will reproduce the relevant definitions from [6] and we will estab-
lish that the recursor r(A,M) determined by a program on an algebra M is imple-
mented by the recursive machine i(A,M).

Definition 5.1 (Recursor reducibility). Suppose α, β : X � W are recursors with
the same input and output domains and respective solution sets

Dα = Dα
1 × · · · ×Dα

K , Dβ = Dβ
1 × · · · ×Dβ

L,

and transition mappings

μα : X ×Dα → Dα, μβ : X ×Dβ → Dβ .

A reduction of α to β is any monotone mapping

π : X ×Dα → Dβ

such that the following three conditions hold, for every x ∈ X and every d ∈ Dα:

(R1) μβ(x, π(x, d)) ≤ π(x, μα(x, d)).

(R2) β0(x, π(x, d)) ≤ α0(x, d).

(R3) α(x) = β(x).

We say that α is reducible to β if a reduction exists,

α ≤r β ⇐⇒ there exists a reduction π : X ×Dα → Dβ .

Recursor reducibility is clearly reflexive and (easily) transitive.

If K = L = 0 so that the recursors are merely functions, this means that they are
identical, α0(x,⊥) = β0(x,⊥); and if K = 0 while L > 0, then these conditions
degenerate to the existence of some monotone π : X → Dβ , such that

Elementary Algorithms and Their Implementations 103

μβ(x, π(x)) ≤ π(x), β0(x, π(x)) ≤ α0(x,⊥), α(x) = α0(x,⊥) = β(x),

which simply means that β computes α—i.e., they hold of any β such that β = α
with π(x) = dκ

β(x) as in (11). In the general case, (R1) and (R2) imply (by a simple
ordinal recursion) that for all x and ξ,

dξ
β(x) ≤ π(x, dξ

α(x)), β0(x, d
ξ
β(x)) ≤ α0(x, dξ

α(x)),

and then (R3) ensures that in the limit,

β(x) = β0(x, dκ
β(x)) = α0(x, dκ

α(x)) = α(x);

thus β computes the same map as α but possibly “slower,” in the sense that each iter-
ate dξ

β(x) gives us part (but possibly not all) of the information in the corresponding
stage dξ

α(x)—and this in a uniform way. It is not completely obvious, however, that
the definition captures accurately the intuitive notion of reduction of the computa-
tions of one recursor to those of another, and the main result in this section aims to
provide some justification for it.

Definition 5.2 (Implementations). A recursor α : X � Y ∪{⊥} into a flat poset is
implemented by an iterator i : X � Y if it is reducible to the recursor representation
of i; i.e.,

α ≤r r(i).

Theorem 5.3. For each recursive programA and each algebra M, the recursive ma-
chine i(A,M) associated with A and M implements the recursor r(A,M) defined by
A on M; i.e.,

r(A,M) ≤r r(i(A,M)).

To simplify the construction of the required reduction, we establish first a technical
lemma about Scott domains, cf. Definition 8.2:

Lemma 5.4. Suppose α : X � W and the solution set Dα has the Scott property,
and set

D∗α = {d ∈ Dα | (∀x)[d ≤ μα(x, d)]}. (24)

Then D∗α is a complete subposet of Dα, and for any recursor β : X �W , α ≤r β if
and only if there exists a monotone map π∗ : X×D∗α → Dβ that satisfies (R1) – (R3)
of Definition 5.1 for all x ∈ X, d ∈ D∗α.

Proof. We assume the hypotheses on α and π∗ : X × D∗α → Dβ , and we need to
extend π∗ so that it has the same properties on Dα.

(1) The subposet D∗α is complete, and for each d ∈ D, the set

X∗d = {d∗ ∈ D∗α | d∗ ≤ d}

is directed, so that
ρ(d) = supX∗d ∈ D∗α.

104 Yiannis N. Moschovakis and Vasilis Paschalis

Proof. For the first claim, it is enough to show that if X ⊆ D∗α is directed and
d = supX , then d ∈ D∗α: this holds because for any d∗ ∈ X , d∗ ≤ d, and so

d∗ ≤ μα(x, d∗) ≤ μα(x, d),

using the characteristic property of D∗α and the monotonicity of μα; and now taking
suprema, we get the required d ≤ μα(x, d).

For the second claim, if d1, d2 ∈ X∗d , then they are compatible, and so their supre-
mum d∗ = sup{d1, d2} exists, d∗ ≤ d, and it suffices to show that d∗ ∈ D∗α; this
holds because di ≤ μ(x, di) ≤ μα(x, d∗) by the characteristic property of D∗α and
the monotonicity of μα, and so d∗ ≤ μα(x, d∗) by the definition of d∗. (1)��

We now extend π∗ to all of Dα by

π(x, d) = sup{π∗(x, d∗) | d∗ ∈ X∗d}.

(2) (R1): For all x and d, μ2(x, π(x, d)) ≤ π(x, μ1(x, d)).

Proof. We must show that

μ2(x, sup{π∗(x, d∗) | d∗ ∈ D∗α & d∗ ≤ d})
≤ sup{π∗(x, e∗) | e∗ ∈ D∗α & e∗ ≤ μ1(x, d)}. (25)

If d∗ ∈ D∗α and d∗ ≤ d, then d∗ ≤ ρ(d); hence, π∗(x, d∗) ≤ π∗(x, ρ(d)), and if we
take suprema and apply μ2, we get

μ2(x, sup{π∗(x, d∗) | d∗ ∈ D∗α & d∗ ≤ d}) ≤ μ2(x, π∗(x, ρ(d)))
≤ π∗(x, μ1(x, ρ(d))),

using the hypothesis, that (R1) holds for π∗; thus, to complete the proof of (25), it is
enough to verify that

μ1(x, ρ(d)) ≤ μ1(x, d),

which, however, is clearly true, since ρ(d) ≤ d and μ1 is monotone. (2)��

(3) (R2) For all x and d, β0(x, π(x, d)) ≤ α0(x, d).

Proof. Arguing as in the proof of (2), we conclude that

β0(x, π(x, d)) = β0(x, sup{π∗(x, d∗) | d∗ ∈ X∗d}) ≤ β0(x, π∗(x, ρ(d)))
≤ α0(x, ρ(d)) ≤ α0(x, d),

where we appealed to (R2) for π∗ in the next-to-the-last inequality. (3)��

Finally, (R3) holds because the computation of α takes place entirely within D∗α on
which the given π∗ coincides with π and is assumed to satisfy (R1)–(R3). ��

Elementary Algorithms and Their Implementations 105

Proof of Theorem 5.3. We fix a recursive program A and an algebra M and set

α = r(A,M) = (α0, α1, . . . , αK), β = (β0, β1) = r(i(A,M))

as these are defined in Definitions 3.2, 2.3, and 4.1, so that

D0 = (Mn ⇀M), Dα = D1 × · · · ×DK (with Di = (Mki ⇀M));

the mappings αi are the continuous operators defined by the parts Ai of the program
A by (4); the transition mapping μα of α (defined in (16)) is independent of the
input �x; Dβ = (S ⇀ M) with S the set of states of the recursive machine i(A,M);
β0(d)(�x) = d(A0{�x :≡ �x} :); and

μβ(d) = β1(d) = λ(s)[if (s =: w′ for some w′) then w′ else d(σ(s))],

where σ is the transition mapping σ of the recursive machine and (like μα) is in-
dependent of the input �x. To complete the proof, we need to define a monotone
mapping π : Dα → Dβ so that (tracing the definitions) the following two conditions
hold:

(R1) For all �p ∈ Dα, β1(π(�p)) ≤ π(μα(�p)); this means that for all w ∈M ,

π(μα(�p))(: w) = w, (R1a)

and for every nonterminal state s of the recursive machine i(A,M) and any w ∈M ,

π(�p)(σ(s)) = w =⇒ π(μα(�p))(s) = w. (R1b)

(R2) For all �x ∈Mn, �p ∈ Dα and �x ∈Mn, w ∈M ,

π(�p)(A0{�x :≡ �x} :) = w =⇒ [[A0]]M(�x,�p) = w.

The third condition (R3) is independent of the reduction π and holds by Theorem 2.4,
(18), and (15).

For each tuple �p ∈ Dα, let

M{�p := �p} = (M, 0, 1, {φM
φ∈Φ} ∪ {p1, . . . , pn})

be the expansion of the algebra M by the partial functions p1, . . . , pK in the vocabu-
lary Φ ∪ {p1, . . . ,pK} of the given program A. The states of i(A,M) are also states
of i(A,M{�p := �p})—but differently interpreted, since p1, . . . ,pK have now been
fixed and so calls to them are external (independent of the program A) rather than
internal. For any state �a : �b, we set

π(�p)(�a : �b) = w ⇐⇒ �a : �b→∗M{�p:=�p} w

⇐⇒ the computation of i(A,M{�p := �p})
which starts with �a : �b terminates in the state : w.

106 Yiannis N. Moschovakis and Vasilis Paschalis

Since M and the Φ[A,M]-terms are fixed, these computations depend only on the
assignment {�p := �p}, and we will call them {�p := �p}-computations; they are
exactly like those of i(A,M), except when one of the pi is called with the correct
number of arguments; i.e., when pi is n-ary, then for any x1, . . . , xn,

�a pi : x1 · · ·xn
�b→{�p:=�p} �a : pi(x1, . . . , xn) �b.

We establish that π has the required properties in a sequence of lemmas.

(1) The mapping π is monotone.

Proof. If �p ≤ �q and π(�p)(s) = w, then the finite {�p := �p}-computation starting
with s calls only a finite number of values of the partial functions p1, . . . , pK and
terminates in the state : w; the {�p := �q}-computation starting with s will then call
the same values of q1, . . . , qK , it will get the same answers, and so it will reach the
same terminal state : w. (1)��

(2) For each Φ[A,M]-term B,

π(�p)(B :) = [[B]]M(�p).

Proof is easy, by induction on B. (2)��

By Lemma 5.4, it is enough to verify (R1) and (R2) for �p ∈ D∗α, and we will appeal
to this in (5) below.

(3) (R1a): π(μα(�p))(: w) = w.

Proof. This is immediate from the definition of π, since the {�p := μα(�p)}-
computation starting with : w terminates immediately, without looking at the partial
function assigned to any pi. (3)��

(4) (R1b) for the case where s is a state of the form

�a pi : x1x2 · · ·xn
�b

with arity(pi) = n.

Proof. By the transition table of the recursive machine i(A,M),

�a pi : x1x2 · · ·xn
�b → �a Ai{�xi :≡ �x} : �b,

and so the hypothesis of (R1b) in this case gives us that

π(�p)(�a Ai{�xi :≡ �x} : �b) = w,

Elementary Algorithms and Their Implementations 107

which means that w is the output of the {�p := �p}-computation

�a Ai{�xi :≡ �x} : �b
...
: w

⎤

⎥
⎦ {�p := �p}.

By (2) above,

�a Ai{�xi :≡ �x} : �b
...

�a : [[Ai{�xi :≡ �x}]](�p) �b

⎤

⎥
⎦ {�p := �p},

and so, comparing outputs, we conclude that �a and �b are empty and that

w = [[Ai{�xi :≡ �x}]](�p).

On the other hand, by the definition of π and μα, there is a {�p := μα(�p)}-
computation

pi : x1x2 · · ·xn

: [[Ai{�xi :≡ �x}]](�p)

]
{�p := μα(�p)},

which gives us precisely the required conclusion of (R1b) in this case,

π(μα(�p))(�a pi : x1x2 · · ·xn
�b) = w. (4)��

(5) (R1b) otherwise, i.e., when s is not a state of the form �a pi : x1x2 · · ·xn
�b.

Proof. The transition table of i(A,M) now gives

s → �a′ : �b
′

for some state �a′ : �b
′
, and the hypothesis of (R1b) guarantees a computation

�a′ : �b
′

...
: w

⎤

⎥
⎦ {�p := �p}.

Since the transition s → �a′ : �b
′

does not refer to any function letter pj , it is equally
valid for i(A,M{�p := �p}), and so we have a computation

s

�a′ : �b
′

...
: w

⎤

⎥
⎥
⎥
⎦
{�p := �p}.

108 Yiannis N. Moschovakis and Vasilis Paschalis

But �p ≤ μα(�p) since �p ∈ D∗α, and so by (1),

s

�a′ : �b
′

...
: w

⎤

⎥
⎥
⎥
⎦
{�p := μα(�p)},

which means that π(μα(�p))(s) = w and completes the proof of (R1b). (5)��

(6) (R2) holds; i.e.,

π(�p)(A0{�x :≡ �x} :) = w =⇒ [[A0]]M(�x,�p) = w.

Proof. This is an immediate consequence of (2), which for B ≡ A0{�x :≡ �x} gives
π(�p)(A0{�x :≡ �x} :) = [[A0{�x :≡ �x}]]M(�p) = [[A0]]M(�x,�p). (6)��

This completes the proof of Theorem 5.3. ��

Although the technical details of this proof certainly depend on some specific fea-
tures of recursive machines, the idea of the proof is general and robust: it can be used
to show that any reasonable “simulation” of a McCarthy program A by an abstract
machine implements the recursor r(A,M) defined by A—and this covers, for exam-
ple, the usual “implementations of recursion” by Turing machines or random access
machines of various kinds.

6 Machine simulation and recursor reducibility

On the problem of defining formally the notion of one machine simulating another,
basically we agree with the comments of van Emde Boas [1], quoted in the begin-
ning of Section 5, that it is not worth doing. There is, however, one interesting result
that relates a specific, formal notion of machine simulation to recursor reducibil-
ity.

Definition 6.1 (Machine simulation, take 1). Suppose

ii = (inputi, Si, σi, Ti, outputi) : X � Y (i = 1, 2)

are two iterators on the same input and output sets. A formal simulation of i1 by i2
is any function ρ : S2 → S1 such that the following conditions hold:

1. For any state t ∈ S2, if ρ(t) →1 s ∈ S1, then there is some t′ ∈ S2 such that
t→∗2 t′ and ρ(t′) = s.

2. If t0 = input2(x), then ρ(t0) = input1(x).

Elementary Algorithms and Their Implementations 109

3. If t ∈ T2, then ρ(t) ∈ T1 and output1(ρ(t)) = output2(t).

4. If t ∈ S2 \ T2 and ρ(t) ∈ T1, then there is path

t→2 t0 →1 · · · →2 tk ∈ T2

in i2 such that output1(ρ(t)) = output2(tk) and ρ(ti) = ρ(t) for all i ≤ k.

This is one sort of formal notion considered by van Emde Boas [1], who (rightly)
does not adopt it as his only (or basic) formal definition.

Theorem 6.2 (Paschalis [8]). If i2 simulates i1 formally by Definition 6.1, then
r(i1) ≤r r(i2).

We do not know whether the converse of this result holds or the relation of this notion
of simulation with natural alternatives that involve maps ρ : S1 → S2 (going the
other way). The theorem, however, suggests that perhaps the robust notion r(i1) ≤r

r(i2) may be, after all, the best we can do in the way of giving a broad, formal
definition of what it means for one machine to simulate another.

7 Elementary (first-order) recursive algorithms

The term
E ≡ if (φ1(x) = 0) then y else φ2(φ1(y), x)

intuitively expresses an algorithm on each algebra M in which φ1, φ2 are interpreted,
the algorithm that computes its value for any given values of x and y. We can view
it as a program

E : p0(x, y) = if (φ1(x) = 0) then y else φ2(φ1(y), x) (26)

with empty body, but the recursor r(E,M) of E constructed in Definition 3.2 does
not capture this algorithm—it is basically nothing but the partial function defined
by E. This is because, in general, the recursor r(A,M) of a program A captures
only “the recursion” expressed by A, and there is no recursion in E. The theory
of canonical forms that we will briefly outline in this section makes it possible to
capture such explicit algorithms (or parts of algorithms) by the general construction
(A,M) �→ r(A,M). In particular, it yields a robust notion of the elementary algo-
rithms of any given algebra M.

To ease the work on the syntax that we need to do, we add to the language a function
symbol cond of arity 3 and the abbreviation

cond(A,B,C) ≡df if (A = 0) then B else C;

110 Yiannis N. Moschovakis and Vasilis Paschalis

this is not correct semantically, because cond is not a strict partial function, but it
simplifies the definition of Φ-terms that now takes the form

A :≡ 0 | 1 | vi | c(A1, . . . , An), (Φ-terms)

where c is any constant (φi, cond) or variable function symbol (pn
i) of arity n.

A term is immediate if it is an individual variable or the “value” of a function variable
on individual variables,

X :≡ vi | pn
i (u1, . . . ,un) (Immediate terms)

so that, for example, u, p(u1, u2, u1) are immediate when p has arity 3. Computa-
tionally, we think of immediate terms as “generalized variables” that can be accessed
directly, like the entries a[i], b[i, j, i] in an array (string) in some programming lan-
guages.

Definition 7.1 (Program reduction). Suppose A is a program as in (6),

pi(�xi) = c(A1, . . . , Aj−1, Aj , Aj+1) (27)

is one of the equations in A, and Aj is not immediate. Let q be a function variable
with arity(q) = arity(p) that does not occur in A. The one-step reduction of A
determined by pi, j, and q yields the program B constructed by replacing (27) in A
by the following two equations:

pi(�xi) = c(A1, . . . , Aj−1, q(�xi), Aj+1),

q(�xi) = Aj .

We write

A⇒1 B ⇐⇒ there is a one-step reduction of A to B,

A⇒ B ⇐⇒ B ≡ A or A⇒1 A1 ⇒1 · · · ⇒1 Ak ≡ B,

so that the reduction relation on programs is the reflexive and transitive closure of
one-step reduction.

Let size(A) be the number of nonimmediate terms that occur as arguments of func-
tion symbols in the parts of A. A program is irreducible if size(A) = 0, so that no
one-step reduction can be executed on it.

Each one-step reduction lowers size by 1, and so, trivially:

Lemma 7.2. If A ⇒1 A1 ⇒1 · · · ⇒1 Ak is a sequence of one-step reductions
starting with A, then k ≤ size(A); and Ak is irreducible if and only if k = size(A).

Elementary Algorithms and Their Implementations 111

The reduction process clearly preserves the head function variable of A, and so it
preserves its arity. It also (easily) preserves denotations,

A⇒ B =⇒ [[A]]M = [[B]]M ,

but this would be true even if we removed the all-important immediacy restriction in
its definition. The idea is that much more is preserved: we will claim, in fact, that if
A⇒ B, then A and B express the same algorithm in every algebra.

Caution. This notion of reduction is a syntactic operation on programs, which mod-
els (very abstractly) partial compilation, bringing the mutual recursion expressed by
the program to a useful form before the recursion is implemented without commit-
ting to any particular method of implementation of recursion. No real computation
is done by it.

We illustrate the reduction process by constructing a reduction sequence starting with
the explicit term E in (26) and showing on the right the parameters we use for each
one-step reduction:

E : p0(x, y) = if (φ1(x) = 0) then y else φ2(φ1(y), x) (p0, 1, q1)

E1 :
p0(x, y) = if (q1(x, y) = 0) then y else φ2(φ1(y), x)
q1(x, y) = φ1(x)

(p0, 3, q2)

E2 :
p0(x, y) = if (q1(x, y) = 0) then y else q2(x, y)
q2(x, y) = φ2(φ1(y), x)
q1(x, y) = φ1(x)

(q2, 1, q3)

E3 :

p0(x, y) = if (q1(x, y) = 0) then y else q2(x, y)
q2(x, y) = φ2(q3(x, y), x)
q3(x, y) = φ1(y)
q1(x, y) = φ1(x)

Now E3 is irreducible, and so the reduction process stops.

We will not take the space here to argue that E3 expresses as a mutual recursion the
same explicit algorithm that is intuitively expressed by E. But note that the order of
the equations in the body of E3 is of no consequence: Definition 3.3 ensures that we
can list these in any order without changing the isomorphism type of the recursor
r(E3,M). This reflects our basic understanding that the intuitive, explicit algorithm
expressed by E does not specify whether the evaluations that are required will be
done in parallel, or in sequence, or in any particular order, except, of course, where
the nesting of subterms forces a specific order for the calls to the primitives—and this
is exactly what is captured by the structure of the irreducible program E3.

To call r(E3,M) “the algorithm expressed byE,” we must show that it is independent
of any particular reduction ofE to an irreducible term, and to do this we must abstract
from the specific, fresh variables introduced by the reduction process and the order
in which the new equations are added.

112 Yiannis N. Moschovakis and Vasilis Paschalis

Definition 7.3 (Program congruence). Two programs A and B are congruent if B
can be constructed from A by an alphabetic change (renaming) of the individual
and functions variables and a permutation of the equations in the body of A. This
is obviously an equivalence relation on programs that agrees with the familiar term-
congruence on programs with empty body. We write:

A ≡c B ⇐⇒ A and B are congruent.

It follows directly from this definition and Definition 3.3 that congruent programs
have isomorphic recursors in every algebra M,

A ≡c B =⇒ r(A,M) = r(B,M).

Theorem 7.4 (Canonical forms).

Every program A is reducible to a unique up to congruence irreducible term cf(A),
its canonical form.

In detail, every programA has a canonical form cf(A) with the following properties:

(1) cf(A) is an irreducible program.

(2) A⇒ cf(A).

(3) If A ⇒1 A1 ⇒1 · · · ⇒1 Ak is any sequence of one-step reductions and k =
size(A), then Ak ≡c cf(A).

Part (3) gives a method for computing cf(A) up to congruence and implies the first
claim, that it is the unique up to congruence term that satisfies (1) and (2): because if
A⇒ B and B is irreducible, then A⇒1 A1 ⇒1 · · · ⇒1 Ak ≡ B with k = size(A)
by Lemma 7.2, and hence, B ≡c cf(A) by (3).

Outline of proof. To construct canonical forms, we fix once and for all some ordering
on all the function variables, and starting with A, we execute a sequence of size(A)
one-step reductions, selecting each time the lowest p, j, q for which a reduction can
be executed. The last program of this sequence satisfies (1) and (2), and so we only
need verify (3), for which it suffices to check that

A⇒1 B =⇒ cf(A) ≡c cf(B). (28)

For this reason, the basic fact is that one-step reductions commute, in the following,
simple sense: if we label them by showing their parameters,

A
pi,j,q−−−→ B

⇐⇒ B results by the one-step reduction on A determined by pi, j, q,

then,

A
pi,j,q−−−→ B

pk,l,r−−−→ C, =⇒ for some B′, A
pk,l,r−−−→ B′

pi,j,q−−−→ C. (29)

Elementary Algorithms and Their Implementations 113

The obvious conditions here are that q �≡ r and that either i �= k or j �= l, so that all
four one-step reductions indicated can be executed, but, granting these, (29) follows
immediately by the definitions. Finally, (28) can be verified using (29) by an easy
“permutability” argument, which we will skip. ��

A more general version of the Canonical Form Theorem 7.4 for functional structures
was established in [4], and there are natural versions of it for many richer languages,
including a suitable formulation of the typed λ-calculus with recursion (PCF). This
version for McCarthy programs is especially simple to state (and prove) because of
the simplicity in this case of the definition of reduction in Definition 5.1.

Definition 7.5 (Referential intensions). The referential intension of a McCarthy
program A in an algebra M is the recursor of its canonical form,

int(A,M) = r(cf(A),M);

it models the elementary algorithm expressed by A in M.

In this modeling of algorithms then, Theorem 5.3 establishes that every elementary
algorithm int(A,M) expressed by a term A in an algebra M is implemented by the
recursive machine i(cf(A),M) of the canonical form of A.

8 Appendix

A subset X ⊆ D of a poset D is directed if

x, y ∈ X =⇒ (∃z ∈ X)[x ≤D z & y ≤D z],

and D is complete (a dcpo) if every directed X ⊆ D has a (necessarily unique)
supremum (least upper bound),

supX = min{z ∈ D | (∀x ∈ X)[x ≤D z]}.

In particular, every complete poset (with this definition) has a least element,

⊥D = sup ∅,

and for each set Y , its bottom liftup

Y⊥ = Y ∪ {⊥}

is the complete flat poset that has just one new element ⊥ /∈ Y put below all the
members of X ,

x ≤Y⊥ y ⇐⇒ x = ⊥ ∨ x = y (x, y ∈ Y⊥).

114 Yiannis N. Moschovakis and Vasilis Paschalis

It will also be convenient to view each set X as (trivially) partially ordered by the
identity relation, so that X is a subposet of X⊥.

The (Cartesian) product D = D1 × · · · × Dn of n posets is ordered component-
wise,

x ≤D y ⇐⇒ x1 ≤D1 y1 & · · · & xn ≤Dn yn

(x = (x1, . . . , xn), y = (y1, . . . , yn)),

and it is complete, if D1, . . . , Dn are all complete.

A mapping π : D → E from one poset to another is monotone if

x ≤D y =⇒ π(x) ≤E π(y) (x, y ∈ D),

and continuous if in addition, for every directed, nonempty subset of D and every
w ∈ D,

if w = supX, then π(w) = supπ[X].

If D and E are complete posets, then this conditions takes the simpler form

π(supX) = supπ[X] (X directed, nonempty),

but it is convenient to allow D to be arbitrary (for example, a product of complete
posets and sets) in the definition.

A poset isomorphism is any bijection π : D�→D2 that respects the partial order-
ing,

d1 ≤D d2 ⇐⇒ π(d1) ≤E π(d2),

and it is automatically monotone and continuous.

Theorem 8.1 (Fixed Point Theorem). Every monotone mapping π : D → D on a
complete poset to itself has a least fixed point

x = (μx ∈ D)[x = π(x)],

characterized by the following two properties:

x = π(x), (∀y)[π(y) ≤D y =⇒ x ≤ y];

in fact, x = xκ for every sufficiently large ordinal number κ, where the transfinite
sequence {xξ}ξ (of iterates of π) is defined by the recursion

xξ = π(sup{xη | η < ξ}), (30)

and we may take κ = ω if π is continuous.

Moreover, if π : D × E →D is monotone (respectively, continuous) and D is com-
plete, then the mapping

ρ(y) = (μx ∈ D)[π(x, y) = x] (y ∈ E)

is monotone (respectively, continuous), ρ : E → D.

Elementary Algorithms and Their Implementations 115

When D = D1 × · · · × Dn is a product of complete posets, then the Least Fixed
Point Theorem guarantees the existence of canonical (least) solutions

x1 : E → D1 . . . , xn : E → Dn

for each system of monotone, recursive equations with parameters

x1(y) = π1(x1, . . . , xn, y)
x2(y) = π2(x1, . . . , xn, y)

· · ·
xn(y) = πn(x1, . . . , xn, y);

(31)

the solutions are monotone, and if each πi is continuous, then they are continu-
ous.

For any sets X1, . . . , Xn, Y , a partial function f : X1 × · · · × Xn ⇀ Y is any
mapping

f : X1 × · · · ×Xn → Y⊥.

Sometimes we identify f with its obvious liftup

f̂ : X1,⊥ × · · · ×Xn,⊥ → Y⊥,

which takes the value ⊥ if any one of its arguments is ⊥. The composition of partial
functions is defined using these liftups: for x ∈ X1 × · · · ×Xn, w ∈ Y ,

f(g1(x), . . . , gn(x)) = w

⇐⇒ (∃u1, . . . , un)[g1(x) = u1 & · · · & gn(x) = un & f(u1, . . . , un) = w].

We will use the familiar notations for convergence and divergence of partial func-
tions,

f(x)↓ ⇐⇒ f(x) �= ⊥, f(x)↑⇐⇒ f(x) = ⊥.

For any poset D and any complete poset E, the function spaces

Mon(D → E) = {π : D → E | π is monotone},
Cont(D → E) = {π : D → E | π is continuous}

are complete posets with the pointwise partial ordering,

π ≤ ρ ⇐⇒ (∀x ∈ D)[π(x) ≤E π(y)];

this is also true of the partial function spaces

(X1 × · · ·Xn ⇀ Y) = {f : X1 × · · · ×Xn ⇀ Y } = Mon(X1 × · · ·Xn → Y⊥),

with which we are primarily concerned in this article. We list here two properties of
them that we will need.

116 Yiannis N. Moschovakis and Vasilis Paschalis

Definition 8.2 (Scott domains). Two points d1, d2 in a poset D are compatible if
their doubleton {d1, d2} has an upper bound in D; and D has the Scott property, if
any two compatible points d1, d2 ∈ D have a (necessarily unique) least upper bound:

(∃e)[d1 ≤ e & d2 ≤ e] =⇒ sup{d1, d2} exists.

Proposition 8.3. Every partial function poset (X ⇀ Y) has the Scott property; and
if D1, . . . , Dn have the Scott property, then their product D1 × · · · × Dn also has
the Scott property.

Proof. For compatible d1, d2 : X ⇀ Y , clearly sup{d1, d2} = d1 ∪d2, which is the
least common extension of d1 and d2. The second statement follows by induction on
n, using the obvious fact that D1× · · · ×Dn×Dn+1 and (D1× · · · ×Dn)×Dn+1

are isomorphic. ��

The next proposition gives a normal form for all poset isomorphisms between partial
function spaces, which we need in the proof of Theorem 4.2 (and it may be well
known but we could not find it in the literature).

Proposition 8.4. For any sets S1, S2, Y1, Y2, suppose ρ : S1�→S2 and for each s ∈
S1, σs : Y1�→Y2 are given bijections, and set

π(p)(ρs) = σs(p(s)) (p : S1 ⇀ Y1, π(p) : S2 ⇀ Y2). (32)

Then π is a poset isomorphism, and every poset isomorphism

π : (S1 ⇀ Y1)�→(S2 ⇀ Y2)

satisfies (32) with suitable ρ, {σs}(s∈S1).

Proof. We skip the easy verification that the map defined by (32) is a poset isomor-
phism.

For the converse, fix an isomorphism π : (S1 ⇀ Y1)�→(S2 ⇀ Y2), and for each
s ∈ S1 and each y ∈ Y1, let

py
s(t) =

{
y, if t = s,

⊥, otherwise,

so that py
s : S1 ⇀ Y1. Each py

s is minimal above ⊥ (atomic) in (S1 ⇀ Y1) and, in
fact, every minimal above⊥ point of (S1 ⇀ Y1) is py

s for some s and t. It follows that
each π-image π(py

s) : S2 ⇀ Y2 is a minimal (above⊥) partial function in (S2 ⇀ Y2)
that converges on a single point in S2, and so we have functions ρ : S1 × Y1 → S2

and σ : S1 × Y1 → Y2 so that

π(py
s)(t) = q

σ(s,y)
ρ(s,y) (t) =

{
σ(s, y), if t = ρ(s, y),
⊥, otherwise.

(33)

(1) For all s, y1, y2, ρ(s, y1) = ρ(s, y2).

Elementary Algorithms and Their Implementations 117

Proof. If ρ(s, y1) �= ρ(s, y2) for some s, y1 �= y2, then the partial functions qσ(s,y1)
ρ(s,y1)

and qσ(s,y2)
ρ(s,y2)

are compatible (since they have disjoint domains of convergence) with
least upper bound given by their union

q = q
σ(s,y1)
ρ(s,y1)

∪ qσ(s,y2)
ρ(s,y2)

;

but then the inverse image π−1(q) is above both py1
s and py2

s , which are incompatible,
which is absurd. (1)��

We let ρ(s) = ρ(s, y) for any (and all) y ∈ Y1, and we set σs(y) = σ(s, y), so that
the basic definition (33) becomes

π(py
s) = q

σs(y)
ρ(s) , (ρ : S1 → S2, s ∈ S1, σs : Y1 → Y2, y ∈ Y1). (34)

(2) The map ρ : S1�→S2 is a bijection.

Proof. To see that ρ is an injection, suppose ρ(s1) = ρ(s2) and fix some y ∈ Y1. If

σs1(y) = σs2 (y), then q
σs1 (y)

ρ(s1) = q
σs2(y)

ρ(s2) , and so py
s1

= py
s2

, which implies that s1 =
s2, since these two equal partial functions have respective domains of convergence,
the singletons {s1} and {s2}; and if σs1(y) �= σs2 (y), then the two partial functions

q
σs1 (y)

ρ(s1) and q
σs2 (y)

ρ(s2) are incompatible, which means that their π-preimages py
s1

and
py

s2
must also be incompatible—which can only happen if s1 = s2.

To see that ρ is surjective, suppose t ∈ S2, fix some w ∈ Y2, and set

r(u) =

{
w, if u = t,

⊥, otherwise.
(u ∈ S2).

This is a minimal point in (S2 ⇀ Y2), so there exist s ∈ S1, y ∈ Y1 such that

π(py
s) = r—which means that qσs(y)

ρ(s) = r, and hence t = ρ(s), since the respective
domains of convergence of these two partial functions are {ρ(s)} and {t}. (2)��

(3) For each s ∈ S1, the map σs : Y1�→Y2 is a bijection.

Proof. If σs(y1) = σs(y2), then qσs(y1)
ρ(s) = q

σs(y2)
ρ(s) , so that py1

s = py2
s , which implies

y1 = y2; thus σs is an injection. And finally, for each w ∈ Y2, let

r(t) =

{
w, if t = ρ(s),
⊥, otherwise;

this is a minimal point in (S2 ⇀ Y2), and so there is some s′, y such that

π(py
s′) = q

σs′ (y)
ρ(s′) = r;

by considering the domains of convergence of these two points we conclude as above
that ρ(s′) = ρ(s), so that s′ = s by (2), and then considering their values, we get the
required t = σs(y). (3)��

This concludes the proof of the Proposition. ��

118 Yiannis N. Moschovakis and Vasilis Paschalis

References

1. P. van Emde Boas. Machine models and simulations. In Jan van Leeuwen, editor, Hand-
book of Theoretical Computer Science, Vol. A, Algorithms and Complexity, pages 1–66.
Elsevier and MIT Press, 1994.

2. J. McCarthy. A basis for a mathematical theory of computation. In P. Braffort and
D Herschberg, editors, Computer Programming and Formal Systems, pages 33–70. North-
Holland, 1963.

3. Y. N. Moschovakis. Abstract recursion as a foundation of the theory of algorithms. In
M. M. Richter et. al., editors, Computation and Proof Theory, Vol. 1104, pages 289–364.
Springer-Verlag, Berlin, 1984. Lecture Notes in Mathematics.

4. Y. N. Moschovakis. The formal language of recursion. The Journal of Symbolic Logic,
54:1216–1252, 1989.

5. Y. N. Moschovakis. A mathematical modeling of pure, recursive algorithms. In A. R.
Meyer and M. A. Taitslin, editors, Logic at Botik ’89, Vol. 363, pages 208–229. Springer-
Verlag, Berlin, 1989. Lecture Notes in Computer Science.

6. Y. N. Moschovakis. On founding the theory of algorithms. In H. G. Dales and G. Oliveri,
editors, Truth in Mathematics, pages 71–104. Clarendon Press, Oxford, 1998.

7. Y. N. Moschovakis. What is an algorithm? In B. Engquist and W. Schmid, editors, Math-
ematics unlimited – 2001 and Beyond, pages 929–936. Springer, 2001.

8. V. Paschalis. Recursive algorithms and implementations, 2006. (M.Sc. Thesis, in Greek).

Applications of the Kleene–Kreisel Density Theorem
to Theoretical Computer Science

Dag Normann

Department of Mathematics, The University of Oslo, Blindern N-0316 Oslo, Norway
dnormann@math.uio.no

Summary. The Kleene–Kreisel density theorem is one of the tools used to investigate the
denotational semantics of programs involving higher types. We give a brief introduction to the
classic density theorem, then show how this may be generalized to set theoretical models for
algorithms accepting real numbers as inputs, and finally survey some recent applications of
this generalization.

1 Introduction

Classical Computability Theory is the study of what may actually be computed, when
the objects used for inputs are finite entities like integers or words in a finite alphabet.
Of course, relativized computability, complexity issues, and other aspects of genuine
computations will be considered to be in the realm of classical computability theory
as well.

In Generalized Computability Theory we analyze mathematical structures that sup-
port alternative forms of computations or computation-like phenomena. Normally,
it is the mathematical structures that are important, the concepts of computability
are adjusted to these structures. We will use “CT” for “Computability Theory” and
“GCT” for “Generalized Computability Theory.”

In Computer Science the strategy is often different. There the actual programs and
computations are what is important, and the mathematical models used for deno-
tational semantics are of importance only to the extent they help us analyze the
programming languages and programs. The split in attitude between CT and TCS
(Theoretical Computer Science) is not absolute, and the same concepts of com-
putability over the same mathematical structures will be studied occasionally both
in CT and in TCS.

In this paper we will give a survey of the theory for continuous functionals of higher
types, and we will focus on recent nontrivial applications of the Kleene–Kreisel

120 Dag Normann

density theorem and its generalizations. The paper will be semi-technical, with some
formal definitions, but only indications of proofs. For a general overview of the inter-
play between the CT-approaches and the TCS-approaches to computations in higher
types in general, see Normann [20].

In 1959 Kleene [13] and Kreisel [14] introduced what is now known as the Kleene–
Kreisel continuous functionals. The motivation behind the two papers were different,
the two approaches were different, and in fact, the two concepts of countable func-
tional due to Kleene and of continuous functional due to Kreisel are not equivalent.
Still, both authors claimed that the two approaches were essentially equivalent, with-
out offering proofs. In Section 2 we will give a definition based on domain theory.
We will let Ct(σ) be the set of total continuous functionals of finite type σ.

Kleene’s aim was to find a natural notion of computations relative to higher type
objects. He observed that there is a natural sub-hierarchy, the countable functionals,
of the full type structure that is closed under his notion of computability. Kreisel’s
motivation behind introducing the continuous functionals of finite type was to give
an interpretation of the constructive content of a statement in second-order number
theory. This should enable him to decide in an absolute way whether a statement in
analysis is constructively true. We will not go into this analysis here.

In both approaches, the aim was to construct a hierarchy of total functionals of finite
type, where the action of one functional Ψ on an input F is locally determined via
finite “approximations” to Ψ and F . Kleene used associates, i.e. functions in NN, to
represent the functionals, whereas Kreisel used certain “total” ideals of formal neigh-
borhoods. The Kleene–Kreisel density theorem was formulated in two ways:

Kleene: The set of finite sequences that may be extended to an associate for an object
of type σ is computable.

Kreisel: Each formal neighborhood can be extended to a total ideal.

The density theorem was used to prove this now classical result:

Theorem 1 [Kreisel] Let A ⊆ NN be Π1
k where k ≥ 1. Then there is a primitive

recursive relation R in NN × Ct(k) × N (where k denotes the pure type at level k)
such that

f ∈ A⇔ ∀Φ ∈ Ct(k)∃n ∈ NR(f, Φ, n).

The density theorem enables us to systematically replace a quantifier of the form
∃F ∈ Ct(k−1)S(F) by ∃n ∈ NS(Fn) where {Fn}n∈N is an effectively enumerated
dense subset and S is a predicate that is computable in some parameters.

2 A modern view of the Kleene–Kreisel functionals

The two approaches to the continuous functionals discussed in Section 1 both belong
to the CT-tradition. There is, however, an alternative approach more natural from the

Applications of the Kleene–Kreisel Density Theorem 121

point of view of TCS, the approach via domains. In reality, this approach is not far
from Kreisel’s, but in spirit there is a certain gap. In CS it is important to model par-
tiality, so the main structure is a hierarchy of partial continuous functionals. In order
to define this hierarchy, we use domain theory, initiated by Scott [31] and by Ershov
[9]. We will start with a brief introduction to domain theory. See Stoltenberg-Hansen,
Lindström, and Griffor [33], Abramsky and Jung [1], or Amadiou and Curien [2] for
detailed introductions.

2.1 Scott domains

A complete partial ordering, a cpo for short, is a partial ordering (X,#) such that
each directed subset has a least upper bound �A. A cpo is bounded complete if each
bounded set will have a least upper bound. Since the empty set is directed, a cpo X
will have a least element, named ⊥X or just ⊥. x ∈ X is compact or finitary if for
each nonempty directed set A with x # �A there will be an a ∈ A such that x # a.
A cpo (X,#) is an algebraic domain if for each x ∈ X , the set

Cx = {x0 ∈ X | x0 is compact and x0 # x}

is directed and x = �Cx.

If X is bounded complete, Cx as defined above will always be directed.

In this paper we will restrict ourselves to Scott domains, i.e. bounded complete alge-
braic domains where the set of compacts is countable.

If (X,#X) and (Y,#Y) are two cpos, we define a function f : X → Y to be
continuous if f is monotone, and for each directed set A ⊆ X , we have that

f(�XA) = �Y {f(a) | a ∈ A}.

If we use the pointwise ordering of the continuous functions fromX to Y , we obtain
a new cpo, and if we in addition are dealing with Scott domains, the function space
will be a Scott domain. We are not going to prove this here. The key to the argument
for Scott domains is to characterize the compacts in X → Y as the least upper
bounds of finite bounded sets of step functions, where whenever p is a compact in X
and q is a compact in Y , we define the step function fp,q by

fp,q(x) = q if p #X x,

fp,q(x) = ⊥Y if p �#X x.

If we use the continuous functions as morphisms, the Scott domains form a category
that is cartesian closed.

There is a natural, non-Hausdorff topology on a Scott domain, known as the Scott
topology:

122 Dag Normann

Definition 2 The Scott topology on a Scott domain (X,#) is the topology generated
from the base consisting of all

{x ∈ X | x0 # x},

where x0 varies over all compacts in X .

A subset H ⊆ X will be dense if it is dense with respect to the Scott topology, which
means that every compact will have an extension in H . We justify our definition
of continuous function from X to Y by observing that this means continuous with
respect to the Scott topologies on X and Y .

In a bounded complete cpo, a set A is bounded if and only if each finite subset A0

is bounded. If in addition, a set A is bounded whenever all subsets A0 with at most
two elements are bounded, the cpo is a coherence space. It is a basic and easy fact of
domain theory that X → Y is a coherence space wheneverX is an algebraic domain
and Y is a coherence space.

2.2 Partial continuous functionals of finite type

Scott [31] introduced a formal logic LCF . In the language of LCF we have terms
expressing functionals of higher types, and in the formal theory, we can reason about
the relationship between various terms. His language is based on typed combinators,
and he introduced a set of typed constants to be interpreted as the least fixed point
operators at each type.

In this (for a long time) unpublished paper, Scott also gave a set-theoretical model
for LCF . One important motivation at the time was that untyped λ-calculus lacked
a set-theoretical model, and Scott suggested that LCF could replace λ-calculus for
any practical purpose. We are not going to discuss the motivation of Scott further. To
us, what is of interest is that Scott gave an interpretation D(σ) for each finite type σ
and by that laid the foundation of domain theory. For example, the natural numbers
will be interpreted as the set D(ι) = {⊥, 0, 1, . . .}, where ⊥ signifies the undefined
and a # b ⇔ a = b ∨ a = ⊥. This domain is known as the flat domain of natural
numbers and is one of the base domains in the semantics for LCF . Another base
domain will be the similar flat domain D(o) of boolean values {⊥, tt, ff}. Then
each finite type σ over the base type ι for the natural numbers and o for the booleans
is interpreted as D(σ) in the cartesian closed category of Scott domains. D(σ) will
also be a coherence space.

It is in order to make the interpretation of the constants for the fixed point operators
possible that we need cpos; if f : X → X is continuous, then �{fn(⊥) | n ∈ N}
actually will be a least fixed point of f .

Developing the theory of enumerations, Ershov came up with concepts equivalent
to Scott domains. Since it is irrelevant to our story, we will not give any details.

Applications of the Kleene–Kreisel Density Theorem 123

Ershov’s characterization of the Kleene–Kreisel continuous functionals can be found
in [9].

Although methodologically inspired from CT, LCF is a contribution to TCS, and
[31] turned out to be an influential paper beyond its CT-content. Plotkin [28] re-
formulated LCF into the typed λ-calculus PCF . Special PCF is typed λ-calculus
with constants for all natural numbers and boolean values, constants for the successor
function, the predecessor function, the boolean test of zero-hood, and the condition-
als over the two base types ι and o. In addition there are constants for the fixed point
operator at every type. There are conversion rules from λ-calculus together with spe-
cial rules for all the special constants.

Later we will discuss an application of the density theorem to a problem concerning
PCF ; see Section 3. For now, let us mention three important results:

1. To the extent it makes sense, Kleene’s S1–S9-computability interpreted over the
partial computable functionals is equivalent to PCF .

2. There is a compact object of mixed type 1 that is not the interpretation of any
PCF -term.

3. If a closed PCF -term t of base type is interpreted as an element �= ⊥, then we
may rewrite t to the constant for the interpretation using the conversion rules.

The proof of 1. goes back to Platek’s thesis [27], where it is proved in the discon-
tinuous case. A proof can also be found in Moldestad [18]. 2. is also known since
Platek [27] and is observed in Scott [31] and Plotkin [28]. It is relevant to us to
observe that this compact, an interpretation of parallel or, cannot be extended to a
PCF -definable object. Thus the PCF -definable objects do not form a dense subset
of the underlying domains seen as topological spaces. 3. is one of the main results of
Plotkin [28] and is known as the Plotkin adequacy theorem.

2.3 Hereditarily total functionals

We may construct the Kleene–Kreisel continuous functionals from the partial con-
tinuous functionals via the so-called hereditarily total functionals.

Definition 3 a) For each finite type σ over the base types ι and o, we are going to
define the set H(σ) ⊂ D(σ) of hereditarily total elements:

1. H(ι) = N and H(o) = B = {tt, ff}.

2. Let σ = τ → δ, and assume that H(τ) and H(δ) are both defined. Let
f ∈ D(τ → δ).
Then

f ∈ H(σ) ⇔ ∀x ∈ H(τ) (f(x) ∈ H(δ)).

b) By recursion on the type σ, we define an equivalence relation ≈σ on H(σ) as
follows:

124 Dag Normann

1. ≈ι and ≈o are the identity relations on N and B, respectively.

2. If σ = τ → δ and f and g are in H(σ), we let

f ≈σ g ⇔ ∀x ∈ H(τ)∀y ∈ H(τ)(x ≈τ y ⇒ f(x) ≈ g(y)).

Longo and Moggi [16] observed that we with ease may prove that

x ≈σ y ⇔ x � y ∈ H(σ)

when x and y are in H(σ). It then follows that ≈σ is an equivalence relation, some-
thing that had been seen as a consequence of the density theorem until then.

The best we can do withinPCF with respect to the density theorem is to prove

Proposition 4 Let σ be a finite type, and let x0 ∈ D(σ) be compact. Then there is a
hereditarily total PCF -definable x ∈ H(σ) such that x and x0 are consistent.

Although we have dropped every detail that could verify our claims, we are now
in the position of giving a precise definition of the continuous functionals of finite
type:

Definition 5 By recursion on the finite type σ we define the set Ct(σ) of continu-
ous functionals of type σ together with the surjective map ρσ : H(σ) → Ct(σ) as
follows:

1. Ct(ι) = N and Ct(o) = B. ρι and ρo are the respective identity maps.

2. Let σ = τ → δ, and assume that Ct(τ), ρτ , Ct(δ), and ρδ are defined.
If F : Ct(τ) → Ct(δ) and f ∈ H(σ), we let F = ρσ(f) if for all x ∈ H(τ),
we have that

F (ρτ (x)) = ρδ(f(x)).

We then define Ct(σ) as the image of ρσ .

We need to establish a few facts before we can claim that this definition makes sense
for all types. The following lemma is easy to prove by induction on the type:

Lemma 6 For every type σ we have that ρσ(f) is defined for each f ∈ H(σ) and
that when f and g are in H(σ), we have that

f ≈σ g ⇔ ρσ(f) = ρσ(g).

Each set H(σ) will have a topology inherited from the Scott topology on D(σ), and
thus induce a quotient topology on Ct(σ) via the identification map ρσ.

There are numerous characterizations of the Kleene–Kreisel functionals. The char-
acterizations are mainly of two kinds:

1. We choose a way to model partial computable functionals and then we extract
the hereditarily total objects.

Applications of the Kleene–Kreisel Density Theorem 125

2. We construct the hierarchy directly by imposing a superstructure, like a limspace
structure or a topology, at each step.

The interesting fact is that, in particular for the first category, most conceptually
well-based approaches lead to the same hierarchy of total functionals, even though
the philosophy behind the superstructure (partial objects, limstructure, etc.) may dif-
fer.

2.4 The density theorem

Definition 7 By recursion on the type σ we will define the n’th approximation (a)n

to any element a of D(σ):

1. If σ = ι and m ∈ N, we let (m)n = min{n,m}.⊥n = ⊥.

2. If σ = o and a ∈ B⊥, we let (a)n = a.

3. If σ = τ → δ, f ∈ D(σ), and a ∈ D(τ), we let (f)n(a) = (f((a)n))n.

The following lemmas are trivial:

Lemma 8 For each type σ and each n ∈ N, {(a)n | a ∈ D(σ)} is finite.

Lemma 9 For each type σ, each a ∈ H(σ) and n ∈ N, (a)n ∈ H(σ).

Lemma 10 Let σ be a type, and let a ∈ D(σ) be compact. Then there is a number
n such that for all m ≥ n we have

a # (a)m.

We will then have

Theorem 11 [Density Theorem] Let σ be a finite type.

a) Consistency (boundedness) is an equivalence relation on pairs from H(σ).

b) Each compact a ∈ D(σ) has an extension to an element of H(σ).

The density theorem is proved over and over again in the literature, [4, 9, 13, 14] and
in surveys in general. In the proof, a) and b) are proved by simultaneous induction
on the type. In order to prove b) one proves that for each compact a of type σ there
is a total Φ of type σ such that a is consistent with (Φ)m, where m ≥ n is as in
Lemma 10.

2.5 Kleene schemes

The Kleene schemes S1–S9 were introduced in [12]. They can be seen as nine clauses
in a grand inductive definition defining the relation

126 Dag Normann

{e}(φ1, . . . , φk} & a,

where each φi will be a functional of pure type and a ∈ N. The interpretation of these
schemes will depend on the typed structure at hand. To us, three such structures are of
interest, the full type structure {Tp(n)}n∈N of total functionals, the Kleene–Kreisel
functionals {Ct(n)}n∈N, and the Scott hierarchy {D(n)}n∈N. We will not give a
detailed introduction to S1–S9; see the original paper [12] or any later survey. The
three first schemes introduce basic arithmetical functions like identity, successor, and
constants. S4 is composition, S5 primitive recursion, S6 permutation of variables,
and S7 the application operator on (N → N)×N. S8 is a combination of application
and composition at higher types:

{e}(Φk+2, φ1, . . . , φn) & Φ(λξk.{d}(ξ, Φ, φ1, . . . , φn)),

where e depends on d.

If we interpret this scheme over the full type structure or over the Kleene–Kreisel
type structure, we require that λξk.{d}(ξ, Φ, φ1, . . . , φn) is total, whereas this is
relaxed in the Scott hierarchy since non-total functionals are present there. As we
will see, this has a dramatical effect on the computational power of S1–S9.

Tait [34] observed that the fan functional is not S1–S9-computable over the Kleene–
Kreisel functionals. Later, Martin Hyland [10, 11] showed that the functional Γ ,
defined by Gandy, is not S1–S9-computable relative to the fan functional. Finally,
Normann [19] showed that for any type k ≥ 3 and any continuous Φ of type k,
there is a continuous Ψ of type k that is not S1–S9-computable relative to Φ and any
continuous functional of lower type.

However, if we move to type k + 1 we can find a functional Φ with a computable
associate such that every ψ ∈ Ct(k) is uniformly μ-computable relative to Φ and
any associate for ψ. This was also proved in [19].

3 The Cook–Berger Problem

Although S1–S9 interpreted over the Kleene–Kreisel continuous functionals is an
interesting example of a computation theory, the relevance to TCS is rather mea-
ger. In modeling real computations, partiality is an important aspect. Moreover, the
requirement in the traditional interpretation of S8:

{e}(Φ, �φ) & Φ(λξ{d}(ξ, Φ, �φ))

that λξ{d}(ξ, Φ, �φ) must be total, is rather unnatural. On the contrary, it is natu-
ral to imagine that we may have an algorithm for Φ that now and then consults
λξ{d}(ξ, Φ, �φ) and after finitely many steps provides the value ofΦ(λξ{d}(ξ, Φ, �φ)).

PCF , with its operational semantics, is actually making this idea precise, and then,
in a denotational semantics for PCF we have to accept a more liberal interpretation

Applications of the Kleene–Kreisel Density Theorem 127

of what corresponds to S8. Again, this is obtained by interpreting S8 over the Scott
hierarchy of partial continuous functionals.

What is interesting from a foundational point of view is that when we customize S8
to TCS, we increase the computational power of S1–S9 considerably. One simple
example is the functional Γ defined by the equation

Γ (F) = F0(λn.Γ (Fn+1)).

Using the fixed point operator in PCF , we see that Γ is a well-defined functional,
and that actually Γ ∈ H(3). If we interpret the index obtained by the recursion
theorem in the Kleene–Kreisel hierarchy, we just get the nowhere defined functional.
As remarked above, Γ is not S1–S9-computable in this latter sense. This shows that
relaxing the requirements on S8 increases the computational power.

Apparently, Robin Gandy (unpublished) had made a similar observation for the fan
functional. The fan functional essentially evaluates the modulus of uniform continu-
ity of a continuous F ∈ Ct(2) over a compact Cf = {g ∈ NN | g ≤ f} in NN.
Independently, Berger [4] showed that there is a representative Φ ∈ H(3) for the
fan functional that is S1–S9-computable in the Scott-hierarchy sense. Simpson [32]
used this to show that we may write a PCF -program for Riemann integration if the
reals are represented by the elements of a given σ-compact subset of NN. We will
not go into detail, but the point is that we may write programs for functions of in-
terest in mathematics using PCF or S1–S9 and suitable representations of the data
as domain elements. Thus it is of foundational interest to see to which extent we are
able to write programs for functionals. Cook asked if, and Berger suggested that all
Kleene–Kreisel functionals that have computable associates also have hereditarily
total representatives that are PCF -computable. It turned out that this is true in a
rather strong sense:

Theorem 12 (Normann [21]) Let σ be a finite type. There is a PCF -definable
function EV AL of type (ι → ι) → σ such that whenever a ∈ H(σ) and f enu-
merates (the Gödel numbers of) the set of compacts in D(σ) bounded by a, then
EV AL(f) ∈ H(σ) and EV AL(f) # a.

It will lead too far to give the details of the construction; see [21] or [22]. In [22] we
only prove the theorem for type 3. There are some obstacles that are not visible at
this level. Here we will explain how the density theorem is used.

For types ≤ 2 the theorem is quite easy, and the standard way of computing a total
functional of type 2 from an enumeration of its approximations actually will give a
G # F but not F itself in all cases. If we know that {fpn,bn}n∈N are step functions
approximating F and f is given, we may for each n ask whether f is consistent with
pn. If it is, we let G(f) = bn, whereas if f is not consistent with pn, we go to the
next step function approximating F for help.

If φ is of type 3, we may try a similar strategy. The problem is that consistency of an
F ∈ H(2) and a compact p ∈ D(2) is not decidable; we just have that inconsistency

128 Dag Normann

is semi-decidable. In order to semi-decide inconsistency between F ∈ H(2) and a
compact p ∈ D(2), we search through an effectively enumerated dense subset of the
domain of p for an argument ξ such that p(ξ) and F (ξ) differ.

Now we let {fpn,bn}n∈N be an enumeration of all step functions bounded by φ ∈
H(3), and we let F ∈ H(2). One ingredient in the algorithm for ψ(F) is that we
for each n search for a witness to the fact that pn is inconsistent with F . If we find a
witness, we just go on to n+1. If we do not find a witness, and pn # F , the result of
the search will be a partial object q for which pn(q) = F (q) ∈ N and we conclude
that ψ(F) = bn. The problematic case is when neither of these occur, and then we
have in parallel to search for a later stage actually verifying that ψ(F) = bn in any
case, and then it does not matter that we found no witness either way. The functional
ψ constructed this way will then be total, and ψ # φ. This argument explains where
density is used, but it is of course not complete.

At type 3 we only use that there is an effectively enumerated dense set of objects of
type 1. At higher types we have to use the full density theorem to the same effect.
The obstacle is that not every functional constructed in order to verify the density
theorem will be PCF -definable. Thus we have to use induction on the type, applying
our construction to the effective enumerations of the approximations to the witnesses
to the density theorem. We will not discuss the details here.

The Scott model is not fully abstract for PCF . This means that there are compacts
in the Scott model that are not PCF -definable. Milner [17] showed that there ex-
ist one, and up to isomorphism, only one fully abstract model for PCF consisting
of algebraic domains. Of course we may define the class of hereditarily total ob-
jects in Milner’s model as well; consistency will be an equivalence relation on these
objects, so we may even form the extensional collapse of the hereditarily total el-
ements of Milner’s model. Plotkin [29] showed as a corollary of Theorem 12 that
this construction leads us to the Kleene–Kreisel continuous functionals. Thus Mil-
ner’s construction is an alternative characterization. Recently Longley [15] showed
that under reasonable general assumptions constructions of an extensional hierar-
chy of total continuous functionals containing NN at type 1 tends to end up with
the Kleene–Kreisel functionals. Longley’s proof is an elaboration on the argument
from [21], where showing that we can simulate the effect of the density theorem is a
nontrivial ingredient.

4 Replacing the natural numbers with the real numbers

Up to now, we have considered various models for computing relative to functionals
of finite types over the natural numbers. Although we accept inputs to our algorithms
that are infinite, the sets of natural numbers and boolean values are at the bottom, and
these are discrete sets of data easily represented as digital data in a computer. As long
as we are not involved in complexity issues, the nature of the representation is not
important.

Applications of the Kleene–Kreisel Density Theorem 129

If we want to use other data-types, such as the real numbers, the set of differen-
tiable functions on the complex numbers, certain Polish spaces, or even structured
Polish spaces like Banach spaces, the situation is quite different. Then in addition to
discussing which principles for forming valid algorithms we will accept and which
superstructures we will find useful for the denotational semantics, we also have to
discuss how to represent the basic data in digital form. Given a representation of
basic data, there will be a conflict of interest:

1. If we write programs using the representation, we may get more efficient pro-
grams and we may be able to write programs solving more problems than we
otherwise might.

2. If we hide the representation and write programs in a language based on the
algebra of the data-type itself, it may be easier to analyze each program and to
verify correctness.

It is well established that the decimal representation of real numbers is not suit-
able for modeling computability. Moreover, traditional constructions of R within set
theory, like the set of Dedekind cuts or the set of equivalence classes of Cauchy
sequences, do not lead to useful computational models either. As is customary in
constructive analysis, Cauchy sequences with a prefixed rate of convergency works
much better.

In this paper we will consider two ways of representing reals, one improvement
of the Dedekind cut representation and one improvement of the Cauchy sequence
representation. Although both approaches are good for analyzing what we mean by
computable reals and computable functions on the reals, we will see that they may
make a difference for the objects of higher types. In both cases there will be domains
of partial computable functionals, and we will extract the hierarchies of total ones as
substructures of particular interest.

4.1 The extensional hierarchy

Given the Dedekind cut of a real x, we may approximate x by half open rational
intervals (p, q] by first looking for a pair p0, q0 with distance ≤ 1, where p0 is in
the cut and q0 is not, and then we recursively test whether pn+qn

2 is in the cut in
order to decide whether this is pn+1 or qn+1. The problem with cuts is that they are
asymmetric, and it has turned out to be better to work with closed rational intervals
as approximations. We let R0(0) be the set of closed rational intervals ordered by
reverse inclusion (0 will denote the one base type now), and we let R(0) be the
set of ideals in this ordered set. An ideal I will determine a closed interval I of
reals, the intersection of the ideal. We let an ideal be total if it determines an interval
[x, x] of length zero, and then we say that it represents x. Rational numbers can be
represented in three ways, whereas irrational numbers are only represented by one
ideal each.

130 Dag Normann

Remark 13 We have chosen to use the algebraic domain version of the closed in-
terval way of approximating reals. Even more common is the continuous domain
of all closed intervals ordered by reverse inclusion. The point with both these do-
mains is that the ordering of the domain elements only reflects the set of reals they
approximate. Thus we call this an extensional way of representing reals via finite
approximations.

We are now ready to define the full hierarchy of domains interpreting functionals of
finite types over the reals. Replacing N⊥ with R(0) and N with R we may copy the
definition of theCt(σ)-hierarchy definingR(σ) in the category of algebraic domains
for each finite type σ, the set HR(σ) of hereditarily total elements of type σ, the
equivalence ≈R

σ on HR(σ), and the extensional collapse hierarchy {CtR(σ)}σ type

with the corresponding identification functions ρR
σ . Details may be found, for exam-

ple, in Normann [23].

It is easy to see that each CtR(σ) is organized into a topological vector-space in a
natural way. By induction on the type, we also see that each compact p in R(σ) will
determine a closed, convex subset V p

σ of CtR(σ), the set of objects with a repre-
sentative in HR(σ) extending p. We will use the convexity of V p

σ in the following
way:

Lemma 14 Let a1, . . . , an be elements in V p
σ , and let μ be a probability distribution

on {1, . . . , n}. Then
n∑

i=1

μ(i)ai ∈ V p
σ .

We are now going to discuss the density theorem, originally due to Normann [23]
but with an alternative proof in DeJaeger [5]:

Theorem 15 Let p be a compact in R(σ). Then there is an element a ∈ HR(σ)
extending p.

Since we have not given any detailed definitions, we will not give a detailed proof.
We will, however, indicate how a proof goes, and our approach here is closer to
DeJaeger’s proof than to our original argument.

Definition 16 By recursion on the type σ for each n ∈ N we define a finitary type-
structure {Xn(σ)}σ type as follows:

Xn(0) = { k
n! | − (n+ 1)! ≤ k ≤ (n+ 1)!},

Xn(τ → δ) = {h | h : Xn(τ) → Xn(δ)}.

We are now, by simultaneous recursion for each n, going to define an embedding
νn,σ : Xn(σ) → HR(σ) and for each a ∈ HR(σ) a probability distribution μn,σ(a)
on Xn(σ). The prime objects are the embeddings νn,σ, and the probability distribu-
tions will replace projections that are used for similar purposes in the discrete case
(N instead of R).

Applications of the Kleene–Kreisel Density Theorem 131

Definition 17

1. Let σ = 0.

If x �∈ (−(n + 1), n + 1), we let μ(k
n!) = 1 if k

n! is the object in Xn(0)
closest to x; otherwise we let μ(k

n!) = 0.

If x ∈ (−(n + 1), n + 1), there are unique k ∈ Z and y ∈ [0, 1) such that
x = k

n! + 1−y
n! .

Let μn,0(k
n!) = y, μn,0(k+1

n!) = 1− y and μn,0(l
n!) = 0 for all l �= k, k+ 1.

2. Let σ = τ → δ

Let h ∈ Xn(τ → δ), a ∈ H(τ).
Let

νn,σ(h)(a) =
∑

c∈Xn(τ)

μn,τ (a)(c) · νn,δ(h(c)).

Now let f ∈ H(τ → δ) and h ∈ Xn(τ → δ).
Let

μn,σ(f)(h) =
∏

c∈Xn(τ)

μn,δ(f(νn,τ (c)))(h(c)).

We observe that at base type we are constructing explicit probability distributions,
whereas at higher types we are using finite products of probability distributions,
which again will be probability distributions. Thus μn,σ(a) is a probability distri-
bution for all n, σ, and a ∈ H(σ). We also observe that since all types are topologi-
cal vector spaces, we may view products with scalars and sums as partial continuous
operations on the underlying domains, and thus our constructions are sound and con-
tinuous over the underlying domains.

In an embedding-projection pair it is important that

projection ◦ embedding = identity.

In this setting, we formulate the similar phenomenon as

Lemma 18 For all types σ and each h ∈ Xn(σ), we have that

μn,σ(νn,σ(h))(h) = 1.

The proof is by induction on σ using a tedious but in principle simple calculation at
the induction step.

The density theorem will follow from

Lemma 19 Let p ∈ R(σ) be compact. Then there is a number np such that

a) For all n ≥ np there is a b ∈ Xn(σ) such that p is consistent with νn,σ(b).

132 Dag Normann

b) If a ∈ HR(σ) and p is consistent with a, then

μn,σ(a)({b ∈ Xn(σ) | p is consistent with νn,σ(b)}) = 1.

c) If a ∈ HR(σ), then a is pre-maximal in the sense that a has a unique maximal
extension.

Proof. We use induction on σ.
Let σ = 0.
Let p = [q, r], where q and r are rational numbers. Choose np such that |q|, |r| and
the denominators of q and r are bounded by np. This will do the trick for a) and b).
c) is trivial.
Let σ = δ → τ .
c) follows by the density theorem for τ and c for δ.
Let p be the least upper bound of the step functions {fqi,ri}i∈I where I is finite. Let

np = max{n	i∈Kqi , n	i∈Kri | K ⊆ I ∧ {qi | i ∈ K} is consistent}.

We now prove a) and b), assuming both a) and b) for τ and δ.

Proof of a):
By c) for τ we have that qi is consistent with a ∈ HR(τ) if and only if qi is in
the maximal extension of a, so the set of qi’s consistent with a is itself consistent.
Let n ≥ np, and by the induction hypothesis, let h ∈ Xn(σ) be such that for all
b ∈ Xn(τ), ri is consistent with νn,δ(h(b)) whenever qi is consistent with νn,τ (b).
So let a ∈ HR(τ) and let K = {i ∈ I | pi is consistent with a}. By definition,

νn,σ(h)(a) =
∑

c∈Xn(τ)

μn,τ (a)(c) · νn,δ(h(c)).

By the induction hypothesis, we only have to consider those c ∈ Xn(τ) where
νn,τ (c) is consistent with

⋃
{qi | i ∈ K}, and for those c, νn,δ(h(c)) will be in

V 	i∈Kri

δ . By the convexity of this set, we see that νn,σ(h)(a) ∈ V 	i∈Kri

δ . This veri-
fies a.
Proof of b):
Let n ≥ np, h ∈ Xn(σ), and f ∈ HR(σ) such that f is consistent with p, but
νn,σ(h) is not consistent with p. We verify b) by showing that μn,σ(f)(h) = 0.
μn,σ(f)(h) is defined to be a product, and it is sufficient to prove that one of the
factors is zero.

Since νn,σ(h) is not consistent with p, there must be an i ∈ I and a ∈ V qi
τ such that

νn,σ(h)(a) is inconsistent with ri.
By the argument of a), we can find b ∈ Xn(τ) such that νn,τ (b) is consistent with qi

while νn,δ(h(b)) is inconsistent with ri.
Since f is consistent with p, we have that f(νn,τ (b)) is consistent with ri and
f(νn,τ (b)) ∈ HR(δ). Then it follows by b) for δ that μn,δ(f(νn,τ (b)))(h(b)) = 0.
Since this is one of the factors in μn,σ(f)(h), we are through.

Applications of the Kleene–Kreisel Density Theorem 133

If we consider a typed hierarchy with both connected and discrete base types, e.g.,
domain representations of R and N, the density-theorem fails for trivial reasons. We
may find a compact approximation to a partial continuous function f : R → N
that is not constant, but all total such functions will be constant. In Normann [23]
we define an alternative hierarchy of domains with totality satisfying the density
theorem where the quotient spaces of hereditarily total functionals will be the same
as with the traditional Scott domain approach. The drawback is that we will leave
some interesting partial functionals out of this model. ��

4.2 The intensional hierarchy

In our first construction, we started with the closed interval domain where the ele-
ments represent approximations to the reals. This is called the extensional approach
and may be viewed as improvements of Dedekind cuts. Alternative ways of repre-
senting the reals are via data-streams, or more mathematically, via infinite words in
some alphabet. We will consider one example, the so-called negative binary digit
representation.

Definition 20 Let α ∈ Z×{−1, 0, 1}N
+

, where N+ = {1, 2, 3, . . .}. We consider α
as a function defined on N.
Let the real r(α) represented by α be

r(α) = α(0) +
∑

n∈N+

α(n) · 2−n.

Let REP0 be the set of such α’s.

We may consider REP0 as the total objects in the domain RI(0) (I for intensional)
of finite or infinite sequences ab1b2 . . ., where a ∈ Z and each bi ∈ {−1, 0, 1}. This
domain is again homeomorphic to a sub-domain of D(ι → ι), the domain of partial
continuous functions from N⊥ to N⊥ such that both the embedding and the projection
are total. This also suggests that based on this model, we may use this representation,
its higher type semantics, and a PCF -like language to give a semantics to typed
computations involving reals. This idea is discussed in more detail in DiGianantonio
[6, 7, 8] and Simpson [32].

Let us define the hereditarily total functionals REPσ with the equivalence relation
∼σ for each type σ:

Definition 21 We let RI(0) be as above, and we define RI(σ) for all finite types
σ over the base type 0 in the category of algebraic domains. By recursion on σ, we
define the set REPσ ⊆ R(σ) and the binary relation ∼σ on REPσ

σ = 0:
If f and g are in REP0, we let f ∼0 g if they represent the same real.

σ = τ → δ:
Let φ ∈ RI(σ). We let φ ∈ REPσ if

134 Dag Normann

i) a ∈ REPτ ⇒ φ(a) ∈ REPδ for all a ∈ R(τ).

ii) a ∼τ b⇒ φ(a) ∼δ φ(b) whenever a, b ∈ REPδ .

If φ and ψ are in REPσ we let φ ∼σ ψ if φ(a) ∼δ ψ(b) whenever a ∼τ b.

Except for the base type, REPσ will not be dense in RI(σ). There will be incon-
sistent compacts in RI(0) that can be extended to inconsistent but equivalent total
objects. This can be used to construct two consistent step-functions in RI(0 → 0)
that cannot be extended to any element in REP0→0.
It has actually been left open if the set of compacts that can be extended to a total
object is decidable, but this is probably because no one tried hard to prove it. In Nor-
mann [24], an alternative hierarchy of effective domains with totality, satisfying den-
sity and leading to the same coefficient spaces of total objects, was constructed. The
idea is that we introduce an extra relation representing “can be extended to equiva-
lent total objects” on the compacts, and we only accept the compacts in a function
space respecting this relation.

4.3 The coincidence problem

We have considered two hierarchies of total continuous functionals of finite types
over the reals, both constructed as quotients of hereditarily total objects in a hierar-
chy of algebraic domains, one based on the closed interval domain and one on the
negative binary representation of reals. There is a third approach, originating from
Weihrauch’s TTE [35]. In this approach one uses admissible representations at each
type. The coincidence problem is whether these approaches coincide, i.e., if the typed
structures defined via these approaches are the same.

Due to characterizations of the extensional hierarchy (Normann [23]) and the TTE-
based hierarchy (Schröder [30]) as the one obtained from the reals in the category of
limit spaces, these two approaches are known to be equivalent. Thus the real coin-
cidence problem is whether the domain theoretical approaches based on extensional
and intensional representations of the reals coincide. This problem is of course more
of a foundational than of a practical nature. In its nontechnical form, the question is
whether the choice of representation of reals as data will have any influence on what
is considered to be a continuous, total functional of higher type.

The problem was first addressed by Bauer, Escardó and Simpson [3], and they ob-
tained some partial results. Normann [26] showed that the coincidence problem is
equivalent to a topological problem about the Kleene–Kreisel functionals:

Is the topology generated by all continuous functions φ : Ct(n) → R zero di-
mensional for all n?

Theorem 22 (see below) is used to establish this equivalence.

Applications of the Kleene–Kreisel Density Theorem 135

5 Density and probability

In Ct(σ), two distinct objects of the same type can be separated by a clopen set, i.e.,
a set that i both closed and open. This is of course useful in algorithm design; defi-
nitions by cases are handy. Each space CtR(σ) is path connected [23], so definitions
by cases have to fail for some inputs. It has turned out that in some cases, elemen-
tary methods from probability theory can be combined with the density theorem to
overcome this lack of separation. The proof of the density theorem itself is one such
example. We will mention two more results here.

5.1 The embedding theorem

Theorem 22 Let CtR(σ) be the quotient space of the hereditarily total functionals
over R in the extensional hierarchy.
For each type σ there is a continuous map πσ : Ct(σ) → CtR(σ) such that π0 is the
standard embedding of N into R, and for each type σ = τ → δ, each φ ∈ Ct(σ) and
a ∈ Ct(τ), we have that

πσ(φ)(πτ (a)) = πδ(φ).

This theorem, and an analog result for the hierarchy based on the intensional repre-
sentation, is proved in [24].

We will not give the proof here, but we will discuss where the density theorem is
used. Ideally we would like to replace the (possible) use of a (nonexistent) continuous
projection from CtR(σ) to Ct(σ) with a continuous function μσ defined on CtR(σ)
where μ(φ) then would be a probability measure on Ct(σ). Then, if φ ∈ Ct(τ → δ)
and b ∈ CtR(τ), we could define

πτ→δ(φ)(b) =
∫

a∈Ct(τ)

φ(a)dμτ (b).

Unfortunately, the complexity of these spaces makes it impossible to define decent
probability measures on them. The alternative is to use approximations via proba-
bility distributions on the sets Zn(σ) = {(a)n | a ∈ H(σ)} and to use that every
total object in Ct(τ) can be approximated in a uniform way by these finitary ele-
ments.

5.2 Representation theorems

It is well known that topological spaces can be represented as quotient spaces over
domains; old and contemporary literature is too vast for us to be specific about it. It
is also well known that Polish spaces will be homeomorphic to Gδ-subsets of [0, 1]ω.
In Normann [25] we consider finite types where arbitrary Polish spaces may be used

136 Dag Normann

as base types, interpreted in the category of limit spaces. We then show that the
hierarchy

{CtR(σ)}σ type

is adequate for interpreting all these spaces of objects of higher types, in the sense
that each such space will be homeomorphic to a subspace of some CtR(σ).

In finding these subspaces we use a concept of representation developed from an
intermediate step in the proof of Theorem 1:

Definition 23 Let A ⊆ CtR(σ). A representation of A in CtR(π) is a continuous
map

φ : R(σ) → R(π)

such that for all a ∈ REPσ , we have that

φ(a) ∈ REPπ ⇔ ρR
σ (a) ∈ A.

We show that each space of finite type over Polish spaces is homeomorphic to a
subspace of some CtR(σ) with a representation. This is proved by induction on the
type. We give a highly incomplete sketch of the induction step, omitting that the set
we construct will be representable:

• By the density theorem for CtR(π) there is a total map h : R(π) → (N⊥ →
R(0)) such that h identifies exactly the consistent elements.

• Let A ⊆ CtR(τ) and B ⊆R (δ), and let h : R(τ) → R(π) be a representation
of A. Let f : A → B be continuous. Uniformly (but nontrivial) in f there is a
sequence {fn}n∈N of continuous functions from CtR(τ) to Ct(δ) such that f
will be the limit of the restrictions of fn to A. By linear interpolation, we define
fx for each non-negative real x.

• If f : A→ B, a ∈ Ct(τ) and b ∈ Ct(π), we let F (f)(a, b) = f(a) if h(φ(a)) =
h(b), whereas it is fx(a) for some x continuously witnessing that h(φ(a)) �= h(b)
otherwise.

• We may recover f from F (f) by f(a) = F (a, φ(a)). Thus the set {F (f) | f ∈
A→ B} will be homeomorphic to A→ B.

References

1. Abramsky, S. and Jung, A., Domain Theory, in S. Abramsky, D.M. Gabbay and T.S.E.
Maibaum (eds.), Handbook of Logic in Computer Science, vol. 3, Clarendon Press (1994)

2. Amadio, R. M. and Curien, P. -L. , Domains and Lambda-Calculi, Cambridge University
Press (1998)

3. Bauer, A., Escardó, M.H. and Simpson, A., Comparing Functional Paradigms for Exact
Real-number Computation, in Proceedings ICALP 2002, Springer LNCS 2380, 488–500
(2002)

Applications of the Kleene–Kreisel Density Theorem 137

4. Berger, U., Totale Objekte und Mengen in der Bereichtheorie (in German), Thesis,
München (1990)

5. DeJaeger, F., Calculabilité sur les Réels, Thesis, Paris VII (2003)
6. DiGianantonio, P., A Functional Approach to Computability on Real Numbers, Thesis,

Università di Pisa - Genova - Udine, (1993)
7. DiGianantonio, P., Real number computability and domain theory, Inform. and Comput.

127, 11–25 (1996)
8. DiGianantonio, P., An abstract data type for real numbers, Theoret. Comput. Sci. 221,

295–326 (1999)
9. Ershov, Yu. L., Maximal and everywhere defined functionals, Algebra and Logic 13, 210–

225 (1974)
10. Gandy, R.O. and Hyland, J.M.E., Computable and recursively countable functions of

higher type, Logic Colloquium ’76, 407-438, North-Holland (1977)
11. Hyland, J.M.E., Recursion on the Countable Functionals, Dissertation, Oxford (1975)
12. Kleene, S. C., Recursive functionals and quantifiers of finite types I, Trans. Amer. Math.

Soc. 91, 1–52 (1959)
13. Kleene, S. C., Countable Functionals, in A. Heyting (ed.) Constructivity in Mathematics,

81–100, North-Holland (1959)
14. Kreisel, G. , Interpretation of Analysis by Means of Functionals of Finite Type, in A.

Heyting (ed.) Constructivity in Mathematics, North-Holland, 101–128 (1959)
15. Longley, J.R., On the ubiquity of certain total type structures, Electr. Notes Theor. Com-

put. Sci. 73, 87–109 (2004)
16. Longo, G. and Moggi, E., The hereditary partial effective functionals and recursion the-

ory in higher types, J. Symbolic Logic 49, 1319–1332 (1984)
17. Milner, R., Fully abstract models for typed λ-calculi, Theoret. Comput. Sci. 4, 1–22

(1977)
18. Moldestad, J., Computations in Higher Types, Springer Lecture Notes in Mathematics

No. 574, Springer Verlag (1977)
19. Normann, D., The continuous functionals; computations, recursions and degrees, Annals

of Mathematical Logic 21, 1–26 (1981)
20. Normann, D., Computing with functionals - computability theory or computer science?,

Bull. Symbolic Logic 12(1), 43–59, (2006)
21. Normann, D., Computability over the partial continuous functionals, J. Symbolic Logic

65, 1133–1142 (2000)
22. Normann, D., The Cook-Berger problem - A guide to the solution, Electr. Notes Theor.

Comput. Sci. 35, (2000)
23. Normann, D., The Continuous Functionals of Finite Types over the Reals, in K. Keimel,

G.Q. Zhang, Y. Liu and Y. Chen (eds.) Domains and Processes, Kluwer Academic Pub-
lishers, 103–124, (2001)

24. Normann, D., Hierarchies of total functionals over the reals, Theoret. Comput. Sci. 316,
pp. 137–151 (2004)

25. Normann, D., Definability and reducibility in higher types over the reals, to appear in the
proceedings og Logic Colloquium ’03

26. Normann, D., Comparing hierarchies of total functionals, Logical Methods in Computer
Science 1(2), (2005)

27. Platek, R. A., Foundations of Recursion Theory, Thesis, Stanford University (1966)
28. Plotkin, G., LCF considered as a programming language, Theoret. Comput. Sci. 5, 223–

255 (1977)
29. Plotkin, G., Full abstraction, totality and PCF , Math. Struct. in Comp. Science, 11, 1–20

(1999)

138 Dag Normann

30. Schröder, M., Admissible representations of limit spaces, in J. Blanck, V. Brattka, P.
Hertling and K. Weihrauch (eds.), Computability and Complexity in Analysis, vol. 237,
Informatik Berichte, 369–388, (2000)

31. Scott, D., A type-theoretical alternative to ISWIM, CUCH, OWHY, Unpublished notes,
Oxford (1969). Printed with suplementary comments in Theoret. Comput. Sci. 121, 411–
440 (1993)

32. Simpson, A., Lazy functional Algorithms for Exact Real Functionals, Mathematical Foun-
dations of Computer Science 1998, Springer LNCS 1450, 456–464, (1998)

33. Stoltenberg-Hansen, V., Lindström, I. and Griffor, E.R., Mathematical Theory of Do-
mains, Cambridge Tracts in Theor. Comp. Sci. 22, Cambridge University Press (1994)

34. Tait, W.W., Continuity properties of partial recursive functionals of finite type, unpub-
lished notes (1958)

35. Weihrauch, K., Computable Analysis, in Texts in Theoretical Computer Science, Springer
Verlag, Berlin, (2000)

Church Without Dogma: Axioms for
Computability

Wilfried Sieg

Department of Philosophy, Carnegie Mellon University, Pittsburgh, PA 15213, USA
sieg@cmu.edu

Summary. Church’s and Turing’s theses assert dogmatically that an informal notion of effec-
tive calculability is captured adequately by a particular mathematical concept of computabilty.
I present analyses of calculability that are embedded in a rich historical and philosophical con-
text, lead to precise concepts, and dispense with theses.

To investigate effective calculability is to analyze processes that can in principle be carried out
by calculators. This is a philosophical lesson we owe to Turing. Drawing on that lesson and
recasting work of Gandy, I formulate boundedness and locality conditions for two types of
calculators, namely, human computing agents and mechanical computing devices (or discrete
machines). The distinctive feature of the latter is that they can carry out parallel computations.

Representing human and machine computations by discrete dynamical systems, the bounded-
ness and locality conditions can be captured through axioms for Turing computors and Gandy
machines; models of these axioms are all reducible to Turing machines. Cellular automata and
a variety of artificial neural nets can be shown to satisfy the axioms for machine computations.

Background

The title of this essay promises axioms for computability. Such axioms will emerge
from a conceptual analysis that begins with a straightforward observation: whatever
we consider to be computable must be associated with computations that are car-
ried out by some device or other. Consequently, we have to pay close attention to
the nature of the device at hand, when thinking through the characteristic features
that determine (the extension of) its notion of computability. My analysis builds on
work by Turing and Gandy concerning computations that are carried out by human
calculators and discrete machines, respectively.

I sharpen the informal concepts of computation for these two devices, specify rig-
orously their characteristic features, and formulate a representation theorem for the

140 Wilfried Sieg

resulting systems of axioms. A broad methodological point can be immediately in-
ferred: theses in the standard Church–Turing form are not needed to connect rigor-
ously defined notions of computability with informally grasped concepts. It is how-
ever crucial to gain a proper understanding of these canonized connections, because
the significance of logical results like Gödel’s incompleteness theorems depends on
it, as does the centrality of related issues in the philosophy of mind.

Part 1 articulates three principal Church canons1 supporting the thesis. For the canon-
ical argument from confluence, I distinguish between support that derives from ex-
amining the effective calculability of number theoretic functions and support that is
obtained through analyzing mechanical operations on symbolic configurations. The
analysis of such operations when carried out by a human calculator leads to Turing’s
claims in 1936. The arguments for these claims exploit boundedness and locality
conditions that are presented in Part 2. Against this background I introduce in Part 3
axioms for Turing computors and Gandy machines, list models, and formulate a rep-
resentation theorem. That completes the conceptual analysis. I will conclude with
remarks on Gödel, Turing, and philosophical errors.

Note: This essay is based on two papers I published in 2002, but whose methodolog-
ical considerations I would like to bring out more directly. I presented versions of
this essay under the title Beyond Church Canons in the Distinguished Lecture Series
(Haverford College, October 2002), in the Annual Lecture Series at the Center for
Philosophy of Science (University of Pittsburgh, January 2004), at the Colloquium
of the IHPST (Sorbonne, May 2004), as well as at the Colloquium of the Department
of Philosophy (University of Florence, November 2004) and at the conference Com-
putability in Europe (Amsterdam, July 2005). For detailed discussions of the origins
and developments of computability, see also (Sieg 1994, 1997) and the rich literature
that is referred to in those papers.

1 Church Canons

In a sense we have to untangle the relation between the concept of computability and
the concept of computability, understanding the first concept as informally grasped
and the second as rigorously defined. If one takes Gödel’s notion of general recur-
siveness as the rigorously defined concept and effective calculability as the infor-
mally grasped one, then Church’s Thesis expresses the relation between this and that
concept of computability for number-theoretic functions: they are co-extensional. To
provide a proper perspective for the broader investigation, I will examine the early
history of computability hinted at in these remarks.

1 According to the fifth edition of the Shorter OED, canon does not cover just
ecclesiastical laws and decrees, but it has also the meaning of “a general law, rule, or edict;
a fundamental principle” since the late middle ages, and that of “a standard of judgement;
a criterion” since the early 17th century.

Church Without Dogma: Axioms for Computability 141

1.1 The Thesis

Gödel introduced general recursiveness for number-theoretic functions in his 1934
Princeton Lectures via his equational calculus; he viewed it as a heuristic principle
that the informal concept of finite computation can be captured by suitably general
recursions. Refining and generalizing a notion of finitistically calculable functions
due to Herbrand, Gödel defined a number-theoretic function to be general recursive
just in case it satisfies certain recursion equations and its values can be determined
from the equations by simple steps, namely, replacement of variables by numerals
and substitution of complex closed terms by their numerical values. When he gave
this definition in 1934 Gödel was not convinced, however, that the underlying pre-
cise concept of recursion was the most general one, and he expressed his doubts in
conversation with Church. Nevertheless, Church formulated the thesis a year later
for the first time in print. Here is the classical statement found in the abstract for
Church’s talk to the American Mathematical Society in December 1935:

. . . Gödel has proposed . . . a definition of the term recursive function, in a
very general sense. In this paper a definition of recursive function of positive
integers which is essentially Gödel’s is adopted. And it is maintained that the
notion of an effectively calculable function of positive integers should be
identified with that of a recursive function, since other plausible definitions
of effective calculability turn out to yield notions that are either equivalent
to or weaker than recursiveness.

Between Church’s conversations with Gödel in 1934, and the formulation of the
above abstract in 1935, some crucial developments had taken place in Princeton.
Kleene and Rosser had done significant quasi-empirical work, convincing them-
selves and Church that all known effective procedures are λ-definable. Kleene had
discovered his normal-form theorem and had established the equivalence of Gödel’s
general recursiveness with μ-recursiveness. Finally, Church and Kleene had proved
the equivalence of λ-definability and general recursiveness. All these developments
are alluded to in Church’s abstract, and they are interpreted as supporting the thesis,
which was then, and is still now, principally defended on two grounds. First, there
is the quasi-empirical reason: all known calculable functions are general recursive.
This point, although important, is clearly not decisive and will be taken up in the
broader context of section 2.3. Second, there is the argument from confluence: a va-
riety of mathematical computability notions all turn out to be equivalent. This second
important point is however only really convincing, if the “confluent” notions are of a
quite different character and if there are independent reasons for believing that they
capture the informal concept. Both Church and Gödel tried to give such independent
reasons in 1936. Let me sketch their considerations.

1.2 Semi-circles

Church and Gödel took the evaluation of a function in some form of the equational
calculus as the starting point for explicating the effective calculability of number-

142 Wilfried Sieg

theoretic functions. Church generalized broadly: an evaluation is done in some logi-
cal calculus through a step-by-step process, and the steps must be elementary. Church
argued that functions whose values can be computed in this way must be general re-
cursive. Gödel, in contrast, just made a penetrating observation without giving an
argument: the rules of the equational calculus are part of any adequate formal system
of arithmetic, and the class of calculable functions is not enlarged beyond the general
recursive ones, if the formal system is strengthened. This absoluteness of the notion
was pointed out in a Postscriptum to (Gödel 1936) for transfinite extensions of type
theory and in the Princeton Bicentennial lecture ten years later for extensions of for-
mal set theory. Gödel formulated the significance of his observation in the lecture
(Gödel 1946, p. 150) as follows:

Tarski has stressed . . . the great importance of the concept of general re-
cursiveness (or Turing computability). It seems to me that this importance
is largely due to the fact that with this concept one has for the first time
succeeded in giving an absolute definition of an interesting epistemological
notion, i.e., one not depending on the formalism chosen.

But what is the argument for Church’s claim, and what could it be for Gödel’s? If
one uses the strategic considerations underlying the proof of Kleene’s normal-form
theorem, it is in both cases easily established that the functions calculable in the
broader frameworks are general recursive, as long as the steps in the logical systems
are elementary, formal, . . . well, general recursive. Church turned the elementary
steps explicitly into general recursive ones, whereas Gödel could not but exploit the
formal character of the theories at hand through their recursive presentation.

Taken as principled arguments for the thesis, Gödel’s and Church’s considerations
rely on a hidden and semi-circular condition for steps. Hilbert and Bernays moved
this step-condition into the foreground when investigating calculations in deductive
formalisms and reckonable functions (“regelrecht auswertbare Funktionen”). They
imposed explicitly recursiveness conditions on deductive formalisms and showed
that formalisms satisfying these conditions have as their calculable functions exactly
the general recursive ones. In this way they provided mathematical underpinnings for
Gödel’s absoluteness claim and for Church’s argument, but only relative to the re-
cursiveness conditions: the crucial one requires the proof predicate of deductive for-
malisms, and thus the steps in formal calculations, to be primitive recursive.2

The work of Gödel, Church, Kleene, and Hilbert & Bernays had intimate historical
connections and is still of deep interest. It explicated calculability of functions by
exactly one core notion, namely, calculability of their values in logical calculi via
(a finite number of) elementary steps. But no one gave convincing and non-circular
reasons for the proposed rigorous restrictions on steps permitted in calculations. The
question is, whether this stumbling block for a deeper analysis can be overcome. The
answer lies in a motivated and general formulation of constraints on steps.

2 These investigations are carried out in the second supplement of their Grundlagen der
Mathematik II.

Church Without Dogma: Axioms for Computability 143

1.3 Symbolic Processes

Church reviewed in 1937 the two classical papers by Turing and Post, which had
been published in 1936. When comparing Turing computability, general recursive-
ness, and λ-definability he claimed “the first [of these notions] has the advantage of
making the identification with effectiveness in the ordinary (not explicitly defined)
sense evident immediately. . . .” After all, Church reasoned, “To define effectiveness
as computability by an arbitrary machine, subject to restrictions of finiteness, would
seem to be an adequate representation of the ordinary notion,” The finiteness
restrictions require that machines occupy only a finite space and that their working
parts have finite size. Turing machines are obtained from such finite machines by fur-
ther “convenient restrictions,” but “these are of such a nature as obviously to cause no
loss of generality.” Church then observed, completely reversing Turing’s sequence of
analytic steps, “a human calculator, provided with pencil and paper and explicit in-
structions, can be regarded as a kind of Turing machine.” He was obviously captured
by the machine image and saw in it the reason for the deep interest of Turing’s com-
putability notion. In sum, we have arrived at three Church canons in support of the
thesis, namely, (i) the confluence of notions, (ii) the step-by-recursive-step argument,
and (iii) the immediate evidence of the adequacy of Turing’s notion.

In his reviews Church failed to recognize two crucial aspects of a dramatic shift in
perspective. One aspect underlies the work of both Turing and Post, whereas the
other is distinctively Turing’s. The first aspect becomes visible when Turing and
Post, instead of considering schemes for computing the values of number-theoretic
functions, look at identical symbolic processes that serve as building blocks for cal-
culations. In order to specify such processes Post uses a human worker who operates
in a symbol space and carries out, over a two-letter alphabet, exactly the kind of op-
erations a Turing machine can perform. Post expects that his formulation will turn
out to be equivalent to the Gödel–Church development. Given Turing’s proof of the
equivalence of his computability notion with λ-definability, Post’s formulation is in-
deed equivalent.

Post asserts that “Church’s identification of effective calculability with recursive-
ness” should be viewed as a “working hypothesis” in need of “continual verifica-
tion.” In sharp contrast, Turing attempts to give an analytic argument for the claim
that these simple processes are sufficient to capture all human mechanical calcula-
tions. Turing exploits for his reductive argument broad constraints that are grounded
in limitations of relevant capacities of the human computing agent. This is the sec-
ond aspect of the novel perspective that made for genuine progress, and it is unique
to Turing’s work.

2 Computors

It is ironic that Post, when proposing his worker model, at no place used the fact
that a human worker does the computing, whereas Turing who seems to emphasize

144 Wilfried Sieg

machine computations explicitly examined human computations. Call a human com-
puting agent who proceeds mechanically a computor; such a computor operates on
finite configurations of symbols and, for Turing, deterministically so. The computer
hovering about in Turing’s paper is such a computor; computers in our contempo-
rary sense are always called machines. Wittgenstein appropriately observed about
Turing’s machines that these machines are humans who calculate.3 But how do we
step from the calculations of computors to computations of Turing machines?

2.1 Preliminary Step

When Turing explores the extent of the computable numbers (or, equivalently, of the
effectively calculable functions), he starts out by considering two-dimensional calcu-
lations “in a child’s arithmetic book.” Such calculations are first reduced to compu-
tations of string machines, and the latter are then shown to be equivalent to computa-
tions of a letter machine. Letter machines are ordinary Turing machines operating on
one letter at a time, whereas string machines operate on finite sequences of letters. In
the course of his reductive argument, Turing formulates and uses broadly motivated
constraints. The argument concludes as follows: “We may now construct a machine
to do the work of the computer [computor in our terminology]. . . . The machines just
described [string machines] do not differ very essentially from computing machines
as defined in §2 [letter machines], and corresponding to any machine of this type a
computing machine can be constructed to compute the same sequence, that is to say
the sequence computed by the computer.” (Turing 1936, pp. 137–8)

For the presentation of Turing’s argument, it is best to consider the description of Tur-
ing machines as Post production systems. This is most appropriate for a number of
reasons. Post introduced this description in 1947 to establish that the word-problem
of certain Thue-systems is unsolvable. Turing adopted it in 1950 when extending
Post’s results, but also in 1954 when writing a wonderfully informative and infor-
mal essay on solvable and unsolvable problems. In addition, this description reflects
directly the move in Turing’s (1936) to eliminate states of mind for computors4 in fa-
vor of “more physical counterparts.” Finally and most importantly, it makes perfectly
clear that Turing is dealing with general symbolic processes, whereas the restricted
machine model that results from his analysis almost obscures that fact.

3 It is exactly right for Turing to look at human computations given the intellectual context
that reaches back to at least Leibniz: the Entscheidungsproblem in the title of his (1936)
paper asked for a procedure that can be carried out by humans; the restrictive formal condi-
tions on axiomatic theories were imposed in mathematical logic to ensure intersubjectivity
for humans on a minimal cognitive basis.

4 Turing attributes states of mind only to human computers; machines have corresponding
“m-configurations.”

Church Without Dogma: Axioms for Computability 145

2.2 Boundedness and Locality

The constraints Turing imposes on symbolic processes derive from his central goal of
isolating the most basic steps of computations, that is, steps that need not be further
subdivided. This objective leads to the normative demand that the configurations,
which are directly operated on, must be immediately recognizable by the computor.
This demand and the evident limitation of the computor’s sensory apparatus motivate
most convincingly two central restrictive conditions:

(B) (Boundedness) A computor can immediately recognize only a bounded number
of configurations.

(L) (Locality) A computor can change only immediately recognizable configura-
tions.5

Calculability of
number-theoretic

functions

�

�

�

�

�
1

Calculability by
computor satisfying

boundedness and
locality conditions

�

�

�

�

�
2

Computability by
string machine

�
�

�
�

�
�

�
�

�
�

�
���

�

�

�

�
Turing’s Thesis

�
�

�
�

�
�

�
�

�
�

�
��	

�

�

�

�
Equivalence Proof

Computability by
letter machine

Diagram 1

Turing’s considerations leading from operations of a computor on a two-dimensional
piece of paper to operations of a letter machine on a linear tape are represented
schematically in Diagram 1: Step 1 indicates Turing’s analysis, whereas 2 refers to
Turing’s central thesis asserting that the calculations of a computor can be carried
out by a string machine.

This remarkable progress has been achieved by bringing in, crucially and correctly,
the computing agent who carries out the mechanical processes. Yet Turing finds the
argument mathematically unsatisfactory as it involves an appeal to intuition in sup-
port of the central thesis, i.e., the ability of “making spontaneous judgments, which
are not the result of conscious trains of reasoning.” (Turing 1939, pp. 208–9) What
more can be done?
5 The boundedness and locality conditions are violated in Gödel’s equational calculus: the re-

placement operations naturally involve terms of arbitrary complexity. That is, the shift from
arithmetic calculations to symbolic processes is absolutely crucial in Turing’s analysis.

146 Wilfried Sieg

2.3 Generalizations

At least two kinds of inductive support can be given for the quasi-empirical claim that
all known effective procedures are general recursive or Turing computable. Turing
provided in his paper one kind, by showing that large classes of numbers are indeed
machine computable; Post suggested providing in his (1936) a second kind, by re-
ducing ever-wider formulations of combinatory processes (as production systems)
to his worker model.6 This inductive support can be strengthened further through
considering more general symbolic configurations with associated complex substitu-
tion operations.7 In the spirit of this approach we can ask with Post, when have we
gathered sufficient support to view the thesis as a natural law?

Gödel and Church faced in their analysis of effective calculability the stumbling
block of having to define the elementary character of steps, rigorously and with-
out semi-circles. Turing and Post faced at this point, it seems, a problem akin to
that of induction. However, their fundamental difficulties are really the same and
can be pinpointed more relevantly and quite clearly, as they are related to the loose-
ness of the above restrictive conditions and the corresponding vagueness of the cen-
tral thesis. These difficulties would be addressed by answering the questions, What
are symbolic configurations? What changes can mechanical operations effect? Even
without giving rigorous answers, some well-motivated ideas can be formulated for
computors: (i) they operate deterministically on finite configurations; (ii) they recog-
nize in each configuration exactly one pattern (from a bounded number of different
kinds of such); (iii) they operate locally on the recognized pattern; and (iv) they
assemble the next configuration from the original one and the result of the local
operation. Exploiting these ideas I will attack the problem with a familiar tool, the
axiomatic method.

However, before formulating the axioms for Turing computors, I discuss yet another
sense of generalization that is relevant here. Gandy proposed in his (1980) a char-
acterization of machines or, more precisely, discrete mechanical devices. The lat-
ter clause was to exclude analog machines from consideration. The novel aspect of
Gandy’s proposal was the fact that it incorporated parallelism in perfect generality.
Gandy used, as Turing did, a central thesis: any discrete mechanical device satisfy-
ing some informal restrictive conditions can be represented as a particular kind of
dynamical system. Instead, I characterize a Gandy machine axiomatically based on
the following idea: the machine has to recognize all the patterns contained in a given
finite configuration, act on them locally in parallel, and assemble the results of these
local computations into the next configuration. As in the case of Turing computors,
the configurations are finite, but unbounded; the generalization is simply this: there
is no fixed bound on the number of patterns that such configurations may contain.

6 Post of course did provide such reductions in his (1943) whose origins go back to investi-
gations in the very early 1920s; see note 18 of Post’s paper.

7 In (Sieg and Byrnes 1996) that is done for K-graphs and K-graph machines; this is a gen-
eralization of the work on algorithms by Kolmogorov and Uspensky.

Church Without Dogma: Axioms for Computability 147

To help the imagination a bit, the reader should think of the Post-presentation of a
Turing machine and the Game of Life as typical examples of a Turing computor and
Gandy machine, respectively.

3 Axiomatics

The axioms are formulated for discrete dynamical systems and capture the above
general ideas precisely. In the first subsection the broad mathematical setup for the
axioms is discussed, whereas the specific principles for Turing computors and Gandy
machines are formulated in the second subsection. The axioms for Turing computors
are motivated by the restrictive conditions for human computing, i.e., the limitations
of the human sensory apparatus. The axioms for Gandy machines are to capture
the characteristic features of finite machines performing parallel computations. The
restrictive conditions are in this case motivated by purely physical considerations:
the uncertainty principle of quantum mechanics justifies a lower bound on the size
of distinguishable “atomic” components, and the theory of special relativity yields an
upper bound on signal propagation. Together, these conditions justify boundedness
and locality conditions for machines in the very same way sensory limitations do for
computors.8

3.1 Patterns and Local Operations

We consider pairs 〈D,F〉 where D is a class of states and F is an operation from
D to D transforming a given state into the next one. States are finite objects and
are represented by non-empty hereditarily finite sets over an infinite set of atoms.
Such sets reflect states of computing devices just as other mathematical structures
represent states of nature. Obviously, any ε-isomorphic set can replace a given one
in this reflective role, and so we consider structural classes D, i.e., classes of states
that are closed under ε-isomorphisms. What invariance properties should the state
transforming operations F have; i.e., how should the F-images of ε-isomorphic states
be related? These and other structural issues will be addressed now.

For the general setup we notice that any ε-isomorphism between states is an exten-
sion of some permutation π on atoms. Letting π(x) stand for the result of applying
the ε-isomorphism determined by a permutation π to the state x, the requirement on
F fixes the dependence of values on just structural features of a set, not the nature
of its atoms: F(π(x)) is ε-isomorphic to π(F(x)), and this isomorphism must be
the identity on the atoms occurring in π(x); we say that F(π(x)) and π(F(x)) are
ε-isomorphic over π(x) and write F(π(x)) ∼=π(x) π(F(x)). Note that we do not
require F(π(x)) = π(F(x)); that would be far too restrictive as new atoms may

8 I hope the overall structure of the considerations will be clear from this informal presenta-
tion; for mathematical details (Gandy 1980) and (Sieg 2002b) should be consulted.

148 Wilfried Sieg

expand the state x, and it should not matter which new atoms are chosen. The re-
quirement F(π(x)) ∼= π(F(x)), on the other hand, would be too loose, as we want
to guarantee the physical persistence of atomic components.

Now we turn to patterns and local operations. If x is a given state, regions of the next
state are determined locally from particular parts for x on which the computor can
operate.9 Boundedness requires that there are only finitely many different kinds of
such parts; i.e., each part lies in one of a finite number of isomorphism types or, using
Gandy’s terminology, stereotypes. A maximal part y for x of a certain stereotype is
a causal neighborhood for x, briefly y ∈ Cn(x); we call the elements of Cn(x) also
patterns. Finally, the local change is effected by a structural operation G that works
on unique causal neighborhoods. The values of G are in general not exactly what we
need in order to assemble the next state, because the configurations may have to be
expanded and that expansion involves the addition and coordination of new atoms.
To address that issue we introduce determined regions Dr(z,x) of a state z; they
are ε-isomorphic to G(y) for some causal neighborhood y for x (and must satisfy a
technical condition on the “newness” of atoms).

3.2 Axioms and a Theorem

Recalling the boundedness and locality conditions for computors, we define M =
〈S;T,G〉 to be a Turing Computor on S, where S is a structural class, T a finite set
of stereotypes, and G a structural operation on

⋃
T, if and only if, for every x ∈ S,

there is a z ∈ S, such that

(L.0) : (∃!y)y ∈ Cn(x);

(L.1) : (∃!v ∈ Dr(z,x))v ∼=x G(cn(x));

(A.1) : z = (x \ Cn(x)) ∪Dr(z,x).

(∃!y) is the existential quantifier expressing uniqueness; in (L.1), cn(x) denotes the
unique causal neighborhood guaranteed by (L.0). As in the case of Gandy Machines
below, L abbreviates locality and A stands for assembly. The state z is determined
uniquely up to ε-isomorphism over x. An M-computation is a finite sequence of
transition steps involving G that is halted when the operation on state z yields z as
the next state. A function F is (Turing) computable if and only if there is a Turing
computor M whose computation results determine, under a suitable encoding and
decoding, the values of F for any of its arguments. A Turing machine is easily seen
to be a Turing computor.

9 A part y for x used to be in my earlier presentations a connected subtree y of the ∈-tree
for x, briefly y <∗ x, if y
= x and y has the same root as x and its leaves are also leaves
of x. More precisely, y
= x and y is a non-empty subset of {v | (∃z)(v <∗ z & z ∈
x)} ∪ {r | r ∈ x}. Now it is just a subset, but I will continue to use the term “part” to
emphasize that we are taking the whole ∈-structure into account.

Church Without Dogma: Axioms for Computability 149

Generalizing these considerations to graph machines, for example, one notices
quickly complications. When several new atoms are being introduced in the image
of some causal neighborhood as well as in the next state, the new atoms have to be
structurally coordinated; cf. (Sieg and Byrnes 1996). This issue is clearly even more
pressing, when parallel computations are carried out. There the coordination can be
achieved by a second local operation and a second set of stereotypes. Causal neigh-
borhoods of type 1 are parts of larger neighborhoods of type 2, and the overlapping
determined regions of type 1 must be parts of determined regions of type 2, so that
they fit together appropriately. (Determined regions “overlap” if the intersection of
their sets of new atoms is non-empty.)

For machines that carry out parallel computations we consequently need in addition
to the finitely many stereotypes and the structural operation working on them a sec-
ond set of stereotypes together with a second structural operation, which allow the
machine to assemble the determined regions. This is reflected by separating the As-
sembly principle for Gandy machines into two kinds, where the principle of the first
kind captures the idea expressed at the end of the last paragraph; the principle of the
second kind is a more general form of the A-principle for Turing computors. Finally,
we can define the central concept here: M = 〈S;T1,G1,T2,G2〉 is a Gandy ma-
chine on S, where S is a structural class, Ti a finite set of stereotypes, Gi a structural
operation on

⋃
Ti, if and only if, for every x ∈ S there is a z ∈ S, such that

(L.1) : (∀y ∈ Cn1(x))(∃!v ∈ Dr1(z,x))v ∼=x G1(y);

(L.2) : (∀y ∈ Cn2(x))(∃v ∈ Dr2(z,x))v ∼=x G2(y);

(A.1) : (∀C)[C ⊆ Dr1(z,x)&
⋂
{Sup(v) ∩A(z,x) | v ∈ C} �= ∅ →
(∃w ∈ Dr2(z,x))(∀v ∈ C)v <∗ w];

(A.2) : z =
⋃

Dr1(z,x).

A(z,x) = Sup(z) \ Sup(x); i.e., it consists of the new atoms that have been intro-
duced into z. Thus, the condition

⋂
{Sup(v) ∩ A(z,x) | v ∈ C} �= ∅ in (A.1)

expresses that the determined regions v in C have common new atoms; i.e., they
overlap. The restrictions for Gandy machines, as those for Turing computors, amount
to boundedness and locality conditions. They are justified directly by two physi-
cal bounds, namely, a lower bound on the size of atoms and an upper bound on
the speed of signal propagation. On account of these bounds only boundedly many
different configurations can be physically realized (within a unit time interval); cf.
(Mundici and Sieg 1995). With these remarks I actually completed the foundational
analysis, and I can describe now some important mathematical facts for Gandy ma-
chines.

The central facts are as follows: (i) the state z following x is determined uniquely up
to ε-isomorphism over x, and (ii) Turing machines can effect such transitions. The
proof of the first fact contains the combinatorial heart of matters and uses crucially
the first assembly condition. The proof of the second fact is rather direct. Only finitely

150 Wilfried Sieg

many finite objects are involved in the transition, and all the axiomatic conditions are
decidable. Thus, a search will allow us to find z. This can be understood as a Rep-
resentation Theorem: any particular Gandy machine is computationally reducible to
a two-letter Turing machine. Conversely, any Turing machine is a Gandy machine.
Indeed, there is a rich variety of additional models, as the game of life, other cel-
lular automata, and many artificial neural nets are Gandy machines. (cf. DePisapia
2000)

4 Adequacy and Philosophical Errors

So what? What have we gained? In very broad terms, taken from Hilbert, we have
gained eine Tieferlegung der Fundamente (a deepening of the foundations) via
the axiomatic method. In a conversation with Church in early 1934, Gödel found
Church’s proposal to identify effective calculability with λ-definability “thoroughly
unsatisfactory.” As a counter-proposal he suggested “to state a set of axioms which
would embody the generally accepted properties of this notion [i.e., effective cal-
culability], and to do something on that basis.” Perhaps, the remarks in the 1964
Postscriptum to the Princeton Lectures of 1934 echo those earlier considerations.
“Turing’s work gives,” according to Gödel, “an analysis of the concept of ‘mechan-
ical procedure’ This concept is shown to be equivalent with that of a ‘Turing
machine’.” Gödel did neither elucidate these remarks nor did he articulate what the
generally accepted properties of effective calculability might be or what might be
done on the basis of an appropriate set of axioms.

The work on which I reported substantiates Gödel’s remarks in the following sense:
it formulates axioms for the concept “mechanical procedure,” and it shows that this
axiomatically characterized concept is indeed equivalent to that of a Turing machine.
As a matter of fact it does so for two such concepts, namely, when the computing
agents are computors, respectively discrete machines. These considerations use only
“generally accepted properties” of the informal concepts and avoid any appeal to
theses, whether central or not. As to the correctness of the underlying analyses, an
appeal to some understanding can no more be avoided in this case than in any other
case of an axiomatically characterized (class of) mathematical structure(s) intended
to mirror broad aspects of physical or intellectual reality. The general point is as fol-
lows: we do not have to face anything mysterious surrounding the concept of calcu-
lability; rather, we have to face the ordinary issues for the adequacy of mathematical
concepts, and these are of course non-trivial.10 From a slightly different and com-
plementary perspective, the function of the axiom systems for computing devices
can be seen as being similar to that of the axiom systems for the classical algebraic
structures like groups, rings, or fields, namely, to abstract the essential aspects from
a wide variety of instances and point to deep structural analogies. They explain here,

10 Other examples of such analyses are provided by Dedekind’s work on continuous domains
(the reals) and simply infinite systems (natural numbers).

Church Without Dogma: Axioms for Computability 151

by way of the representation theorem, the computational reducibility of their models
to Turing machines.

In the central case under discussion, Turing computability, its adequacy is still
fraught with controversy and often misunderstanding. The controversy begins with
the very question of what is the intended informal concept. For example, Gödel spot-
ted in 1972 a “philosophical error” in Turing’s work, assuming that Turing’s argu-
ment in the 1936 paper was to show that “mental procedures cannot go beyond me-
chanical procedures.” He considered the argument as inconclusive. Indeed, Turing
does not give a conclusive argument for Gödel’s claim, but it has to be added that he
did not intend to argue for it. Even in his work of the late 1940s and early 1950s that
deals explicitly with mental processes, Turing does not argue, “mental procedures
cannot go beyond mechanical procedures.”

Mechanical processes are, in this later work, still made precise as Turing machine
computations; machines that might exhibit intelligence have in contrast a more com-
plex structure than Turing machines. Conceptual idealization and empirical adequacy
are being sought for quite different purposes, and Turing is trying to capture clearly
what Gödel found missing in the would-be analysis of a broad concept of humanly
effective calculability, namely, “. . . that mind, in its use, is not static, but constantly
developing.” The real difference between Turing’s and Gödel’s views, it seems, is
Gödel’s belief that it is “a prejudice of our time” that “[t]here is no mind separate
from matter.” This is reported by Wang. Gödel expected, also according to Wang,
that this prejudice “will be disproved scientifically (perhaps by the fact that there
aren’t enough nerve cells to perform the observable operations of the mind).” Clearly,
Turing did not share these expectations.

Many fascinating issues concerning physical and mental processes may or may not
have adequate computational models. They are empirical, conceptual, mathemati-
cal . . . well, indeed, richly interdisciplinary. Steps toward their clarification or res-
olution will be most illuminating. Why, let me ask, are we interested so deeply
in computations?—One answer is, we want to determine states from other states,
be they mathematical, physical, or mental; and we want to do that effectively and
in a sharply intersubjective way that makes use of adequate symbolic representa-
tions.

References

[1936] Church, A. (1936) An unsolvable problem of elementary number theory; American
Journal of Mathematics 58, 345–363; reprinted in (Davis 1965).

[1937] — (1937) Review of (Turing 1936); The Journal of Symbolic Logic 2, 40–41.
[1965] Davis, M., (ed.) (1965) The Undecidable, Basic papers on undecidable propositions,

unsolvable problems and computable functions; Raven Press, Hewlett, New York.
[2000] De Pisapia, N. (2000) Gandy Machines: an abstract model of parallel computation for

Turing Machines, the Game of Life, and Artificial Neural Networks; M.S. Thesis, Carnegie
Mellon University, Pittsburgh.

152 Wilfried Sieg

[1980] Gandy, R. (1980) Church’s Thesis and principles for mechanisms; in: The Kleene
Symposium (edited by J. Barwise, H. J. Keisler and K. Kunen, North-Holland, 123–148.

[1934] Gödel, K. (1934) On undecidable propositions of formal mathematical systems; in:
Collected Works I, 346–369.

[1936] — (1936) Über die Länge von Beweisen; in: Collected Works I, 396–399.
[1946] — (1946) Remarks before the Princeton bicentennial conference on problems in math-

ematics; in: Collected Works II, 150–153.
[1986–2003] — (1986–2003) Collected Works, volumes I–V; Oxford University Press.
[1939] Hilbert, D. and P. Bernays (1939) Die Grundlagen der Mathematik II; Springer Verlag,

Berlin.
[1958] Kolmogorov, A. N and V. A. Uspensky (1958) On the definition of an algorithm; Us-

pekhi Mat. Nauk 13 (Russian), 1958; English translation in: AMS Translations, 2, 21 (1963),
217–245.

[1995] Mundici, D. and W. Sieg (1995) Paper Machines; Philosophia Mathematica 3, 5–30.
[1936] Post, E. (1936) Finite combinatory processes. Formulation I; Journal of Symbolic

Logic 1, 103–105.
[1943] — (1943) Formal reductions of the general combinatorial decision problem; American

Journal of Mathematics, 65 (2), 197–215.
[1947] — (1947) Recursive unsolvability of a problem of Thue; The Journal of Symbolic

Logic 12, 1–11.
[1994] Sieg, W. (1994) Mechanical procedures and mathematical experience; in: Mathemat-

ics and Mind (A. George, ed.), Oxford University Press, 71–117.
[1997] — (1997) Step by recursive step: Church’s analysis of effective calculability; The

Bulletin of Symbolic Logic 3 (2), 154–180.
[2002a] — (2002a) Calculations by man and machine: conceptual analysis; Lecture Notes in

Logic 15, 390–409.
[2002b] — (2002b) Calculations by man and machine: mathematical presentation; in: In the

Scope of Logic, Methodology and Philosophy of Science, volume one of the 11th Inter-
national Congress of Logic, Methodology and Philosophy of Science, Cracow, August
1999 (P. Gärdenfors, J. Wolenski and K. Kijania-Placek, eds.), Synthese Library volume
315, Kluwer, 247–262.

[1996] Sieg, W. and J. Byrnes (1996) K-Graph machines: generalizing Turing’s machines and
arguments; in: Gödel ’96 (P. Hajek, ed.), Lecture Notes in Logic 6, Springer Verlag, 98–119.

[1936] Turing, A. (1936) On computable numbers, with an application to the Entschei-
dungsproblem; Proceedings of the London Mathematical Society (Series 2) 42, 230–265.

[1939] — (1939) Systems of logic based on ordinals; Proceedings of the London Mathemat-
ical Society (Series 2) 45, 161–228; reprinted in (Davis 1965).

[1950] — (1950) The word problem in semi-groups with cancellation; Ann. of Math. 52,
491–505.

[1954] — (1954) Solvable and unsolvable problems; Science News 31, 7–23; reprinted in
Collected Works of A. M. Turing: Mechanical intelligence, (D. C. Ince, ed.), North-Holland,
1992.

Computability on Topological Spaces via Domain
Representations

Viggo Stoltenberg-Hansen1 and John V. Tucker2

1 Department of Mathematics, Uppsala University, S-75106 Uppsala, Sweden
viggo@math.uu.se

2 Department of Computer Science, University of Wales Swansea, SA2 8PP, Wales
J.V.Tucker@swansea.ac.uk

Summary. Domains are ordered structures designed to model computation with approxima-
tions. We give an introduction to the theory of computability for topological spaces based on
representing topological spaces and algebras using domains. Among the topics covered are
different approaches to computability on topological spaces; orderings, approximations, and
domains; making domain representations; effective domains; classifying representations; type
two effectivity and domains; and special representations for inverse limits, regular spaces, and
metric spaces. Lastly, we sketch a variety of applications of the theory in algebra, calculus,
graphics, and hardware.

1 Introduction

The theory of topological spaces and continuous functions is about the approxima-
tion of data and the functions that preserve those approximations. Approximation is
expressed by open subsets of the set of data. The primary intuitions are geometric,
and its original applications were in geometry, differential equations, and functional
analysis, where data are made from real and complex numbers, functions, and opera-
tors. A century of research has made topology essential to mathematics and physical
science (see Aull and Lowen [2, 3] and James [39]). The question arises:

How does one compute with data such as real and complex numbers, func-
tions, and operators? More generally, how does one compute with data from
a topological space?

Understanding computation on topological spaces is important. For example, it is
needed to improve practical computation with continuous data; to compare and unify
digital and analog computation; to explore computation in analysis and geometry;
and to establish the computational and logical nature of physical systems—to name
just four research problems of contemporary interest.

154 Viggo Stoltenberg-Hansen and John V. Tucker

There are several answers to the computability question above: some methods are
specific to the real numbers, and some are general for a class of topological spaces.
Here we will explain one answer:

Represent topological spaces of data by domains, and reduce computation
on those spaces to computation on domains.

We will summarise other approaches to computability shortly (Section 2).

The theory of domains and order-preserving functions is also about the approxi-
mation of data and the functions that preserve approximations. Approximation is
expressed by an ordering on the set of data. The primary intuitions are computa-
tional, and its primary applications are in computability theory and the semantics of
programming languages and logics, where computations are defined using recursion
equations on functions, memory states and environments, data, processes, formulae,
and types. The foundations of the subject were laid by D. S. Scott [60, 61, 62] and
Yu. L. Ershov [32, 33].

Domains are ordered algebraic structures containing both approximations and the
data they approximate. The ordering # on a domain D formulates the idea that for
a, b ∈ D,

a # b⇐⇒ ‘datum b is a better approximation than datum a’.

The limits of sequences of such approximations are the data to be approximated.
Computations are modelled as a process of finding better and better approxima-
tions.

Domains are designed to solve equations. Their orderings are used to capture some of
the features of using iterative algorithms to approximate solutions. The equations are
formulated as fixed point equations; i.e., for a given function f : D → D, find a in D
such that f(a) = a. The fixed point methods build the solutions from their approxi-
mations. The inspiration of these essential features of domains and equation solving
are the complete partially ordered set (cpo) and the equation solving methods of the
Tarski-Knaster Fixed Point Theorem, proved in 1927; (see, e.g., Tarski [77]). These
methods found their way into computability theory via theorems such as Kleene’s
recursion theorems. The methods were applied on particular cpos of functions on
natural numbers to explain recursion. Through the theory of domains and domain
representations, the wide applicability of fixed point methods to computational prob-
lems became evident.

The theory of domain representations of topological spaces is a general theory about
how to:

(i) represent topological spaces using domains;

(ii) analyse computation on spaces via their representations;

(iii) compare and classify different domain representations;

Computability on Topological Spaces via Domain Representations 155

(iv) compute the solutions of equations on spaces; and

(v) make applications.

In this chapter we will introduce these topics, sketch their development, and point out
connections with other theories that answer the question posed above. Many kinds
of domains have been discovered; we will focus on so-called algebraic domains that
we consider to be the most simple and useful for computability.

The structure of the chapter is as follows. In Section 2 we will summarise the ap-
proaches to computability and sketch their origins. In Section 3 we introduce the
idea of using orderings to formulate basic ideas about approximations. This leads
directly to the concept of an algebraic domain. In Section 4 we introduce the contin-
uous functions on domains. In Section 5 we define domain representations for spaces
that are the structures within which computations take place. In Section 6 we add al-
gorithms and define what is actually computable on the approximations that make
up the domain. In Section 7 we introduce some simple types of domain represen-
tations (retract, dense, etc.), and we use reductions between domains that allow us
to compare representations of topological spaces and discuss the stablility or invari-
ance of computational properties of the representations. In Section 8 we examine a
special form of algebraic domain representation that we derive from K. Weihrauch’s
approach to computability on spaces called Type 2 Theory of Effectivity (TTE): see
Weihrauch [84]. In Section 9 we look at some standard constructions of domain rep-
resentations, including metric spaces. In Section 10 we sketch some applications of
the theory to studies of computation on different spaces, including real numbers,
local rings, Banach spaces, process algebras, distributions, etc.

We thank Jens Blanck and Fredrik Dahlgren for useful comments on this arti-
cle.

2 Computability on topological spaces: some principles,
approaches, and history

To compute in a topological space we will choose some representation of the space,
made from a domain, and compute on the domain representation. There are other
ways to compute on spaces, not all of which are equivalent, and so before examining
domain representations we will view the wider technical landscape.

2.1 Principles: Concrete versus abstract computability

By a computability theory we mean a theory of functions and sets that are definable
using a model of computation. By a model of computation we mean some general
method of calculating the value of a function or of deciding, or enumerating, the
elements of a set. The functions and sets can be made from any kind of data.

156 Viggo Stoltenberg-Hansen and John V. Tucker

With this terminology, Classical Computability Theory on the set N of natural num-
bers is made up of many computability theories, derived from different ideas about
algorithms. The fact that different computability theories lead to equivalent theories
of functions and sets on N gives the classical theory on N its unity, which was epito-
mised by the Church–Turing Thesis and was an early discovery.

Since the 1940s, computability theories have been created for other sets of data, in-
cluding higher types over the natural numbers, real numbers, and spaces of real-
valued functions. More generally, computability theories have been created for
classes of structures, such as groups, rings, fields, and topological and metric spaces.
However, the classification and the proofs of equivalences of models of
computation—and, hence, the search for generalised Church–Turing Theses and the
theoretical unity they represent—have proved much more difficult to achieve for
these data types. An early example of different models of computation that are of
equal conceptual value but are known not to be equivalent is provided by Tait’s The-
orem in higher types: the fan functional on total functions is recursively continuous
but not computable in Kleene’s schemes S1–S9; see Normann [51].

Some general insight into the phenomenon of inequivalent computability theories
is to be found by examining treatment of data in models of computation. Com-
putability theories can be classified into two types by introducing the following con-
cepts.

Definition 2.1 In an abstract computability theory the computations are independent
of all the representations of the data. Computations are uniform over all representa-
tions and are isomorphism invariants.

In a concrete computability theory, the computations are dependent on some repre-
sentation of the data. Computations are not uniform, and different representations
can yield different results. Computations are not isomorphism invariants.

Models of computation that are based on abstract ideas of program, equation,
scheme, or logical formula are typical of abstract models. Models of computation
that are based on concrete ideas of coding, numbering, or representing data using
any other kind of data are typical of concrete models. Now, the distinction of abstract
versus concrete is helpful in comparing models of computation. There is a need for
both abstract and concrete models and an understanding of their relationship.

Clearly, within the concrete, there is great scope for variations in models of compu-
tation and we may expect different representations to lead to different computability
theories. Abstract models, too, can vary, since the choice of operations, program
constructs, and kinds of formulae can vary. Can there be concrete models that are
sufficiently canonical to be equivalent to an abstract model?

A full general discussion of the distinction is given in Tucker and Zucker [81], moti-
vated by their theory of abstract computation on topological spaces (see Tucker and
Zucker [78, 79, 80]). The distinction is also directly relevant to the seemingly stable

Computability on Topological Spaces via Domain Representations 157

and unified classical world of computability on countable algebras, as pointed out in
Tucker and Zucker [81]).

The theory of computable sets and functions is based on data that may be represented
by finite discrete symbols. For Turing’s analysis of human computation, the symbols
came from the set B = {0, 1}, or for Kleene’s theory of recursive functions, the
symbols were from N. For Gödel’s computations on syntax the symbols came from
the set N of natural numbers via Gödel numberings. The early development of com-
putability theory did not interest itself in ideas about data and how it was represented.
What, after all, was worth saying about B and N other than they are so fundamental
and an obvious place to start? In the 1950s computability theory was extended by
advanced applications in logic, algebra, and analysis. Studying computability now
required an interest in nature of data and how it was represented because what was
computable depended upon the data. In algebra, rings and fields had to be considered
as structures unique up to isomorphism, not just as specific representations. In Fröh-
lich and Shepherdson [36] we see great attention to representations and their equiv-
alence. In the Mal’cev-Ershov theory of numberings of countable sets and structures
[34, 35, 47], representations are studied in depth: a numbering α : N → A makes
explicit the idea that one chooses a numerical representation of the data in A and
computes on N. The theory of numberings plays a role in the development of do-
main representations.

2.2 Computability theories for topological spaces

Most computability theories for topological spaces are developed using concrete
models of computation. The study of computability on the reals began with Tur-
ing in 1936, but only later was it taken up in a systematic way, e.g., in Rice [57],
Lacombe [45], and Grzegorczyk [37]. For example, to compute on the set R of real
numbers with a concrete model of computation, we choose an appropriate concrete
representation of the set R, such as computable Cauchy sequences.

In the case of concrete computability, there have been a several general approaches
to the analysis and classification of metric and topological structures since the
1950s:

(i) Effective metric spaces (Ceitin [17], Moschovakis [50]);

(ii) Computable sequence structures for Banach spaces (Pour El and Richards [56]);

(iii) Type 2 Theory of Effectivity or TTE (Weihrauch [83, 84]);

(iv) Algebraic domain representations (Stoltenberg-Hansen and Tucker [69, 70, 73]);

(v) Continuous domain representations (Edalat [23, 24, 25]);

(vi) Numbered spaces (Spreen [64, 65, 66, 67]).

158 Viggo Stoltenberg-Hansen and John V. Tucker

Computable analysis has been greatly extended over the past decade using these
models, which have been seen as competing. This has made the exciting rapid growth
of the subject seem messy. In fact, for certain basic topological algebras, most of
these concrete computability theories have been shown to be essentially equivalent
in Stoltenberg-Hansen and Tucker [75].

We should say a word about the abstract approach. Analysis makes heavy use of
algebraic structures, such as topological groups and vector spaces, Banach spaces,
Hilbert spaces, C* algebras, and many more. These many sorted topological algebras
specify (i) some basic continuous operations; (ii) normal forms for the algebraic rep-
resentation of elements (e.g., using bases); (iii) structure-preserving operators (i.e.,
homomorphisms such as linear operators); and (iv) approximations, through inner
products, norms, metrics, and topologies.

Abstract computability theories are created by simply applying the abstract models
to these algebras. These models can be defined by programming languages whose
programs are based on the operations of the algebras. However, thanks to approx-
imation (iv), we obtain two classes of functions: the computable functions and the
computably approximable functions.

A full account of the theory on general metric algebras, together with a detailed dis-
cussion of the bridge between abstract and concrete models, can be found in Tucker
and Zucker [80, 81]. The most publicised abstract computability theory for R is that
developed in Blum, Cucker, Shub, and Smale [16], but it is a theory that does not fit
the concrete models because of its use of noneffective operations such as =.

2.3 Domain representation theory

The idea of representing topological spaces and algebras using effective domains
was, as far as we know, first made explicit in a widely circulated report from
Stoltenberg-Hansen and Tucker [69], which was later published as [70]. In this re-
port a general methodology was described for topological algebras and applied to
study the effective content of the completion of a computable Noetherian local ring.
It was extended further to ultrametric spaces and locally compact regular spaces in
[71, 72, 73] and to metric spaces in the thesis [8]. We will meet these constructions
in Section 9.

A precursor to some of the central ideas of domain representability is Weihrauch
and Schreiber [85], where embeddings of metric spaces into complete partial orders
equipped with weight and distance are considered.

It was clear from the beginning of the development of domain theory that, in ad-
dition to the ease of building type structures, it is a theory of approximation and
computation, and that computability often implies continuity. This was exploited
in [33] where Ershov gave a domain representation of the Kleene–Kreisel continu-
ous functionals. An effective and adequate domain model of Martin-Löf partial type

Computability on Topological Spaces via Domain Representations 159

theory is given in Palmgren and Stoltenberg-Hansen [55], which has been extended
in Waagbø [82] to provide a domain representation of Martin-Löf total type theory
(see also Berger [6] and Normann [52]).

3 Approximations, orderings, and domains

Suppose we want to compute on a possibly uncountable structure such as the field
of real numbers R. The elements of R are in general truly infinite objects (Cauchy
sequences or Dedekind cuts) with no finite description. However, computations that
can be performed by a digital computer or Turing machine must operate on ‘finite’
objects. By a finite object we mean that it is finitely describable or, equivalently,
coded by a natural number. In particular, the structure on which computations are to
be performed must be countable. Therefore it is not possible to compute directly on
R; we can at best compute on finite approximations of elements in R. If the approxi-
mations are such that each real number is the limit of its approximations, then we can
extend a computation on approximations to R by interpreting a computation on a real
number as the ‘limit’ of the computations on its approximations, where such a limit
exists. It follows, intuitively, that computations are continuous processes.

In this section we show that a simple analysis of the notion of approximation leads
naturally to the class of algebraic cpos.

3.1 Approximations and orderings

Let us consider the problem of approximation abstractly. Suppose that X is a set, or,
more generally, a structure. To say that a set P is an approximation for X should
mean that elements of P are approximations for elements of X . That is, there is a
relation ≺, the approximation relation, from P to X with the intended meaning for
p ∈ P and x ∈ X ,

p ≺ x⇐⇒ “p approximates x”.

We illustrate this with a few relevant examples.

Example 3.1 Let P = {[a, b] : a ≤ b, a, b ∈ Q} and X = R. Define

[a, b] ≺ x⇐⇒ x ∈ [a, b].

Note that P is countable and consists of finite elements in the sense that an interval
[a, b] is finitely describable from finite descriptions of the rational numbers a and b
and the symbols “[", “]” and “,”. Furthermore, each x ∈ R is the ‘limit’ (intersection)
of its approximations.

Example 3.2 Let P = Q and X = R. For a ∈ Q and x ∈ R, define

a ≺ x⇐⇒ a < x,

where < is the usual order on R.

160 Viggo Stoltenberg-Hansen and John V. Tucker

Note that Example 3.1 provides a better approximation of R than Example 3.2 in that
[a, b] ≺ x gives more information than a ≺ x.

Example 3.3 Let X be a topological space with a topological base B. For B ∈ B
and x ∈ X , define

B ≺ x⇐⇒ x ∈ B.

Let P and X be sets, and let ≺ be a relation from P to X . Then ≺ induces in a
natural way a relation # on P , the refinement (pre-)order obtained from or induced
by ≺: for p, q ∈ P , let

p # q ⇐⇒ (∀x ∈ X)(q ≺ x =⇒ p ≺ x).

Thus p # q expresses that q is a better approximation than p, or q refines p, in the
sense that q approximates fewer elements in X than does p. Note that the induced
refinement order indeed is a preorder; i.e., it is reflexive and transitive.

We now put some reasonable requirements on P and≺ in order to obtain an approx-
imation structure for X . We require that

• each element x ∈ X is determined uniquely by its approximations, and

• each element x ∈ X is the ‘limit’ of its approximations.

In addition, for domain theoretic reasons guaranteeing the existence of fixed points,
it is useful to require P to have a trivial approximation, i.e., an approximation that
approximates all elements of X (and hence contains no information about elements
of X). This leads us to

Definition 3.4 Let P andX be sets,≺ a relation from P to X , and# the refinement
preorder obtained from ≺. Then (P,#) is an approximation structure for X with
respect to ≺ if

(i) {p ∈ P : p ≺ x} = {p ∈ P : p ≺ y} =⇒ x = y (uniqueness);

(ii) p ≺ x and q ≺ x =⇒ (∃r ≺ x)(p # r and q # r) (refinement);

(iii) (∃p ∈ P)(∀x ∈ X)(p ≺ x) (trivial approximation).

Examples 3.1 and 3.2 are approximation structures when we add a trivial approxi-
mation. Example 3.3 gives an approximation structure precisely when the space X
is T0. In this sense, (i) in Definition 3.4 is a T0 property.

3.2 Ideals and domains

Let (P,#) be an approximation structure for X with respect to ≺. Then each x ∈ X
is identified uniquely with the set {p ∈ P : p ≺ x}. Note that if p # q ≺ x, then
p ≺ x. Together with (ii) and (iii) in Definition 3.4 we see that {p ∈ P : p ≺ x} is
an ideal over (P,#). In particular, it is a (canonical) net ‘converging’ to x.

Computability on Topological Spaces via Domain Representations 161

Let us recall the definitions. For a preorder P = (P,#), a set A ⊆ P is said to be
directed if A is non-empty, and if p, q ∈ A, then there is an r ∈ A such that p, q # r;
i.e., every finite subset of A has an upper bound in A. A subset I ⊆ P is an ideal
over P if I is directed and whenever x # y and y ∈ I then also x ∈ I; that is, I is
downwards closed.

We often use the notation ↓p = {q ∈ P : q # p} and ↑p = {q ∈ P : p # q}. Note
that ↓p is an ideal, the principal ideal generated by p. We denote by Idl(P,#), or
just Idl(P), the set of all ideals over (P,#).

Given an approximation structure (P,#) of X with respect to ≺, we obtain an
injection of X into Idl(P); i.e., X ‘lives’ in Idl(P). In addition, Idl(P) contains
the approximations P that we started with by means of the principal ideals ↓p.
Thus

Idl(P) is a structure that contains both the original space and its approxi-
mations.

Idl(P) is naturally ordered by inclusion⊆. For if ideals I ⊆ J , then J contains more
approximations and hence more information about the elements approximated than
does I . We consider Idl(P) as a structure ordered by inclusion.

Definition 3.5 Let P = (P,#) be a preorder. The ideal completion of P is the
structure P̄ = (Idl(P),⊆).

It is verified easily that P̄ is an algebraic cpo where the compact elements are pre-
cisely the principal ideals. We recall the definitions.

Let D = (D,#,⊥) be a partially ordered set with least element ⊥. Then D is a
complete partial order (abbreviated cpo) if whenever A ⊆ D is directed, then

⊔
A

(the least upper bound or supremum of A) exists in D. An element a ∈ D is said to
be compact or finite if whenever A ⊆ D is a directed set and a #

⊔
A, then there is

x ∈ A such that a # x. The set of compact elements in D is denoted by Dc. A cpo
D is algebraic if for each x ∈ D, the set

approx(x) = {a ∈ Dc : a # x}

is directed and x =
⊔

approx(x).

Algebraic cpos have the following representation theorem. For its simple proof, see
Stoltenberg-Hansen, Lindström, and Griffor [68].

Theorem 3.6 Let D = (D,#,⊥) be an algebraic cpo, and let Dc be the ideal
completion of Dc = (Dc,#). Then D & Dc.

Note that if D is an algebraic cpo, then (Dc,#) is an approximation structure for D
with respect to ≺, where for a ∈ Dc and x ∈ D,

a ≺ x⇐⇒ a # x.

162 Viggo Stoltenberg-Hansen and John V. Tucker

Thus we have

Corollary 3.7 Algebraic cpos are precisely the ideal completions of approximation
structures.

Algebraic cpos are determined completely by their sets of compact elements. Also
continuous functions between algebraic cpos are determined completely by their ac-
tion on compact elements. Therefore, as we shall see in Section 6, algebraic cpos
carry a natural theory of effectivity by computing on the set of compact elements,
and a large subclass of them is effectively closed under various constructions, in-
cluding the function space construction.

We say that an algebraic cpo D is κ-based if the cardinality of Dc equals κ, where
κ is a cardinal. D is countably based if Dc is countable. When considering effective
algebraic cpos, we are thus restricted to countably based algebraic cpos.

3.3 Methodology of domain representability

Assume the task is to study computability on a set or structure X . We find a suit-
able set P of approximations and then form the ideal completion P̄ of the induced
approximation structure. Then P̄ contains both the structure X and the set of ap-
proximations for X . Furthermore, the effectivity of P̄ and hence of X is determined
completely by the computability of the set P of approximations. Now we use the
general theory of domains to study the structure X , including

• fixed point theorems to compute solutions to equations;

• ease in building higher type objects (e.g., streams and stream transformers, see
[14], and higher type operations such as integrals and distributions);

• computability, inherited from the computability of P .

Our claim is that the use of domains (of various kinds) provides a general, uniform,
and useful way to study computability via approximations on a large class of struc-
tures.

4 Continuous functions and algebraic domains

Since computations are based on approximations, an approximation of the value of a
computable function should depend only on an approximation of its argument. This
property gives rise to a notion of continuity.

Let D and E be cpos. Then f : D → E is continuous if f is monotone, and for
each directed set A ⊆ D, f(

⊔
A) =

⊔
f [A]. Thus f is continuous if it preserves

information and, regarding
⊔
A as the limit of the ‘net’A, preserves limits. In case

D and E are algebraic, then f is continuous if, and only if, f is monotone and for
each x ∈ D,

Computability on Topological Spaces via Domain Representations 163

(∀b ∈ approx(f(x)))(∃a ∈ approx(x))(b # f(a)).

This says that for each concrete approximation b of f(x) there is a concrete ap-
proximation a of x such that f applied to a ‘computes’ at least as much informa-
tion as b.

The topology corresponding to this notion of continuity is the Scott topology. For an
algebraic cpo, it is generated by the topological base {↑a : a ∈ Dc}.

For cpos D and E, we define the function space [D → E] of D and E by

[D → E] = {f : D → E | f is continuous},
and we give [D → E] the pointwise ordering:

f # g ⇐⇒ (∀x ∈ D)(f(x) # g(x)).

It is easy to see that [D → E] is a cpo where for a directed set F ⊆ [D → E] and
x ∈ D,

(
⊔
F)(x) =

⊔
{f(x) : f ∈ F}.

It is well known that the class of algebraic cpos is not closed under the function space
construction. The usual additional requirement (though not the finest) is to assume
consistent completeness. An algebraic cpo D is said to be consistently complete if
each consistent (i.e., bounded) pair a and b of compact elements has a supremum
(denoted a � b). It follows that

⊔
A exists for each consistent set A ⊆ D.

Definition 4.1 An algebraic domain is a consistently complete algebraic cpo.

Proposition 4.2 The class of algebraic domains is closed under the function space
construction.

Let D and E be algebraic domains. Then the compact elements of [D → E] are
suprema of finite consistent sets of step functions 〈a; b〉, where the latter are defined
as follows for a ∈ Dc and b ∈ Ec:

〈a; b〉(x) =
{
b if a # x,
⊥ otherwise.

The class of algebraic domains is quite robust in that it is closed under all the
usual constructions with the exception of the Plotkin power domain construction.
The category of algebraic domains along with continuous functions is cartesian
closed. In addition, the fixed point operator fix : [D → D] → D, defined by
fix(f) = least x such that f(x) = x, is continuous.

5 Domain representations

Here we define the concept of a domain representation. We begin by considering the
canonical example of the reals and conclude with some comments on using different
kinds of domains.

164 Viggo Stoltenberg-Hansen and John V. Tucker

5.1 Representing the reals

Recall Example 3.1 of the interval approximation structure for the reals R. The set
of approximations P consists of all finite closed intervals with rational end points.
We also add R to P and say R ≺ r for each r ∈ R. The induced refinement order
is [a, b] # [c, d] ⇐⇒ [a, b] ⊇ [c, d]. Let r ∈ R. Then, as discussed in Section 3, the
ideal

Ir = {[a, b] ∈ P : a ≤ r ≤ b} ∪ {R}

represents r. Note that Ir has the property that
⋂
Ir = {r}. Now consider the

ideal
Ir = {[a, b] ∈ P : a < r < b} ∪ {R}.

Also in this case
⋂
Ir = {r}, but Ir �= Ir in case r is a rational number. Both ideals

give complete information about r and can be considered to represent r. We say that
an ideal I ∈ P̄ represents a real number r just in case

⋂
I = {r}. Let P̄R be the

set of ideals whose intersection is a singleton and define a function ν : P̄R → R
by

ν(I) = r ⇐⇒
⋂

I = {r}.

Proposition 5.1 The function ν : P̄R → R is a continuous surjection with respect
to the Scott and Euclidean topologies.

We have the following picture:

P ↪→ P̄ ←↩ P̄R ν→ R.

Thus, computability on R can be induced via the continuous function ν from com-
putability considerations on P̄ , which in turn depends on computations on P . The
tuple (P̄ , P̄R, ν) is a canonical example of a domain representation of R. It is up-
wards closed in the sense that if I ∈ P̄R and I ⊆ J ∈ P̄ , then J ∈ P̄R. Furthermore
ν(I) = ν(J) for such I and J . Note that if we instead choose P to consist of open
intervals, then P̄R consisting of the ideals whose intersection is a singleton will not
be upwards closed.

5.2 General definitions

We now generalise to an arbitrary topological space.

Definition 5.2 LetX be a topological space, and let D be a domain andDR a subset
of D. Then (D,DR, ν) is a domain representation of X in case ν : DR → X is a
surjective continuous map when DR is given the (relativised) Scott topology.

We have on purpose used the generic term ‘domain’ since the definition makes sense
for any type of ordered structure or, for that matter, topological space. Commonly

Computability on Topological Spaces via Domain Representations 165

used ordered structures are algebraic cpos, algebraic domains, continuous domains,
and bifinite domains. We return to this point below and in Section 10.

Suppose we have a domain representation of a set X , where we thus only require
ν to be a surjection. Then the domain representation induces a topology on X by
giving X the quotient topology. That is, U ⊆ X is open⇐⇒ ν−1[U] is open in DR.
This may at times be a useful way to topologise function spaces and thus build type
structures of topological spaces.

It is quite common when constructing domain representations that the obtained map-
ping ν is a quotient mapping. For example, this is the case for the representation of
R given above. Thus R is a quotient of P̄R; that is,

R & P̄R/ ∼,
where I ∼ J if

⋂
I =

⋂
J .

The next step is to represent functions between and operations on topological
spaces.

Definition 5.3 Let (D,DR, ν) and (E,ER, μ) be domain representations of X and
Y , respectively. A function f : X → Y is represented by (or lifts to) a continuous
function f̄ : D → E if f̄ [DR] ⊆ ER and μ(f̄(x)) = f(ν(x)), for all x ∈ DR.

Note that f̄ is required to be defined on all of D. In certain situations, when consid-
ering computability aspects, it may be useful to allow partial functions on D. This is
developed in Dahlgren [19].

Suppose f̄ : D → E is such that f̄ [DR] ⊆ ER and such that ν(x) = ν(y) =⇒
μ(f̄(x)) = μ(f̄(y)). Then f̄ induces a unique function f : X → Y defined by
f(ν(x)) = μ(f̄(x)).

Proposition 5.4 Let (D,DR, ν) and (E,ER, μ) be domain representations of X
and Y , respectively, and assume ν is a quotient map. If f : X → Y is represented by
a continuous function f̄ : D → E, then f is continuous.

The proposition is a trivial topological fact. The converse is more interesting. When
does a continuous function f : X → Y have a continuous lifting f̄ : D → E? We
will return to this kind of question in Section 7.

Domain representability is naturally extended to topological algebras. Recall that a
topologicalΣ-algebra is a topological space with continuous operations specified by
the signature Σ. The field R = (R,+,×, 0, 1) of real numbers is a relevant example
here.

Definition 5.5 Let A = (A, σ1, . . . , σn) be a topological Σ-algebra. Then A is
domain representable by D = (D,DR, ν; σ̄1, . . . , σ̄n) when (D,DR, ν) is a do-
main representation of the topological space A, and each σ̄i : Dni → D is a con-
tinuous operation on D representing the operation σi. The domain with operations
(D, σ̄1, . . . , σ̄n) is called a Σ-domain.

Note that the mapping ν in the definition is a Σ-homomorphism.

166 Viggo Stoltenberg-Hansen and John V. Tucker

5.3 Other domains

One can represent topological spaces using other kinds of domains and ordered struc-
tures. Examples are Baire–Cantor domains and continuous domains. Each yields a
theory of computability on spaces with an extensive set of applications.

The Cantor–Weihrauch domains are simply the Baire and Cantor spaces of func-
tions on N seen as domains; we will meet them in Section 8. K. Weihrauch created
the theory of TTE computability independently of notions of domain theory. Indeed
after having considered cpos as a general approximating structure, he chose to use
Baire and Cantor spaces and their computability theories based on relativised Turing
computability, to represent spaces. TTE has an extensive theory and a huge range of
applications; see Weihrauch [84]. It is possible to view TTE as a theory of Baire–
Cantor–Weihrauch domain representations; see Blanck [13].

The continuous domains have a different axiomatisation of the intuitions behind
domains and form a larger class of structures containing the algebraic domains.
They were first used for the representation of the real numbers and other topolog-
ical spaces by A. Edalat, who has also created an extensive set of applications; see
Section 10.9.

The relationship between the use of these various kinds of domains in representation
theory has been discussed in Stoltenberg-Hansen and Tucker [75] and in Blanck [13].

6 Effectivity

In this section we impose and study notions of computability or effectivity on do-
mains in order to study computability on the represented structure. The type of ef-
fectivity we consider is, in the terminology of Definition 2.1, concrete computabil-
ity. Our computability theory is driven by the partial recursive functions. We use
the Mal’cev–Ershov theory of numberings in order to extend computability from the
natural numbers to other structures, such as domains.

We assume some very basic knowledge of recursion theory that can be found in
any basic text. Our notation is standard. In particular we let {We}e∈N be a standard
numbering of the recursively enumerable (r.e.) sets.

Let A be a set. A numbering of A is a surjective function α : ΩA → A, where
ΩA ⊆ N. It should be thought of as a coding of A by natural numbers. In case ΩA is
recursive, we say that a subset S ⊆ A is α-semidecidable if α−1(S) is r.e. and S is
α-decidable if α−1(S) is recursive.

Let B be a set with a numbering β. Then a function f : A→ B is said to be (α, β)-
computable if there is a partial recursive function f̄ such that for each n ∈ ΩA, f̄(n)
is defined and

f(α(n)) = β(f̄(n)).
We say that f̄ tracks f .

Computability on Topological Spaces via Domain Representations 167

6.1 Effective domains

At the heart of an algebraic cpo are the compact elements that play the role of the
finite approximations. All computations will take place on the compact elements.
Moreover continuous functions between algebraic cpos are determined completely
by their behaviour on the compact elements. Thus it suffices to have a numbering of
the compact elements of an algebraic cpo.

The following weak notion of effectivity suffices for many basic results with the
important exception of the function space construction.

Definition 6.1 An algebraic cpo D = (D,#,⊥) is weakly effective if there is a
numbering

α : N → Dc

of Dc such that the relation α(n) # α(m) is a recursively enumerable relation on N
(i.e., the relation # is α-semidecidable).

We denote an algebraic cpo D, which is weakly effective under a numbering α, by
(D,α).

Computable elements of a weakly effective cpo are those that can be effectively
approximated, and effective functions are those whose values can be effectively ap-
proximated from effective approximations of the arguments.

Making this precise, given weakly effective (D,α) and (E, β), we say that an el-
ement x ∈ D is α-computable if the set approx(x) is α-semidecidable. The set of
computable elements in (D,α) is denoted by Dk,α.

A continuous function f : D → E is (α, β)-effective if the relation b # f(a) is
α-semidecidable on Dc × Ec. The intuition for the latter is that the approximations
of f(x) are generated effectively and simultaneously with the approximations of x.
(Recall the characterisation of a continuous function between algebraic cpos from
Section 4.)

It is straightforward to show that an effective function takes a computable element
to a computable element and that the composition of effective functions is effec-
tive.

The set Dk,α has a natural numbering.

Theorem 6.2 Let (D,α) be a weakly effective algebraic cpo. Then there is a num-
bering ᾱ : N → Dk,α such that

(i) the inclusion mapping ι : Dc → Dk,α is (α, ᾱ)-computable;

(ii) the relation α(n) # ᾱ(m) is r.e.; i.e., approx(ᾱ(m)) is α-semidecidable uni-
formly in m; and

168 Viggo Stoltenberg-Hansen and John V. Tucker

(iii) there is a total recursive function h such that for each e,

ᾱ[We] directed =⇒ ᾱh(e) =
⊔

ᾱ[We].

A numbering satisfying (i) and (ii) of the theorem is said to be a constructive num-
bering of Dk,α. It is recursively complete if it also satisfies (iii). It is a fact that all
recursively complete constructive numberings of Dk,α are recursively equivalent as
numberings. In general, two numberingsμ and ν of a setA are recursively equivalent
if id : A→ A is (μ, ν)-computable and (ν, μ)-computable.

To relate our domain theoretic notions to classical recursion theory, let P be the
algebraic domain of all partial functions from N into N ordered by graph inclusion.
Letα be a standard numbering of the setPc of finite functions. ThenPk,α is the set of
partial recursive functions. The numbering ᾱ is a standard numbering of the partial
recursive functions in the sense of Hartley Rogers in that it satisfies the universal
property and the s-m-n theorem.

Given weakly effective algebraic cpos (D,α) and (E, β), we have the notion of an
(α, β)-effective function from D to E and of an (ᾱ, β̄)-computable function from
Dk,α to Ek,β . They are related by the following deep theorem due to Ershov [33], a
generalisation of the Myhill–Shepherdson theorem.

Theorem 6.3 Let (D,α) and (E, β) be weakly effective domains, and let f : Dk,α →
Ek,β . Then f is (ᾱ, β̄)-computable if, and only if, there is an (α, β)-effective function
f̄ : D → E such that f̄ �Dk,α = f .

For the function space construction, a stronger form of effectivity is needed.

Definition 6.4 An algebraic domainD = (D,#,⊥) is effective if there is a number-
ing α : N → Dc such that the following relations are α-decidable for a, b, c ∈ Dc:

(i) a # b;

(ii) ∃d ∈ Dc(a, b # d); and

(iii) a � b = d.

Proposition 6.5 The category of effective domains with effective functions as mor-
phisms is cartesian closed.

The proof uses the intuitively effective criterion for determining whether a finite set
of step functions is consistent, namely

{〈a1; b1〉, . . . , 〈an; bn〉} is consistent in [D → E]

if, and only if,

∀I ⊆ {1, . . . , n}({ai : i ∈ I} consistent =⇒ {bi : i ∈ I} consistent).

Computability on Topological Spaces via Domain Representations 169

6.2 Effective domain representations

The method we pursue to study effective properties of a topological algebra A is
to find an effective domain D representing A in the sense of Definition 5.2 and
then measure the effectivity of A by means of the effectivity of the representing
domain D. Thus, the effectivity of A is dependent on the domain representation D
and its effectivity. In practice, as described in Section 3.3, given an algebra A one
finds a computable or effective structure P of approximations for A that is such that
the ideal completion P̄ of the approximation structure P is a domain representation
of A.

Definition 6.6 Let X be a topological space. Then X is (weakly) effectively domain
representable by (D,DR, ν, α) when (D,DR, ν) is a domain representation of X
and (D,α) is a (weakly) effective domain.

The computable elements of X are induced by the computable elements of D. More
precisely, the set Xk,α of computable elements of X is the set

Xk,α = {x ∈ X : ν−1(x) ∩Dk,α �= ∅}.

The above notions are easily extended to topologicalΣ-algebras. Let (A, σ1, . . . , σn)
be a topological Σ-algebra. Then (D,DR, ν, α; σ̄1, . . . , σ̄n) is a (weakly) effective
domain representation of (A, σ1, . . . , σn) if the operations σ̄i are α-effective, and
(D,DR, ν; σ̄1, . . . , σ̄n) is a domain representation of (A, σ1, . . . , σn).

A Σ-algebra A is said to have a numbering with recursive operations if there is
a numbering β : ΩA → A, such that each operation in A is β-computable. And
we say that (A, β) is a numbered algebra with recursive operations if β is a num-
bering of A with recursive operations. Note that we put no requirement on the
complexity of the code set ΩA nor on the (relative) complexity of the equality
relation.

Proposition 6.7 Let (A, σ1, . . . , σq) be a topological Σ-algebra weakly effective
domain representable by (D,DR, ν, α; σ̄1, . . . , σ̄q).

(i) Ak,α is a subalgebra of A.

(ii) Ak,α is a numbered algebra with recursive operations with a numbering α̃ in-
duced by α.

The first part of the proposition follows immediately since an effective domain func-
tion takes computable elements to computable elements. For the second part, let
ΩA = ᾱ−1(Dk,α ∩DR) and define α̃ : ΩA → Ak,α by

α̃(n) = ν(ᾱ(n))

for n ∈ ΩA, where ᾱ is the canonical numbering of Dk,α obtained from α as in
Theorem 6.2.

170 Viggo Stoltenberg-Hansen and John V. Tucker

Finally we introduce two notions of effectivity for functions between weakly effec-
tive, domain-representable topological spaces.

Definition 6.8 Let A and B be topological spaces, weakly effective domain repre-
sentable by (D,DR, ν, α) and (E,ER, μ, β), respectively.

(i) A continuous function f : A → B is said to be (α, β)-effective if there is
an (α, β)-effective continuous function f̄ : D → E representing f ; that is,
f̄ [DR] ⊆ ER and for each x ∈ DR, f(ν(x)) = μ(f̄(x)).

(ii) A function f : Ak,α → Bk,β is (α̃, β̃)-computable, where α̃ and β̃ are the num-
berings obtained in Proposition 6.7, if there is a partial recursive function f̃ such
that ΩA ⊆ dom(f̃) and for all n ∈ ΩA,

f(α̃(n)) = β̃(f̃(n));

that is f̃ tracks f with respect to α̃ and β̃.

It is not difficult to see from Theorem 6.3 that if f : A → B is (α, β)-effective,
then f�Ak,α : Ak,α → Bk,β is (α̃, β̃)-computable (and continuous). The converse
direction is more difficult. It is related to the Kreisel–Lacombe–Shoenfield theorem
[41] and Ceitin’s theorem [17]. Note that continuity is not assumed in (ii).

7 Classes of domain representations

Recall that we only required of a domain representation (D,DR, ν) of a spaceX that
the function ν : DR → X be continuous. In most cases, but not all, we have stronger
representation. Here are some common and useful additional properties.

Definition 7.1 Let (D,DR, ν) be a domain representation of the topological space
X .

(i) The representation is a quotient representation if ν is a quotient map.

(ii) The representation is a retract representation with respect to ρ : X → DR if ρ is
continuous and νρ = idX .

(iii) The representation is a homeomorphic representation if ν is a homeomorphism.

It is straightforward to see that (iii) =⇒ (ii) =⇒ (i). Recall that if we restrict our-
selves to quotient representations, then representable functions are continuous. For a
retract representation (D,DR, ν) with respect to ρ of X , we have that ρν is a retract;
that is, (ρν)2 = ρν, and hence that (D, ρν[DR], ν � ρν[DR]) is a homeomorphic
representation of X .

Consider the standard representation of R obtained from the approximations in Ex-
ample 3.1. It is easy to see that this is a retract representation with respect to the
function sending each r ∈ R to the ideal Ir = {[a, b] ∈ P : a < r < b}∪ {R}. Thus

Computability on Topological Spaces via Domain Representations 171

we obtain a homeomorphic representation of R. Note, however, that this representa-
tion is not upwards closed. In fact, there is no homeomorphic domain representation
(D,DR, ν) of R whereDR is the set of maximal elements of an algebraic domainD.
(There is, however, a homeomorphic continuous domain representation consisting of
the maximal elements; see Section 10.9.)

Theorem 7.2 Every T0 topological spaceX has a homeomorphic algebraic domain
representation.

The construction is as follows. Let B be a topological base of non-empty sets closed
under finite intersections as in Example 3.3. Taking the ideal completion of the ap-
proximation structure (B,⊇) and letting the representing ideals be Ix = {B ∈ B :
x ∈ B}, we obtain a homeomorphic representation. Thus, every T0 space X has
a homeomorphic κ-based domain representation, where κ is the weight of X , that
is, the smallest infinite cardinality of a topological base for X . In particular, each
second countable T0-space has a countably based homeomorphic domain represen-
tation. However, it is not the case that countably based domain representations are
restricted to second countable spaces. As we shall see in Section 10.6, there are good
effective and hence countably based domain representations of important spaces that
are not second countable.

The set DR in a domain representation (D,DR, ν) is often referred to as the set of
total elements in the sense that its elements give total information about the elements
of the represented space. There is an abstract theory of domains with totality, i.e.,
pairs (D,Dt) where Dt ⊆ D and (often) satisfies some trivial properties. We will
not pursue this theory here, but we will use the concept.

We will mainly restrict ourselves to dense representations. A domain with totality
(D,DR) is dense if DR is dense in D with respect to the Scott topology. And a
domain representation (D,DR, ν) of a spaceX is dense if (D,DR) is dense.

The advantage of a dense representation (D,DR, ν) is the relative ease with which a
continuous function fromDR can be lifted or extended to the whole ofD. It is always
possible to obtain an equivalent dense representation from any given representation
(D,DR, ν) by considering the domain generated by all compact approximations ly-
ing below some element of DR. This construction, however, is in general far from
being effective. One way to deal with this problem is to use partial continuous func-
tions [19]. There are important situations where liftings can be achieved also for
non-dense representations [13, 43, 54].

Definition 7.3 LetD = (D,DR, ν) andE = (E,ER, μ) be domain representations
of a topological spaceX . The representationD reduces (continuously) toE, denoted
by D ≤ E, if there is a continuous function φ : D → E such that φ[DR] ⊆ ER and
(∀x ∈ DR)(ν(x) = μφ(x)), i.e., ν factors through μ via φ on the representing
elements DR. We say that D ≡ E when D ≤ E and E ≤ D.

Like the definition of domain representability, this notion of reducibility works with
many types of ordered structures.

172 Viggo Stoltenberg-Hansen and John V. Tucker

Let C be a class of domains with totality. We will in this connection say, e.g., that
C is the class of dense algebraic cpos, thus suppressing the ‘with totality’. Then
we let SpecC(X) denote the equivalence classes of ≡ over the class of domain
representations (D,DR, ν) of X , where (D,DR) ∈ C. Note that if C is the class
of dense algebraic domains, then SpecC(X) contains a largest element, assuming
X is a T0-space, by considering the homeomorphic representation obtained from a
topological base.

Theorem 7.4 (Blanck [13]) Let C be the class of dense algebraic domains and as-
sume X is a T0-space. Then the largest degree of SpecC(X) contains precisely the
retract representations of X over C.

In particular we know that the standard representation of R is the largest represen-
tation over dense algebraic domains and is equivalent to the standard homeomor-
phic representation of R. In fact, Blanck shows that if (D,DR, ν) is a retract alge-
braic domain representation of X , then (D,DR, ν) is the largest representation over
the class C of dense algebraic cpos. This then applies to the standard representation
of R.

Another related but important concept is that of an admissible domain representa-
tion. The analogous notion for TTE was first formulated by Schröder [59], whereas
Weihrauch considered a similar notion for second countable spaces.

Definition 7.5 Let D = (D,DR, ν) be a domain representation of a topological
space X . Then D is an admissible representation of X over a class C of domains
with totality if whenever (E,ER) ∈ C and φ : ER → X is continuous, then there
is a continuous function φ̄ : E → D such that φ̄[ER] ⊆ DR and for each w ∈ ER,
φ(w) = νφ̄(w).

Again the term ‘domain’ is generic. We will, as usual, restrict ourselves to algebraic
cpos or algebraic domains.

We have the following relation between admissibility and the reduction ordering of
domain representations.

Theorem 7.6 Let C be the class of dense algebraic cpos. Then D = (D,DR, ν)
is the largest representation of X with respect to ≤ over C if, and only if, D is an
admissible representation of X over C.

The theorem is true for any reasonable class C. It is proved by considering a direct
sum of a largest representation of X and (E,ER) ∈ C.

Admissibility has implications on the nature of the coding function of the represen-
tation. The following is observed in Hamrin [38].

Theorem 7.7 Let D be an algebraic cpo, and assume (D,DR, ν) is an admissible
domain representation of X over the class of dense algebraic cpos. Then ν is a
quotient mapping.

Computability on Topological Spaces via Domain Representations 173

The key point here is that open sets can be characterised using nets of arbitrary large
cardinalities. On the other hand we are interested primarily in effective representa-
tions D, and hence, Dc must be countable. It is therefore interesting to introduce
cardinality restrictions to the notion of admissibility.

Definition 7.8 Let κ be an infinite cardinal, and let C be a class of algebraic cpos
with totality. Let D = (D,DR, ν) be a domain representation of a topological space
X . Then D is a κ-admissible representation of X over C if whenever (E,ER) ∈ C,
the cardinality of Ec is less than or equal to κ, and φ : ER → X is continuous, then
there is a continuous function φ̄ : E → D such that φ̄[ER] ⊆ DR, and for each
w ∈ ER, φ(w) = νφ̄(w).

Recall that if the coding function ν was a quotient, then every representable function
is a continuous. For κ-admissible, κ-based representations, we have a precise char-
acterisation of the representable functions. We formulate it here for κ = ω so as not
to introduce the notion of a κ-continuous function.

Theorem 7.9 Let C be the class of dense algebraic cpos with totality or the class
of dense domains with totality. Suppose that (D,DR) ∈ C and D = (D,DR, ν)
is a countably based representation of X such that D is ω-admissible over C. Let
E = (E,ER, μ) be a representation of Y that is ω-admissible over C. Then a func-
tion f : X → Y is representable over D and E if, and only if, f is sequentially
continuous.

Recall that continuous functions are sequentially continuous.

Finally, we mention a theorem from Hamrin [38] characterising the spaces repre-
sentable by κ-admissible and κ-based domains.

We say that a topological space X has a κ-pseudobase if there is a family B ⊆ ℘(X)
such that for each open set U ⊆ X and each κ-net S → x ∈ U there is B ∈ B such
that x ∈ B ⊆ U and S is eventually in B. A κ-net is a net of cardinality at most κ.
Thus a space X has an ω-pseudobase B if the condition holds for each open set U
and each sequence (xn)n approaching x ∈ U .

The space of test functions used in distribution theory is an example of a topolog-
ical space that is not second countable but has a countable pseudobase. (See Sec-
tion 10.6.)

Theorem 7.10 A topological space X has a κ-based and κ-admissible domain
representation if, and only if, X is a T0-space and has a pseudobase of size at
most κ.

It has been shown by Schröder [59] using TTE that the category of spaces repre-
sentable by ω-based and ω-admissible domains is cartesian closed. In fact, this cat-
egory coincides with the category QCB consisting of topological spaces that are
quotients of second countable spaces; see Menni and Simpson [48]. For κ > ω,
the question of finding a large cartesian closed category of topological spaces is un-
clear.

174 Viggo Stoltenberg-Hansen and John V. Tucker

8 TTE and domain representability

An important and successful approach to computability on topological algebras and
to Computable Analysis is Type 2 Theory of Effectivity, abbreviated as TTE. A large
amount of work has been done using this approach by K. Weihrauch, his students
and collaborators, and others. The idea is to generalise the basic definition of a num-
bering, replacing the natural numbers N with the Baire space F = N → N and giving
F the Baire topology, or, more generally, with Σω, where Σ is a finite or countable
set. Then the established computability theory on Σω induces computability on the
represented space via the numbering.

We will relate TTE to (effective) domain representability. For simplicity we restrict
ourselves to the Baire space, leaving the simple coding necessary when going to
finite Σ.

Let X be a topological space. We say that a partial surjective function ρ : dom(ρ) ⊆
F → X is a TTE-representation of X if ρ is continuous. An element x ∈ X is
ρ-computable if there is a recursive function in dom(ρ) such that ρ(f) = x.

Suppose η : dom(η) ⊆ F → Y is a TTE-representation of Y . Then a function
f : X → Y is TTE-representable with respect to ρ and η if there is a continuous
partial function f̄ : dom(f̄) ⊆ F → F tracking f ; i.e., f(ρ(x)) = η(f̄ (x)) for each
x ∈ dom(ρ). The function f is (ρ, η)-effective if there is a computable tracking
function f̄ for f .

A first observation is that the Baire space F naturally extends to an algebraic domain
B = N<ω ∪F with the orderingw * v ⇐⇒ w is an initial segment of v. The usual
Baire topology on F is the subspace topology obtained from the Scott topology on
B. We call B the Baire domain.

It is well known that each partial continuous function f : dom(f) ⊆ F → F extends
to a total continuous function f̄ : B → B. Furthermore, if f is computable, then f̄
can be chosen to be effective in a uniform way from f . From these observations we
have the following equivalence theorem:

Theorem 8.1 Let ρ : dom(ρ) ⊆ F → X be a TTE-representation of X . Then
(B, dom(ρ), ρ) is an effective domain representation of X . An element x ∈ X is
ρ-computable in the TTE sense if, and only if, it is computable in the Baire domain
representation sense.

Furthermore, if η : dom(η) ⊆ F → Y is a TTE representation of Y , then f : X → Y
is TTE-representable (and effective) with respect to ρ and η in the TTE sense if, and
only if, f is representable (and effective) with respect to ρ and η in the Baire domain
representation sense.

For the converse reduction, we have the following observation.

Lemma 8.2 If D is a countably based algebraic domain, then there is a surjective
quotient map ϕ : B → D. Furthermore, ϕ[F] = D.

Computability on Topological Spaces via Domain Representations 175

Proof. Let (ai) be an enumeration of Dc. For w ∈ N<ω we define ϕ(w) as follows.
Let v * w be the largest initial segment such that {av(i) : i < length of w} is
consistent, and let ϕ(w) =

⊔
{av(i) : i < length of v}. Then ϕ is monotone on N<ω

and hence extends uniquely to a continuous function on B, which is easily seen to be
a quotient. For x ∈ D, let w ∈ F be such that approx(x) = {aw(i) : i ∈ N}. Then
clearly ϕ(w) = x. �

It follows from the proof that if (D,α) is an effective domain, then ϕ is effective,
using the numbering of Dc given by α. Furthermore, Dk = ϕ[Fk]. Thus we ob-
tain

Theorem 8.3 Let (D,DR, ν, α) be an effective domain representation of X . Then
there is a TTE-representation ρ : dom(ρ) ⊆ F → X such that the sets of computable
elements of X with respect to the two representations coincide.

Proof. Let ϕ : B → D be as in Lemma 8.2, and define ρ : ϕ−1[DR] ∩ F → X by
ρ(x) = νϕ(x). �

We now consider representable functions. Let (D,α) and (E, β) be countably based
domains, and let ϕ : B → D and ψ : B → E be the effective surjections obtained
from Lemma 8.2. The following can be proved along similar lines.

Lemma 8.4 Suppose f : D → E is (α, β)-effective. Then there is an effective func-
tion f̃ : B → B, obtained uniformly from f , such that f̃ [F] ⊆ F, and for each x ∈ F,
ψf̃(x) = fϕ(x).

Theorem 8.5 Let D = (D,DR, ν, α) and E = (E,ER, μ, β) be effective do-
main representations of topological spaces X and Y , respectively. There are TTE-
representations ρ and η of X and Y , respectively, such that if f : X → Y is effec-
tively representable over (D,α) and (E, β), then f is effectively representable with
respect to ρ and η.

Proof. Let ϕ : B → D and ψ : B → E be the effective surjections obtained from
Lemma 8.2, and let f̄ : D → E be an (α, β)-effective representation of f : X → Y .
Let f̃ : B → B be the effective function obtained from f̄ as in Lemma 8.4. Then we
define ρ : ϕ−1[DR] ∩ F → X by ρ = νϕ, and, similarly, η : ψ−1[ER] ∩ F → Y by
η = μψ. These are clearly continuous surjections and hence TTE-representations.
Furthermore, for each x ∈ ϕ−1[DR] ∩ F,

fρ(x) = fνϕ(x) = μf̄ϕ(x) = μψf̃(x) = ηf̃(x),

which shows that f is effectively representable with respect to ρ and η. �

A detailed analysis of the relationship between domain representability, using the
category EQU of equilogical spaces [5], and TTE is given in Bauer [4]. Dahlgren [20]
shows that there is an adjoint pair of effective functors taking a TTE-representation
of a topological space X to an effective domain representation of X and, conversely,
taking an effective domain representation ofX to a TTE-representation ofX .

176 Viggo Stoltenberg-Hansen and John V. Tucker

9 Standard constructions

In this section we consider various standard ways to obtain algebraic domain repre-
sentations.

9.1 Representation of inverse limits and ultrametric algebras

We introduced domain representations to analyse the computability of topological
algebras. We wanted to study the completions of local rings and algebras of infinite
processes. Both algebras were constructed as countable inverse limits of algebras;
such limits posessed ultrametrics and were therefore topological algebras. Many
algebras of interest in computing have this form. The following special construc-
tion for countable inverse limits was introduced in Stoltenberg-Hansen and Tucker
[69, 70, 71].

Let A = (A, σ1, . . . , σk) be a Σ-algebra, and let {≡n}n∈N be a family of congru-
ences onA. We say that {≡n}n∈N is separating if n ≥ m and x ≡n y =⇒ x ≡m y,
and if

⋂
n∈N

≡n = {(x, x) : x ∈ A}.

There is an abundance of natural examples of algebras with a family of separating
congruences. For a simple example, let T (Σ,X) be the term algebra over a signa-
ture Σ and a set of variables X . Then, for t, t′ ∈ T (Σ,X), let t ≡n t′ if t and
t′ are identical up to height n − 1, for n ∈ N. Further examples will be given in
Section 10.

Given a Σ-algebra A together with a family {≡n}n∈N of separating congruences,
we define a metric d on A by

d(x, y) =
{

0 if x = y,
2−n if x �= y, where n is least s.t. x �≡n y.

The metric d is an ultrametric; i.e., d satisfies the stronger triangle inequality

d(x, y) ≤ max{d(x, z), d(z, y)}.

Furthermore, each operation σ on A is non-expansive, i.e., satisfies

d(σ(x1, . . . , xn), σ(y1, . . . , yn)) ≤ max{d(xi, yi) : 1 ≤ i ≤ n}.

Conversely, suppose (A, d) is an ultrametric algebra with non-expansive operations.
Then we define a family {≡n}n∈N by x ≡n y ⇐⇒ d(x, y) ≤ 2−n.

Given a Σ-algebra A with a family of separating congruences {≡n}n∈N, we form
the Σ-algebra

Â = lim← A/≡n,

Computability on Topological Spaces via Domain Representations 177

the inverse limit of the A/≡n with respect to the homomorphisms φn
m : A/≡n →

A/≡m defined by φn
m([a]n) = [a]m, for n ≥ m. Here [a]n denotes the equivalence

class of a with respect to ≡n.

The inverse limit Â = lim←A/≡n is a completion ofA. The completion of T (Σ,X)
is the set T∞(Σ,X) of all finite and infinite terms. The (metric) completion of an
ultrametric algebra A with non-expansive operations is isomorphic as topological
algebras to the inverse limit Â = lim← A/≡n, where≡n is obtained from the metric
as above.

To construct a domain representation of lim←A/≡n, let

C =
⋃̇
{A/≡n : n ∈ N},

the disjoint union of the A/≡n. Order C by

[a]m # [b]n ⇐⇒ m ≤ n and a ≡m b.

Let D(A) = C̄, which is the ideal completion of C. Then D(A) is an algebraic
domain of a rather simple kind. It is a tree of height ω, where the maximal elements
of the domain correspond to the infinite branches of the tree.

There is an embedding of Â = lim←A/≡n into D(A)m, the maximal elements of
D(A), given byψ(x) = {[φn(x)]n : n ∈ N}, where φn : Â→ A/≡n is the mapping
obtained from the inverse limit construction.

Let σ be a k-ary operation on A. We define φσ : D(A)k
c → D(A) by

φσ([a1]n1 , . . . , [ak]nk
]) = [σ(a1, . . . , ak)]min{n1,...,nk}.

Then φσ is well defined and monotone and hence extends to a continuous function
φσ : D(A) → D(A) representing σ on Â.

As a final remark we mention that the Banach fixed point theorem for an ultrametric
space A is a direct consequence of the fixed point theorem for D(A).

9.2 Standard representation of regular spaces

In the previous section we described how ultrametric spaces and certain inverse limit
spaces have homeomorphic domain representations using the maximal elements of
the domain. However, it is an easy fact that the set of maximal elements of an alge-
braic domain is totally disconnected, whereas essentially all spaces used in analysis
are not. If one wants to keep dealing with homeomorphic representations using max-
imal elements, one is forced to consider a larger class of domains such as continuous
cpos. Here we continue to consider the simpler structures of algebraic domains and
drop the wish for a homeomorphic representation. From a computational viewpoint,

178 Viggo Stoltenberg-Hansen and John V. Tucker

this is not as problematic as it may seem since the computations take place on the
representing structure.

Many spaces, such as the real numbers, cannot be constructed as inverse limits.
Thus we must find other constructions when representing a wider class of spaces.
In Stoltenberg-Hansen and Tucker [73], we introduced the following general method
to represent regular spaces.

Definition 9.1 Let X be a topological space. Then a family P of non-empty subsets
of X is a neighbourhood system if X ∈ P and

(i) if F,G ∈ P and F ∩G �= ∅, then F ∩G ∈ P ; and

(ii) if x ∈ U , where U is open, then (∃F ∈ P)(x ∈ F ◦ ⊆ F̄ ⊆ U).

For F ⊆ X , F ◦ denotes the interior of F and F̄ denotes the closure of F . Note that
(ii) forces the space X to be regular.

Examples are topological bases of non-empty open (or closed) sets of a regular space
X . Another example is a sufficiently rich family of non-empty compact sets in a
locally compact space. The set of approximations for R in Example 3.1 is a countable
and effective neighbourhood system.

Let P be a neighbourhood system for X . Then P = (P,⊇, X) is an approximation
structure for X via the approximation

F ≺ x⇐⇒ x ∈ F.

Let P̄ be the ideal completion of P . It is an algebraic domain. (Condition (i) is only
used to show consistent completeness.)

An ideal I ∈ P̄ converges to a point x ∈ X if for every open setU containing x there
is F ∈ I such that x ∈ F ⊆ U . I converges to x is denoted by I → x. Note that a
converging ideal converges to a unique point for a T1 space X (which we include in
our definition of regularity).

We let P̄R = {I ∈ P̄ : I convergent} and define ν : P̄R → X by

ν(I) = x ⇐⇒ I → x.

For x ∈ X we define the ideal Ix by

Ix = {F ∈ P : x ∈ F ◦}.

Note that Ix → x and that J → x⇐⇒ Ix ⊆ J .

Theorem 9.2 Let X be a regular space and P be a neighbourhood system for X .
Then P̄ is an algebraic domain and (P̄ , P̄R, ν) is a retract representation of X .

Proof. Suppose U ⊆ X is open and ν(I) = x ∈ U . By Definition 9.1 (ii) there is
F ∈ P such that x ∈ F ◦ ⊆ F̄ ⊆ U . Thus F ∈ Ix and hence F ∈ I . Suppose

Computability on Topological Spaces via Domain Representations 179

J ∈ P̄R and F ∈ J . Then, clearly ν(J) ∈ F̄ ; i.e., ν(↑F ∩ P̄R) ⊆ U . (As usual F is
identified with its principal ideal ↓F .) Thus ν is continuous.

Define η : X → P̄R by η(x) = Ix. Then ν ◦ η = idX . Furthermore η is continuous
since for F ∈ P ,

η−1(↑F ∩ P̄R) = {x ∈ X : F ∈ Ix} = {x ∈ X : x ∈ F ◦} = F ◦.

�

Next we consider the problem of lifting continuous functions to the representing
domains.

Theorem 9.3 Let X and Y be regular spaces with neighbourhood systems P and
Q, respectively. Let (P̄ , P̄R, ν) and (Q̄, Q̄R, μ) be the domain representations of X
and Y obtained from P and Q. Suppose f : X → Y is a continuous function. Then
there is a continuous function f̄ : P̄ → Q̄ such that for all I ∈ P̄R,

μ(f̄(I)) = f(ν(I));

i.e., f̄ is a lifting or representation of f .

Proof. Given continuous f : X → Y , define f̄ : P → Q̄ by

f̄(F) = {G ∈ Q : f [F] ⊆ G◦}.

It is easily verified that f̄(F) is an ideal and that f̄ is monotone. We also denote by
f̄ its unique continuous extension to all of P̄ . In fact for I ∈ P̄ ,

f̄(I) = {G ∈ Q : (∃F ∈ I)(f [F] ⊆ G◦)}.

Suppose I ∈ P̄R and ν(I) = x. Then Ix ⊆ I and hence f̄(Ix) ⊆ f̄(I). Thus it
suffices to show that If(x) ⊆ f̄(Ix).

Let G ∈ If(x). Then f(x) ∈ G◦ and x ∈ f−1[G◦]. But then there is F ∈ Ix such
that F ⊆ f−1[G◦]. This shows that G ∈ f̄(Ix). �

In case P̄ and Q̄ are effective representations for X and Y , respectively, we see from
the proof that the crucial point for knowing that a continuous function f : X → Y is
effective with respect to the representations is that the relation f [F] ⊆ G◦ for F ∈ P
and G ∈ Q is semidecidable.

The standard notion of a computable function on R is the one by Grzegorczyk [37].
Applying the above to the neighbourhood system P for R from Example 3.1 with a
standard numbering, we have the following theorem proved in [73].

Theorem 9.4 A function f : R → R is computable in the sense of Grzegorczyk if,
and only if, it is effective with respect to the above representation of R.

180 Viggo Stoltenberg-Hansen and John V. Tucker

9.3 Representation of metric spaces

Most topological spaces of interest possess useful metrics that can define their open
sets. In analysis these metrics typically come from norms whose general theory in-
volves Banach spaces and Hilbert spaces, for example. The effective content of met-
ric spaces was analysed early on in a constructive framework in Ceitin [17]—see
also the monograph Kushner [42]. Fundamental early contributions based on com-
putability theory are Lacombe [45] and Moschovakis [50]. Banach spaces have re-
ceived special attention in Pour El and Richards [56], where the computability of
linear operators was classified. The computability of homomorphisms between met-
ric algebras in general is studied in Stoltenberg-Hansen and Tucker [76]. We will
now consider effectivity in metric spaces using domain representations following
Blanck [8, 9].

We say that a metric space (X, d) is recursive in the sense of Moschovakis if there is a
numbering α : Ωα → X such that the metric d : X×X → Rk is (α, ρ)-computable,
where ρ is a standard numbering of the recursive reals R.

This is a very general definition. The difficulty from a computational point of view
is that calculations with distances are limited to those possible with recursive reals.
Nonetheless it is possible to give a weakly effective domain representation to (the
completion of) a recursive metric space along the lines given below. We shall not
pursue this here. Instead we give an alternative definition that strengthens the com-
putability of the space while still covering important examples.

By an ordered field K we mean a field K = (K,+,−,×, 0, 1,≤). The field K is
computable if there is a numbering γ : N → K such that all the operations and the
relation ≤ (and hence =) are γ-computable. It is known that if K is a computable
ordered field, then its real closure is computable as an ordered field (Madison [46]).
Furthermore, if K is archimedian, then K can be computably embedded into Rk,
(Lachlan and Madison [44]).

Now we say that the metric space (A, d) is computable if there is a numbering
α : N → A and a computable archimedian ordered field (K, γ) such that d takes
values in K and d is (α × α, γ)-computable. We extend this to a possibly uncount-
able metric space (X, d) by saying that (X, d) is effective if there is a dense subset
A ⊆ X such that (A, d) is computable. Examples of effective metric spaces are the
Euclidean spaces Rn, the space C[0, 1] of continuous functions [0, 1] → R with the
sup norm, and Lp spaces for rational p ≥ 1.

Let (X, d) be a metric space with a dense subset A. A formal closed ball is a ‘nota-
tion’ Fa,r, where a ∈ A and r ∈ Q+, the set of non-negative rational numbers. The
formal ball is a name or syntax for a closed ball, and we may write it semantically
by

Fa,r = {x ∈ X : d(a, x) ≤ r}.
Two formal balls are consistent, Fa,r↑Fb,s, if d(a, b) ≤ r + s. And Fa,r formally
contains Fb,s, Fa,r # Fb,s, if d(a, b) + s ≤ r.

Computability on Topological Spaces via Domain Representations 181

A set {Fa1,r1 , . . . , Fan,rn} of formal balls is permissible if the balls are pairwise con-
sistent and no ball is contained within another; i.e., for 1 ≤ i < j ≤ n, Fai,ri↑Faj ,rj

and it is not the case that Fai,ri # Faj ,rj or Faj ,rj # Fai,ri . We use the notation
σ, τ for permissible sets.

Let P be the set of all permissible sets of formal balls. We need to extend the relation
to permissible sets:

σ # τ ⇐⇒ (∀Fa,r ∈ σ)(∃Fb,s ∈ τ)(Fa,r # Fb,s).

Note that consistency is characterised by

σ ↑ τ ⇐⇒ (∀Fa,r ∈ σ)(∀Fb,s ∈ τ)(Fa,r ↑ Fb,s).

Given consistent permissible sets σ and τ , the supremum σ � τ = g(σ, τ), where g
removes those formal balls in σ ∪ τ formally containing others.

The following is immediate from the construction above. But note that we need to
consider sets of formal balls in order to be able to compute the supremum opera-
tion.

Lemma 9.5 If (A, d) is a computable metric space, then the obtained structure
P = (P,#, ↑,�,⊥) is computable with a numberingα obtained from the numbering
of A.

We now let D = P̄ , which is the ideal completion of P . Thus (D,α) is an effective
domain.

An ideal I ∈ D is converging if for any ε > 0, there exists {Fa,r} ∈ I such that
r < ε. An element x ∈ Ā, the metric completion of A, is approximated by the ideal
I if (∀σ ∈ I)(∀Fa,r ∈ σ)(x ∈ Fa,r). A convergent ideal I approximates exactly one
element x in Ā; we write I → x. Let DR = {I ∈ D : I → x ∈ X}. The function
ν : DR → X defined by

ν(I) = x⇐⇒ I → x

is a quotient mapping.

In this way we have obtained an effective domain representation of Ā and hence of
X .

Theorem 9.6 Each effective metric space (X, d) has an effective domain represen-
tation (D,DR, ν, α) such that the set Xk,α of computable elements in X induced by
(D,DR, ν, α) is a recursive metric space in the sense of Moschovakis.

The situation with computable functions between effective metric spaces is more
difficult. We state the following theorem, which is, essentially, Theorem 3.4.33 in
Blanck [8]. It uses Berger’s generalisation in [6] of the Kreisel–Lacombe–Shoenfield
theorem.

By a semieffective domain we mean one where the consistency relation on the com-
pact elements need not be decidable. A semieffective domain representation of X in

182 Viggo Stoltenberg-Hansen and John V. Tucker

the theorem below is obtained by taking the dense part of a standard effective formal
ball representation of X .

Theorem 9.7 Let X and Y be effective metric spaces. Then there exists a semief-
fective domain representation (D,DR, ν, α) of X consisting of permissible sets of
formal balls such that together with a standard effective formal ball representation
(E,ER, μ, β) of Y , the following are equivalent.

(i) The function f : Xk,α → Yk,β is computable in the sense of Definition 6.8;

(ii) There is a continuous extension of f to f : X → Y that is effective with respect
to the domain representations (D,DR, ν, α) and (E,ER, μ, β).

Note that the function f in (i) is not assumed to be continuous. The implication (i)
implies (ii) has the form of Ceitin’s Theorem, that computability implies effective
continuity, as a corollary.

9.4 Representation of partial and discontinuous functions

There are important phenomena in computing that are not continuous. For example,
suppose we model a stream of data as a function from time into a set of data, where
time is thought of as continuous and data is a discrete set. It is reasonable to model
time by the real number line R or a final segment of R and give the data set the
discrete topology. However, the only continuous functions from R into a discrete
set are the constant functions (since R is a connected space). Thus transmission of
discrete data in continuous time cannot be modelled by continuous functions.

Given domain representations (D,DR, ν) of R and (E,ER, μ) of the data set A,
the domain [D → E] will contain approximations to arbitrary functions from R
to A. There is no hope of having exact continuous representations of discontinuous
functions. But there are best possible approximate representations.

Let (D,DR, ν) and (E,ER, μ) be domain representations of the topological spaces
X and Y , respectively. Then we say that a function f : X → Y (not necessarily
continuous) is represented approximately by (or lifts approximately to) f̄ ∈ [D → E]
if for each x ∈ DR,

(i) f continuous at ν(x) =⇒ f̄(x) ∈ ER and fν(x) = μf̄(x); and

(ii) f not continuous at ν(x) =⇒ (∃y ∈ μ−1[fν(x)])(f̄ (x) # y).

To illustrate we consider the simple example of the floor function +·, : R → Z, which
is discontinuous at precisely the integer points. Let (D,DR, ν) be the standard closed
interval representation of R from Example 3.1. For Z we could have chosen the flat
domain Z⊥. This, however, would give no information at points of discontinuities.
Instead we let E = ℘f (Z) ∪ {Z} ordered by reverse inclusion ⊇. In fact, E is the
upper (or Smyth) power domain of Z⊥. Letting ER be the set of maximal elements

Computability on Topological Spaces via Domain Representations 183

in E, i.e., the set of singletons {n}, we obtain a domain representation (E,ER, μ)
by mapping {n} to n.

Define f : Dc → E by f([a, b]) = {n ∈ Z : +a, ≤ n ≤ +b,} and extend f
continuously to D. Then clearly f represents the floor function approximately. But
note that at the discontinuity n ∈ R we have for ν(I) = n that f(I) ⊆ {n− 1, n}.
Thus, by choosing our representations with some care, we are able to recover much
information also at points of discontinuities.

If a function f has an approximate representation, then it has a best approximate
representation.

Theorem 9.8 ([14]) Let (D,DR, ν) and (E,ER, μ) be algebraic domain represen-
tations ofX and Y , respectively. Assume thatDR is dense inD, and that (E,ER, μ)
satisfies the following local property: if x # y and x ∈ ER, then y ∈ ER and
μ(x) = μ(y). Let f : X → Y be a function, and assume that f has one approxi-
mate representation in [D → E]. Then there is a best approximate representation
f̄ ∈ [D → E] in the sense of the domain ordering.

10 Applications

A theory of computability on topological spaces can be used to analyse computation
in many application areas, including analysis, algebra, semantics of data types and
programming, graphics, and hardware.

10.1 More on real numbers

Throughout the paper we have chosen the field R of real numbers together with the
closed interval domain representation of Example 3.1, which we here denote byR, as
a canonical example. We have observed that this representation is an effective dense
retract representation, that the elements in R computable from the representation are
precisely the recursive reals, and that the effective functions from R to R are precisely
the functions computable in the sense of Grzegorczyk. In addition, the representation
is ω-admissible and it is a largest representation of R with respect to the reduction≤
from Definition 7.3.

Now consider the set C(R,R) of continuous functions from R to R. This space has a
natural topology, namely the compact-open topology. The set C(R,R) has a natural
domain representation [R → R] where the representing elements [R → R]R are
those continuous domain functions representing functions in C(R,R). The obtained
function

ν : [R→ R]R → C(R,R)

induces a topology on C(R,R) from the relativised Scott topology on [R → R]R

which coincides with the compact-open topology (see Blanck [10]); i.e.,

184 Viggo Stoltenberg-Hansen and John V. Tucker

([R → R], [R → R]R, ν)

is a domain representation of C(R,R). Di Gianantonio [22] used signed digit repre-
sentations of real numbers to construct another domain representation capturing the
compact-open topology of C(R,R).

It is well known that C(R,R) is not locally compact, and hence, there is no ‘natural’
topology on C(C(R,R),R). On the other hand the type structure over R is well
behaved, and therefore, we can construct a type structure also over R, including
C(C(R,R),R), and give each such type a topology.

To make this precise we define the set of finite type symbols as follows: ι is a type
symbol, and if σ and τ are type symbols, then (σ → τ) is a type symbol. The
pure type symbols are t0 = ι and tn+1 = (tn → ι). For each type symbol σ
we define a domain with totality (σ(R), σ(R)R). Simultaneously we define the type
σ(R) over R and a surjective map νσ : σ(R)R → σ(R) such that (σ(R), σ(R)R , νσ)
is a domain representation of σ(R). For the base case we use the standard closed
interval domain representation (R,RR, ν). Thus we let ι(R) = R, ι(R)R = RR,
ι(R) = R, and νι = ν.

Inductively let (σ → τ)(R) = [σ(R) → τ(R)] and let (σ → τ)(R)R be the set
of functions in (σ → τ)(R) representing a function from σ(R) into τ(R) via νσ

and ντ . Then let (σ → τ)(R) be the set of functions from σ(R) into τ(R) having a
representing function in (σ → τ)(R). Finally let ν(σ→τ) : (σ → τ)(R)R → (σ →
τ)(R) be the map taking a representing function in (σ → τ)(R)R to the function in
(σ → τ)(R) that it represents.

By the fact that the category of effective algebraic domains is cartesian closed, the
domain representations (σ(R), σ(R)R , νσ) induce a topology (the quotient topol-
ogy) and effectivity on each type σ(R).

D. Normann shows in [53] that each representation (σ(R), σ(R)R , νσ) is dense.
This is analogous to the density theorem for the finite type structure over the discrete
space N of natural numbers proved by Berger [6], but it uses by necessity a different
proof. Normann also observes some ‘anomalies’ of the type structures σ(R), e.g.,
that the space t2(R) is not metrizable.

The natural continuous domain representation for real numbers is the interval do-
main consisting of real intervals; this suggests strong connections to Interval Anal-
ysis [1, 49]. For example, an often-used notion in Interval Analysis is the monotone
interval function, which is nothing more than a monotone map on the interval do-
main. Interval Analysis has traditionally used the topology induced by the Moore
metric, whereas the Scott topology has been used for the interval domain. It is easy
to construct interval functions that are continuous with respect to either topology but
not both. In [58] it is shown that for a continuous function f the optimal interval
representation of f is continuous with respect to both topologies.

Interval Analysis is an established approach to practical exact computation. The in-
terval domain and certain substructures thereof have also been used to investigate

Computability on Topological Spaces via Domain Representations 185

and reason about the practical implementation of exact real arithmetic [11, 12]. Thus,
domain representations can be used to reason abstractly about the computability of
functions, and to model concretely the exact steps taken in making exact real compu-
tations. Thus, there is evidence that domain representations may be a powerful tool
towards practical exact computation on many forms of continuous data.

10.2 Local rings

In 1983 we knew a great deal about computable algebra (see, e.g., our later survey
[74]), and our interest in domain representability began with the problem of inves-
tigating the computability of local rings. Thinking about the completions of local
rings, we wanted a general method of introducing computability into uncountable
algebras. There were four algebras in view: complete local rings, algebras of infinite
processes (satisfying Bergstra and Klop’s laws for ACP), algebras of infinite terms,
and the field of real numbers. The first three had a common structure: they were
inverse limits of countably many factor algebras and looked like domains!

LetR be a local commutative Noetherian ring whose unique maximal ideal is m. We
showed that m is decidable when R is computable as a ring. Define for x, y ∈ R and
n ∈ N,

x ≡n y ⇔ x− y ∈ mn,

which is decidable. By Krull’s Theorem, {≡n}n∈N is a family of separating con-
gruences with respect to the ring operations, and the general constructions of Sec-
tion 9.1 can be applied to obtain an effective domain representation of the completion
of R.

The local ring and the general method was circulated in Stoltenberg-Hansen and
Tucker [69] and later published in Stoltenberg-Hansen and Tucker [70]).

10.3 Process algebra

Think of a process made of atomic actions that can be performed sequentially or in
parallel, can be independent or communicate, and can branch deterministically or
non-deterministically. Such processes abound in both computers and machines and
in nature too. In process algebra such intuitive ideas are analysed very abstractly:
processes are modelled and classified by postulating operations on processes, such
as

p · q, p||q and p+ q,

and axioms that they should satisfy. There are many kinds of semantic ideas to be
found in systems so there are many operations and axioms—see Bergstra, Ponse and
Smolka [7]. In modelling a particular system, the idea is to devise a specification

186 Viggo Stoltenberg-Hansen and John V. Tucker

that is a set of equations, based on some choice of operations. The semantics of the
specification is given by solving the equations in process algebras satisfying axioms
appropriate to the problem.

It is common to need complicated infinite processes in the semantic modelling of
systems, and so the process algebras used are complicated uncountable structures. In
particular, with some process algebra methods, the algebras of infinite processes have
the beautiful structure of inverse limits of finite models of equational theories. This
means that algebras of infinite processes are algebras with ultrametric topologies, and
the methods of Section 9.1 can be used to study processes. Applications of solving
finite systems of equations in process algebras are given in [71] and infinite systems
of equations in [72].

10.4 Banach spaces

Functions and functionals on R and C can be approximated in many different ways.
However, the methods used have been found to have two fundamental properties
in common: they use linear combinations of basic functions, and they measure the
accuracy of approximations by metrics derived form norms. Theories of these meth-
ods have been created using vector spaces equipped with norms and other oper-
ations, such as Banach spaces, Banach algebras, Hilbert spaces, and C*-algebras.
Since all of these topological algebras are special kinds of metric spaces, the method
for metric spaces, given in Section 9.3, can be used to make domain representa-
tions for them. Algebraic domain representations for Banach spaces were made in
Stoltenberg-Hansen and Tucker [75], in order to prove the equivalence of various
models of computation, including that of Pour El and Richards designed for Banach
spaces.

10.5 C∞ functions

A common way to approximate a continuous function on the real numbers is by
finite collections of compact boxes enclosing the graph of the function. Tighter boxes
covering a larger segment of the graph naturally yield more information about the
function we wish to approximate. This idea can be generalised to approximations
of Ck and C∞ functions on the reals in a natural way: an approximation of a Ck

function f is a finite set of approximations of the the function f and the first k
derivatives of f (as continuous functions from R to R). Similarly, an approximation
of a C∞ function f on R is a finite set of approximations of the function f and the
first k derivatives of f for some k ≥ 0.

A C∞ function from R to C can be thought of as a pair of smooth functions from R
to R (corresponding to the real and imaginary parts of the function). Thus, we can
approximate smooth functions from R to C by approximating the real and imaginary
parts separately. In this way we get an effective domain representation of the space
of smooth functions from R to C.

Computability on Topological Spaces via Domain Representations 187

10.6 Test functions and distributions

An interesting class of functions in this context is the space D of test functions con-
sidered in distribution theory. If we restrict ourselves to one variable, a test function
is simply a smooth function from R to C with compact support. Formally, the space
of test functions is constructed as an inductive limit of metrisable spaces but is itself
not metrisable. In fact, it is not even first countable. Nevertheless, we may construct
an effective domain representation ofD and study computable processes on the space
of test functions. This is interesting from a purely computability theoretic point of
view since it has sometimes been argued that the stronger property of second count-
ability is needed to develop a viable computability theory on a topological space (cf.
Smyth [63]). To approximate a test function f we simply add information about (i.e.,
bounds on) the support of f to a C∞(R)-approximation of f . This idea yields an
ω-admissible effective domain representation of the space of test functions and thus
allows us to introduce a notion of computability on D. We note that standard oper-
ations on D such as integration, differentiation, regularisation, addition, and scalar
multiplication are all effective with respect to this representation.

A distribution is a continuous linear functional on the space of test functions. Since
we have effective representations of the spaces D and C, general domain theory
yields an effective domain representation of the space of distributions. Moreover,
similar methods may be applied to construct effective representations of the spaces
of tempered distributions and distributions with compact support. This allows us
to introduce a notion of computability on the space of distributions in the spirit of
Weihrauch and Zhong [86], and to study computable processes on spaces of distri-
butions. In particular, the space of distributions, the space of tempered distributions,
and the space of distributions with compact support are all effective vector spaces,
the standard embedding theorems effectivise, and the Fourier transform and its in-
verse lift to effective functions on the space of tempered distributions. For details,
see Dahlgren [21].

10.7 Volume graphics

In volume graphics, objects are defined in three dimensions. Objects can be regu-
lar, like buildings and crockery, or irregular but structured, like 3D body scans, or
amorphous like clouds and fire. The objects may be combined to create 3D scenes.
In volume graphics, objects and scenes must be created, transformed, and rendered
in 2D.

In practice, different objects can have quite different representations, ranging from
a collection of simple mathematical functions to large 3D arrays of physical data.
Constructive volume geometry (CVG) is a high-level approach to volume graphics
that abstracts from specific representations by focussing on high level operations
on volume objects. First, to unify representations, each spatial object is required to

188 Viggo Stoltenberg-Hansen and John V. Tucker

assign data, called attributes, to every point in 3D. Thus, spatial objects are modelled
by vectors

φ1, . . . , φk

of scalar fields of the form:

φ : R3 → [0, 1] or φ : R3 → R.

The attributes chosen depend on the application. For example, a simple graphics
application is the RGB model, which has k = 4 and attributes of opacity, measured
by the interval [0, 1], and colours red (R), green (G), and blue (B), measured by
R.

Then operations on these objects are defined to make algebras of spatial objects.
There are lots of simple operations to create RGB algebras, with attributes opac-
ity and three colours. CVG algebras are as varied as the applications of computer
graphics.

CVG was first proposed in Chen and Tucker [18], where various operations and their
laws were given, the high-level representation of graphics objects using CVG terms
explained, and recursive rendering via structural induction on terms introduced. In
[18], the scalar fields are total functions, which simplifies the algebra. A fuller math-
ematical treatment of CVG, including approximation, is in Johnson [40].

Computation in CVG involves computation on real numbers, real-valued functions,
and operators. To understand the semantics of the CVG programming, the framework
needs to be analysed by a computabilty theory for topological spaces. In Blanck,
Stoltenberg-Hansen, and Tucker [15] we consider computability with partial func-
tions and apply the theory to the computability of CVG algebras, such as the RGB
algebras.

10.8 Analog and digital systems

In computer science the interfaces between continuous and discrete data types are
not well understood. Domains and topological spaces are designed to model contin-
uous data, but they can also model discrete data. Can domain representations model
computation with continuous and discrete data in a uniform way? Yes.

Consider analog and digital data and the interface between them. A data stream
is a sequence of data indexed by time. Mathematically, we model data streams by
functions

s : T → A,

where s(t) = datum or measurement from A at time t. The functions may be total
or partial.

There are several cases of practical importance to consider, especially the purely
digital case:

Computability on Topological Spaces via Domain Representations 189

discrete time T = Z and discrete data A = {0, 1};

and the purely analog case:

continuous time T = R and continuous data A = R.

We model computation with these streams by mappings of the form

F : [T → A]→ [T ′ → B],

where T, T ′ are time scales and A,B are data types. The stream transformations
include analog-to-digital and digital-to-analog transformations.

We have seen a number of mathematical tools to tackle the problem of analysing the
semantics of analog versus digital computing and signal processing, starting with
domain representations of the reals. In applying domain representations and com-
putability theory we focus on streams and stream transformers that are continuous
functions. (The functions may be partial to help model discontinuities in streams.)
The interface between analog and digital computation is studied in [14], using do-
main representations of spaces with the compact-open topology.

10.9 Applications using continuous domains

Let us remind the reader that in this introduction to domain representation theory we
have used algebraic domains exclusively and have concentrated on our own interests.
As emphasised earlier, one can use many types of ordered structure for representa-
tion. In particular, A. Edalat has used continuous domains to represent topological
spaces in many applications, including several areas we have not discussed here.

The early applications of continuous domain representations focussed on semantic
modelling of case studies of mathematical approximation, including iterative maps
and integration; see Edalat [23, 24, 25]. This was done without emphasis on com-
putability. A great deal of effort was devoted to using domains to develop software
for exact arithmetic on computers.

With the rise of Computable Analysis, later studies of metric spaces in Edalat and
Heckmann [26], real numbers in Edalat and Sünderhauf [30], and Banach spaces
in Edalat and Sünderhauf [31] looked at computability and may be compared with
approaches based on algebraic domains mentioned above.

Recently, new subjects have been started. There is extensive work on computational
geometry and Constructive Solid Geometry (CSG), which is a modelling technique
well established in CAD; see Edalat and Lieutier [27]. CSG is a precursor to CVG
mentioned in Subsection 10.7. Some first steps into the rich and vast subject of cal-
culus and solving differential equations have been also taken in [28, 29].

The use of continuous domains has the advantage that often (but not always) DR

may be chosen as the set of maximal elements of D and that the definition of rep-
resentability is then reformulated in these terms. A disadvantage is that the theory

190 Viggo Stoltenberg-Hansen and John V. Tucker

of continuous domains is more involved. We have stuck to algebraic cpos and do-
mains because of their simplicity and the fact that they arise from our consideration
of approximation structures. Moreover, it is well known that every continuous cpo is
a retract of an algebraic cpo. It follows that the two approaches of using continuous
representations or merely algebraic representations are essentially equivalent.

References

1. G. ALEFELD AND J. HERZBERGER, Introduction to Interval Computations, Academic
Press, New York, 1983.

2. C. E. AULL AND R. L. OWEN (editors), Handbook of the History of General Topology,
Volume 1, Kluwer Academic Publishers, Dordrecht, 1997.

3. C. E. AULL AND R. L. OWEN (editors), Handbook of the History of General Topology,
Volume 2, Kluwer Academic Publishers, Dordrecht, 1998.

4. A. BAUER, A relationship between equilogical spaces and type two effectivity, Mathe-
matical Logic Quarterly 48 (2002), 1 – 15.

5. A. BAUER, L. BIRKEDAL AND D. S. SCOTT, Equilogical spaces, Theoretical Computer
Science 315 (2004), 35 – 59.

6. U. BERGER, Total sets and objects in domain theory, Annals of Pure and Applied Logic
60 (1993), 91 – 117.

7. J. A. BERGSTRA, A. PONSE AND S. A. SMOLKA, Handbook of Process Algebra, Else-
vier, Amsterdam, 2001.

8. J. BLANCK, Computability on Topological Spaces by Effective Domain Representations,
Uppsala Dissertations in Mathematics 7, 1997.

9. J. BLANCK, Domain representability of metric spaces, Annals of Pure and Applied Logic
83 (1997), 225 – 247.

10. J. BLANCK, Domain representations of topological spaces, Theoretical Computer Science
247 (2000), 229 – 255.

11. J. BLANCK, Efficient exact computation of iterated maps, Journal of Logic and Algebraic
Programming 64 (2005), 41 – 59.

12. J. BLANCK, Exact real arithmetic using centered intervals and bounded error, Journal of
Logic and Algebraic Programming 66 (2006), 50 – 67.

13. J. BLANCK, Reducibility of Domain Representations and Cantor-Weihrauch Domain
Representations, Report CSR 15-2006, Department of Computer Science, Swansea Uni-
versity.

14. J. BLANCK, V. STOLTENBERG-HANSEN AND J. V. TUCKER, Streams, stream trans-
formers and domain representations, in B Moller and J. V. Tucker (eds.), Prospects for
Hardware Foundations, Lecture Notes in Computer Science, volume 1546, Springer Ver-
lag, New York, 1998, 27 – 68.

15. J. BLANCK, V. STOLTENBERG-HANSEN AND J. V. TUCKER, Domain representations of
partial functions, with applications to spatial objects and constructive volume geometry,
Theoretical Computer Science 284 (2002), 207 – 224.

16. L. BLUM, F. CUCKER, M. SHUB, AND S. SMALE, Complexity and Real Computation,
Springer-Verlag, New York, 1998.

17. G. S. CEITIN, Algorithmic operators in constructive complete separable metric spaces,
Doklady Akademii Nauk SSSR 128 (1959), 49 – 52.

Computability on Topological Spaces via Domain Representations 191

18. M. CHEN AND J. V. TUCKER, Constructive volume geometry, Computer Graphics Fo-
rum 19 (2000), 281 – 293.

19. F. DAHLGREN, Partial continuous functions and admissible domain representations (ex-
tended abstract), in A. Beckman et al. (eds.), Logical Approaches to Computational Barri-
ers, Lecture Notes in Computer Science, volume 3988, Springer-Verlag, New York, 2006,
94 – 104.

20. F. DAHLGREN, Effective domain representability vs. TTE representability, manuscript,
2006.

21. F. DAHLGREN, Effective distribution theory, manuscript, 2006.
22. P. DI GIANANTONIO, Real number computability and domain theory, Information and

Computation 127 (1996), 11 – 25.
23. A. EDALAT, Dynamical systems, measures, and fractals via domain theory, Information

and Computation 120 (1995), 32 – 48.
24. A. EDALAT, Power domains and iterated function systems, Information and Computation

124 (1996), 182 – 197.
25. A. EDALAT, Domains for computation in mathematics, physics and exact real arithmetic,

Bulletin of Symbolic Logic 3 (1997), 401 – 452.
26. A. EDALAT AND R. HECKMANN, A computational model for metric spaces, Theoretical

Computer Science 193 (1998), 53 –73.
27. A. EDALAT AND A. LIEUTIER, Foundation of a computable solid modeling, Theoretical

Computer Science 284 (2002), 319–345.
28. A. EDALAT AND A. LIEUTIER, Domain theory and differential calculus (functions of

one variable), Mathematical Structures in Computer Science 14 (2004), 771 – 802.
29. A. EDALAT AND A. LIEUTIER, A Domain Theoretic Account of Picard’s Theorem, in

J. Diaz et al. (eds.), Automata, Languages and Programming, Lecture Notes in Computer
Science, volume 3142, Springer, Berlin, 2004, 494 – 505.

30. A. EDALAT AND P. SÜNDERHAUF, A domain-theoretic approach to computability on the
real line, Theoretical Computer Science 210 (1999), 73 – 98.

31. A. EDALAT AND P. SÜNDERHAUF, Computable banach spaces via domain theory, The-
oretical Computer Science 219 (1999), 169 – 184.

32. YU. L. ERSHOV, The theory of A-spaces, Algebra and Logic 12 (1973), 209 – 232.
33. YU. L. ERSHOV, The model C of the partial continuous functionals, in R. O. Gandy

and J. M. E. Hyland (eds.), Logic Colloquium 76, North-Holland, Amsterdam, 1977,
455 – 467.

34. YU. L. ERSHOV, Theory of Numerations, Monographs in Mathematical Logic and the
Foundation of Mathematics, ‘Nauka’, Moscow, 1977.

35. YU. L. ERSHOV, Theorie der Numerierungen III, Zeitschrift für Mathematische Logik
und Grundlagen der Mathematik 23 (1977), 289 – 371.

36. A. FRÖLICH AND J. C. SHEPHERDSON, Effective procedures in field theory, Philosoph-
ical Transactions of the Royal Society London. Ser. A. 248 (1956), 407 – 432.

37. A. GRZEGORCZYK, On the definitions of computable real continuous functions, Funda-
menta Mathematicae 44 (1957), 61 – 71.

38. G. HAMRIN, Effective Domains and Admissible Domain Representations, Uppsala Dis-
sertations in Mathematics 42, 2005.

39. I. M. JAMES (editor), History of Topology, North-Holland, Amsterdam, 1999.
40. K. JOHNSON, The algebraic specification of spatial data types with applications to con-

structive volume geometry, PhD Thesis, Department of Computer Science, Swansea Uni-
versity, 2006.

192 Viggo Stoltenberg-Hansen and John V. Tucker

41. G. KREISEL, D. LACOMBE, AND J. R. SHOENFIELD, Partial recursive functionals and
effective operations, in A. Heyting (ed.), Constructivity in Mathematics, North-Holland,
Amsterdam, 1959, 195 – 207.

42. B. A. KUSHNER, Lectures on Constructive Mathematical Analysis, Translations of Math-
ematical Monographs, v. 60, AMS, Providence, 1984.

43. P. KØBER, Uniform domain representations of lp-spaces, Mathematical Logic Quarterly
53 (2007), 180 – 205.

44. A. H. LACHLAN AND E. W. MADISON, Computable fields and arithmetically definable
ordered fields, Proceedings of the American Mathematical Society 24 (1970), 803 – 807.

45. D. LACOMBE, Extension de la notion de fonction récursive aux fonctions d’une ou
plusieurs variables réelles, I, II, III. Comptes Rendus 240, 241 (1955), 2478 – 2480, 13 –
14, 151 – 155.

46. E. W. MADISON, A note on computable real fields, Journal of Symbolic Logic 35 (1970),
239 – 241.

47. A. I. MAL’CEV, Cconstructive algebras, I, The Metamathematics of Algebraic Systems.
Collected papers: 1936 – 1967, North-Holland, Amsterdam, 1971, 148 – 212.

48. M. MENNI AND A. SIMPSON, Topological and limit-space subcategories of countably-
based equilogical spaces, Mathematical Structures in Computer Science 12 (2002),
739 – 770.

49. R. E. MOORE, Interval Analysis, Prentice-Hall, Englewood Cliffs, 1966.
50. Y. N. MOSCHOVAKIS, Recursive metric spaces, Fundamenta Mathematicae 55 (1964),

215 – 238.
51. D. NORMANN, Recursion on the Countable Functionals, Springer Lecture Notes in

Mathematics 811, 1980.
52. D. NORMANN, A hierarchy of domains with totality but without density, in B. Cooper, T.

Slaman and S. S. Wainer (eds.), Computability, Enumerability, Unsolvability, Cambridge
University Press, 1996, 233 – 257.

53. D. NORMANN, The continuous functionals of finite types over the reals, Elkectronic
Notes in Theoretical Computer Science 35 (2000).

54. D. NORMANN, The continuous functionals of finite types over the reals, in K. Keimel, G.
Q. Zhang, Y. Liu and Y. Chen (eds.), Domains and Processes, Proc. 1st Intern. Symp. on
Domain Theory, Shanghai, China, 1999, Kluwer, Boston, 2001, 103 – 124.

55. E. PALMGREN AND V. STOLTENBERG-HANSEN, Domain interpretations of Martin-
Löf’s partial type theory, Annals of Pure and Applied Logic 48 (1990), 135 – 196.

56. M. B. POUR-EL AND J. I. RICHARDS, Computability in Analysis and Physics, Perspec-
tives in Mathematical Logic, Springer-Verlag, Berlin, 1989.

57. H. RICE, Recursive real numbers, Proceedings of the American Mathematical Society 5
(1954), 784 – 791.

58. R. SANTIAGO, B. BEDREGAL AND B. ACIÓLY, Formal aspects of correctness and opti-
mality of interval computations, Formal Aspects of Computing 18 (2006), 231 – 243.

59. M. SCHRÖDER, Extended admissibility, Theoretical Computer Science 284 (2002),
519 – 538.

60. D. S. SCOTT, A theory of computable functionals of higher type, Unpublished notes,
Oxford University, 1969.

61. D. S. SCOTT, Continuous lattices, in F. W. Lawvere (ed.), Toposes, Algebraic Geometry
and Logic, Springer Lecture Notes in Mathematics, volume 274, Springer–Verlag, Berlin,
1972, 97 – 136.

62. D. S. SCOTT, A type-theoretical alternative to ISWIM, CUCH, OWHY, Theoretical Com-
puter Science 121 (1993), 411 – 440.

Computability on Topological Spaces via Domain Representations 193

63. M. B. SMYTH, Topology, in S. Abramsky, D. Gabbay, and T. S. E. Maibaum (eds.),
Handbook of Logic in Computer Science, Volume 1, Oxford University Press, 1992,
641 – 751.

64. D. SPREEN, Effective inseparability in a topological setting, Annals of Pure and Applied
Logic 80 (1996), 257 – 275.

65. D. SPREEN, On effective topological spaces, Journal of Symbolic Logic 63 (1998),
185 – 221.

66. D. SPREEN, Representations versus numberings: on the relationship of two computability
notions, Theoretical Computer Science 262 (2001), 473 – 499.

67. D. SPREEN AND H. SCHULZ, On the Equivalence of some approaches to computability
on the real line, in K. Keimel, G. Q. Zhang, Y. Liu and Y. Chen (eds.), Domains and
Processes, Proc. 1st Intern. Symp. on Domain Theory, Shanghai, China, 1999, Kluwer,
Boston, 2001, 67 – 101.

68. V. STOLTENBERG-HANSEN, I. LINDSTRÖM AND E. R. GRIFFOR, Mathematical Theory
of Domains, Cambridge University Press, 1994.

69. V. STOLTENBERG-HANSEN AND J. V. TUCKER, Complete local rings as domains, Re-
port 1.85, Centre for Theoretical Computer Science, University of Leeds, Leeds, 1985.

70. V. STOLTENBERG-HANSEN AND J. V. TUCKER, Complete local rings as domains, Jour-
nal of Symbolic Logic 53 (1988), 603 – 624.

71. V. STOLTENBERG-HANSEN AND J. V. TUCKER, Algebraic equations and fixed-point
equations in inverse limits, Theoretical Computer Science 87 (1991), 1 – 24.

72. V. STOLTENBERG-HANSEN AND J. V. TUCKER, Infinite systems of equations over in-
verse limits and infinite synchronous concurrent algorithms, in J. W. de Bakker, W. P.
de Roever and G. Rozenberg (eds.), Semantics – Foundations and Applications, Lecture
Notes in Computer Science, volume 666, Springer Verlag, Berlin, 1993, 531 – 562.

73. V. STOLTENBERG-HANSEN AND J. V. TUCKER, Effective algebra, in S. Abramsky, D.
Gabbay, and T. S. E. Maibaum (eds.), Handbook of Logic in Computer Science, Volume 4,
Oxford University Press, 1995, 357 – 526.

74. V. STOLTENBERG-HANSEN AND J. V. TUCKER, Computable rings and fields, in E. Grif-
for (ed.), Handbook of Computability Theory, Elsevier, 1999, 363 – 447.

75. V. STOLTENBERG-HANSEN AND J. V. TUCKER, Concrete models of computation for
topological algebras, Theoretical Computer Science 219 (1999), 347 – 378.

76. V. STOLTENBERG-HANSEN AND J. V. TUCKER, Computable and continuous par-
tial homomorphisms on metric partial algebras, Bulletin of Symbolic Logic 9 (2003),
299 – 334.

77. A. TARSKI, A lattice-theoretical fixed point theorem and its applications, Pacific Journal
of Mathematics 5 (1955), 285 – 309.

78. J. V. TUCKER AND J. I. ZUCKER, Computation by while programs on topological partial
algebras, Theoretical Computer Science 219 (1999), 379 – 421.

79. J. V. TUCKER AND J. I. ZUCKER, Computable functions and semicomputable sets on
many sorted algebras, in S. Abramsky, D. Gabbay and T. Maibaum (eds.), Handbook of
Logic for Computer Science, Volume 5, Oxford University Press, 2000, 317 – 523.

80. J. V. TUCKER AND J. I. ZUCKER, Abstract versus concrete computation on metric partial
algebras, ACM Transactions on Computational Logic 5 (4) (2004), 611–668.

81. J. V. TUCKER AND J. I. ZUCKER, Abstract versus concrete computability: The case
of countable algebras, in V. Stoltenberg-Hansen and J. Väänänen (eds.), Logic Collo-
quium 03, Proceedings of Annual European Summer Meeting of Association for Symbolic
Logic, Helsinki, 2003, Lecture Notes in Logic 24, Association for Symbolic Logic, 2006,
377 – 408.

194 Viggo Stoltenberg-Hansen and John V. Tucker

82. G. WAAGBØ, Denotational semantics for intuitionistic type theory using a hierarchy of
domains with totality, Archive for Mathematical Logic 38 (1999), 19 – 60.

83. K. WEIHRAUCH, Computability, Springer Verlag, New York, 1987.
84. K. WEIHRAUCH, Computable Analysis, Springer Verlag, New York, 2000.
85. K. WEIHRAUCH AND U. SCHREIBER Embedding metric spaces into cpo’s, Theoretical

Computer Science 16 (1981), 5 – 24.
86. K. WEIHRAUCH AND N. ZHONG, Computability theory of generalized functions, Jour-

nal of the ACM 50 (2003), 469 – 505.

On the Power of Broadcasting in Mobile
Computing

Jiří Wiedermann1∗ and Dana Pardubská2†

1 Institute of Computer Science, Academy of Sciences of the Czech Republic,
182 07 Prague 8, Czech Republic
jiri.wiedermann@cs.cas.cz

2 Department of Computer Science, Comenius University,
842 48 Bratislava, Slovakia
pardubska@fmph.uniba.sk

Summary. A computational model reflecting fundamental computational aspects of wire-
lessly communicating mobile processors is presented. In essence, our model is a deterministic
Turing machine that can launch new processes among which a wireless communication via
explicitly assigned channels must be programmed. We show that computations of such ma-
chines are polynomially time- and space-equivalent to the synchronized alternating Turing
machines studied previously in the literature. This shows that nondeterminism can be com-
pletely eliminated from synchronized alternation at the price of introducing a program-driven
communication among the respective processors.

1 Introduction

Recent progress in wireless and mobile information technologies has caused an in-
creased interest in algorithmic aspects of the underlying computing and communicat-
ing mechanisms. It seems that so far the respective research has mainly concentrated
on the concrete algorithmic issues, neglecting almost completely the computational
complexity aspects in that kind of computing. This might be due to the lack of for-
mal computational models underlying the wireless mobile computing. If one tries
to identify the basic computational and communication properties of the respective
mode of computing, after a considerable simplification, one arrives at a notion of dy-
namically reconfigurable nets of mobile processors that can communicate one with
each other via a “radio.” On a sufficiently high level of abstraction, this can be mod-
elled as though the processes communicated over a set of channels, with messages

∗ The research was carried out within the institutional research plan AV0Z10300504 and
partially supported by Grant 1ET100300517.

† The research was partially supported by Grant VEGA 1/3106/06.

196 Jiří Wiedermann and Dana Pardubská

broadcasted over different channels being “heard” by any other processes tuned to
the respective channels.

What can be said about the computational power and efficiency of the “computa-
tional model” we have just sketched? Does wireless mobile computing as captured
by the simplified model bring new quality into computing when compared with the
classical ways of computing? Answers to these questions will present the main moti-
vation for this paper. In order to get such answers we will devise a recursion-theoretic
model capturing the elementary features of mobile wireless computing and we will
investigate its computational efficiency. Our model is a parallel deterministic Turing
machine that can spawn parallel processes, which can create communicating groups.
The main design idea of our model has been its transparency as far as the communi-
cation mechanism among the processes is concerned. That is, in our model establish-
ing a connection within different subsets of processors requires explicit allocation of
different communication channels to the respective processes. Moreover, the same
mechanism of inter-processor communication is also used for detecting termination
condition. The above-mentioned transparency makes visible (and thus, chargeable)
the activities that in the case of alternating Turing machines occur “behind the scene”
and bring free benefits.

In our investigations we have been primarily inspired by the concept of alternation
(cf. [1]). In complexity theory this concept is seen as the theoretically neatest frame-
work for studying parallel computations. It might look as quite far-fetched to try to
see the alternating processes as wirelessly communicating mobile processes, but it is
not entirely so. In a classical alternating Turing machine, the “wireless” communica-
tion among its running processes is used in order to determine the termination of the
whole computation. The mobility of processes is captured by their dynamic emer-
gence and extinction and by the fact that they are not associated with any concrete
location.

The second source of inspiration to our work has been offered by so-called syn-
chronized alternation, which is a more general concept that the classical alternation.
Synchronized alternating Turing machines have been investigated since the end of
the 1990s ([3], [5]). The motivation behind these studies was similar to ours: what is
the benefit of an additional communication among processes of a running alternat-
ing machine? In our terms, in the original works on synchronized alternation (cf. [3]
and [5]), only a single channel communication was considered. It appeared that the
respective machines had the same time efficiency as the classic alternating Turing
machines, but they were more space efficient than the latter machines: their logarith-
mic space had the same power as their polynomial time. This property is not known
to hold for the classical alternating Turing machines.

In our modeling, we have disposed both of nondeterminism and of the accep-
tance mechanism, which both are crucial ingredients of alternation (either a clas-
sical or a synchronized one). Instead, we introduced a versatile deterministic inter-
processor message exchange mechanism. Surprisingly, our main result states that
these changes compensate for the loss of the respective abilities. In fact, our entirely

On the Power of Broadcasting 197

deterministic parallel machines are equivalent to the synchronized alternating Turing
machines.

We are far from claiming that our model represents an ideal model of mobile wire-
less computing. Nevertheless, we believe that the benefit of having such a model is
threefold. First, our model characterizes the computational power of a certain type of
wireless mobile computing. Second and perhaps more importantly, the model shows
that nondeterminism and the acceptance mechanism of classical alternating machines
are not necessary in order to get the full computational power of synchronized Turing
machines. Last but not least, the new model leads to an alternative machine charac-
terization of PSPACE and EXPSPACE, or APTIME and AEXPTIME, respectively.
Namely, it shows that synchronized alternation is equivalent to deterministic paral-
lelism enhanced by an explicit communication mechanism.

The paper is structured as follows. In Section 2 we present our model of so-called
wireless parallel Turing machine and introduce the respective complexity measures.
Next, in Section 3 we state the main complexity characterizations of computations
by such a machine. Finally, in Section 4 we review the achievements of the pa-
per.

2 Wireless Parallel Turing Machine

In order to arrive at a computational model in which processes communicate via
broadcasting we use the multiplicative ability of processes of an alternating Turing
machine in universal states and enhance the latter machine by a special mechanism
that enables “wireless” information transfer among the processes that have “tuned
in” to the same channel. We will also dispose of the acceptance mechanism of al-
ternating machines whose activity will be substituted by a versatile communication
mechanism.

Definition 2.1. A k-tape wireless parallel Turing machine (WPTM) with a separate
read-only input tape and a separate channel tape is an 11-tuple M = (k,Q,R,Σ, Γ,
Δ, q0, r0, ε, qaccept, qreject), where

• k is the number of work tapes;

• Q×R is the finite set of states;

– Q is the set of working states with the initial state q0 ∈ Q;

– R is the set of communication states also containing four distinguished states:
initial communication state r0, empty communication state ε, and states
qaccept, qreject, which are accepting and rejecting states, respectively;

• Σ is a finite input alphabet ($ �∈ Σ is an endmarker);

• Γ is a finite work tape alphabet (& ∈ Γ is the blank symbol, & �∈ Σ);

198 Jiří Wiedermann and Dana Pardubská

• Δ ⊆ Q×R× (Σ ∪{$})×Γ k+1×Q×R× (Γ −{&})k+1×{−1, 1}k+2 is the
next move relation.

The elements ofΔ are called transitions. The machine has a read-only input tape with
endmarkers, k work tapes, and one channel tape. The work tapes and the channel
tape, jointly referred to as tapes, are initially blank. The tapes are unbounded to the
right, with their cells numbered from 0.

Let δ = 〈q, r, x, a1, . . . , ak+1, q
′, r′, a′1, . . . , a′k+1, d1, . . . , dk+2〉 ∈ Δ be a transi-

tion of M. According to this transition in a single step M finding itself in working
state q, in communication state r, reading symbol x from the input tape and ai from
the i-th tape, for i = 1, 2, . . . , k + 1, enters a new working state q′, new communi-
cation state r′, writes symbol a′i on the i-th tape and moves each of the k + 2 heads
in direction dj (left or right) one tape cell, for j = 1, 2, . . . , k + 2.

A configuration of a WPTM M is an element of Q×R×Σ∗× ((Γ −{&})∗)k+1 ×
Nk+2, representing the working and communication state of the finite control, the
input, the nonblank contents of k + 1 tapes, and k + 2 head positions.

A head configuration of M is an element of Q×R× (Σ ∪ {$})× Γ k+1 represent-
ing the working and communication state of the finite control and the contents of
cells scanned by each head. Note that for a given head configuration, there can exist
several transitions in Δ applicable in that configuration. We will later see that this
possibility provides the parallelism to our model.

We say that a transition with the new communication state r′ �= ε broadcasts state
r′ ∈ R. Such a transition is called a broadcasting transition. There is one syntac-
tic restriction holding for broadcasting transitions called the “unanimous broadcast
rule”: the broadcasting transitions pertinent to the same head configuration must
all broadcast the same communication state. They can differ in the remaining parts;
i.e., they can prescribe entering different working states and different rewritings and
movements. We say a configuration is tuned to channel c if it has string c written to
the left from the current channel tape head position. If c is a nonempty string, then
it is also called a channel number. A configuration tuned to c to which a transition
with the new communication state r′ �= ε applies is said to broadcast r′ on channel
c. A configuration broadcasting ε is considered effectively as a no-broadcasting (or
silent) configuration (cf. the definition of a transition modified by a broadcasting be-
low). The silent transitions are useful in situations when a process “does not want”
to broadcast any information, e.g., when retuning its channel.

A configuration β is a δ-successor of a configuration α with respect to transition
δ ∈ Δ (written as α -δ β) if β follows from α in one step, according to transition δ.
The move α -δ β is called a simple step of M. A configuration without successors
is called a terminal configuration.

In order to define a computation of M , we need a couple of further preliminary
definitions.

On the Power of Broadcasting 199

Function Tuned : Q×R×Σ∗ × ((Γ − {&})∗)k+1 × Nk+2 → (Γ − {&})∗ assigns
to each configuration its channel number.

In a similar vein we define functionBroadcast : Q×R×Σ∗× ((Γ −{&})∗)k+1×
Nk+2 → R returning to each configuration the unique state broadcasted by the tran-
sition applicable to that configuration (remember the “unanimous broadcast rule”).
With a slight abuse of notation this function will naturally be extended to a set L �= ∅
of configurations as follows:

Broadcast(L) =

⎧
⎪⎨

⎪⎩

b iff for all α, β ∈ L, Tuned(α) = Tuned(β)

and Broadcast(α) = b

⊥ otherwise

(symbol⊥ denotes an undefined value).

Finally, we define projectionComm : Q×R×Σ∗×((Γ −{&})∗)k+1×Nk+2 → R,
assigning to each configuration its communication state.

For any communication states u, v ∈ R and any configuration α in communication
state u, the notation α|u:=v denotes configuration α in which state u is changed to
v.

Let L be a set of configurations, Lc ⊆ L a subset of configurations tuned to c, and
α -δ β a simple step. Then configuration γ is a so-called δL-successor of α w.r.t.
transition δ modified by broadcasting from L (denoted as α -δL γ) if γ is defined as
follows:

γ :=

⎧
⎪⎨

⎪⎩

β|Comm(β):=b iff LTuned(β) �= ∅ and Broadcast(LTuned(β)) = b

⊥ iff LTuned(β) �= ∅ and Broadcast(LTuned(β)) = ⊥
β iff LTuned(β) = ∅ or Broadcast(LTuned(β)) = ε.

The previous three items describe the effect of broadcasting from L on a configura-
tion β. The items correspond to all possible situations that might occur: unanimous
broadcast, conflict and no broadcast on the channel of interest, respectively.

Note that there can be several computational steps possible from a given α. This
occurs when there are several transitions applicable to α. If this is the case, we
say that α spawns all configurations γ for which there exists δ ∈ Δ such that
α -δL γ.

For any configuration ', the computational graph T (') w.r.t. the transition relation
Δ of M is a rooted, directed, possibly infinite acyclic multigraph whose nodes are
configurations of M and edges correspond to transition and communication links.
This graph is defined inductively:

1. ' is the root of T (') at depth d = 0;

2. Let Cd be the set of configurations at depth d ≥ 0. Then for all nonterminal
configurations α ∈ Cd, set Cd+1 contains all δCd

-successors of α; i.e., set

200 Jiří Wiedermann and Dana Pardubská

Cd+1 = {γ | ∃ nonterminal α ∈ Cd : α -δCd γ}. We also say that α spawns
its all δCd

-successors. If some of the δCd
-successors of α is undefined, then the

whole graph T (') is undefined.

3. In T (') there are two kinds of edges:

• so-called transition edges leading from each α ∈ Cd to each of its δCd
-

successors γ ∈ Cd+1;

• so-called broadcasting edges leading from each broadcasting configuration
α ∈ Cd to each configuration β ∈ Cd+1, with Tuned(α) = Tuned(β).

Thus, the parallelism in M ’s computations is enforced by insisting, in condition 2,
that in T (') for a given configuration all its successor configurations (with their
communication states possibly modified by broadcasting) spawned by that configu-
ration are included. Note that the successor configurations in T (') are spawned by a
mechanism similar to universal branching used in the case of alternating Turing ma-
chines. The schema of a computational graph of a WPTM computation is depicted
in Fig. 1.

Fig. 1. The computational graph of M

From the previous description it is seen that the computational graph is built in a
completely deterministic manner: in this graph, all transition and broadcasting edges
are defined uniquely. Formally, it is a multigraph since there can be one transition
and one broadcasting edge between some nodes of this graph.

A computational path starting in configuration ' is a (possibly infinite) sequence
of configurations of M that are encountered during a traversal along the transition
edges down any path in T ('). Any computational path represents a computation of
M along that path or a process corresponding to that path.

The nodes of T (') without successors are called the leaves of T (').

On the Power of Broadcasting 201

A computational graph T (') of M is a computational graph accepting input w if it
satisfies the following conditions:

1. Finiteness: T (') is a finite graph.

2. Initial condition: ' = (q0, r0, w, ν, . . . , ν︸ ︷︷ ︸
k+1

, 0, . . . , 0
︸ ︷︷ ︸

k+2

) is the initial configuration

where ν is the null string.

3. Acceptance agreement: All leaves of T (') are terminal configurations at the
same depth, in communication state qaccept and tuned to the same channel.

In a similar way, the notion of a computational graph rejecting the input string is
defined.

From a practical point of view the acceptance agreement means that all processes
share the information that all of them have accepted the input. If the termination time
is unknown, then the acceptance in the same depth can be achieved, e.g., via barrier
synchronization. The idea is to periodically check, synchronously in all processes,
their “readiness” to terminate the computation (cf. [4]).

We say that M accepts w if M ’s computational graph accepts w; we define L(M)
to be the set of strings accepted by M.

The working space (channel space) complexity of a configuration is the sum of
lengths of the nonblank contents of corresponding work tapes (the length of the chan-
nel tape). The working space of a computational graph T is the maximum work space
of any configuration in T ; the channel space of T is defined similarly. The time of T
is the maximum length of any path in T.

A WPTM M operates in work space S(n) (channel space C(n)) if for every string
w ∈ L(M) of length n there is a computational graph of M of working space at
most S(n) (channel space C(n)) that accepts w. Similarly, M operates in time T (n)
if for every string w ∈ L(M) of length n there is a computational graph of M of
time at most T (n) that accepts w.

The introduction of a separate space measure based on the size of the channel tape
is motivated by the wireless mobile computing. The channel space measure hints to
the size of the respective communication mechanism.

The resulting model can also be characterized as a co-nondeterministic machine (i.e.,
an alternating Turing machine with universal states only) enhanced by a certain pro-
cessor inter-communication mechanism and without the acceptance mechanism of
alternating Turing machines: the acceptance criterion must be programmed in the
machine’s instructions. The deterministic nature of a WPTM contributes to the “real-
ness” of this model as far as the wireless mobile computations are concerned.

When the transition relation becomes a function it is easily seen that a WPTM
turns into the classical deterministic Turing machine. Similarly, it is an easy ex-
ercise to realize that a WPTM can simulate in linear time a nondeterministic or a

202 Jiří Wiedermann and Dana Pardubská

co-nondeterministic Turing machine. Although for both machines the acceptance
criteria are different, the WPTM can easily accommodate any of them. In fact, we
will show that the WPTMs and alternating Turing machines are polynomially time
related.

3 The Power of the Wireless Communication

We start by comparing the WPTMs with the classical ATMs.

Theorem 3.1. Let T (n) be a time constructible function with T (n) ≥ n. Let A be
an alternating Turing machine of time complexity T (n). Then there is a WPTM M
simulating A in time O(T (n)) and in working and channel space O(T (n)).

Sketch of the proof: W.l.o.g. assume that in the computation tree TA ofA all branch-
ings are of degre at most 2. Design M as follows: starting from the initial configu-
ration of A, M applies to the emerging configurations all applicable transitions of A
irrespective of whether the configuration was an existential or an universal one, and
in this manner proceeds as though descending the levels in TA. However, in their
working memory, the processes in M also remember the so-called routing informa-
tion representing the computational path in TA from its root to a configuration c at
depth d describing the respective process at time d. The routing information for a
configuration c stored at v is of form 〈(b1,�1), . . . , (bd,�d)〉, with bi ∈ {0, 1} and
�i ∈ {∃, ∀, |.} The binary number (b1, . . . , bd)2 is also called the path number. The
quantifier ∃ denotes the existential branching at v, ∀ denotes the universal branch-
ing (with two successors), and | denotes “no branching”—a deterministic configura-
tion having but one successor. Routing information description is at most of length
O(T (n)).

After simulating T (n) steps (remember that T (n) has been a time constructible
function) of A, the processes of M start to verify the acceptance condition for A.
Essentially, this condition states how the “answers” from the individual terminated
processes must be combined while “climbing” toward the root of TA (cf. [1]).

Evaluation phase starts by assigning values Y, N, or⊥ to local variable qual in each
(leaf-)process ofM , which has accepted, rejected, or has not finished its task, respec-
tively. Then, the processes simulate “climbing” up the TA so that at the end of the
so-called d-round the value of qual in the process corresponds to a value of a vertex
at depth d identified by the path number (b1, . . . , bd)2 stored in that process.

Let S〈b1,...,bd〉 denotes the set of processes ofM whose path numbers share the prefix
(b1, . . . , bd)2.Note that the values of �i for i = 1, . . . , d, resp. qual for all processes
from S〈b1,...,bd〉, coincide.

At the beginning of the d-round, each process in S〈b1,...,bd〉 inspects the value of �d

in its routing information.

On the Power of Broadcasting 203

If it was “|”, then the process does not change the value of qual.

If it was “∀” or “∃”, then there exist two “brother” sets of processes S〈b1,...,bd,0〉 =
S1 and S〈b1,...,bd,1〉 = S2 within S〈b1,...,bd〉 = S. Clearly, S1 and S2 are disjoint,
S1∪S2 = S, and for all processes in S1, qual has the same value, and the same holds
for S2. In order to compute the new value qual in S from knowing old qual both in
S1 and S2, respectively, both sets must broadcast the values of their respective qual
to all processes in S. The broadcasting is performed over channel no. (b1 . . . bd)2:
first, the processes from S1 broadcast their value to processes of S, and the same
is then done by processes of S2. Due to the fact that the values of qual are the
same within each S1 and S2, respectively, no broadcasting conflict can happen. As
a result, in accordance with the rules for quality assignment in alternation trees (cf.
[1]), each process in S can compute its quality at depth d. Obviously, all processes in
S will get the same value for qual. Note that for all sets S〈b1,...,bd〉, all the necessary
communication is carried out over the disjoint channels. The round is finished by
setting d := d− 1.

In a similar way we proceed level by level, until we get d = 1, and in all processes,
qual gets the acceptance value of the root of TA. Based on this, a broadcasting tran-
sition on channel 0 into the terminating communication state qaccept or qreject can be
realized in all processes and the simulation can terminate.

We conclude that in O(T (n)) steps, the acceptance condition for A can be verified
by M, indeed. �

Theorem 3.2. Let T (n) be a time constructible function with T (n) ≥ n. Let M be a
WPTM of time complexity T (n). Then M can be simulated by an alternating Turing
machine A of time complexity O(T 2(n)) and space complexity O(T (n)).

Sketch of the proof: Let TM be the computational graph of M on input w. TM is
a superposition of two graphs: w.l.o.g. we can assume that the first is the binary
tree—called the spawning tree hereafter—underlying TM and capturing the pro-
cesses spawning history. The second graph is the broadcasting graph capturing the
broadcasting of communication states from the broadcasting configurations to the
respective target configurations. If TM is an accepting computational graph, then,
w.l.o.g., the leaf configurations are tuned to channel 0.

The idea of the simulation algorithm is to guess accepting configurations and to
check that these configurations are leaves of an accepting computational graph TM

for input w. Note that the leaf configurations are determined uniquely by M and w
thanks to the fact that any WPTM is a fully deterministic device.

To verify the before-mentioned property we will first guess the accepting configu-
rations cv in the leaves of TM by creating pairs (path number pv , accepting config-
uration cv). Then, we will reconstruct TM in a bottom-up manner by checking in
parallel for each leaf v in TM that the computational path with path number pv ends
up in configuration cv. In fact, we will traverse the computational path in a bottom-
up manner, from the leaf to the root and verify that the path ends up in the initial

204 Jiří Wiedermann and Dana Pardubská

configuration. Within this process we will have to guess repeatedly and verify the
subgraphs of TM consisting of all paths leading from the root to a given node. Due
to the deterministic nature of M ’s computation such paths are unique, and therefore
their repeated bottom-up traversals will be possible.

To better understand how the bottom-up traversal is done, let us focus on one com-
putational step of M first. Let v be a vertex of TM at depth d, and let pv, cv be the
corresponding path number and configuration, respectively. Note that d = |pv|, with
|pv| denoting the length of the (binary) representation of pv.With the exception of the
communication state, configuration cv is determined uniquely by the configuration in
the predecessor v1 of v in the spawning tree. The communication state of v is deter-
mined by the set S(|pv|−1,Tuned(cv)) of v’s predecessor vertices in the broadcasting
graph (see Fig. 2). For a correct realization of a computational step, the condition of
unanimous broadcasting must be satisfied; i.e., all vertices from S(|pv|−1,Tuned(cv))

must broadcast the same communication state Comm(cv).

Fig. 2. The schema of broadcasting in TM

In order to proceed from v to v1 we will (i) guess a configuration cv1 , (ii) guess a ver-
tex v2 ∈ S(|pv|−1,Tuned(cv)), and (iii) verify that all vertices from S(|pv|−1,Tuned(cv))

broadcast the same communicating state Comm(cv).

The simulation algorithms starts in a so-called preparatory phase. In this phase, in
universal mode, A creates 2T (n) processes at depth T (n) making use of the con-
structibility of T (n). For each such a process A computes its path number and
guesses the respective terminal leaf configuration in TM with channel number cons
set to 0 (for the acceptance agreement) and communication state qaccept. Thanks to
the fact that all configurations are accepting ones, no broadcasting conflict can occur
at depth T (n). Then, in every process just created, procedure Reachability(pv, cv)
is issued to verify whether a configuration cv is reachable from the root via a specified

On the Power of Broadcasting 205

computational path pv assuming no broadcasting conflicts occur in TM whenever
necessary.

Reachability(pv, cv) works as follows.

If |pv| = 0, then there cannot be any broadcasting from configurations at a higher
level and hence Reachability(λ, cv), with λ denoting the empty string of length 0,
straightforwardly verifies whether cv equals the initial configuration and returns the
corresponding answer.

If |pv| > 0, from pv the process computes pv1 = pv ÷ 2, guesses cv1 , and then
existentially splits into two branches.

The first branch corresponds to the case when cv1 -δ cv, i.e., when the transition δ
from v1 to v was a simple move (not using any broadcasting). Thus we have to verify
the existence of δ ∈ Δ such that cv1 -δ cv, that cv1 is reachable (via path pv1), and
that there was no broadcasting on channel Tuned(cv). The first condition is checked
by existentially trying all δ’s for cv1 -δ cv. Once a matching δ is found we verify the
remaining two conditions by splitting universally and callingReachability(pv1, cv1)
on one branch and procedure UndisturbedBroadcast(|pv1 |, Tuned(cv), ε) on the
other branch (see the description of procedure UndisturbedBroadcast in the se-
quel). If the move cv1 -δ cv could not have been verified, then the procedure re-
jects.

The second branch corresponds to the case when state Broadcast(cv2) = b (say)
was broadcasted to cv on channel h = Tuned(cv). In this case Reachability
guesses pv2 and cv2 such that Tuned(cv2) = h. Then it universally creates a process
for every δ such that v1 -δ{v2} v. If no such δ exists, procedure Reachability re-
jects. Otherwise, the procedure splits universally into three processes performing in
parallel procedure Reachability(pv1, cv1), procedure Reachability(pv2, cv2), and
procedure UndisturbedBroadcast(|pv2 |, h, b), respectively.

UndisturbedBbroadcast(d, h, b) verifies that no other state than b is broadcasted
on channel h at depth d in TM . The other way around, no configuration tuned to h
and broadcasting b′ �= b is reachable in TM at depth d.

To check the latter property the procedure splits universally, systematically creating
a process for each path number p between (0, . . . , 0

︸ ︷︷ ︸
d times

)2 and (1, . . . , 1
︸ ︷︷ ︸
d times

)2, each commu-

nicating state b′ ∈ R, b′ �= b (or b′ ∈ R iff b = ε, respectively), and configuration
c of size at most d such that c broadcasts b′ on channel h. On each, such a branch
Nonreachability(p, c) (described in the sequel) is called in order to verify that in
TM configuration c is not reachable via path p.

Nonreachability(p, c) checks that the statement “in TM , path p starting in ini-
tial configuration leads to c” is false. In fact, we want Nonreachability(p, c) =
¬(Reachability(p, c)) to hold. Hence, Nonreachability(p, c) works much like

206 Jiří Wiedermann and Dana Pardubská

Reachability(p, c) with the substantial difference that existential states are replaced
by universal ones and vice versa, and instead of UndisturbedBroadcast proce-
dure, Broadcast (described in the sequel) is called. Nonreachability(p, c) accepts
if and only if Reachability(p, c) called with the same parameters rejects or is not
defined.

Broadcast(d, h, b) verifies that state b is broadcasted on channel h by some con-
figuration at depth d in TM . For that purpose a process is existentially created for
every path number p ∈ {0, 1}d and configuration c, which could in principle oc-
cur in TM at depth d tuned to h broadcasting a communication symbol b. Then,
Reachability(p, c) is called in each such process.

The simulation of M by A ends successfully by accepting the input if and only if all
calls of checking procedures issued in the verification phase end successfully.

Now a few words regarding the correctness of the simulation algorithm are in
order. The preparatory phase obviously serves its purpose. Subsequently, proce-
dure Reachability was used to ensure the reachability of nodes of TM from
the root. However, this property has been checked under the condition that there
were no broadcasting conflicts in TM . Such conflicts, if any, were detected by
UndisturbedBraodcast by inspecting all configurations in TM possibly “jamming”
a state broadcasted on a given channel at the given level. In this way the correctness
of guesses of Reachbility concerning configurations in TM modified by broadcast-
ing on the given channel has been either verified or a “mismatch” in broadcasted
communication states has been detected, if any.

Finally we determine the complexity of A. Obviously, the preparatory phase is of
time complexity O(T (n)). The complexity of the next phase is quadratic w.r.t. T (n)
since by each call of the checking procedures, the depth parameter in the calls de-
creases by 1 until the calls terminate at depth 0. However, preparing the necessary
parameters for the calls also takes time O(T (n)), which leads to the quadratic time
complexity of the verification phase.

A more detailed proof including the formal description of all before-mentioned pro-
cedures is given in the technical report [6]. �

In what follows, in addition to the standard deterministic complexity classes such
as LOGSPACE, PTIME, PSPACE, and EXPTIME, we will also use their analogs
defined for the alternating and wireless parallel Turing machines. These classes will
be denoted by prefixing the standard complexity classes listed before by A or W,
respectively.

The following corollary characterizing the power of WPTM’s polynomial time is
the consequence of both previous theorems and of known properties of alternating
complexity classes (cf. [1]).

On the Power of Broadcasting 207

Corollary 3.3. For any time constructible function T (n) with T (n) ≥ n,

⋃

k>0

WTIME(Tk(n)) =
⋃

k>0

ATIME(Tk(n));

i.e.,
WPTIME = APTIME = PSPACE.

Next, we turn our attention to the relation between deterministic and wireless mobile
space.

Theorem 3.4. Let D be a deterministic Turing machine of space complexity S(n).
Then D can be simulated by a WPTM M of channel space complexity O(log S(n))
and of working tape complexity O(1).

Sketch of the proof: The proof mirrors the proofs of similar theorems known in the
theory of synchronized alternation (cf. [2], [5]). That is, the contents of cells of a
single tape of D are kept in processes of M. A new process is spawned each time
when the head of D on its work tape enters a blank cell. The cells are numbered by
their position number and so are the processes. Thus, on their working tape, process
no. i remembers the symbol written in the i-th cell, the presence of the working head
of D at this cell (yes or no), and the state of D if head scans the i-th cell of D.
Number i in binary is stored at the channel tape of the i-th process. M simulates D
by following its moves and updating the information in the processes corresponding
to the respective updated cells and state changes of D. The “head movements” from
the i-th process (cell) are realized by broadcasting the respective “message” to the
cell’s left or right neighbor on channel (i − 1) or (i + 1) whose number equals the
index of that cell. Thus, retuning a channel amounts to adding or subtracting 1 from
the current channel number. Clearly, channel space complexity of the simulating
machine is O(log S(n)), whereas working space complexity is O(1). �

Theorem 3.5. Let S(n) ≥ logn. Let M be a WPTM of both working and channel
space complexity O(S(n)). Then there exists c > 0 such thatM can be simulated by
a deterministic Turing machine D in space O(cS(n)).

Sketch of the proof: Consider the computational graph TM of M on input w. Each
configuration in TM is of size O(S(n)); in this estimate the input head position is
included thanks to our assumption on the size of S(n). If w is accepted by M , then

at most O(cS(n)
1) different processes can occur in M. It follows that for a suitable

c > c1 D has enough space to write down all the respective configurations, and
within this space, it can easily keep track of all M ’s actions. D will accept if and
only if its computation will correspond to an accepting tree of M on w. �

From theorems 3 and 4 and from Corollary 1, we get further characterizations of
WPTM complexity classes.

208 Jiří Wiedermann and Dana Pardubská

Corollary 3.6. For any S(n) ≥ logn

WSPACE(S(n)) =
⋃

c>0

DSPACE(cS(n)),

WLOGSPACE = PSPACE = WPTIME, WPSPACE
= EXPSPACE = WEXPTIME.

From corollaries 1 and 2, we see that the fundamental complexity classes, viz. log-
arithmic space and polynomial time, coincide both for synchronized alternating (cf.
[5] and [3]) and wireless parallel Turing machines. Thus, w.r.t. these classes both
models are equivalent. Especially note that similarly as synchronized alternating
Turing machines, WPTMs use their space in an optimal manner—e.g., “wireless”
polynomial time equals “wireless” logarithmic space.

4 Conclusion

The effort of designing a computational model of wireless mobile nets has brought
an unexpected result. In addition to the original goal of characterizing the computa-
tional power of a certain kind of such nets, our results have also thrown new light
on the nature of computational resources used by the classical and synchronized al-
ternation. Although the (synchronized) alternation machines with their unrestricted
use of nondeterminism and their fancy acceptance mechanism seem to be an unreal-
istic computational model, we have shown that these machines are in fact equivalent
to deterministic parallel devices possessing the ability of information exchange via
broadcasting on unbounded number of different channels. On the one hand, these
results rank the wireless mobile nets under our consideration among the very power-
ful computational devices. On the other hand, the same results confirm the fact that
the very idea of alternation is not so far from the reality as it might appear at first
glance.

In the future it would be of interest to study the computational power of nondeter-
ministic wireless parallel Turing machines.

References

1. Chandra, A., Kozen, D., Stockmeyer, L.: Alternation. Journal of the ACM, 28, 114–133,
1981.

2. Geffert, V.: A Communication Hierarchy of Parallel Computations. Theor. Comput. Sci.,
198, No. 1-2, 99–130, 1998.

3. Hromkovič, J., Karhumäki, J., Rovan, B., Slobodová, A.: On the power of synchroniza-
tion in parallel computations. Discrete Appl. Math. 32, 155–182, (1991).

On the Power of Broadcasting 209

4. Valiant, L. G.: A Bridging Model for Parallel Computation, Comm. of the ACM, 33, No.
8, 103–111, 1990.

5. Wiedermann, J.: On the Power of Synchronization. Elektronische Informationsverar-
beitung und Kybernetik (EIK), 25, No. 10, 499–506, 1989.

6. Wiedermann, J., Pardubská, D.: On the power of broadcasting in mobile computing.
Technical report V–944, Institute of Computer Science, Academy of Sciences of the
Czech Republic, Prague 2005, 17 p.

The Computational Power of Bounded Arithmetic
from the Predicative Viewpoint

Samuel R. Buss∗

Department of Mathematics
University of California, San Diego
La Jolla, CA 92093-0112, U.S.A.
sbuss@math.ucsd.edu

Summary. This paper considers theories of bounded arithmetic that are predicative in the
sense of Nelson, that is, theories that are interpretable in Robinson’s Q. We give a nearly exact
characterization of functions that can be total in predicative bounded theories. As an upper
bound, any such function has a polynomial growth rate and its bit-graph is in nondeterministic
exponential time and in co-nondeterministic exponential time. In fact, any function uniquely
defined in a bounded theory of arithmetic lies in this class. Conversely, any function that is in
this class (provably in IΔ0 +exp) can be uniquely defined and total in a (predicative) bounded
theory of arithmetic.

1 Introduction

Theories of bounded arithmetic and their associated provable total functions have
been studied extensively for over two decades. Bounded arithmetic arose originally
from the definition of IΔ0 by Parikh. A subsequent development by Nelson of his
“predicative” theories gave an alternate route to bounded arithmetic. The present au-
thor’s thesis [2] introduced the fragments Si

2 and T i
2 of bounded arithmetic (with

Nelson’s smash function present), and these have been extended over the years to a
proliferation of theories of bounded arithmetic that have good characterizations of
their provably total functions in terms of computational complexity. To mention only
a few such characterizations, the Δ0-definable predicates of IΔ0 are precisely the
functions in the linear time hierarchy [7, 8], the provably total functions of S1

2 are
precisely the polynomial time computable functions [2], the provably total functions
of T 1

2 are precisely the projections of polynomial local search (PLS) functions [4],
Clote and Takeuti [5] gave formal theories that capture log space functions and al-
ternating log time, and Arai [1] defined a system AID that better captures alternat-
ing log time. A large number of further bounded theories of arithmetic have been
∗ Supported in part by NSF grant DMS-0400848.

214 Samuel R. Buss

formulated by others, including Zambella, Cook, and several students of Cook; see
Cook and Nguyen [6] for a partial survey.

This paper returns to (one of) the historical motivations for bounded arithmetic by
considering the computational complexity of functions that are definable in predica-
tive theories of arithmetic. By “predicative” is meant in the sense of Nelson, namely,
interpretable in Robinson’s theory Q. Nelson introduced this notion of predicative
because of his finitistic formalist philosophy of mathematics. Remarkably, another
group of researchers were independently investigating mathematically equivalent no-
tions of interpretability inQ, not for philosophical reasons, but for investigations into
independence results for arithmetic and into computational complexity. This latter
line of research included the foundational results of Solovay [11], Paris and Dimitra-
copoulos [9], Wilkie and Paris [13], Wilkie [12], and Pudlák [10].

The goal of this paper is to study functions f that are defined in a predicative theory
of arithmetic, and to characterize such functions in terms of computational complex-
ity. We shall consider only bounded predicative theories and only theories that are
interpretable with cut-interpretations. These restrictions are quite natural, since only
cut-interpretations have been used for predicative theories to date, and at the current
state of the art, we have essentially no ideas for what kinds of non-cut-interpretations
could be defined, much less be useful.

The general outline of the paper is as follows. Although we presume the reader is fa-
miliar with both bounded arithmetic and predicative arithmetic, the next section gives
some technical preliminaries necessary for our exposition. Then section 3 proves an
upper bound on the complexity of predicative functions. This upper bound is actually
a upper bound on the complexity of any function that is uniquely determined by a
definition over a bounded theory of arithmetic (not necessarily a predicative theory).
Section 4 gives lower bounds. These lower bounds state that any function within
a certain complexity class can be defined by a function symbol in some bounded
predicative theory. For nonpredicative theories, the upper and lower bounds match;
namely, it is the class of functions whose bit-graph is in both nondeterministic ex-
ponential time and co-nondeterministic exponential time (see below for the exact
definitions). For predicative theories, the lower bound further requires provability in
the theory IΔ0 + exp of membership in this class.

2 Definitions

2.1 Cut-interpretability

When considering interpretability of a theory T in Q, we shall restrict our attention
to theories T that (a) are Δ0-axiomatizable and (b) are interpreted in an inductive
cut. The first condition (a) means that T is axiomatized with a set of (universal clo-
sures of) bounded formulas over some language that extends the language of Q.

The Computational Power of Bounded Arithmetic from the Predicative Viewpoint 215

The second condition (b) means that the interpretation is relative to some inductive
formula θ(x), for which Q proves the closure properties:

θ(0) ∧ (∀x)(∀y)(θ(x) ∧ y < x→ θ(y))

and
(∀x)(θ(x) → θ(Sx)).

By compactness considerations, we may always assume without loss of generality
that T has a finite language and is finitely axiomatized. Thus we do not need to
worry about the distinction between local interpretability versus global interpretabil-
ity.

We also may assume without loss of generality that any theory T contains S1
2 (for

instance) as a subtheory, and that any subset of the polynomial time functions and
bounded axioms defining these functions and their properties are included in the
theory T .

We frequently need the theory T to include induction for all bounded formulas in
the language of T . In particular, if the theory T has non-logical language L, we
write IΔ0(L) to denote the set of induction axioms for all Δ0-formulas over the
language L. It is known (see Pudlák [10]) that if T is interpretable in Q, then so is
T + IΔ0(L). Thus, we may assume w.l.o.g. that any bounded theory T interpretable
in Q includes the IΔ0(L) axioms. For similar reasons, the theory T may be assumed
to include the smash function # and its defining axioms; in this case, the IΔ0(L)
axioms imply all of S2(L).

An important fact about interpretability in Q is that the growth rate of functions can
be characterized exactly. We define |x| as usual to equal the length of the binary
representation of x. Then we define

Ω0(x) = 22|x|

so that Ω0(x) ≈ x2, and we further define

Ωi+1(x) = 2Ωi(|x|).

We haveΩ1(x) = 222||x|| ≈ 2|x|
2

= x#2x, Ω2(x) = 2222|||x|||
≈ x#3x, etc.

Solovay [11] proved that the functions Ωi(x) are interpretable with inductive cuts
in Q. Conversely, Wilkie [12] proved that any function f that is interpretable in an
inductive cut in Q is bounded by some Ωi; i.e., that for some i, f(x) < Ωi(x) for
all x. More generally, for a multivariable function symbol f(x1, . . . , xn), we say that
f is dominated eventually by Ωi provided that

(∃()(∀x1)(∀x2) · · · (∀xn)((≤ x1 + x2 + · · ·+ xn

→ f(x1, x2, . . . , xn) < Ωi(x1 + x2 + · · ·+ xn)).

216 Samuel R. Buss

Then, if f is interpretable in an inductive cut in Q, f is dominated eventually by
Ωi for some i. Furthermore, the fact that f is dominated by Ωi is provable in
a suitable theory (which is interpreted in Q). This is expressed by the following
theorem.

Theorem 1 Suppose T is a finite Δ0-axiomatized theory, interpretable in Q with
an inductive cut. Then a finite extension T ′ of T is also Δ0-axiomatized and inter-
pretable in Q with an inductive cut such that T ′ proves that every function symbol is
eventually dominated by some Ωi.

Theorem 1 is a strengthening of the theorem of Wilkie [12]: its proof is beyond the
scope of this paper, but the crucial point of the proof is that Lemmas 8 and 9 and
Corollary 10 of [12] can be formalized in IΔ0 + exp.

In view of the restriction on the growth rate of functions in inductive cuts in Q, we
define the computational complexity class Ωi-TIME to be the class

Ωi-TIME = Ωi−1(nO(1))-TIME.

Here n indicates the length of an input, and it is easy to check that this means that
the runtime of an Ωi-TIME function on an input x of length n = |x| is bounded

by |t(x)| for some term t = Ω
(k)
i (x), where k ∈ N and Ω(k)

i indicates the k-fold
composition of Ωi.

Likewise we define analogs of exponential time by

EXPi-TIME = 2Ωi−1(n
O(1))-TIME.

The nondeterministic and co-nondeterministic time classes NEXPi-TIME and
coNEXPi-TIME are defined similarly.

The bit-graph of a function f is the binary relation BGf (x, b, j) that is true exactly
when the b-th bit of the binary representation of f is equal to j. Letting C be any of
the time classes defined above, we define f to be in the complexity class C provided
its bit-graph is in C. Note that, assuming f is a single-valued function (rather than
a multifunction), f is in NEXPi-TIME iff f is in coNEXPi-TIME. In this case, we
can say that f is in NEXPi-TIME ∩ coNEXPi-TIME.

2.2 Definition of Δ0-interpretable function

This section presents the crucial definition of what is meant by a function being in-
terpretable in Q by a bounded theory. The intuition is that there should be a theory T
with language L ∪ {f} that is Δ0-axiomatized and is interpretable in Q and that
uniquely specifies the function f . The only tricky part of the definition is what it
means to specify uniquely f : for instance, it would be cheating to have a function

The Computational Power of Bounded Arithmetic from the Predicative Viewpoint 217

symbol g ∈ L and an axiom (∀x)(f(x) = g(x)), since this would merely beg the
question of whether g is specified uniquely.

In order to formalize this properly, we let L∗ be the language that is obtained by
making a “copy” of L: for each symbol g ∈ L, there is a symbol g∗ ∈ L∗ (g may
be a function symbol, a constant, or a predicate symbol). The function symbol f∗ is
defined similarly. The theory T ∗ is obtained from T be replacing all the symbols in
the language L ∪ {f} with the corresponding symbol from L∗ ∪ {f∗}.

Definition A Δ0-interpretation in Q of a function f consists of a theory T as above
that isΔ0-axiomatizable, is interpretable inQwith a cut interpretation, and for which

IΔ0(f, f∗, L, L∗) + T + T ∗ - (∀x)(f(x) = f∗(x)). (1)

It is obvious that any Δ0-interpretable function defines a function f : N → N; that
is to say, it defines an “actual” function on the integers. At the risk of confusing
syntax and semantics, we define that any actual function defined by a symbol f of a
theory T satisfying the conditions of the definition is Δ0-interpretable in Q.

3 Upper bound

This section gives an upper bound on the computational complexity of functions that
are Δ0-interpretable in Q. The upper bound will not use the interpretability at all,
but rather, it will depend only on the fact that the function is defined uniquely in a
bounded theory with the right growth rate functions.

Theorem 2 Let T be Δ0 axiomatized, with language L ∪ {f}, f a unary function
symbol. Suppose T ⊃ IΔ0(f, L) and that equation (1) holds so that T defines f
uniquely. Then suppose that there is a i > 0 such that Ωi ∈ L and the defining
axioms ofΩi are in T , and such that for each function symbol g in the language of T ,
T proves that g is dominated by Ωi. Then, f is in NEXPi-TIME ∩ coNEXPi-TIME.

Proof. We may assume w.l.o.g. that T is axiomatized finitely and that T contains
as many IΔ0 axioms as is helpful. In fact, we may suppose T is axiomatized by
a single ∀Δ0-sentence (∀x)Θ(x). Also without loss of generality, we may assume
that the axiom contains only terms of depth 1; that is, that no function symbols are
nested. (This is easily accomplished at the expense of making the formula Θ more
complicated with additional bounded quantifiers.) In addition, we may assume that
every bounded quantifier in Θ is of the form (∀y ≤ x) or (∃y ≤ x); i.e., the uni-
versal quantified variable x effectively bounds all variables in the axiom. We let
Θ∗ denote the formula obtained from Θ by replacing each nonlogicial symbol g
with g∗.

Let c be a new constant symbol. By (1), we have

IΔ0(f, L, f∗, L∗) + f(c) �= f∗(c) - (∃x) [¬Θ(x) ∨ ¬Θ∗(x)] .

218 Samuel R. Buss

By Parikh’s thoerem, there is a term t(c) such that the quantifier (∃x) may be re-
placed by (∃x ≤ t(c)). It follows that there is a k ∈ N such that t(x) is eventually

dominated by Ω(k)
i (x), provably in IΔ0(f, L, f∗, L∗), where the superscript “(k)”

indicates k-fold iterated function composition. It follows that

IΔ0(f, L, f∗, L∗) - “c is sufficiently large”∧ f(c) �= f∗(c)

→ (∃x ≤ Ω
(k)
i (c)) [¬Θ(x) ∨ ¬Θ∗(x)] .

The algorithm to compute the bit-graph of f can now be described: On input an
integer c and integers b and j, the algorithm nondeterministically guesses and saves
the following values:

1. For each n-ary function symbol g(x1, . . . , xn) of L and all values of x1, . . . , xn

≤ Ω
(k)
i (c), a value of g(x1, . . . , xn), which is ≤ Ωi(Ω

(k)
i (c)) = Ω

(k+1)
i (c),2

and

2. For each n-ary predicate P and all values of x1, . . . , xn ≤ Ω
(k+1)
i (c), a truth

value of P (x1, . . . , xn).

After nondeterministically guessing these values, the algorithm verifies that the
axiom Θ(x) holds for all x < Ωi(c). If they all hold, the algorithm accepts if
the bth bit of the guessed value of f(c) is equal to j. Otherwise, the algorithm
rejects.

It is now straightforward to check that the nondeterministic algorithm correctly rec-
ognizes the bit-graph of f . Furthermore, the run time of f is bounded clearly by
Ω

(s)
i (c) for some s ∈ N. Thus, the the algorithm is in NEXPi-TIME. Since the func-

tion f is single-valued, the bit-graph is also in coNEXPi-TIME.
��

Corollary 3 Suppose that f : N → N is Δ0-interpretable in Q. Then f is in
NEXPi-TIME ∩ coNEXPi-TIME for some i ≥ 0.

The corollary is an immediate consequence of Theorem 2 because of the results
discussed in Section 2.

4 Lower bound

This section gives lower bounds for the definability of functions in bounded theories
that match the upper bounds of the earlier section. Theorem 4 applies to arbitrary
bounded theories, and Theorem 5 applies to predicative bounded theories.

2 This case covers constant symbols, since they may be viewed as 0-ary function symbols. In
addition, the symbol f is of course one of the functions g, so the value of f(c) is guessed
as part of this process.

The Computational Power of Bounded Arithmetic from the Predicative Viewpoint 219

Theorem 4 Suppose f(x) is dominated by Ωi(x) for some i ≥ 0 and that the
bit-graph of f(x) is in NEXPi-TIME ∩ coNEXPi-TIME. Then there is a bounded
theory T in a languageL∪{f} such that T - IΔ0(f, L) and such that T proves f is
total and defines f(x) uniquely.

Theorem 5 Let f : N → N be in NEXPi-TIME ∩ coNEXPi-TIME and be domi-
nated by Ωi for some i ≥ 0. Suppose that IΔ0 + exp can prove those facts; namely,
there are predicates A(x, b, j) and B(x, b, j) such that IΔ0 + exp can prove that

(a) A(x, b, j) and B(x, b, j) are equivalent for all x, b, j,

(b) A is computable by a NEXPi-TIME Turing machine, and

(c) B is computable by a coNEXPi-TIME machine,

and such that the predicates A and B each define the bit-graph of f .

Then f is Δ0-interpretable in Q.

We already gave a sketch of a proof of a weakened form of these two theorems in the
appendix to [3]. That proof was based on the equivalence of alternating polynomial
space and exponential time. Our proofs below, however, are based on directly repre-
senting nondeterministic exponential time computation with function values.

Proof (of Theorem 4). Consider two NEXPi-TIME Turing machines,M andN , such
that the language accepted by M is the complement of the language of N . Without
loss of generality, the machines accept a single integer as input (in binary notation,
say), use a single half-infinite work tape, and halt after exactly Ωi(n) steps on an
input z of length n = |z|.

We describe an execution of the machine M with a trio of functions TM (z, i, j),
HM (z, i), and SM (z, i). The intended meaning of TM (z, i, j) = c is that in the exe-
cution of M on input z, after i steps, the jth-tape square of M contains the symbol c.
The intended meaning of SM (z, i) = q is that, M on input z after i steps, is in
state q. The intended meaning of HM (z, i) = j is that M ’s tape head is positioned
over tape square j after i steps. Now, sinceM is nondeterministic, there is more than
one possible execution of M on input z, and this means the above “intended mean-
ings” are under-specified. To clarify, the real intention is that if there is an execution
of M on input z that leads to an accepting state, then we choose an arbitrary accept-
ing computation and let TM (z, i, j), HM (z, i), and SM (z, i) be defined according
to that accepting computation. On the other hand, if there is no accepting compu-
tation, we just choose any computation and set the values of TM (z, i, j), HM (z, i),
and SM (z, i) accordingly.

These conditions can be represented by Δ0-axioms that express the following con-
ditions stating that TM , HM , and SM correctly define an execution of M :

(1) For all j, TM (z, 0, j) has the correct value for the initial state ofM with z written
on its input tape.

220 Samuel R. Buss

(2) SM (z, 0) is equal to the initial state of M .

(3) HM (z, 0) = 0, where w.l.o.g., M starts at tape square zero.

(4) For all i ≥ 0, if HM (z, i) �= j, then TM (z, i, j) = TM (z, i+ 1, j).

(5) For all i ≥ 0, the transition rules for the machine M include a rule that al-
lows M when reading symbol TM (z, i,HM(z, i)) in state SM (z, i) to write
symbol TM (z, i + 1, HM (z, i)), enter state SM (z, i + 1), and either (i) move
right one tape square or (ii) move left one tape square. In case (i), it is re-
quired that HM (z, i + 1) = HM (z, i) + 1, and in case (ii), it is required that
HM (z, i+ 1) = HM (z, i)− 1.

Clearly, the conditions (1)–(5) are satisfied only if TM , HM , and SM describe a
correct execution of M (which may be either accepting or rejecting). Furthermore,
there are natural exponential bounds on i and j given that M is an exponential time
machine. It is clear that the conditions (1)–(5) can be expressed by ∀Δ0 statements,
ΓM .

Similar conditions ΓN can be defined for the machine N using symbols TN , HN ,
and SN .

The theory T defining f can now be defined. Let M be the NEXPi-TIME machine
that accepts an input z = 〈x, b〉 precisely when the bth bit of f(x) is equal to 1.
Likewise, let N be the NEXPi machine that accepts the complement of the set ac-
cepted by M . The language of T includes the function symbol f (a sufficiently large
subset of), the language of PV , and the symbols TM , HM , SM , TN , HN , and SN .
The axioms of T include induction for all Δ0-formulas of T , plus the axioms ΓM

and ΓN , and axioms expressing the following two conditions:

(a) For each z, either SM (z,Ωi(z)) is an accepting state or SN(z,Ωi(z)) is an ac-
cepting state, but not both, and

(b) The bth bit of f(x) is equal to 1 if and only SM (〈x, b〉, Ωi(〈x, b〉)) is an accepting
state.

By the fact that M accepts the complements of the set accepted by N , we see that
(a) is a true condition, and the condition (b) is a correct definition of a function f . It
is clear from the construction that the theory T correctly defines f . ��

Proof (of Theorem 5, sketch). The idea of the proof is to formalize the proof of
Theorem 4 in IΔ0 +exp. For this reason, recall from [13] that if IΔ0 +exp can prove
a Δ0-formula θ(x), then there is some k > 0 such that IΔ0 can prove “if the k-fold
exponential of x exists, then θ(x) holds.” Thus if the hypotheses of Theorem 5 hold,
there is some k > i such that IΔ0 + “k-fold exponential of x exists” can prove that
the predicates A(x, b, j) and B(x, b, j) accept the same set and are in NEXPi-TIME
and coNEXPi-TIME (respectively).

It is well known [11, 13] that Q can define inductive cuts I(a) and J(a) such that
J ⊆ I and I � IΔ0, and such that for all x ∈ J , the k-fold iterated exponential of x

The Computational Power of Bounded Arithmetic from the Predicative Viewpoint 221

exists in I . Working in the cut J , Q can formalize the construction of the proof of
Theorem 5 (with the aid of the k-fold exponentials of elements of J that exist in I).
Then, introducing the function symbol f and the function symbols TM , HM , SM ,
TN , HN , and SN for the NEXPi-TIME Turing machines M and N , which accept
the set {z = 〈x, b〉 : A(x, b, 1)} and its complement (respectively), and restricting to
the cut J , we have interpreted the definition of f into Q. �

The above theorems give an essentially exact characterization of the computational
complexity of the functions that are Δ0-interpretable in Q. It is clear that Theo-
rems 2 and 4 give matching upper and lower bounds on the computational complex-
ity of functions that are uniquely definable in Δ0-theories. For Δ0-interpretability
in Q, Corollary 3 and Theorem 5 differ in the bounds on the function since the latter
mentions provability in IΔ0 + exp, whereas Corollary 3 does not mention provabil-
ity explicitly. However, already the definition of Δ0-interpretability, especially the
provability in Q of the uniqueness condition (1), essentially implies the provability
in IΔ0 + exp of the fact that the bit-graph of f is in NEXPi-time (via the construc-
tion of the proof of Theorem 2).

We conclude with a few open problems. The first problem is the question of what
multifunctions are interpretable in Q. A multifunction is a multiple-valued function
(i.e., a relation); that is to say, there may be several values y such that f(x) = y for a
fixed x. The question is as follows a multifunction is interpretable in Q, what is the
minimum computational complexity of a total multifunction that satisfies the axioms
of the theory?

A second line of research is to answer some questions left open from the work of
Wilkie [12]. One such question is whether (now working over the base theory IΔ0

rather than Q) it is possible for a Σn+1-formula to define an inductive cut closed
under Ωn. Wilkie [12] shows that it is not possible for a Σn or Πn formula to define
such a cut in IΔ0 and that it is possible for aΠn+1 to define one, but leaves theΣn+1

case open. Likewise, it appears no one has studied the corresponding questions over
the base theory Q. Another question is whether Theorem 1 can be proved by a direct
proof-theoretic argument. The game-theoretic argument in [12] is combined with a
model-theoretic proof. The model-theoretic part can be avoided, but it would nice to
give a more direct proof-theoretic proof.

References

1. T. ARAI, Frege system, ALOGTIME, and bounded arithmetic. Manuscript, 1992.
2. S. R. BUSS, Bounded Arithmetic, Bibliopolis, 1986. Revision of 1985 Princeton Univer-

sity Ph.D. thesis.
3. , Nelson’s Work on Logic and Foundations and Other Reflections on Foundations

of Mathematics, Princeton University Press, 2006, pp. 183–208. edited by W. Faris.

222 Samuel R. Buss

4. S. R. BUSS AND J. KRAJÍČEK, An application of Boolean complexity to separation prob-
lems in bounded arithmetic, Proc. London Math. Society, 69 (1994), pp. 1–21.

5. P. CLOTE AND G. TAKEUTI, Bounded arithmetics for NC, ALOGTIME, L and NL, An-
nals of Pure and Applied Logic, 56 (1992), pp. 73–117.

6. S. COOK AND P. NGUYEN, Foundations of Proof Complexity: Bounded Arithmetic and
Propositional Translations. Book in preparation. Draft manuscipt available on web.

7. R. J. LIPTON, Model theoretic aspects of computational complexity, in Proceedings of the
19th Annual Symposium on Foundations of Computer Science, IEEE Computer Society,
1978, pp. 193–200.

8. R. J. PARIKH, Existence and feasibility in arithmetic, The Journal of Symbolic Logic, 36
(1971), pp. 494–508.

9. J. B. PARIS AND C. DIMITRACOPOULOS, A note on the undefinability of cuts, Journal
of Symbolic Logic, 48 (1983), pp. 564–569.

10. P. PUDLÁK, Cuts, consistency statements and interpretation, The Journal of Symbolic
Logic, 50 (1985), pp. 423–441.

11. R. M. SOLOVAY, Letter to P. Hájek, August 1976.
12. A. J. WILKIE, On sentences interpretable in systems of arithmetic, in Logic Colloquium

’84, North-Holland, 1986, pp. 329–342, edited by J. B. Paris, A. J. Wilkie and G. M.
Wilmers.

13. A. J. WILKIE AND J. B. PARIS, On the scheme of induction for bounded arithmetic
formulas, Annals of Pure and Applied Logic, 35 (1987), pp. 261–302.

Effective Uniform Bounds from Proofs in Abstract
Functional Analysis

Ulrich Kohlenbach

Department of Mathematics
Technische Universität Darmstad
D-64289 Darmstadt, Germany
kohlenbach@mathematik.tu-darmstadt.de
http://www.mathematik.tu-darmstadt.de/~kohlenbach

1 Introduction

In recent years (though influenced by papers of G. Kreisel going back to the 1950s,
e.g., [74, 75, 76], as well as subsequent work by H. Luckhardt [82, 83] and others) an
applied form of proof theory systematically evolved that is also called ‘Proof Min-
ing’ ([72]). It is concerned with transformations of prima facie ineffective proofs into
proofs from that certain quantitative computational information as well as new quali-
tative information can be read off that was not visible beforehand. Applications have
been given in the areas of number theory [82], combinatorics [2, 35, 97, 98], algebra
[19, 20, 21, 22, 23, 24, 25], and most systematically, in the area of functional analysis
(see the references below). In particular, general logical metatheorems [34, 54, 64]
have been proved that guarantee a-priorily for large classes of theorems and proofs in
analysis the extractability of effective bounds that are independent from parameters
in general classes of metric, hyperbolic, and normed spaces if certain local bounded-
ness conditions are satisfied. Unless separability assumptions on the spaces involved
are used in a given proof, the independence results from parameters only need metric
bounds but no compactness [34, 64]. The theorems treat results involving concrete
Polish metric spaces P (such as IRn orC[0, 1]) as well as abstract structures (metric,
hyperbolic, normed spaces, etc.) that are axiomatically added to the formal systems
as a kind of ‘Urelements’. It is for the latter structures that we can replace the depen-
dency of the bounds from inputs involving elements of these spaces by hereditary
bounds (‘majorants’) of such elements that in our applications will be either natural
numbers or number-theoretic functions. So we can apply the usual notions of com-
putability and complexity for type-2 functionals and do not have to restrict ourselves
to instances of these structures that are representable in some effective way or would
carry a computability structure. The latter is only required for the concrete Polish
metric spaces where we rely on the usual ‘standard (Cauchy) representation’.

224 Ulrich Kohlenbach

Obviously, certain restrictions on the logical form of the theorems to be proved as
well as on the axioms to be used in the proofs are necessary (for a large class of
semi-constructive proofs, the restrictions on the form of the theorems can largely be
avoided; see [33]). These restrictions in turn depend on the language of the formal
systems used as well as on the representation of the relevant mathematical objects
such as general function spaces. The correctness of the results, moreover, depends in
subtle ways on the amount of extensionality properties used in the proof, which has
a direct analytic counterpart in terms of uniform continuity conditions.

The applications that we discuss in this survey include a number of new qualita-
tive existence results in the area of nonlinear functional analysis that follow from the
metatheorems but so far did not have a functional analytic proof. Applying the extrac-
tion algorithm provided by the proofs of the metatheorems to these results yields the
explicit quantitative versions stated below and at the same time direct proofs that no
longer rely on the logical metatheorems themselves [9, 32, 61, 63, 65, 68, 69, 79, 80].

The page limitations of this paper prevent us from formulating precisely the various
logical metatheorems and the formal systems involved, and we refer to [34, 64, 66].
We will rather give a comprehensive presentation of the effective bounds obtained
with the help of this logical approach in analysis (often all the qualitative features of
the bounds concerning the (in)dependence from various parameters as well as some
crude complexity estimates are guaranteed a-priorily by logical metatheorems) and
refer for information on the logical background as well as for the proofs of these
bounds to the literature.

Notations: IN denotes the set of natural numbers, IN = {0, 1, 2, . . .}. Q∗+ and IR∗+
denote the sets of strictly positive rational and real numbers, respectively.

The bounds presented below are all obviously effective if stated for ε ∈ Q∗+. Some-
times it is more convenient to state them (and to formulate the various moduli in-
volved) for ε ∈ IR∗+. It will, nevertheless, always be straightforward to make the use
of, e.g., /x0 effective by restricting things to rational ε (and corresponding moduli
formulated for rationals).

2 Logical metatheorems

In this section we give an informal presentation of the main metatheorems on
which the applications reported in this paper are based (details can be found in
[34, 64]).

Definition 2.1.

1) The set T of all finite types over 0 is defined inductively by the clauses

(i) 0 ∈ T, (ii) ρ, τ ∈ T ⇒ (ρ→ τ) ∈ T.

Effective Uniform Bounds from Proofs in Abstract Functional Analysis 225

2) The set TX of all finite types over the two ground types 0 and X is defined by

(i) 0, X ∈ TX , (ii) ρ, τ ∈ TX ⇒ (ρ→ τ) ∈ TX .

3) A type is called small if it is of degree 1 (i.e., 0 → · · · → 0 → 0) or the form
ρ1 → · · · → ρk → X with the ρi being 0 or X.1

The theoryAω for classical analysis is the extension of the weakly extensional Peano
arithmetic in all types of WE-PAω by the schemata of quantifier-free choice QF-AC
and dependent choice DC for all types in T (formulated for tuples of variables).

The theoriesAω [X, d]−b andAω[X, d,W]−b result2 by extendingAω to all types in
TX and by adding axioms for an abstract metric (in the case of Aω[X, d]−b), resp.
hyperbolic (in the case ofAω[X, d,W]−b), space.Aω[X, d,W,CAT(0)]−b is the ex-
tension by an abstract CAT(0)-space. Analogously, one has theories Aω[X, ‖ · ‖]
with an abstract, non-trivial, real normed space added (as well as further extensions
Aω[X, ‖ · ‖, C] resp. Aω[X, ‖ · ‖, C]−b with bounded, resp. general, convex subsets
C ⊆ X , which we will, however, due to lack of space not formulate here). Our theo-
ries also contain a constant 0X of type X that in the normed case represents the zero
vector and in the other cases stands for an arbitrary element of the metric space. For
details on all this, see [34, 64].

Real numbers are represented as Cauchy sequences of rationals with a fixed rate 2−n

of convergence that in turn are encoded as number-theoretic functions f1, where an
equivalence relation f =IR g expresses that f1, g1 denote the same real numbers,
and≤IR, <IR, | · |IR express the obvious relations and operations on the level of these
codes. Here =IR,≤IR∈ Π0

1 , whereas <IR∈ Σ0
1 . Again details can be found in [64].

‘Weakly extensional’ means that we only have Spector’s quantifier-free extensional-
ity rule. In particular, for the defined equality x =X y :≡ (dX(x, y) =IR 0IR), we do
not have

x =X y → fX→X(x) =X f(y)

but only from a proof of s =X t can infer that f(s) =X f(t). This is of crucial
importance for our metatheorems to hold. Fortunately, we can in most cases prove the
extensionality of f for those functions we consider, e.g., for nonexpansive functions,
so that this only causes some need for extra care in a few cases (for an extensive
discussion of this point, see [64]).

Definition 2.2. For ρ ∈ TX , we define ρ̂ ∈ T inductively as follows:

0̂ := 0, X̂ := 0, ̂(ρ→ τ) := (ρ̂→ τ̂);

i.e. ρ̂ is the result of replacing all occurrences of the type X in ρ by the type 0.

1 In [34] a somewhat bigger class of types of so-called degree (1, X) is allowed. However,
for the applications presented in this paper, the small types suffice, which simplifies the
statement of the metatheorem below.

2 The index ‘−b’ indicates that in contrast to the corresponding theories in [64], we (follow-
ing [34]) do not require the metric space to be bounded.

226 Ulrich Kohlenbach

Definition 2.3 ([34]). We define a ternary majorization relation 	a
ρ between objects

x, y, and a of type ρ̂, ρ, and X , respectively, by induction on ρ as follows3:

• x0 	a
0 y

0 :≡ x ≥IN y,

• x0 	a
X yX :≡ (x)IR ≥IR dX(y, a),

• x 	a
ρ→τ y :≡ ∀z′, z(z′ 	a

ρ z → xz′ 	a
τ yz) ∧ ∀z′, z(z′ 	a

ρ̂ z → xz′ 	a
τ̂ xz).

For normed linear spaces, we choose a = 0X .

Definition 2.4. A formula F in L(Aω [X, . . .]−b) is called ∀-formula (resp., ∃-
formula) if it has the form F ≡ ∀aσFqf (a) (resp., F ≡ ∃aσFqf (a)), where Fqf

does not contain any quantifier and the types in σ are small.

In the following Sω = 〈Sρ〉ρ∈T refers to the full set-theoretic-type structure of all
set-theoretic functionals of finite type.

Theorem 2.5 ([34]).

1) Let ρ be a small type, and let B∀(x, u), resp. C∃(x, v), be ∀- and ∃-formulas
that contain only x, u free, resp. x, v free. Assume that the constant 0X does not
occur in B∀, C∃ and that

Aω [X, d]−b - ∀xρ(∀u0B∀(x, u)→ ∃v0C∃(x, v)).

Then there exists a computable functional4 Φ : Sρ̂ → IN such that the following
holds in all nonempty metric spaces (X, d): for all x ∈ Sρ, x∗ ∈ Sρ̂, if there
exists an a ∈ X s.t. x∗ 	a x then

∀u ≤ Φ(x∗)B∀(x, u)→ ∃v ≤ Φ(x∗)C∃(x, v).

If 0x does occur in B∀ and/or C∃, then the bound Φ depends (in addition to x∗)
on an upper bound IN 2 n ≥ d(0X , a).

2) The theorem also holds for nonempty hyperbolic spaces Aω[X, d,W]−b,
(X, d,W), and for Aω[X, d,W,CAT(0)]−b, where (X, d,W) is a CAT(0)
space.

3) The theorem also holds for nontrivial, real normed spacesAω [X, ‖·‖], (X, ‖·‖),
where then ‘a’ has to be interpreted by the zero vector 0X in (X, ‖ · ‖) and 0X

is allowed to occur in B∀, C∃.

Instead of single variables x, u, v and single premises ∀uB∀(x, u) we may have
tuples of variables and finite conjunctions of premises. In the case of a tuple x, we
then have to require that we have a tuple x∗ of a-majorants for a common a ∈ X for
all the components of the tuple x.

3 Here (x)IR refers to the embedding of IN into IR in the sense of our representation of IR.
4 Note that for small types ρ the type ρ̂ is of degree 1. So Φ essentially is a type-2 functional

: ININ → IN.

Effective Uniform Bounds from Proofs in Abstract Functional Analysis 227

Remark 2.6. From the proof of Theorem 2.5, two further extensions follow:

1) The language may be extended by a-majorizable constants (in particular con-
stants of types 0 and 1, which always are uniformly majorizable) where the ex-
tracted bounds then additionally depend on (a-majorants for) the new constants.

2) The theory may be extended by purely universal axioms or, alternatively, axioms
that can be reformulated into purely universal axioms using new majorizable
constants if the types of the quantifiers are small.

Using these extensions, the theorem above can be adapted to other structures such as
uniformly convex normed spaces or inner product spaces [34] as well as to uniformly
convex hyperbolic spaces, δ-hyperbolic spaces (in the sense of Gromov), and IR-trees
in the sense of Tits (see [80]).

A crucial aspect of theorem 2.5 is that the boundΦ operates on objects of degree≤ 1,
i.e., natural numbers or n-ary number-theoretic functions, so that the usual type-2
computability theory as well as well-known subrecursive classes of such functionals
apply here irrespective of whether the metric and normed spaces to which the bounds
are applied come with any notion of computability. Since we included the axiom
of dependent choice (and so also countable choice and hence full comprehension
over numbers) in our systems, the functional Φ extracted will be in general a bar
recursive functional in the sense of Spector [94]. However, if (as usually is the case)
only small fragments of this are used, e.g., if in addition to basic arithmetic only the
weak König’s lemma WKL is used, then the bound will be primitive recursive in the
sense of Gödel’s T ([39]) if full induction is used, resp. primitive recursive in the
ordinary sense of Kleene if only Σ0

1 -induction is used. If not even full Σ0
1-induction

is used, then in many cases even polynomial bounds (in the data) can be expected
(see [54, 57, 58, 59]).
The proof of theorem 2.5 provides an algorithm (based on (monotone) functional
(‘Dialectica’) interpretation [39, 42, 56, 94]) for the extraction of Φ.

In the concrete applications, theorem 2.5 is used via various applied corollaries of
which we give an example now:

Definition 2.7. Let (X, d) be a metric space. A mapping f : X → X is called
nonexpansive (short ‘n.e.’) if

∀x, y ∈ X(d(f(x), f(y)) ≤ d(x, y)).

Corollary 2.8 ([34]). Let C∃ be an ∃-formula and P,K Polish, resp. compact, met-
ric spaces in standard representation by Aω-definable terms (see [54] for a precise
definition). IfAω [X, d,W]−b proves a sentence

∀x ∈ P∀y ∈ K∀zX , z̃X , c0→X , fX→X
(
f nonexpansive→ ∃vINC∃

)
,

then there is a computable functional Φ(gx, b, h) s.t. for all x ∈ P, gx ∈ ININ rep-
resentative of x, b ∈ IN, h ∈ ININ

228 Ulrich Kohlenbach

∀y ∈ K∀z, z̃ ∈ X∀c : IN→ X∀f : X → X
(
f n.e. ∧ d(z, f(z)), d(z, z̃) ≤ b

∧∀n(d(z, c(n)) ≤ h(n)) → ∃v ≤ Φ(gx, b, h)C∃
)

holds in any nonempty hyperbolic space (X, d,W).

Proof (sketch). The fact that P,K have a standard representation byAω-terms essen-
tially means that ∀-quantification over P , resp.K , can be expressed as quantification
∀x1, resp. ∀y ≤1 N , where N is a fixed simple (primitive recursive) function de-
pending on K. Here the number-theoretic functions encode Cauchy sequences (with
a fixed rate of convergence) of elements from the countable dense subset of P , resp.
K , on which the standard representations are based. We now apply theorem 2.5 with
a := z. For this reason, we have to construct	z-majorants for x1, y1, zX , z̃X , c0→X ,
and fX→X :

x∗ := xM := λn.max{x(i) : i ≤ n}, y∗ := NM , z∗ := 00, z̃∗ := b, c∗ := hM ,

f∗ := λn0.n+ b.

For f∗ we use that

d(x, z) ≤ n→ d(f(x), z) ≤ d(f(x), f(z)) + d(f(z), z)

≤ d(x, z) + d(f(z), z)

≤ n+ b.

Note that the majorants only depend on x, b, h. ��

3 Applications of proof mining in approximation theory

Let (X, ‖ · ‖) be a (real) normed linear space and E ⊆ X a finite-dimensional
subspace. By a standard (ineffective) compactness argument, each x ∈ X possesses
at least one element yb ∈ E of best approximation; i.e.,

‖x− yb‖ = inf
y∈E

‖x− y‖ =: dist (x,E).

In some important cases (see further below), yb is determined uniquely

∀x ∈ X∀y1, y2 ∈ E(‖x− y1‖, ‖x− y2‖ = dist (x,E) → y1 = y2),

which can be written as follows:

∀x ∈ X∀y1, y1 ∈ E∀k ∈ IN∃n ∈ IN(‖x− y1‖, ‖x− y2‖ ≤ dist (x,E) + 2−n

→ ‖y1 − y2‖ < 2−k),

Effective Uniform Bounds from Proofs in Abstract Functional Analysis 229

where (using the representation of real numbers mentioned above)

‖x− y1‖, ‖x− y2‖ ≤ dist (x,E) + 2−n → ‖y1 − y2‖ < 2−k

is equivalent to a Σ0
1-formula.

Every best approximation yb ∈ E clearly satisfies ‖yb‖ ≤ 2‖x‖ (since otherwise
0 ∈ E would be a better appoximation). Hence we can replace above the space E
by the compact subset Kx := {y ∈ E : ‖y‖ ≤ 2‖x‖}. Now suppose that one
has a computable bound Φ(x, k) (depending on a suitable representation of x) for
‘∃n ∈ IN’ that is independent of y1, y2 ∈ Kx; i.e.,

∀x ∈ X∀y1, y1 ∈ Kx∀k ∈ IN(‖x− y1‖, ‖x− y2‖ ≤ dist (x,E) + 2−Φ(x,k)

→ ‖y1 − y2‖ < 2−k).

We call such a Φ a modulus of uniqueness. Then any algorithm for computing 2−n-
best approximations yn ∈ Kx; i.e., ‖x − yn‖ ≤ dist (x,E) + 2−n, can be used to
compute yb with any prescribed precision since

∀k ∈ IN (‖yΦ(x,k) − yb‖ < 2−k).

If we use K̃x := {y ∈ E : ‖y‖ ≤ 5
2‖x‖} instead of Kx, then by an easy argument a

modulus of uniqueness on K̃x can be extended effectively to the whole space E. So
we now always refer to moduli of uniqueness on all ofE and—for convenience—use
q ∈ Q∗+ instead of 2−k with Φ(x, q) ∈ Q∗+. The next proposition further indicates
the relevance of this notion:

Proposition 3.1 ([54]). Let (X, ‖ · ‖) be a real normed linear space, E ⊆ X a finite-
dimensional subspace. Assume that every x ∈ X possesses a uniquely determined
best approximation in E and that the operation Φ is a modulus of uniqueness. Then
the following holds:

1) 1
2 · Φ is a modulus of pointwise continuity for the projection P : X → E, which
maps x ∈ X to its best approximation yb ∈ E; i.e.,

∀x, x0 ∈ X, q ∈ Q∗+
(
‖x− x0‖ ≤

1
2
Φx0q → ‖Px− Px0‖ ≤ q

)
.

2) If Φ is linear in q, i.e., Φxq = q ·γ(x), then γ(x) is a ‘constant of strong unicity’;
i.e.,

∀x ∈ X, y ∈ E
(
‖x− y‖ ≥ ‖x− yb‖+ γ(x) · ‖y − yb‖

)
,

where yb is the best approximation of x in E.

3) For γ(x) as in ‘2)’, we get that λ(x) := 2
γ(x) is a pointwise Lipschitz constant

for P; i.e.,

∀x, x0 ∈ X
(
‖Px− Px0‖ ≤ λ(x0) · ‖x− x0‖

)
.

230 Ulrich Kohlenbach

In the following, we discuss two specific best approximation problems. Let C[0, 1]
be the space of all continuous real-valued functions on [0, 1] and Pn the subspace
of all polynomials of degree ≤ n. We consider best approximations of f ∈ C[0, 1]
by polynomials in Pn w.r.t. the maximum norm ‖f‖∞ := sup

x∈[0,1]

|f(x)| (called best

Chebycheff approximation) as well as w.r.t. the L1-norm ‖f‖1 :=
∫ 1

0 |f | (also called
‘approximation in the mean’). Even in the latter case we representC[0, 1] as a Polish
space w.r.t. the metric induced by ‖ · ‖∞ since it is not complete w.r.t. ‖ · ‖1. The
usual so-called standard representation of (C[0, 1], ‖ · ‖∞) is constructively equiva-
lent to the representation of f via its restriction to the rational numbers in [0, 1] and
a modulus ω : Q∗+ → Q∗+ of uniform continuity of f ; i.e.,

∀x, y ∈ [0, 1]∀ε ∈ Q∗+(|x− y| < ω(ε)→ |f(x)− f(y)| < ε)

so that the bounds will depend on ω.

Since in this section we do not use abstract classes of metric spaces but (in addition
to IR), only the concrete Polish metric space (C[0, 1], ‖ ·‖∞), the applications in this
section are instances already of the older metatheorems from [54].

We first consider the case of best Chebycheff approximation: A well-known theorem
in so-called Chebycheff approximation theory states that every f ∈ C[0, 1] possesses
a unique polynomial pb ∈ Pn of best approximation in the ‖ · ‖∞-norm, i.e., a poly-
nomial in Pn such that ‖f − pb‖∞ = dist∞(f, Pn) := inf

p∈Pn

‖f − p‖∞. Both the

existence as well as the uniqueness of pb are established by classical arguments that
make use of the theorem that continuous real-valued functions attain their minimum
on compact spaces, i.e., use the ineffective weak König’s lemma WKL (see [92]).
By (the algorithm implicit in) our general metatheorems from [54], it is guaran-
teed that the uniqueness proof, nevertheless, allows one to extract a (primitive re-
cursively) computable modulus of uniqueness (even of relatively low complexity), a
concept that—under the name of strong unicity—plays an important role in approxi-
mation theory (see [17]). By proposition 3.1, such a modulus of uniqueness provides
a stability rate for the Chebycheff projection that assigns to f ∈ C[0, 1] the unique
polynomial pb of best approximation in Pn. Furthermore, it can be used to compute
pb and to (upper) estimate its computational complexity (see [54] for all this). In
[55] the following explicit moduli (also for the case of general Haar spaces) were
extracted from the classical uniqueness proof due to [99]:

Theorem 3.2 ([55]). Let

Φ(ω, n, ε) := min

{

ε/4,

⌊
n
2

⌋
!
⌈

n
2

⌉
!

2(n+ 1)
· (ωn(ε/2))n · ε

}

,

with

ωn(ε) :=

⎧
⎨

⎩
min

{
ω
(

ε
2

)
, ε

8n2� 1
ω(1) �

}
, if n ≥ 1,

1, if n = 0.

Effective Uniform Bounds from Proofs in Abstract Functional Analysis 231

ThenΦ is a common modulus of uniqueness for all f ∈ C[0, 1] that have the modulus
of uniform continuity ω, i.e., for all n ∈ IN. More precisely, we have

∀p1, p2 ∈ Pn; ε ∈ Q∗+
(2∧

i=1

(‖f − pi‖∞ − dist∞(f, Pn) < Φ(ω, n, ε))

→ ‖p1 − p2‖∞ ≤ ε
)
.

Moreover if dist∞(f, Pn) > 0 and l ∈ Q∗+ such that l ≤ dist∞(f, Pn) and

Φ̃(ω, n, l) :=

⌊
n
2

⌋
!
⌈

n
2

⌉
!

2(n+ 1)
· (ωn(2l))n

,

then Φ̃(ω, n, l)·ε is a modulus of uniqueness for f that is linear in ε, and so Φ̃(ω, n, l)
(by proposition 3.1) is a ‘constant of strong unicity’.

Remark 3.3. 1) The most important aspect of Φ, Φ̃ above is that these bounds do
not depend on p1, p2. This is guaranteed by the metatheorems in [54] since one
can—as discussed above—restrict things to the bounded (and hence compact)
subset K̃f,n := {p ∈ Pn : ‖p‖∞ ≤ 5

2‖f‖∞} of the finite-dimensional space
Pn.

2) Instead of the term / 1
ω(1)0 in the definition of ωn, we may use an arbitrary upper

bound M ≥ ‖f‖∞. Actually the result is proved in this form in [55]. Using
the construction f �→ f̃ , f̃(x) := f(x) − f(0) (using that dist∞(f, Pn) =
dist∞(f̃ , Pn)), one sees that one may assume without loss of generality that
f(0) = 0. With this assumption / 1

ω(1)0 is an upper bound of ‖f‖∞ that reduces
the dependence of the bound on f to just ω.

3) Our constant of strong unicity tends to 0 as n → ∞. Except for the trivial case
where f ∈ Pn, this is unavoidable by a deep result in [31].

The modulus of uniqueness in theorem 3.2 is significantly better than the one im-
plicit in [52, 53] (see [55] for a comparison).

The existence of a unique element of best approximation to f ∈ C[0, 1] extends
from Pn−1 := LinIR{1, x, . . . , xn−1} to general so-called Haar spaces H :=
LinIR{φ1, . . . , φn}, i.e., n-dimensional subspaces of C[0, 1] that have the unique
interpolation property; i.e.,

∀φ ∈ H∀x ∈ [0, 1]
(n−1∧

i=1

(xi < xi+1) ∧
n∧

i=1

(φ(xi) = 0)→ φ ≡ 0
)
.

The tuple (φ1, . . . , φn) of functions in C[0, 1] is called a Chebycheff system over
[0, 1].

232 Ulrich Kohlenbach

Let φ := (φ1, . . . , φn) be a Chebycheff system over [0, 1],

φ(x) :=
(
φ1(x), . . . , φn(x)

)
∈ IRn,

‖φ‖ := sup
x∈[0,1]

‖φ(x)‖2,

where ‖ · ‖2 denotes the Euclidean norm on IRn.

β, γ, κ : (0, 1
n] → IR∗+ are defined by

β(α) :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

inf
x∈[0,1]

|φ1(x)|, if n = 1

inf
{
| det(φj(xi))| : 0 ≤ x1, . . . , xn ≤ 1,

n−1∧

i=1

(xi+1 − xi ≥ α)
}
,

if n > 1

and

γ(α) := min

⎧
⎪⎪⎨

⎪⎪⎩
‖φ‖, β(α)

n
1
2 (n− 1)!

n∏

i=1

(1 + ‖φi‖∞)

⎫
⎪⎪⎬

⎪⎪⎭
, κ(α) := γ(α)−1 · ‖φ‖

for α ∈ (0, 1
n]. Since φ is a Chebycheff system, it follows that β(α) > 0.

H := LinIR(φ1, . . . , φn); ωφ denotes a modulus of uniform continuity of φ.
EH,f := dist∞(f,H).

Lemma 3.4 ([5, 6]).

1) Suppose that A ⊂ C[0, 1] is totally bounded, ωA is a common modulus of uni-
form continuity for all f ∈ A, and M > 0 is a common bound M ≥ ‖f‖∞ for
all f ∈ A. Then

ωA,H(ε) := min

⎧
⎪⎪⎨

⎪⎪⎩
ωA(

ε

2
), ωφ

⎛

⎜
⎜
⎝

ε · β(1
n)

4Mn
3
2 (n− 1)!

n∏

i=1

(1 + ‖φi‖∞)

⎞

⎟
⎟
⎠

⎫
⎪⎪⎬

⎪⎪⎭

is a common modulus of uniform continuity for all ψb − f , where f ∈ A and ψb

is the best approximation of f in H .

2) Assume 0 < α ≤ 1
n and

n−1∧

i=1

(xi+1 − xi ≥ α) (x1, . . . , xn ∈ [0, 1]) for n ≥ 2.

Then

∀ψ ∈ H, ε > 0
(n∧

i=1

|ψ(xi)| ≤
γ(α)
n · ‖φ‖ · ε→ ‖ψ‖∞ ≤ ε

)
.

Effective Uniform Bounds from Proofs in Abstract Functional Analysis 233

Theorem 3.5 ([55]). Let A,ωA,H , γ, κ be as in lemma 3.4 and EH,A := inf
f∈A

EH,f .

Then

ΦAε := min

{
ε

4
,
1
2
γ
(
min{ 1

n , ωA,H(ε
2)}
)

n · ‖φ‖ · ε
}

= min

{
ε

4
,

ε

2nκ
(
min{ 1

n , ωA,H(ε
2)}
)

}

is a common modulus of uniqueness (and a common modulus of continuity for the
Chebycheff projection in f) for all f ∈ A.
For lH,A ∈ Q∗+ such that lH,A < EH,A and 0 < α ≤ min{ 1

n , ωA,H(2 · lH,A)}, we

have γ(α)
n·‖φ‖ (resp., 2nκ(α)) as a uniform constant of strong unicity (resp. Lipschitz

constant) for all f ∈ A.

The bounds in theorem 3.5 are significantly better than the ones obtained in [5, 6, 7]
(see [55] for a detailed comparison). The (ineffective) existence of a constant of
strong unicity was proved first in [84]. The existence of a uniform such constant (in
the sense above) was established (again ineffectively) first in [41]. The local Lips-
chitz continuity of the projection is due to [30].

If the Haar space contains the constant-1 function, then using again the transforma-
tion f �→ f̃ , with f̃(x) := f(x) − f(0), one can even eliminate the dependence of
the bounds on M ≥ ‖f‖∞ and conclude:

Theorem 3.6. Let {φ1, . . . , φn} be a Chebycheff system such that
1 ∈ H :=LinIR(φ1, . . . , φn), and let ω : IR∗+ → IR∗+ be any function. Then

ΦH(ω, ε) := min

{
ε

4
,

ε

2nκ
(
min{ 1

n , ω
H(ε

2)}
)

}

with

ωH(ε) := min

⎧
⎪⎪⎨

⎪⎪⎩
ω(
ε

2
), ωφ

⎛

⎜
⎜
⎝

ε · β(1
n)

4/ 1
ω(1)0n

3
2 (n− 1)!

n∏

i=1

(1 + ‖φi‖∞)

⎞

⎟
⎟
⎠

⎫
⎪⎪⎬

⎪⎪⎭

is a common modulus of uniqueness (and a common modulus of continuity for the
Chebycheff projection) for all functions f ∈ C[0, 1] that have ω as a modulus of
uniform continuity.

As a corollary we obtain that for arbitrary Haar spaces having the constant func-
tion 1, the continuity behavior of the Chebycheff projection is uniform for any class
of equicontinuous functions that generalizes a result of [78] for the case of (trigono-
metric) polynomials.

234 Ulrich Kohlenbach

We now move to best approximations of f by polynomials in Pn w.r.t. the L1-norm
‖f‖1 :=

∫ 1

0
|f(x)|dx, so-called best ‘approximation in the mean’.

Theorem 3.7 ([44]). Let f ∈ C[0, 1] and n ∈ IN. There exists a unique polynomial
pb ∈ Pn of degree≤ n that approximates f best in the L1-norm; i.e.,

‖f − pb‖1 = inf
p∈Pn

‖f − p‖1 =: dist1(f, Pn).

Since C[0, 1] is not complete w.r.t. the norm ‖f‖1, we still use the representation
w.r.t. ‖f‖∞ in which the norm ‖f‖1 can be computed easily. As a result, we again
have to expect our modulus of uniqueness to depend on a modulus ω of uniform
continuity of f. Again, both the existence and the uniqueness part are proved using
compactness arguments that are equivalent to WKL. Despite this ineffectivity, using
the algorithm implicit in the logical metatheorems from [54] the following result
was extracted from the ineffective uniqueness proof due to [16] (the extractability of
a primitive recursive modulus of uniqueness again is a-priorily guaranteed by logical
metatheorems; see [54]):

Theorem 3.8 ([71]). Let

Φ(ω, n, ε) := min{ cnε

8(n+ 1)2
,
cnε

2
ωn(

cnε

2
)},

where

cn := �n/2�!�n/2�!
24n+3(n+1)3n+1 and ωn(ε) := min{ω(ε

4), ε
40(n+1)4� 1

ω(1) �
}.

Then Φ(ω, n, ε) is a modulus of uniqueness for the best L1-approximation of any
function f in C[0, 1] having modulus of uniform continuity ω from Pn; i.e., for all n
and f ∈ C[0, 1] :

∀p1, p2 ∈ Pn; ε ∈ Q∗+ (
2∧

i=1

(‖f − pi‖1 − dist1(f, Pn) ≤ Φ(ω, n, ε))

‖p1 − p2‖1 ≤ ε),

where ω is a modulus of uniform continuity of the function f.Note that again Φ only
depends on f only via the modulus ω.

The uniqueness of the best L1-approximation was proved already in 1921 [44]. In
1975, Björnestål [3] proved ineffectively the existence of a rate of strong unicity Φ
having the form cf,n ε ωn(cf,n ε), for some constant cf,n depending on f and n. In
1978, Kroó [77] improved Björnestål’s results by showing—again ineffectively—
that a constant cω,n depending only on the modulus of uniform continuity of f and
n exists. Moreover, Kroó proved that the ε-dependency established by Björnestal is
optimal. Note that the effective rate given above has this optimal dependency.

Effective Uniform Bounds from Proofs in Abstract Functional Analysis 235

The effective rate of strong unicity given above allows one for the first time to com-
pute effectively the best approximation. An upper bound on the complexity of that
procedure is given in [85].

4 Effective computation of fixed points for functions of
contractive type

There is a long history of extensions of Banach’s well-known fixed point theorem
for contractions to various more liberal notions of contractive type functions. The
results usually are of the same shape as Banach’s theorem; i.e., they state that the
functions under consideration have a unique fixed point and that the Picard iteration
(fn(x))n∈IN of an arbitrary starting point converges to this fixed point. However, in
contrast to Banach’s theorem, in general no explicit rates of convergence can be read
off from the (often ineffective) proofs.

The oldest of these results are due to Edelstein [27] and Rakotch [87].

Definition 4.1 ([27]). A self-mapping f of a metric space (X, d) is contractive if

∀x, y ∈ X(x �= y → d(f(x), f(y)) < d(x, y)).

Theorem 4.2 ([27]). Let (X, d) be a complete metric space, let f be a contractive
self-mapping on X , and suppose that for some x0 ∈ X the sequence (fn(x0)) has
a convergent subsequence (fni(x0)). Then ξ = lim

n→∞ f
n(x0) exists and is a unique

fixed point of f .

Rakotch observed that when contractivity is formulated in the following uniform way
(which in the presence of compactness is equivalent to Edelstein’s definition but in
general is a strictly stronger condition), then it is possible to drop the assumption of
the existence of convergent subsequences.

Definition 4.3 ([87]). 5 A self-mapping f : X → X of a metric space is called
uniformly contractive with modulus α : Q∗+ → (0, 1) ∩Q if

∀ε ∈ Q∗+∀x, y ∈ X(d(x, y) > ε→ d(f(x), f(y)) ≤ α(ε) · d(x, y)).

Theorem 4.4 ([87]). Let (X, d) be a complete metric space, and let f be a uniformly
contractive self-mapping on X (i.e., f has modulus of contractivity α); then, for all
x ∈ X , ξ = lim

n→∞ f
n(x) exists and is a unique fixed point of f .

Example 4.5. The functions f : [1,∞) → [1,∞), f(x) := x + 1
x , and f : IR →

IR, f(x) := ln(1+ex) are both contractive in the sense of Edelstein but not uniformly
contractive in the sense of Rakotch. The function f : [1,∞) → [1,∞), f(x) :=
1 + lnx is uniformly contractive in the sense of Rakotch but not a contraction.
5 This definition is taken from [33] and is slightly more general than Rakotch’s original

definition.

236 Ulrich Kohlenbach

From the essentially constructive proof in [87] one obtains (as predicted by a gen-
eral logical metatheorem established in [33]) the following bound (see also [8] for a
related result):

Theorem 4.6 ([33]). With the conditions as in the previous theorem we have the
following rate of convergence of the Picard iteration from an arbitrary point x ∈ X
towards the unique fixed point ξ of f :

∀x ∈ X∀ε ∈ Q∗+∀n ≥ δ(α, b, ε)(d(fn(x), ξ) ≤ ε),

where

δ(α, b, ε) =
⌈

log ε− log b′(α, b)
logα(ε)

⌉
for

b′(α, b) = max(ρ,
2 · b

1− α(ρ)
) with IN 2 b ≥ d(x, f(x)) and ρ > 0 arbitrary.

Remark 4.7. 1) Note that the rate of convergence depends on f, x only via α, and
an upper bound for d(x, f(x)).

2) Instead of the multiplicative modulus of uniform contractivity α, one can also
consider an additive modulus η : Q∗+ → Q∗+ s.t.

∀ε ∈ Q∗+∀x, y ∈ X
(
d(x, y) > ε→ d(f(x), f(y)) + η(ε) ≤ d(x, y)

)

and can construct a rate of convergence in terms of η (see [33]).

Instead of starting from a constructive proof one also could take an ineffective proof
of fn(x) → 0 and first extract an effective bound Φ such that

∀x ∈ X∀ε ∈ Q∗+∃n ≤ Φ(α, b, ε)(d(fn(x), fn+1(x)) < ε)

using theorem 2.5 (which is possible since ‘∃n(d(fn(x), fn+1(x)) < ε)’ is purely
existential).
Since the sequence (d(fn(x), fn+1(x)))n is nonincreasing, this yields

∀x ∈ X∀ε ∈ Q∗+∀n ≥ Φ(α, b, ε)(d(fn(x), fn+1(x)) < ε).

One then extracts (using again theorem 2.5) a modulus Ψ of uniqueness from the
uniqueness proof. Similarly to our applications in approximation theory, these two
moduli Φ, Ψ together then provide a rate of convergence towards the fixed point (for
details, see [72]).

In the fixed point theorems due to Kincses/Totik ([45]) and Kirk ([48]) that we
discuss next, only ineffective proofs were known so that an approach as outlined
above had to be anticipated. However, due to the lack of monotonocity of (d(fn(x),
fn+1(x)))n in these cases, this approach would not yield a full rate of convergence.

Effective Uniform Bounds from Proofs in Abstract Functional Analysis 237

Nevertheless, this problem could be overcome, and in fact, recent work of E.M. Bri-
seid ([14]) shows that under rather general conditions on the class of functions to be
considered (satisfied in the two cases at hand for uniformly continuous functions),
theorem 2.5 can be used to guarantee effective rates of convergence of (fn(x))n to-
wards a unique fixed point from a given ineffective proof of this fact.

In [89, 90], 25 different notions of contractivity are considered starting from Edel-
stein’s definition. The most general one among those is called ‘generalized contrac-
tivity’ in [9, 10]. If only some iterate fp for p ∈ IN is required to satisfy this condi-
tion, the function is called ‘generalized p-contractive’:

Definition 4.8 ([89]). Let (X, d) be a metric space and p ∈ IN. A function f : X →
X is called generalized p-contractive if

∀x, y ∈ X
(
x �= y → d(fp(x), fp(y)) < diam {x, y, fp(x), fp(y)}

)
.

Theorem 4.9 (Kincses/Totik,[45]). Let (K, d) be a compact metric space and f :
K → K a continuous function that is generalized p-contractive for some p ∈ IN.
Then f has a unique fixed point ξ, and for every x ∈ K , we have

lim
n→∞ f

n(x) = ξ.

Guided by the logical metatheorems from [54, 62, 64], Briseid ([9]) (i) general-
ized theorem 4.9 to the noncompact case (similar to Rakotch’s form of Edelstein’s
theorem) and (ii) provided a fully effective quantitative form of this generalized
theorem:

Definition 4.10 ([9, 10]). Let (X, d) be a metric space, p ∈ IN. f : X → X is called
uniformly generalized p-contractive with modulus η : Q∗+ → Q∗+ if

∀x, y ∈ X∀ε ∈ Q∗+(d(x, y) > ε→ d(fp(x), fp(y)) + η(ε)

< diam {x, y, fp(x), fp(y)}).

It is clear that for compact spaces and continuous f the notions ‘generalized p-
contractive’ and ‘uniformly generalized p-contractive (with some modulus η)’ co-
incide.

Theorem 4.11 ([9, 10]). Let (X, d) be a complete metric space and p ∈ IN. Let
f : X → X be a uniformly continuous and uniformly generalized p-contractive
function with moduli of uniform continuityω and uniform generalized p-contractivity
η. Let x0 ∈ X be the starting point of the Picard iteration (fn(x0)) of f , and assume
that (fn(x0)) is bounded by b ∈ Q∗+. Then f has a unique fixed point ξ and (fn(x0))
converges to ξ with rate of convergence Φ : Q∗+ → IN; i.e.,

∀ε ∈ Q∗+∀n ≥ Φ(ε)(d(fn(x0), ξ) ≤ ε),

238 Ulrich Kohlenbach

where

Φ(ε) :=

{
p/(b− ε)/ρ(ε)0 if b > ε,

0, otherwise,

with

ρ(ε) := min
{
η(ε),

ε

2
, η(

1
2
ωp(

ε

2
))
}
.

For a discussion of the logical background of this result, see [9].

Another notion of contractivity was recently introduced by Kirk and has received
quite some interest in the last few years:

Definition 4.12 ([48]). Let (X, d) be a metric space. A self-mapping f : X → X is
called an asymptotic contraction with moduli Φ,Φn : [0,∞) → [0,∞) if Φ,Φn are
continuous, Φ(s) < s for all s > 0,

∀n ∈ IN∀x, y ∈ X(d(fn(x), fn(y)) ≤ Φn(d(x, y)),

and Φn → Φ uniformly on the range of d.

Theorem 4.13 (Kirk, [48]). Let (X, d) be a complete metric space and f : X → X
a continuous asymptotic contraction. Assume that some orbit of f is bounded. Then
f has a unique fixed point ξ ∈ X and the Picard sequence (fn(x)) converges to ξ
for each x ∈ X.

The following definition is essentially due to [32] (with a small generalization given
by [11]) and was prompted by applying the method of monotone functional inter-
pretation on which the logical metatheorems mentioned before are based on Kirk’s
definition.

Definition 4.14 ([11, 32]). A self-mapping f : X → X of a metric space (X, d)
is called an asymptotic contraction in the sense of Gerhardy and Briseid if for each
b > 0, there exist moduli ηb : (0, b]→ (0, 1) and βb : (0, b]× (0,∞)→ IN such that
the following hold:

1) There exists a sequence of functions φb
n : (0,∞) → (0,∞) such that for each

0 < l ≤ b the function βb
l := βb(l, ·) is a modulus of uniform convergence for

(φb
n)n on [l, b]; i.e.,

∀ε > 0∀s ∈ [l, b]∀m,n ≥ βb
l (ε)(|φb

m(s)− φb
n(s)| ≤ ε).

Furthermore, if ε < ε′, then βb
l (ε) ≥ βb

l (ε
′).

2) For all x, y ∈ X, for all ε > 0, and for all n ∈ IN with βb
ε(1) ≤ n, we have that

b ≥ d(x, y) ≥ ε→ d(fn(x), fn(y)) ≤ φb
n(ε)d(x, y).

Effective Uniform Bounds from Proofs in Abstract Functional Analysis 239

3) For φb := lim
n→∞φ

b
n, we have

∀ε ∈ (0, b]∀s ∈ [ε, b](φb(s) + ηb(ε) ≤ 1).

As shown in [32] (see also [11]) every asymptotic contraction in the sense of Kirk
is also an asymptotic contraction in the sense of Gerhardy and Briseid (for suitable
moduli). Moreover, as shown in [11], in the case of bounded and complete metric
spaces, both notions coincide and are equivalent to the existence of a rate of con-
vergence of the Picard iterations, which is uniform in the starting point (as the one
presented below).

Guided by logical metatheorems, Gerhardy [32] not only developed the above ex-
plicit form of asymptotic contractivity but also extracted from Kirk’s proof an effec-
tive so-called rate of proximity Ψ(η, β, b, ε) such that

(fn(x))n bounded by b → ∀ε > 0∃n ≤ Ψ(η, β, b, ε)(d(fn(x), ξ))

for the unique fixed point ξ of f. For functions f that in addition to being continuous
asymptotic contractions (with moduli η, β) are quasi-nonexpansive (see the final sec-
tion of this paper), this already yields a rate of convergence towards the fixed point
since (d(fn(x), ξ))n is nonincreasing in this case. Building upon Gerhardy’s result,
Briseid [11] gave an effective rate of convergence in the general case:

Theorem 4.15 ([11]). Let (X, d) be a complete metric space and f a continuous
asymptotic contraction (in the sense of Gerhardy and Briseid) with moduli η, β. Let,
furthermore, b > 0. If for some x0 ∈ X the Picard iteration sequence fn(x0) is
bounded by b, then f has a unique fixed point ξ and

∀ε > 0∀n ≥ Φ(η, β, b, ε)
(
d(fn(x0), ξ) ≤ ε),

where

Φ(η, β, b, ε) := max{k(2Mγ + β(ε
2)(δ) +Kγ − 1),

(k − 1) · (2Mγ + β(ε
2)(δ) +Kγ − 1) +Mγ + 1},

with

k :=
⌈

ln ε−ln b

ln(1− η(γ)
2)

⌉
, Mγ := Kγ ·

⌈
ln γ−ln b

ln(1− η(γ)
2)

⌉
, Kγ := βγ

(η(γ)
2

)
,

δ := min{ ε
2 ,

η(ε
2)

2 } γ := min{δ, δε
4 }.

Using results from [32] it is shown in [12] that Picard iteration sequences of asymp-
totic contractions always are bounded so that the corresponding assumption in Kirk’s
theorem 4.13 is superfluous (see also [13, 95]). Moreover, [12] gives an effective rate
of convergence that does not depend on a bound b on (xn) but instead on (strictly
positive) lower and upper bounds on d(x0, f(x0)).

240 Ulrich Kohlenbach

5 Fixed points and approximate fixed points of nonexpansive
functions in hyperbolic spaces

Already for bounded metric spaces we cannot even hope that nonexpansive func-
tions have approximate fixed points. This is due to the fact that (in contrast to func-
tions of contractive type treated above) we can always change a given metric d to
a bounded one by defining the truncated metric D(x, y) := max{d(x, y), 1} with-
out destroying the property of nonexpansiveness: for example, consider the bounded
metric space (IR, D), where D(x, y) := max{|x − y|, 1} and the nonexpansive
function f(x) := x + 1. Then inf{D(x, f(x)) : x ∈ IR} = 1. In the case of
bounded, closed, and convex subsets C of Banach spaces, nonexpansive mappings
always have approximate fixed points (see [60] for an easy proof of this fact), but
in general they have no fixed points (see [93]). Moreover, as the example f = idX

shows, if a fixed point exists, it will in general no longer be unique, and even in
cases where a unique fixed point exists, the Picard iteration will not necessarily con-
verge to the fixed point and may even fail to produce approximate fixed points: con-
sider e.g., f : [0, 1] → [0, 1], f(x) := 1 − x. Then for each x ∈ [0, 1] \ { 1

2},
the iteration sequence fn(x) oscillates between x and 1 − x and so stays bounded
away from the unique fixed point 1

2 . This is the reason why one considers so-called
Krasnoselski–Mann iterations (xn)n∈IN (see below), which make use of a concept
of a convex combination that exists in normed spaces and in so-called hyperbolic
spaces. Even in cases where (xn) converges to a fixed point, one can no longer
hope for an effective rate of convergence. In fact it has been shown that already
in almost trivial contexts, such effective rates do not exist (see [65]). This failure
of effectivity is largely due to the nonuniqueness of the fixed point (and hence the
absence of a modulus of uniqueness in the sense of section 3). However, in many
cases, one can extract from the proofs effective rates on the so-called asymptotic
regularity

d(xn, f(xn)) → 0,

which holds under much more general conditions than the ones needed to guarantee
the existence of fixed points. As mentioned above, we need somewhat more structure
than just a metric space to define the Krasnoselski–Mann iteration:

Definition 5.1 ([37, 46, 64, 88]). (X, d,W) is called a hyperbolic space if (X, d) is
a metric space and W : X ×X × [0, 1]→ X is a function satisfying

(i) ∀x, y, z ∈ X∀λ ∈ [0, 1]
(
d(z,W (x, y, λ)) ≤ (1− λ)d(z, x) + λd(z, y)

)
,

(ii) ∀x, y ∈ X∀λ1, λ2 ∈ [0, 1]
(
d(W (x, y, λ1),W (x, y, λ2)) = |λ1 − λ2| · d(x, y)

)
,

(iii) ∀x, y ∈ X∀λ ∈ [0, 1]
(
W (x, y, λ) = W (y, x, 1− λ)

)
,

(iv)

{
∀x, y, z, w ∈ X,λ ∈ [0, 1],
(
d(W (x, z, λ),W (y, w, λ)) ≤ (1 − λ)d(x, y) + λd(z, w)

)
.

Effective Uniform Bounds from Proofs in Abstract Functional Analysis 241

Remark 5.2. The definition (introduced in [64]) is slightly more restrictive than the
notion of ‘space of hyperbolic type’ as defined in [37] (which results if (iv) is
dropped) but somewhat more general than the concept of ‘space of hyperbolic type’
as defined in [46] and—under the name of ‘hyperbolic space’—in [88]. Our def-
inition was prompted by the general logical metatheorems developed in [64] and
appears to be most useful in the context of proof mining (see [34, 64] for detailed
discussions). Moreover, our notion comprises the important class of CAT(0)-spaces
(in the sense of Gromov), whereas the concept from [46, 88] only covers CAT(0)-
spaces having the so-called geodesic line extension property. With axiom (i) alone,
the above notion coincides with the concept of ‘convex metric space’ as introduced
in [96].

In the following we denote W (x, y, λ) by (1− λ)x ⊕ λy.

In this section (X, d,W) always denotes a hyperbolic space and (λn) a sequence in
[0, 1) that is bounded away from 1 (i.e., lim supλn < 1) and divergent in sum (i.e.,
∞∑

i=0

λi =∞). f : X → X is a self-mapping of X. Furthermore, given an x ∈ X , the

sequence (xn) refers (unless stated otherwise) to the so-called Krasnoselski–Mann
iteration of f ; i.e.,

x0 := x, xn+1 := (1 − λn)xn ⊕ λnf(xn).

Theorem 5.3 ([37, 43]). Let (X, d,W) be a hyperbolic space and f : X → X be
nonexpansive. Then for all x ∈ X , the following holds:

If (xn) is bounded, then d(xn, f(xn))→ 0.

Theorem 5.4 ([4]). Let (X, d,W) be a hyperbolic space and f : X → X be a
nonexpansive function. Then for all x ∈ X , the following holds:

d(xn, f(xn)) → rX(f) := inf
y∈X

d(y, f(y)).

The quantity rX(f) is often called ‘minimal displacement of f on X’.

As shown in [34], corollary 2.8 a-priorily guarantees that the proofs of the previous
two results allow one to extract effective bounds on both theorems depending only
on those parameters the concrete bounds in theorems 5.5 and 5.10 below depend
that are extracted in this way. We start with theorem 5.4: Since (d(xn, f(xn))) is
nonincreasing, theorem 5.4 formalizes as either

(a) ∀ε > 0∃n ∈ IN∀x∗ ∈ X(d(xn, f(xn)) < d(x∗, f(x∗)) + ε)

or
(b) ∀ε > 0∀x∗ ∈ X ∃n ∈ IN(d(xn, f(xn)) < d(x∗, f(x∗)) + ε).

242 Ulrich Kohlenbach

Trivially, (a) implies (b), but ineffectively (using the existence of rX(f)) also the im-
plication in the other direction holds. Only (b) meets the specification in the metathe-
orem.

In the following, let α : IN× IN→ IN be such that6

∀i, n ∈ IN
(
α(i, n) ≤ α(i+ 1, n)

)
and

∀i, n ∈ IN
(
n ≤

i+α(i,n)−1∑

s=i

λs

)
.

Let k ∈ IN be such that λn ≤ 1− 1
k for all n ∈ IN.

Corollary 2.8 predicts a uniform bound depending on x, x∗, f only via b ≥ d(x, x∗),
on d(x, f(x)), and on (λk) only via k, α (see [34]):

Theorem 5.5 ([69]). Let (X, d,W) be a hyperbolic space and (λn)n∈IN, k, α as
above. Let f : X → X be nonexpansive and b > 0, x, x∗ ∈ X with

d(x, x∗), d(x, f(x)) ≤ b.

Then for the Krasnoselski–Mann iteration (xn) of f starting from x, the following
holds:

∀ε ∈ Q∗+∀n ≥ Ψ(k, α, b, ε) (d(xn, f(xn)) < d(x∗, f(x∗)) + ε),

where

Ψ(k, α, b, ε) := α̂(/2b · exp(k(M + 1))0−· 1,M),

with M :=
⌈

1 + 2b
ε

⌉
and

α̂(0,M) := α̃(0,M), α̂(m+ 1,M) := α̃(α̂(m,M),M) with

α̃(m,M) := m+ α(m,M) (m ∈ IN).

Definition 5.6 ([47, 69]). If (X, d,W) is a hyperbolic space, then f : X → X is
called directionally nonexpansive (short ‘f d.n.e’) if

∀x ∈ X∀y ∈ seg (x, f(x))
(
d(f(x), f(y)) ≤ d(x, y)

)
,

where
seg (x, y) := {W (x, y, λ) : λ ∈ [0, 1] }.

6 One easily verifies that one could start with any function β : IN → IN satisfying n ≤
β(n)∑

s=0

λs and then define α(i, n) := max
j≤i

(β(n + j) − j + 1) to get an α satisfying these

conditions. However, this would in general give less good bounds than when working with
α directly. See [61, 69] for more information in this point.

Effective Uniform Bounds from Proofs in Abstract Functional Analysis 243

Example 5.7. Consider the convex subset [0, 1]2 of the normed space (IR2, ‖ · ‖max)
and the function

f : [0, 1]2 → [0, 1]2, f(x, y) :=

{
(1, y), if y > 0,

(0, y), if y = 0.

f is directionally nonexpansive but discontinuous at (0, 0) and so, in particular, not
nonexpansive.

Theorem 5.5 generalizes to directionally nonexpansive mappings. The additional as-
sumption needed is redundant in the case of nonexpansive mappings:

Theorem 5.8 ([69]). The previous theorem (and bound) also holds for directionally
nonexpansive mappings if d(x, x∗) ≤ b is strengthened to d(xn, x

∗
n) ≤ b for all n.

The next result is proved in [63] for the case of convex subsets of normed spaces, but
the proof immediately extends to hyperbolic spaces. We include the proof for com-
pleteness. It applies corollary 2.8 to a formalization of theorem 5.4 that corresponds
to the Herbrand normal form of (a) and constructively has a strength in between
(a) and (b). Here x∗ is replaced by a sequence (yn) and we search for an n such
that

d(xn, f(xn)) < d(yn, f(yn)) + ε;

i.e., (b) is just the special case with the constant sequence yn := x∗. As predicted by
corollary 2.8, we get a quantitative version of the following form:

Theorem 5.9. Under the same assumptions as in theorem 5.5, the following holds:
Let (bn) be a sequence of strictly positive real numbers. Then for all x ∈ X,
(yn)n∈IN ⊂ X with

∀n ∈ IN(d(x, f(x)), d(x, yn) ≤ bn)

and all ε > 0, there exists an i ≤ j(k, α, (bn)n∈IN, ε) s.t.7

d(xi, f(xi)) < d(yi, f(yi)) + ε,

where (omitting the arguments k, α for better readability)

j((bn)n∈IN, ε) := max
i≤h((bn)n∈IN,ε)

Ψ(k, α, bi, ε/2)

with

h((bn)n∈IN, ε) := max
i<N

gi(0), g(n) := Ψ(k, α, bn, ε/2), N :=
⌈

6b0
ε

⌉
.

Here Ψ is the bound from theorem 5.5 and gn(0) is defined primitive recursively:
g0(0) := 0, gn+1(0) := g(gn(0)).
Instead of N, we can take any integer upper bound for 6b0/ε.

7 Recall that whereas (yn) is an arbitrary sequence of points in X, (xn) denotes the
Krasnoselski–Mann iteration of f starting from x.

244 Ulrich Kohlenbach

Proof. By theorem 5.5 we have that

(1) ∀n ∈ IN
(
d(xg(n), f(xg(n))) < d(yn, f(yn)) +

ε

2
)
,

where g(n) := Ψ(k, α, bn, ε/2). Let N :=
⌈

6b0
ε

⌉
and l := max

i<N
gi(0). Using that

(2) d(y0, f(y0)) ≤ d(y0, x) + d(x, f(x)) + d(f(x), f(y0))

≤ 2d(y0, x) + d(x, f(x)) ≤ 3b0,

we now show that

(3) ∃i < N
(
d(y(gi(0)), f(y(gi(0)))) ≤ d(y(gi+1(0)), f(y(gi+1(0)))) +

ε

2
)

:

Suppose not, then for all i < N ,

d(y(gi+1(0)), f(y(gi+1(0)))) < d(y(gi(0)), f(y(gi(0))))−
ε

2
,

and therefore,

d(y(gN (0)), f(y(gN (0)))) < d(y0, f(y0))−N
ε

2

(2)

≤ 3b0 −N
ε

2
≤ 0,

which is a contradiction and finishes the proof of (3).
Let i be as in (3). Then by (1) we get for p := gi(0)

(4) ∀n ∈ IN
(
d(xg(p), f(xg(p))) < d(yg(p), f(yg(p))) + ε

)
,

where p ≤ l. Hence the theorem is satisfied with j((bn)n, ε) := max
i≤l

g(i). ��

The next theorem gives a uniform quantitative version of the theorem of Ishikawa
[43] as generalized by Goebel and Kirk [37] to hyperbolic spaces.

Theorem 5.10 ([67, 69]). Let (X, d,W) be a nonempty hyperbolic space and f :
X → X a nonexpansive mapping, and (λn)n∈IN, α, and k be as before. Let b >
0, x, x∗ ∈ X be such that

d(x, x∗) ≤ b ∧ ∀n,m ∈ IN(d(x∗n, x
∗
m) ≤ b),

where (x∗n) is the Krasnoselski–Mann iteration starting from x∗. Then the following
holds:

∀ε > 0∀n ≥ h(k, α, b, ε)
(
d(xn, f(xn)) ≤ ε

)
,

where
h(k, α, b, ε) := α̂(/10b · exp(k(M + 1))0 − 1,M)), with

M :=
⌈

1+4b
ε

⌉
and α̂ as before.

Effective Uniform Bounds from Proofs in Abstract Functional Analysis 245

Next we generalize the previous theorem (for x∗ := x) to directionally nonexpansive
functions.

Theorem 5.11 ([69]). Let (X, d,W) be a nonempty hyperbolic space and f : X →
X a directionally nonexpansive mapping. Let (λn)n∈IN, α, k be as before.
Let b > 0 and x ∈ X such that

∀n, k,m ∈ IN
(
d(xn, (xk)m) ≤ b

)
,

where

(xk)0 = xk, (xk)m+1 = (1− λm)(xk)m ⊕ λkf((xk)m).

Then the following holds:

∀ε > 0∀n ≥ h(k, α, b, ε)
(
d(xn, f(xn)) ≤ ε

)
,

where

h(k, α, b, ε) := α(0, 1) + α̂∗(/2b · α(0, 1) · exp(k(M + 1))0 − 1,M), with

M :=
⌈

1+2b
ε

⌉
and α̂∗(0, n):= α̃∗(0, n), α̂∗(i+1,n):= α̃∗(α̂∗(i, n),n) with

α̃∗(i, n) := i+ α∗(i, n),

α∗(i, n) := α(i+ α(0, 1), n) (i, n ∈ IN).

Remark 5.12. Note that for constant λk := λ we have (xk)m = xk+m so that the
assumption d(xn, xm) ≤ b for all m,n suffices.

Previously known existence and uniformity results in the bounded case8:

• Krasnoselski ([73]): Uniformly convex normed spaces X and special constant
λk = 1

2 , no uniformity.

• Browder/Petryshyn ([15]): Uniformly convex normed spaces X and constant
λk = λ ∈ (0, 1), no uniformity.

• Groetsch ([40]): X uniformly convex, general (λk), no uniformity (see also be-
low).

• Ishikawa ([43]): General normed space X and general (λk), no uniformity.

• Edelstein/O’Brien ([28]): General normed space X and constant λk := λ ∈
(0, 1). Uniformity w.r.t. x0 ∈ C (and implicitly, though not stated, w.r.t. f).

• Goebel/Kirk ([37]): General hyperbolicX and general (λk).Uniformity w.r.t. x0

and f.

• Kirk/Martinez-Yanez ([50]): Uniformity w.r.t. x0, f for uniformly convex normed
spaces X and special constant λk := 1/2.

8 That is, the case of bounded convex subsets in the normed case, resp. bounded, hyperbolic
spaces.

246 Ulrich Kohlenbach

• Goebel/Kirk ([38]): Conjecture: no uniformity w.r.t. C.9

• Baillon/Bruck ([1]): Uniformity w.r.t. x0, f, C for general normed spaces X and
constant λk := λ ∈ (0, 1).

• Kirk ([47]): Uniformity w.r.t. x0, f for constant λk := λ ∈ (0, 1) for direction-
ally nonexpansive functions in normed spaces.

• Kohlenbach ([61]): Uniformity w.r.t. x0, f, C for general (λk) for nonexpansive
functions in the normed case.

• K./Leustean ([69]): Uniformity w.r.t. x0, f, C for general (λk) for directionally
nonexpansive functions in the hyperbolic case.

Theorem 5.3 by Ishikawa [43] and Goebel and Kirk [37] has the following conse-
quence in the compact case:

Theorem 5.13 ([37, 43]). Let (X, d,W) be a compact hyperbolic space, and let
(λn), f, (xn) be as in theorem 5.3. Then (xn)n converges towards a fixed point of f
for any starting point x0 := x ∈ X of the Krasnoselski–Mann iteration (xn).

By theorem 5.3, the completeness of the space, and the continuity of f, the conclu-
sion of theorem 5.13 is equivalent to the property of (xn) being a Cauchy sequence.
That property is Π0

3 and so of too complicated a logical form to allow for an effective
bound in general. In fact, as shown in [65] there is no effective bound (uniformly in
the parameters) even in the most simple cases. However, we can extract an effective
bound on the Herbrand normal form

(H) ∀k ∈ IN, g ∈ ININ∃n ∈ IN∀i, j ∈ [n;n+ g(n)](d(xi, xj) < 2−k)

of the Cauchy property that classically is equivalent to the latter. Here [n;n+ g(n)]
denotes the set of all natural numbers j with n ≤ j ≤ n + g(n). Note that ‘∀i, j ∈
[n;n+ g(n)](d(xi, xj) < 2−k)’ is equivalent to a purely existential formula.

Since
λnd(xn, f(xn)) = d(xn, xn+1),

the asympotic regularity d(xn, f(xn))→ 0 property is equivalent to the special case
of (H) with g ≡ 1 (for seqences (λn) that are bounded away from 0). So (H)
is a generalization of asymptotic regularity that for general g fails in the absence
of compactness, whereas asymptotic regularity only needs the boundedness ofX (or
rather of the sequence (xn)). Our effective bound on (H), therefore, will depend on a
modulus of total boundedness of the space (see [67] for a detailed discussion).

Definition 5.14. Let (M,d) be a totally bounded metric space. We call γ : IN →
IN a modulus of total boundedness for M if for any k ∈ IN, there exist elements
a0, . . . , aγ(k) ∈M such that

9 By uniformity w.r.t. C, it is meant that the bound depends on C only via an upper bound
on the diameter of C.

Effective Uniform Bounds from Proofs in Abstract Functional Analysis 247

∀x ∈M∃i ≤ γ(k)
(
d(x, ai) ≤ 2−k

)
.

Definition 5.15. Let (M,d) be a metric space, f : M → M a self-mapping of
M , and (xn) an arbitrary sequence in M . A function δ : IN → IN is called an
approximate fixed point bound for (xn) if

∀k ∈ IN∃m ≤ δ(k)
(
d(xm, f(xm)) ≤ 2−k

)
.

Of course, an approximate fixed point bound only exists if (xn) contains arbitrarily
good approximate fixed points.

Theorem 5.16 ([65]). Let (X, d,W), (λn), f, (xn) be as in theorem 5.3 and k ∈
IN, g : IN → IN, δ : IN → IN and γ : IN → IN. We define a function Ω(k, g, δ, γ)
(primitive) recursively as follows:

Ω(k, g, δ, γ) := max
i≤γ(k+3)

Ψ0(i, k, g, δ),

where
⎧
⎪⎨

⎪⎩

Ψ0(0, k, g, δ) := 0,

Ψ0(n+ 1, k, g, δ) := δ

(
k + 2 + /log2(max

l≤n
g(Ψ0(l, k, g, δ)) + 1)0

)
.

If δ is an approximate fixed point bound for the Krasnoselski–Mann iteration (xn)
starting from x ∈ X and γ a modulus of total boundedness for X , then

∀k ∈ IN∀g : IN→ IN∃n ≤ Ω(k, g, δ, γ)∀i, j ∈ [n;n+ g(n)]
(
d(xi, xj) ≤ 2−k

)
.

We now extend the previous theorem to asymptotically nonexpansive functions
(though only in the context of convex subsets C of normed linear spaces (X, ‖ ·
‖):

Definition 5.17 ([36]). Let (X, ‖ · ‖) be normed space and C ⊂ X a nonempty
convex subset. f : C → C is said to be asymptotically nonexpansive with sequence
(kn) ∈ [0,∞)IN if lim

n→∞ kn = 0 and

∀n ∈ IN∀x, y ∈ X
(
‖fn(x) − fn(y)‖ ≤ (1 + kn)‖x− y‖

)
.

Mann iteration starting from x ∈ C is defined in a slightly different form as

(+) x0 := x, xn+1 := (1− λn)xn + λnf
n(xn).

Definition 5.18. An approximate fixed point boundΦ : Q∗+ → IN is called monotone
if

q1 ≤ q2 → Φ(q1) ≥ Φ(q2), q1, q2 ∈ Q∗+.

In the context of asymptotically nonexpansivemappings f : C → C, the Krasnoselski–

248 Ulrich Kohlenbach

Remark 5.19. Any approximate fixed point bound Φ for a sequence (xn) can effec-
tively be converted into a monotone approximate fixed point bound for (xn) by

ΦM (q) := Φm(min k[2−k ≤ q]), where Φm(k) := max
i≤k

Φ(2−i).

We now assume that C is totally bounded.

Theorem 5.20 ([65]). Let k ∈ IN, g : IN → IN, Φ : Q∗+ → IN, and γ : IN → IN.
Let f : C → C be asymptotically nonexpansive with a sequence (kn) such that IN 2
K ≥

∞∑

n=0
kn and N ∈ IN be such that N ≥ eK . We define a function Ψ(k, g, Φ, γ)

(primitive) recursively as follows:

Ψ(k, g, Φ, γ) := max
i≤γ(k+log2(N)+3)

Ψ0(i, k, g, Φ),

where (writing Ψ0(l) for Ψ0(l, k, g, Φ))
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ψ0(0) := 0,

Ψ0(n+ 1) :=

Φ

(
2−k−log2(N)−2/(max

l≤n
[gM (Ψ0(l))(Ψ0(l) + gM (Ψ0(l)) + log2(N)) + 1])

)

with gM (n) := max
i≤n

g(i).

If Φ is a monotone approximate fixed point bound for the Krasnoselski–Mann itera-
tion (xn) (defined by (+)) and γ a modulus of total boundedness for C, then

∀k ∈ IN∀g : IN→ IN∃n ≤ Ψ(k, g, Φ, γ)∀i, j ∈ [n;n+ g(n)]
(
‖xi − xj‖ ≤ 2−k

)
.

Remark 5.21. The previous two theorems even hold for arbitrary sequences (λn) in
[0, 1]. However, in order to construct approximate fixed point bounds, one will need
extra conditions.

For uniformly convex spaces and (λn) bounded away from both 0 and 1, an ap-
proximate fixed point bound Φ for asymptotically nonexpansive mappings will be
presented in the last section.

We will now show that the qualitative features of the bounds in theorem 5.5 and
5.10 can be used to obtain new information on the approximate fixed point prop-
erty (AFPP) for product spaces. A metric space (M,ρ) is said to have the AFPP for
nonexpansive mappings if every nonexpansive mapping f : M →M has arbitrarily
good approximate fixed points, i.e., if inf

u∈M
ρ(u, f(u)) = 0.

Let (X, d,W) be a hyperbolic space and (M,ρ) a metric space with AFPP for non-
expansive mappings. Let {Cu}u∈M ⊆ X be a family of convex sets such that there
exists a nonexpansive selection function δ : M →

⋃
u∈M Cu with

Effective Uniform Bounds from Proofs in Abstract Functional Analysis 249

∀u ∈M
(
δ(u) ∈ Cu

)
.

Consider subsets of (X ×M)∞ (with the metric d∞((x, u), (y, v)) :=
max{d(x, y), ρ(u, v)})

H := {(x, u) : u ∈M,x ∈ Cu}.

If P1 : H →
⋃

u∈M

Cu, P2 : H → M are the projections, then for any nonexpansive

function T : H → H w.r.t. d∞ satisfying

(∗) ∀(x, u) ∈ H
(
(P1 ◦ T)(x, u) ∈ Cu

)
,

we can define for each u ∈M the nonexpansive function

Tu : Cu → Cu, Tu(x) := (P1 ◦ T)(x, u).

We denote the Krasnoselski–Mann iteration starting from x ∈ Cu and associated
with Tu by (xu

n) ((λn) as in theorem 5.3).

rS(F) always denotes the minimal displacement of F on S.

Theorem 5.22 ([70]). Assume that T : H → H is nonexpansive with (∗) and
supu∈M rCu(Tu) <∞.

Suppose there exists ϕ : IR∗+ → IR∗+ s.t.

∀ε > 0 ∀v ∈M ∃x∗ ∈ Cv

(
d(δ(v), x∗) ≤ ϕ(ε)∧

∧ d(x∗, Tv(x∗)) ≤ sup
u∈M

rCu(Tu) + ε
)
.

Then
rH(T) ≤ sup

u∈M
rCu(Tu).

Theorem 5.23 ([70]). Assume that there is a b > 0 s.t.

∀u ∈M∃x ∈ Cu

(
d(δ(u), x) ≤ b ∧ ∀n,m ∈ IN(d(xu

n, x
u
m) ≤ b).

Then rH(T) = 0.

Corollary 5.24 ([70]). Assume that there is a b > 0 with the property that

∀u ∈M
(
diam(Cu) ≤ b

)
.

Then H has AFPP for nonexpansive mappings T : H → H satisfying (∗).

As a special case of the previous corollary we obtain a recent result of Kirk (note
that for Cu := C being constant, we can take as δ any constant function : M →
C):

Corollary 5.25 ([49]). If Cu := C constant and C bounded, then H has the approx-
imate fixed point property.

250 Ulrich Kohlenbach

6 Bounds on asymptotic regularity in the uniformly convex
case

Prior to Ishikawa’s paper [43], the fixed point theory of nonexpansive mappings was
essentially restricted to the case of uniformly convex normed spaces ([15, 73]). Al-
though Ishikawa showed that the fundamental theorem 5.3 holds without uniform
convexity, the case of uniformly convex spaces is still of interest for the following
reasons (among others):

• As shown by Groetsch [40] (see below) in the uniformly convex case, the condi-
tions on (λn) in theorem 5.3 can be weakened to

∞∑

i=0

λi(1− λi) = ∞,

which is known to be optimal even for the case of Hilbert spaces (for general
normed spaces, it is still open whether this condition is sufficient).

• The bounds extracted from proofs using uniform convexity are often better than
the ones known for the general case (see below; a notable exception is the optimal
quadratic bound from [1] for the case of general normed spaces and constant
λk = λ ∈ (0, 1)).

• In the uniformly convex case, only corresponding results for more general classes
of functions such as asymptotically nonexpansive functions and (weakly) quasi-
nonexpansive functions are known (see below).

Definition 6.1 ([18]). A normed linear space (X, ‖ ·‖) is uniformly convex if for any
ε > 0, there exists a δ > 0 such that

∀x, y ∈ X
(
‖x‖, ‖y‖ ≤ 1 ∧ ‖x− y‖ ≥ ε→ ‖1

2
(x+ y)‖ ≤ 1− δ

)
.

A mapping η : (0, 2]→ (0, 1] providing such a δ := η(ε) > 0 for given ε ∈ (0, 2] is
called a modulus of uniform convexity.

Theorem 6.2 ([40]). Let C be a convex subset of uniformly convex Banach space

(X, ‖·‖), and let (λn) be a sequence in [0, 1] with
∞∑

i=0

λi(1−λi) =∞. If f : C → C

is nonexpansive and has at least one fixed point, then for the Krasnoselski–Mann
iteration (xn) of f starting at any point x0 ∈ C, the following holds:

‖xk − f(xk)‖ k→∞→ 0.

We now give a quantitative version of a strengthening of Groetsch’s theorem, which
only assumes the existence of approximate fixed points in some neighborhood of x
(see [64, 80] for a discussion on how this fits under the logical metatheorems):

Effective Uniform Bounds from Proofs in Abstract Functional Analysis 251

Theorem 6.3 ([63]). Let (X, ‖ · ‖) be a uniformly convex normed linear space with
modulus of uniform convexity η, d > 0, C ⊆ X a (nonempty) convex subset, f :
C → C nonexpansive, and (λk) ⊂ [0, 1] and γ : IN→ IN such that

∀n ∈ IN
(γ(n)∑

k=0

λk(1 − λk) ≥ n
)
.

Then for all x ∈ C, which satisfy that for all ε > 0, there is a y ∈ C with

‖x− y‖ ≤ d and ‖y − f(y)‖ < ε,

one has
∀ε > 0∀n ≥ h(ε, d, γ, η)

(
‖xn − f(xn)‖ ≤ ε

)
,

where h(ε, d, γ, η) := γ
(⌈

3(d+1)
2ε·η(ε

d+1)

⌉)
for ε < 2d and h(ε, d, γ, η) := 0 otherwise.

Moreover, if η(ε) can be written as η(ε) = ε · η̃(ε) with

ε1 ≥ ε2 → η̃(ε1) ≥ η̃(ε2), for all ε1, ε2 ∈ (0, 2], (1)

then the bound h(ε, d, γ, η) can be replaced (for ε < 2d) by

h̃(ε, d, γ, η̃) := γ

(⌈
d+ 1

2ε · η̃(ε
d+1)

⌉)

.

For a Hilbert space one can take as modulus of uniform convexity η(ε) := ε2/8, and
hence, the bound in theorem 6.3 applies with η̃(ε) := ε/8. If, moreover, λn := λ ∈
(0, 1) for all n, then we can take γ(n) := /n/(λ(1− λ))0. So for the case of Hilbert
spaces and constant λ, we obtain a quadratic bound in ε.

In [81], Groetsch’s theorem and its quantitative analysis from [63] is extended to
uniformly convex hyperbolic spaces. The bounds obtained are roughly the same as
in theorem 6.3 but now also apply, e.g., to the important class of CAT(0)-spaces that
are uniformly convex with the same modulus as in the Hilbertian case. Hence, as a
corollary, the following quadratic bound follows:

Theorem 6.4 ([81]). Let (X, d) be a CAT(0)-space; C ⊆ X is a nonempty convex
subset whose diameter is bounded by d ∈ Q∗+. Let f : C → C be nonexpansive and
λ ∈ (0, 1). Then

∀ε ∈ Q∗+∀n ≥ g(ε, d, λ)(d(xn, f(xn)) < ε),

where (xn) is the Krasnoselski–Mann iteration starting from x0 := x ∈ C and

g(ε, d, λ) :=

⎧
⎨

⎩

1
λ(1−λ)

⌈
4(d+1)2

ε2

⌉
, for ε < 2d,

0, otherwise.

252 Ulrich Kohlenbach

In the following,C ⊆ X is a convex subset of a normed linear space (X, ‖·‖).

Definition 6.5 ([91]). f : C → C is said to be uniformly λ-Lipschitzian (λ > 0) if

∀n ∈ IN∀x, y ∈ C
(
‖fn(x) − fn(y)‖ ≤ λ‖x− y‖

)
.

Definition 6.6 ([26]). f : C → C is quasi-nonexpansive if

∀x ∈ C∀p ∈ Fix(f)
(
‖f(x)− p‖ ≤ ‖x− p‖

)
,

where Fix(f) is the set of fixed points of f.

Example 6.7. f : [0, 1) → [0, 1), f(x) := x2 is quasi-nonexpansive but not nonex-
pansive.

Definition 6.8 ([86]). f : C → C is asymptotically quasi-nonexpansive with kn ∈
[0,∞)IN if lim

n→∞ kn = 0 and

∀n ∈ IN∀x ∈ X∀p ∈ Fix(f)
(
‖fn(x)− p‖ ≤ (1 + kn)‖x− p‖

)
.

Definition 6.9 ([34, 68]).

1) f : C → C is weakly quasi-nonexpansive10 if

∃p ∈ Fix(f)∀x ∈ C
(
‖f(x)− f(p)‖ ≤ ‖x− p‖

)

or—equivalently—

∃p ∈ C∀x ∈ X
(
‖f(x)− p‖ ≤ ‖x− p‖

)
.

2) f : C → C is asymptotically weakly quasi-nonexpansive if

∃p ∈ Fix(f)∀x ∈ C∀n ∈ IN
(
‖fn(x)− fn(p)‖ ≤ (1 + kn)‖x− p‖

)
.

Example 6.10. f : [0, 1] → [0, 1], f(x) := x2 is weakly quasi-nonexpansive but not
quasi-nonexpansive.

For asymptotically (weakly) quasi-nonexpansive mappings f : C → C, the Kras-
noselski–Mann iteration with errors is

(++) x0 := x ∈ C, xn+1 := αnxn + βnf
n(xn) + γnun,

where αn, βn, γn ∈ [0, 1] with αn + βn + γn = 1 and un ∈ C.
Relying on the previous results of Opial, Dotson, Schu, Rhoades, Tan, Xu, and—
most recently—Qihou, we have

10 The same class of mappings has recently been introduced also in [29] under the name of
J-type mappings.

Effective Uniform Bounds from Proofs in Abstract Functional Analysis 253

Theorem 6.11 ([68]). Let (X, ‖·‖) be a uniformly convex normed space andC ⊆ X
convex. (kn) ⊂ IR+ with

∑
kn < ∞. Let k ∈ IN and αn, βn, γn ∈ [0, 1] such that

1/k ≤ βn ≤ 1 − 1/k, αn + βn + γn = 1, and
∑
γn < ∞. f : C → C uniformly

Lipschitzian and asymptotically weakly quasi-nonexpansive and (un) be a bounded
sequence inC. Then the following holds for (xn) as defined in (++) for an arbitrary
starting point x ∈ X:

‖xn − f(xn)‖ → 0.

Unless f is nonexpansive we in general cannot conclude (in contrast to the situation
in theorems 5.3 and 5.4) that (‖xn− f(xn)‖)n∈IN is nonincreasing, which is needed
to reduce the logical complexity of the convergence statement from Π0

3 to Π0
2 . That

is why we can apply our metatheorems only to the Herbrand normal form to get
the following result (see [68]) for an extended discussion on how the metatheorems
apply here and to a large extent predict the general form of the result):

Theorem 6.12 ([68]). Let (X, ‖·‖) be uniformly convex with modulus of convexity η,
C ⊆ X convex, x ∈ C, f : C → C, k, αn, βn, γn, kn, un as before with

∑
γn ≤ E,∑

kn ≤ K, ∀n ∈ IN(‖un − x‖ ≤ u), and E,K, u ∈ Q+. Let d ∈ Q∗+ and (xn) as
in theorem 6.11.

If f is λ-uniformly Lipschitzian and

∀ε > 0∃pε ∈ C
(‖f(pε)− pε‖ ≤ ε ∧ ‖pε − x‖ ≤ d ∧

∀y ∈ C∀n ∈ IN
(
‖fn(y)− fn(pε)‖ ≤ (1 + kn)‖y − pε‖

)

)

,

then

∀ε ∈ (0, 1]∀g : IN→ IN∃n ≤ Φ∀m ∈ [n, n+ g(n)] (‖xm − f(xm)‖ ≤ ε) ,

where
Φ := Φ(K,E, u, k, d, λ, η, ε, g) := hi(0), where

h(n) := g(n+ 1) + n+ 2,

i =
⌈

3(5KD+6E(U+D)+D)k2

ε̃η(ε̃/(D(1+K)))

⌉
,

D := eK(d+ EU), U := u+ d,

ε̃ := ε/(2(1 + λ(λ+ 1)(λ+ 2))).

Remark 6.13. 1) Specializing theorem 6.12 to g ≡ 0 yields

∀ε ∈ (0, 1]∃n ≤ Ψ (‖xn − f(xn)‖ ≤ ε) ,

where

Ψ := Ψ(K,E, u, k, d, λ, η, ε) := 2
⌈

3(5KD+6E(U+D)+D)k2

ε̃η(ε̃/(D(1+K)))

⌉
,

D := eK(d+ EU), U := u+ d,

ε̃ := ε/(2(1 + λ(λ+ 1)(λ+ 2))).

254 Ulrich Kohlenbach

2) As in the quantitative analysis of Groetsch’s theorem above, one can replace in
the bound in theorem 6.12 η by η̃ if η can be written in the form η(ε) = εη̃(ε)
with η̃ satisfying

0 < ε1 ≤ ε2 ≤ 2 → η̃(ε1) ≤ η̃(ε2).

3) For asymptotically nonexpansive mappings with sequence (kn) in IR+ such that∑
kn ≤ K , the assumption ‘uniformly Lipschitzian’ is automatically satisfied

by λ := 1 +K since K ≥ kn for all n.

References

1. Baillon, J., Bruck, R.E., The rate of asymptotic regularity is 0(1√
n
). Theory and applica-

tions of nonlinear operators of accretive and monotone type, Lecture Notes in Pure and
Appl. Math. 178, Dekker, New York, pp. 51–81 (1996).

2. Bellin, G., Ramsey interpreted: a parametric version of Ramsey’s theorem. In: Logic and
computation (Pittsburgh, PA, 1987), Contemp. Math., 106, Amer. Math. Soc., Providence,
RI, pp. 17–37 (1990).

3. Björnestal, B.O., Continuity of the metric projection operator I-III. The preprint series of
Department of Mathematics. Royal Institute of Technology. Stockholm, TRITA-MAT 17
(1974), 20 (1974), 12 (1975).

4. Borwein, J., Reich, S., Shafrir, I., Krasnoselski-Mann iterations in normed spaces. Canad.
Math. Bull. 35, pp. 21–28 (1992).

5. Bridges, D.S., A constructive development of Chebychev approximation theory. J. Ap-
prox. Theory 30, pp. 99–120 (1980).

6. Bridges, D.S., Lipschitz constants and moduli of continuity for the Chebychev projection.
Proc. Amer. Math. Soc. 85, pp. 557–561 (1982).

7. Bridges, D.S., Recent progress in constructive approximation theory. In: Troelstra,
A.S./van Dalen, D. (eds.) The L.E.J. Brouwer Centenary Symposium. North-Holland,
Amsterdam, pp. 41–50 (1982).

8. Bridges, D.S., Richman, F., Julian, W.H., Mines, R., Extensions and fixed points of con-
tractive maps in Rn. J. Math. Anal. Appl. 165, pp. 438–456 (1992).

9. Briseid, E.M., Proof mining applied to fixed point theorems for mappings of contractive
type. Master Thesis, Oslo, 70 pp. (2005).

10. Briseid, E.M., Fixed points of generalized contractive mappings. To appear in: J. Nonlin-
ear and Convex Analysis.

11. Briseid, E.M., A rate of convergence for asymptotic contractions. J. Math. Anal. Appl.
330, pp. 364–376 (2007).

12. Briseid, E.M., Some results on Kirk’s asymptotic contractions. Fixed Point Theory 8,
No.1, pp. 17–27 (2007).

13. Briseid, E.M., Addendum to [12]. To appear in: Fixed Point Theory.
14. Briseid, E.M., Logical aspects of rates of convergence in metric spaces. In preparation.
15. Browder, F.E., Petryshyn, W.V., The solution by iteration of nonlinear functional equa-

tions in Banach spaces. Bull. Amer. Math. Soc. 72, pp. 571–575 (1966).
16. Cheney, E.W., An elementary proof of Jackson’s theorem on mean-approximation. Math-

ematics Magazine 38, 189-191 (1965).
17. Cheney, E.W., Approximation Theory. AMS Chelsea Publishing, Providence RI, (1966).

Effective Uniform Bounds from Proofs in Abstract Functional Analysis 255

18. Clarkson, J.A., Uniformly convex spaces. Trans. Amer. Math. Soc. 40, pp. 396–414
(1936).

19. Coquand, Th., Sur un théorème de Kronecker concernant les variétés algébriques. C.R.
Acad. Sci. Paris, Ser. I 338, pp. 291–294 (2004).

20. Coquand, Th., Lombardi, H., Quitte, C., Generating non-Noetherian modules construc-
tively. Manuscripta mathematica 115, pp. 513–520 (2004).

21. Coste, M., Lombardi, H., Roy, M.F., Dynamical methods in algebra: effective Nullstel-
lensätze. Ann. Pure Appl. Logic 111, pp. 203–256 (2001).

22. Delzell, C., Continuous sums of squares of forms. In: Troelstra, A.S./van Dalen, D.
(eds.) The L.E.J. Brouwer Centenary Symposium. North-Holland, Amsterdam, pp. 65–75
(1982).

23. Delzell, C., Case distinctions are necessary for representing polynomials as sums of
squares. In: Stern, J. (ed.), Proc. Herbrand Symposium, pp. 87–103 (1981).

24. Delzell, C., A finiteness theorem for open semi-algebraic sets, with applications to
Hilbert’s 17th problem. Contemporary Math. 8, pp. 79–97 (1982).

25. Delzell, C., Kreisel’s unwinding of Artin’s proof-Part I. In: Odifreddi, P., Kreiseliana, A
K Peters, Wellesley, MA, pp. 113–246 (1996).

26. Dotson, W.G., Jr., On the Mann iterative process. Trans. Amer. Math. Soc. 149, pp. 65–73
(1970).

27. Edelstein, M., On fixed and periodic points under contractive mappings. J. London Math.
Soc. 37, pp. 74–79 (1962).

28. Edelstein, M., O’Brien, R.C., Nonexpansive mappings, asymptotic regularity and succes-
sive approximations. J. London Math. Soc. 17, pp. 547–554 (1978).

29. Garcia-Falset, J., Llorens-Fuster, E., Prus, S., The fixed point property for mappings ad-
mitting a center. To appear in: Nonlinear Analysis.

30. Freud, G., Eine Ungleichung für Tschebyscheffsche Approximationspolynome. Acta Sci-
entiarum Math. (Szeged) 19, pp. 162–164 (1958).

31. Gehlen, W., On a conjecture concerning strong unicity constants. J. Approximation
Theory 101, pp. 221–239 (1999).

32. Gerhardy, P., A quantitative version of Kirk’s fixed point theorem for asymptotic contrac-
tions. J. Math. Anal. Appl. 316, pp. 339–345 (2006).

33. Gerhardy, P., Kohlenbach, U., Strongly uniform bounds from semi-constructive proofs.
Ann. Pure Appl. Logic 141, pp. 89–107 (2006).

34. Gerhardy, P., Kohlenbach, U., General logical metatheorems for functional analysis. To
appear in: Trans. Amer. Math. Soc.

35. Girard, J.-Y., Proof Theory and Logical Complexity Vol.I. Studies in Proof Theory. Bib-
liopolis (Napoli) and Elsevier Science Publishers (Amsterdam), (1987).

36. Goebel, K., Kirk, W.A., A fixed point theorem for asymptotically nonexpansive map-
pings. Proc. Amer. Math. Soc. 35, pp. 171–174 (1972).

37. Goebel, K., Kirk, W.A., Iteration processes for nonexpansive mappings. In: Singh, S.P.,
Thomeier, S., Watson, B., eds., Topological Methods in Nonlinear Functional Analysis.
Contemporary Mathematics 21, AMS, pp. 115–123 (1983).

38. Goebel, K., Kirk, W.A., Topics in metric fixed point theory. Cambridge Studies in Ad-
vanced Mathematics 28, Cambridge University Press (1990).

39. Gödel, K., Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes.
Dialectica 12, pp. 280–287 (1958).

40. Groetsch, C.W., A note on segmenting Mann iterates. J. of Math. Anal. and Appl. 40,
pp. 369–372 (1972).

256 Ulrich Kohlenbach

41. Henry, M.S., Schmidt, D., Continuity theorems for the product approximation operator.
In: Law, A.G., Sahney, B.N. (eds.), Theory of Approximation with Applications, Alberta
1975, Academic Press, New York, pp. 24–42 (1976).

42. Hernest, M.-D., Synthesis of moduli of uniform continuity by the monotone Dialectica
interpretation in the proof-system MinLog. Electronic Notes in Theoretical Computer
Science 174, pp. 141–149 (2007).

43. Ishikawa, S., Fixed points and iterations of a nonexpansive mapping in a Banach space.
Proc. Amer. Math. Soc. 59, pp. 65–71 (1976).

44. Jackson, D., Note on a class of polynomials of approximation. Trans. Amer. Math. Soc.
22, pp. 320–326 (1921).

45. Kincses, J., Totik, V., Theorems and counterexamples on contractive mappings. Mathe-
matica Balkanica, New Series 4, pp. 69–90 (1990).

46. Kirk, W.A., Krasnosel’skii iteration process in hyperbolic spaces, Numer. Funct. Anal.
and Optimiz. 4, pp. 371–381 (1982).

47. Kirk, W.A., Nonexpansive mappings and asymptotic regularity. Nonlinear Analysis 40,
pp. 323–332 (2000).

48. Kirk, W.A., Fixed points of asymptotic contractions. J. Math. Anal. Appl. 277, pp. 645–
650 (2003).

49. Kirk, W.A., Geodesic geometry and fixed point theory II. In: García Falset, J. Llorens
Fuster, E. Sims B. (eds.), Proceedings of the International Conference on Fixed Point
Theory and Applications, Valencia (Spain), July 2003, Yokohama Publishers, pp. 113–
142, (2004).

50. Kirk, W.A., Martinez-Yanez, C., Approximate fixed points for nonexpansive mappings in
uniformly convex spaces. Annales Polonici Mathematici 51, pp. 189–193 (1990).

51. Kirk, W.A., Sims, B. (eds.), Handbook of Metric Fixed Point Theory. Kluwer Academic
Publishers, Dordrecht, xi+703 pp. (2001).

52. Ko, K.-I., On the computational complexity of best Chebycheff approximation. J. of Com-
plexity 2, pp. 95–120 (1986).

53. Ko, K.-I., Complexity theory of real functions. Birkhäuser, Boston, x+309 pp., (1991).
54. Kohlenbach, U., Effective moduli from ineffective uniqueness proofs. An unwinding of

de La Vallée Poussin’s proof for Chebycheff approximation. Ann. Pure Appl. Logic 64,
pp. 27–94 (1993).

55. Kohlenbach, U., New effective moduli of uniqueness and uniform a–priori estimates for
constants of strong unicity by logical analysis of known proofs in best approximation
theory. Numer. Funct. Anal. and Optimiz. 14, pp. 581–606 (1993).

56. Kohlenbach, U., Analysing proofs in analysis. In: W. Hodges, M. Hyland, C. Steinhorn,
J. Truss, editors, Logic: from Foundations to Applications. European Logic Colloquium
(Keele, 1993), Oxford University Press, pp. 225–260 (1996).

57. Kohlenbach, U., Mathematically strong subsystems of analysis with low rate of growth
of provably recursive functionals. Arch. Math. Logic 36, pp. 31–71 (1996).

58. Kohlenbach, U., Arithmetizing proofs in analysis. In: Larrazabal, J.M., Lascar, D., Mints,
G. (eds.), Logic Colloquium ’96, Springer Lecture Notes in Logic 12, pp. 115–158 (1998).

59. Kohlenbach, U., Proof theory and computational analysis. Electronic Notes in Theoretical
Computer Science 13, Elsevier, 34 pp., (1998).

60. Kohlenbach, U., On the computational content of the Krasnoselski and Ishikawa fixed
point theorems. In: Proceedings of the Fourth Workshop on Computability and Complex-
ity in Analysis, (eds.), Blanck, J. Brattka, V. Hertling P., Springer LNCS 2064, pp. 119–
145 (2001).

61. Kohlenbach, U., A quantitative version of a theorem due to Borwein-Reich-Shafrir. Nu-
mer. Funct. Anal. and Optimiz. 22, pp. 641–656 (2001).

Effective Uniform Bounds from Proofs in Abstract Functional Analysis 257

62. Kohlenbach, U., Foundational and mathematical uses of higher types. In: Sieg, W., Som-
mer, R., Talcott, C. (eds.), Reflections on the foundations of mathematics. Essays in honor
of Solomon Feferman, Lecture Notes in Logic 15, A.K. Peters, pp. 92–120 (2002).

63. Kohlenbach, U., Uniform asymptotic regularity for Mann iterates. J. Math. Anal. Appl.
279, pp. 531–544 (2003).

64. Kohlenbach, U., Some logical metatheorems with applications in functional analysis.
Trans. Amer. Math. Soc. 357, no. 1, pp. 89–128 (2005).

65. Kohlenbach, U., Some computational aspects of metric fixed point theory. Nonlinear
Analysis 61, pp. 823–837 (2005).

66. Kohlenbach, U., A logical uniform boundedness principle for abstract metric and hy-
perbolic spaces. Electronic Notes in Theoretical Computer Science 165 (Proc. WoLLIC
2006), pp. 81–93 (2006).

67. Kohlenbach, U., Applied Proof Theory: Proof Interpretations and their Use in Mathemat-
ics. Book in prepration for ‘Springer Monographs in Mathematics’. Expected to appear:
2008.

68. Kohlenbach, U., Lambov, B., Bounds on iterations of asymptotically quasi-nonexpansive
mappings. In: Falset, J.G., Fuster, E.L., Sims, B. (eds.), Proc. International Conference on
Fixed Point Theory and Applications, Valencia 2003, Yokohama Publishers, pp. 143–172
(2004)

69. Kohlenbach, U., Leu̧stean, L., Mann iterates of directionally nonexpansive mappings in
hyperbolic spaces. Abstr. Appl. Anal. vol. 2003, no. 8, pp. 449–477 (2003).

70. Kohlenbach, U., Leu̧stean, L., The approximate fixed point property in product spaces.
Nonlinear Analysis 66 , pp. 806–818 (2007).

71. Kohlenbach, U., Oliva, P., Proof mining in L1-approximation. Ann. Pure Appl. Logic
121, pp. 1–38 (2003).

72. Kohlenbach, U., Oliva, P., Proof mining: a systematic way of analysing proofs in mathe-
matics. Proc. Steklov Inst. Math. 242, pp. 1–29 (2003).

73. Krasnoselski, M. A., Two remarks on the method of successive approximation. Usp.
Math. Nauk (N.S.) 10, pp. 123–127 (1955) (Russian).

74. Kreisel, G., On the interpretation of non-finitist proofs, part I. J. Symbolic Logic 16,
pp. 241–267 (1951).

75. Kreisel, G., On the interpretation of non-finitist proofs, part II: Interpretation of number
theory, applications. J. Symbolic Logic 17, pp. 43–58 (1952).

76. Kreisel, G., Macintyre, A., Constructive logic versus algebraization I. In: Troelstra,
A.S./van Dalen, D. (eds.) The L.E.J. Brouwer Centenary Symposium. North-Holland,
Amsterdam, pp. 217–260 (1982).

77. Kroó, A., On the continuity of best approximations in the space of integrable functions.
Acta Math. Acad. Sci. Hungar. 32, pp. 331–348 (1978).

78. Kroó, A., On the uniform modulus of continuity of the operator of best approximation in
the space of periodic functions. Acta Math. Acad. Sci. Hungar. 34, no. 1-2, pp. 185–203
(1979).

79. Lambov, B., Rates of convergence of recursively defined sequences. Electronic Notes in
Theoretical Computer Science, 120, pp. 125–133 (2005).

80. Leu̧stean, L., Proof mining in IR-trees and hyperbolic spaces. Electronic Notes in Theo-
retical Computer Science 165 (Proc. WoLLIC 2006), pp. 95–106 (2006).

81. Leu̧stean, L., A quadratic rate of asymptotic regularity for CAT(0)-spaces. J. Math. Anal.
Appl. 325, pp. 386–399 (2007).

82. Luckhardt, H., Herbrand-Analysen zweier Beweise des Satzes von Roth: Polynomiale
Anzahlschranken. J. Symbolic Logic 54, pp. 234–263 (1989).

258 Ulrich Kohlenbach

83. Luckhardt, H., Bounds extracted by Kreisel from ineffective proofs. In: Odifreddi, P.,
Kreiseliana, A K Peters, Wellesley, MA, pp. 289–300, 1996.

84. Newman, D.J., Shapiro, H.S., Some theorems on Cebysev approximation. Duke Math. J.
30, pp. 673–682 (1963).

85. Oliva, P., On the computational complexity of best L1-Approximation. Math. Logic.
Quart. 48, suppl. I, pp. 66–77 (2002).

86. Qihou, L., Iteration sequences for asymptotically quasi-nonexpansive mappings. J. Math.
Anal. Appl. 259, pp. 1–7, (2001).

87. Rakotch, E., A note on contractive mappings. Proc. Amer. Math. Soc. 13, pp. 459–465
(1962).

88. Reich, S., Shafrir, I., Nonexpansive iterations in hyperbolic spaces. Nonlinear Analysis,
Theory, Methods and Applications 15, pp. 537–558 (1990).

89. Rhoades, B.E., A comparison of various definitions of contractive mappings. Trans. Amer.
Math. Soc. 226, pp. 257–290 (1977)

90. Rhoades, B.E., Contractive definitions. In: Rassias, Th., M. editor, Nonlinear Analysis,
World Sci. Publishing, Singapore, pp. 513–526, 1987.

91. Schu, J., Iterative construction of fixed points of asymptotically nonexpansive mappings.
J. Math. Anal. Appl. 158, pp. 407–413 (1991).

92. Simpson, S.G., Subsystems of Second Order Arithmetic. Perspectives in Mathematical
Logic. Springer-Verlag, xiv+445 pp. 1999.

93. Sims, B., Examples of fixed point free mappings. In: [51], pp. 35–48 (2001).
94. Spector, C., Provably recursive functionals of analysis: a consistency proof of analysis by

an extension of principles formulated in current intuitionistic mathematics. In: Recursive
function theory, Proceedings of Symposia in Pure Mathematics, vol. 5 (J.C.E. Dekker
(ed.)), AMS, Providence, RI, pp. 1–27 (1962).

95. Suzuki, T., Fixed-point theorem for asymptotic contractions of Meir-Keeler type in com-
plete metric spaces. Nonlinear Analysis 64, pp. 971–978 (2006).

96. Takahashi, W., A convexity in metric space and nonexpansive mappings, I. Kodai Math.
Sem. Rep. 22, pp. 142–149 (1970).

97. Weiermann, A., A classification of rapidly growing Ramsey functions. Proc. Amer. Math.
Soc. 132, no. 2, pp. 553–561 (2004).

98. Weiermann, A., Phasenübergänge in Logik und Kombinatorik. DMV-Mitteilungen 13,
no. 3, pp. 152–156 (2005).

99. Young, J.W., General theory of approximation by functions involving a given number of
arbitrary parameters. Trans. Amer. Math. Soc. 8, pp. 331–344 (1907).

Effective Fractal Dimension in Algorithmic
Information Theory

Elvira Mayordomo∗

Departamento de Informática e Ingeniería de Sistemas, Universidad de Zaragoza,
50018 Zaragoza, Spain
elvira@unizar.es

Summary. Effective fractal dimension was defined by Lutz (2003) in order to quantitatively
analyze the structure of complexity classes, but then interesting connections of effective di-
mension with information theory were also found, justifying the long existent intuition that di-
mension is an information content measure. Considering different bounds on computing power
that range from finite memory to constructibility, including time-bounded and space-bounded
computations, we review all known characterizations of effective dimension that support the
thesis that effective dimensions capture what can be considered the inherent information con-
tent of a sequence in each setting.

1 Introduction

Hausdorff dimension assigns a dimension value to each subset of an arbitrary met-
ric space. In Euclidean space, this concept coincides with our intuition that smooth
curves have dimension 1 and smooth surfaces have dimension 2, but from its in-
troduction in 1918 [23] Hausdorff noted that many sets have noninteger dimension,
what he called “fractional dimension.” The development and applications of fractal
geometry quickly outgrew the field of geometry and spread through many other areas
[19, 56, 15, 16, 17, 13, 12, 49]. In the 1980s Tricot [73] and Sullivan [71] indepen-
dently developed a dual of Hausdorff dimension called the packing dimension that is
now widely used.

In this paper we will focus on the use of fractal dimensions in the Cantor space of
infinite sequences over a finite alphabet. The results obtained since the 1990s, and
in particular the effectivizations of dimension that we will review in this paper, have
introduced the powerful tools of fractal geometry into computational complexity and
information theory.

∗ Research was supported in part by Spanish Government MEC Project TIN 2005-08832-
C03-02.

260 Elvira Mayordomo

In 2000 Lutz [45] proved a new characterization of the Hausdorff dimension for the
case of Cantor space that was based on gales. This characterization was the beginning
of a whole range of effective versions of dimensions naturally based on bounding
the computing power of the gale. Gales are a generalization of martingales, which
are strategies for betting on the successive bits of infinite binary sequences with
fair payoffs. Martingales were introduced by Ville [74] in 1939 (also implicit in
[38, 39]) and used by Schnorr [61, 62, 63, 64] in his work on randomness. In the
1990s, Ryabko [59, 60] and Staiger [69] proved several connections of Hausdorff
dimension and martingales, that included relating the Hausdorff dimension of a set
X of binary sequences to the growth rates achievable by computable martingales
betting on the sequences in X (see section 4 for more details).

The introduction of a resource-bounded dimension by Lutz [45] had the immediate
motivation of overcoming the limitations of a resource-bounded measure, a general-
ization of the classical Lebesgue measure, in the quantitative analysis of complexity
classes [43]. The resulting concepts of effective dimension have turned out to be ro-
bust, since they have been shown to admit several equivalent definitions that relate
them to well-studied concepts in computation, and they have proven very fruitful in
investigating not only the structure of complexity classes but also in the modeling
and analysis of sequence information and, more recently, back in fractal geometry.
See [30] for an updated bibliography on effective dimension.

There is a recent survey on the applications of effective dimension to the study of
complexity classes by Hitchcock et al. [28]. The purpose of this paper will be cen-
tered on the information theory connections. In fact, as could be suspected from
earlier results by Ryabko [57, 58], Staiger [68, 69], and Cai and Hartmanis [3],
effective dimensions have very clear interpretations in terms of information con-
tent or compressibility of a sequence. Considering different bounds on computing
power that range from finite memory to constructibility, including time-bounded and
space-bounded computations, effective dimensions capture what can be considered
the inherent information content of a sequence in the corresponding setting. We will
present in this paper all known characterizations of effective dimension that support
this thesis.

We start by developing very general definitions of dimension, including an extension
of scaled dimension to a general metric space. Scaled dimension allows a rescal-
ing of dimension that can give more meaningful results for dimension 0 sets, for
instance. It was introduced in [27] for the particular case of Cantor space with the
usual metric, based on the uniform probability distribution. We think this more gen-
eral definition will allow further insight into the interest of scaled dimension with
different metrics.

Next we review the different notions of effective dimension, starting with the finite-
state dimension in which computation is restricted to finite-state devices. In this
setting compression has been widely studied as a precursor of the Lempel–Ziv algo-
rithm [37]. Dai et al. [6] proved that the finite-state dimension can be characterized
in terms of information-lossless finite-state compressors, and Doty and Moser [10]

Effective Fractal Dimension in Algorithmic Information Theory 261

remarked that a Kolmogorov-complexity-like characterization is also possible from
earlier results by Sheinwald et al. [67].

In section 4 we will develop a constructive dimension that corresponds to the use of
lower semicomputable strategies, and that has good properties inherited from the ex-
istence of a universal constructible semimeasure. Lutz introduced this notion in [46].
Athreya et al. [1] introduced the dual constructive strong dimension. We present a
characterization of both notions of constructive dimension in terms of Kolmogorov
complexity, present a correspondence principle stating that constructive dimension
coincides with Hausdorff dimension for sufficiently simple sets, and summarize the
main results. The open question of whether positive dimension sequences can substi-
tute Martin–Löf random sequences as the randomness source of a computation has
received recent attention from different areas. We present the main known results
here and refer the reader to [11] and [51] for more information (these two references
use the term “effective dimension” for Lutz’s constructive dimension).

Our last section concerns resource-bounds on time and space. Polynomial-space
bounded dimension has been well studied in terms of information content [25],
but polynomial-time dimension seems harder to grasp. We know very little about
time-bounded Kolmogorov complexity, but a compressibility characterization of
polynomial-time dimension has been obtained in [41] via polynomial-time compres-
sion algorithms. We should consider polynomial-time dimension as an interesting
alternative to time-bounded Kolmogorov complexity, expecting that we can import
robustness properties from fractal dimension.

There are many related topics we chose not to cover in this paper, mainly due to lack
of space for proper development. We mention very interesting recent results on the
effective dimension on Euclidean space ([21], [47]) that would require a paper of its
own.

2 Fractal dimensions and gale characterizations

In this section we first review the classical Hausdorff and packing dimensions and
then we introduce a scaled dimension for a general metric space. We present the
characterizations of these notions in terms of gales for the case of Cantor space.
This characterization is crucial in the definition of effective dimensions that we will
introduce in the rest of the paper.

2.1 Hausdorff and packing dimensions

Let ρ be a metric on a set X . We use the following standard terminology. The di-
ameter of a set X ⊆ X is diam(X) = sup {ρ(x, y) | x, y ∈ X } (which may be
∞). For each x ∈ X and r ∈ R, the closed ball of radius r about x is the set

262 Elvira Mayordomo

B(x, r) = {y ∈ X | ρ(y, x) ≤ r}, and the open ball of radius r about x is the set
Bo(x, r) = {y ∈ X | ρ(y, x) < r}. A ball is any set of the formB(x, r) orBo(x, r).
A ball B is centered in a set X ⊆ X if B = B(x, r) or B = Bo(x, r) for some
x ∈ X and r ≥ 0.

For each δ > 0, we let Cδ be the set of all countable collections B of balls such that
diam(B) ≤ δ for allB ∈ B, and we letDδ be the set of all B ∈ Cδ such that the balls
in B are pairwise disjoint. For each X ⊆ X and δ > 0, we define the sets

Hδ(X) =

{

B ∈ Cδ

∣
∣
∣
∣∣
X ⊆

⋃

B∈B
B

}

,

Pδ(X) = {B ∈ Dδ | (∀B ∈ B)B is centered in X } .

If B ∈ Hδ(X), then we call B a δ-cover of X . If B ∈ Pδ(X), then we call B a
δ-packing of X . For X ⊆ X , δ > 0, and s ≥ 0, we define the quantities

Hs
δ (X) = inf

B∈Hδ(X)

∑

B∈B
diam(B)s,

P s
δ (X) = sup

B∈Pδ(X)

∑

B∈B
diam(B)s.

Since Hs
δ (X) and P s

δ (X) are monotone as δ → 0, the limits

Hs(X) = lim
δ→0

Hs
δ (X),

P s
0 (X) = lim

δ→0
P s

δ (X)

exist, though they may be infinite. Let

P s(X) = inf

{ ∞∑

i=0

P s
0 (Xi)

∣∣
∣
∣
∣
X ⊆

∞⋃

i=0

Xi

}

. (2.1)

It is routine to verify that the set functions Hs and P s are outer measures [16]. The
quantitiesHs(X) and P s(X)—which may be infinite—are called the s-dimensional
Hausdorff (outer) ball measure and the s-dimensional packing (outer) ball mea-
sure of X , respectively. The optimization (2.1) over all countable partitions of X
is needed because the set function P s

0 is not an outer measure.

Definition. Let ρ be a metric on a set X , and let X ⊆ X .

1. (Hausdorff [23]). The Hausdorff dimension of X with respect to ρ is

dim(ρ)(X) = inf {s ∈ [0,∞) | Hs(X) = 0} .

2. (Tricot [73], Sullivan [71]). The packing dimension of X with respect to ρ is

Dim(ρ)(X) = inf {s ∈ [0,∞) | P s(X) = 0} .

Effective Fractal Dimension in Algorithmic Information Theory 263

When X is a Euclidean space Rn and ρ is the usual Euclidean metric on Rn, dim(ρ)

and Dim(ρ) are the ordinary Hausdorff and packing dimensions, also denoted by
dimH and dimP , respectively.

2.2 Scaled dimensions

This subsection introduces the notion of a scaled dimension for a general metric
space. Our treatment is based on [27], which presents only the case of Cantor space
and uses directly gales in the definition.

The notions of Hausdorff and packing dimensions introduced above depend on the
expression “diam(B)s” that is used in both s-Haussdorff and s-packing measures
(see definitions ofHs

δ (X) and P s
δ (X) above). Here we consider alternative functions

on s and the diameter.

Definition. A scale is a function h(x, s), h : [0,∞) × [0,∞) → [0,∞), with the
following two properties:

1. For every s ∈ [0,∞), h(_, s) is nondecreasing.

2. For every s, ε ∈ [0,∞), limx→0
h(x,s+ε)

h(x,s) = 0.

From each scale h we define scaled Hausdorff and packing measures generalizing
the definitions in subsection 2.1.

For X ⊆ X , δ > 0 and s ≥ 0, we define the quantities

SHh,s
δ (X) = inf

B∈Hδ(X)

∑

B∈B
h(diam(B), s),

SPh,s
δ (X) = sup

B∈Pδ(X)

∑

B∈B
h(diam(B), s).

Since SHs
δ(X) and SP s

δ (X) are monotone as δ → 0, the limits

SHh,s(X) = lim
δ→0

SHh,s
δ (X),

SPh,s
0 (X) = lim

δ→0
SP h,s

δ (X)

exist, though they may be infinite. Let

SPh,s(X) = inf

{ ∞∑

i=0

SP h,s
0 (Xi)

∣
∣
∣
∣∣
X ⊆

∞⋃

i=0

Xi

}

. (2.2)

In this case it is also routine to verify that the set functions SHh,s and SP h,s are
outer measures. The optimization (2.2) over all countable partitions of X is needed
because the set function SP h,s

0 is not an outer measure.

264 Elvira Mayordomo

Rogers introduced in [56] the generalized notion of the Hausdorff measure using a
function f(diam(B)) in the place of diam(B)s in the definition of the Hausdorff
measure. More recently Roger’s approach was revisited by Reimann and Stephan
[55] in the context of algorithmic randomness. In those references the authors did
not consider dependence on a second parameter s or a dimension concept in this
context.

Our first property is that for each X ⊆ X there is at most one s for which 0 <
SHh,s(X) <∞.

Proposition 2.1 Let X ⊆ X , let h be a scale, and let s ∈ [0,∞).

1. If 0 < SHh,s(X) <∞, then for every ε > 0, SHh,s+ε(X) = 0.

2. If 0 < SPh,s(X) <∞, then for every ε > 0, SPh,s+ε(X) = 0.

Proof. The property follows from the fact that limx→0
h(x,s+ε)

h(x,s) = 0, in the definition
of scale. ��

Definition. Let ρ be a metric on a set X , let X ⊆ X , and let h be a scale.

1. The h-scaled dimension of X with respect to ρ is

dim(h),(ρ)(X) = inf
{
s ∈ [0,∞)

∣∣ SHh,s(X) = 0
}
.

2. The h-scaled packing dimension of X with respect to ρ is

Dim(h),(ρ)(X) = inf
{
s ∈ [0,∞)

∣
∣ SP h,s(X) = 0

}
.

The basic properties of scaled dimensions are monotonicity and countable stability,
which also hold for Hausdorff and packing dimensions [16].

Proposition 2.2 Let h be a scale.

1. For every x ∈ X , Dim(h),(ρ)({x}) = dim(h),(ρ)({x}) = 0.

2. For every X ⊆ X , 0 ≤ dim(h),(ρ)(X) ≤ Dim(h),(ρ)(X).

3. Let Xi ⊆ X for each i ∈ N,

dim(h),(ρ)(∪iXi) = sup
i

dim(h),(ρ)(Xi), and

Dim(h),(ρ)(∪iXi) = sup
i

Dim(h),(ρ)(Xi).

4. For every X,Y ⊆ X with X ⊆ Y ,

dim(h),(ρ)(X) ≤ dim(h),(ρ)(Y)

and
Dim(h),(ρ)(X) ≤ Dim(h),(ρ)(Y).

Effective Fractal Dimension in Algorithmic Information Theory 265

In particular, every countable set has a zero scaled dimension for any scale.

Notice that for h0(x, s) = xs, dim(h0),(ρ)(X) = dim(ρ)(X) and Dim(h0),(ρ)(X) =
Dim(ρ)(X).

We can compare the scaled dimensions for different scales.

Proposition 2.3 Let h, h′ be scales such that h(x, s) ≤ h′(x, s) for every s and for
every x ∈ [0, ε), where ε > 0 may depend on s. Then for every X ⊆ X ,

dim(h),(ρ)(X) ≤ dim(h′),(ρ)(X)

and
Dim(h),(ρ)(X) ≤ Dim(h′),(ρ)(X).

Proof. The property follows from the definition of scaled Hausdorff and packing
measures. ��

The next property concerns the scaled dimension of the whole space.

Proposition 2.4 Let X be a metric space such that 0 < Hdim(X)(X) < ∞. Let h
be a scale, and let s ∈ [0,∞).
If h(x, s) = Ω(xdim(X)), then dim(h)(X) ≥ s.
If h(x, s) = O(xdim(X)), then dim(h)(X) ≤ s.

Hitchcock et al. consider in [27] the following scales, which are useful for dimension
values up to 1.

Definition. For every x ∈ [0,∞), s ∈ [0,∞) we define

1. h0(x, s) = xs.

2. For each i ≥ 0,

hi+1(x, s) = 2
− 1

hi(−1/ log(x),s) if x ≤ 1/2, s < 1,

hi+1(x, s) = 2−1/hi(1,s) if x > 1/2, s < 1,

hi+1(x, s) = xs if s ≥ 1.

3. For each i > 0,

h−i(x, s) =

{
x/hi(x, 1 − s) if s < 1,

xs if s ≥ 1.

For s < 1, the above-defined scales are below the inverse of the logarithm, and for
every k, hk is asymptotically below hk+1. This provides a fine family of scales that,
for instance, can be used to distinguish different circuit size rates [27].

Proposition 2.5 For every k ∈ Z, the above-defined hk is a scale.

266 Elvira Mayordomo

Notation. For each k ∈ Z, we denote dim(hk),(ρ)(X) as dim(k),(ρ)(X) and
as Dim(k),(ρ)(X).

The relationship between scales hk is as follows:

Proposition 2.6 Let k ∈ Z. Then for every X ⊆ X ,

dim(k),(ρ)(X) ≤ dim(k+1),(ρ)(X)

and
Dim(k),(ρ)(X) ≤ Dim(k+1),(ρ)(X).

2.3 Gale characterizations

We now focus our attention on sequence spaces. Let Σ be a finite alphabet with
|Σ| ≥ 2. We will consider the following metric on Σ∞:

ρ(S, T) = inf
{
|Σ|−|w| | w # S and w # T

}

for all S, T ∈ Σ∞.

We fix the above ρ and denote dim(ρ)(X) and Dim(ρ)(X) as dim(X) and Dim(X),
for X ⊆ Σ∞. Similarly for scaled dimension we use dim(h)(X) and Dim(h)(X)
for dim(h),(ρ)(X), Dim(h),(ρ)(X). Recently Lutz and Mayordomo have considered
alternative metrics on Σ∞ with interesting applications to dimension in Euclidean
space [47].

Lutz [45] characterized the Hausdorff dimension in terms of gales, as presented
next.

Definition. ([45]) LetΣ be a finite alphabet with |Σ| ≥ 2, and let s ∈ [0,∞).

1. An s-gale is a function d : Σ∗ → [0,∞) that satisfies the condition

d(w) = |Σ|−s
∑

a∈Σ

d(wa) (2.3)

for all w ∈ Σ∗.

2. A martingale is a 1-gale.

In fact Lutz [45] considered also supergales, which are functions for which equality
(2.3) is substituted by the inequality

d(w) ≥ |Σ|−s
∑

a∈Σ

d(wa).

Supergales give additional flexibility and in most interesting cases can be substituted
by gales in the definitions and characterizations of different dimensions and effective
dimensions. For the sake of readability, we will restrict to gales in this paper.

Dim(hk),(ρ)(X)

Effective Fractal Dimension in Algorithmic Information Theory 267

The following observation shows how gales are affected by variation of the parame-
ter s.

Observation 2.7 ([46]) Let s, s′ ∈ [0,∞), and let d, d′ : Σ∗ → [0,∞). Assume that

d(w)|Σ|−s|w| = d′(w)|Σ|−s′|w|

holds for all w ∈ Σ∗. Then d is an s-gale if and only if d′ is an s′-gale.

For example, a function d : Σ∗ → [0,∞) is an s-gale if and only if the function
d′ : Σ∗ → [0,∞) defined by d′(w) = |Σ|1−s|w|d(w) is a martingale.

Martingales were introduced by Lévy [39] and Ville [74]. They have been used ex-
tensively by Schnorr [62, 63, 65] and others in investigations of randomness, by Lutz
[42, 44] and others in the development of resource-bounded measure, and by Ryabko
[60] and Staiger [69] regarding exponents of increase. Gales are a convenient gener-
alization of martingales introduced by Lutz [45, 46] in the development of effective
fractal dimensions.

Intuitively, an s-gale d is a strategy for betting on the successive symbols in a se-
quence S ∈ Σ∞. We regard the value d(w) as the amount of money that a gambler
using the strategy d will have after betting on the symbols in w; w is a prefix of S.
If s = 1, then the s-gale identity (2.3) ensures that the payoffs are fair in the sense
that the conditional expected value of the gambler’s capital after the symbol follow-
ing w, given that w has occurred, is precisely d(w), the gambler’s capital after w. If
s < 1, then (2.3) says that the payoffs are less than fair. If s > 1, then (2.3) says that
the payoffs are more than fair. Clearly, the smaller s is, the more hostile the betting
environment.

There are two important notions of success for a gale.

Definition. Let d be an s-gale, where s ∈ [0,∞), and let S ∈ Σ∞.

1. We say that d succeeds on S, and we write S ∈ S∞[d], if
lim supt→∞ d(S[0..t− 1]) = ∞.

2. We say that d succeeds strongly on S, and we write S ∈ S∞str[d], if
lim inft→∞ d(S[0..t− 1]) = ∞.

The following theorem gives useful characterizations of the classical Hausdorff
and packing dimensions on sequence spaces. The Hausdorff dimension part was
proven by Lutz [45], and the packing dimension part was proven by Athreya et al.
in [1].

Theorem 2.8 ([45] and [1]) For all X ⊆ Σ∞,

dim(X) = inf {s ∈ [0,∞) | there is an s-gale d with X ⊆ S∞[d]}

and

Dim(X) = inf {s ∈ [0,∞) | there is an s-gale d with X ⊆ S∞str[d]} .

268 Elvira Mayordomo

The effectivization of both Hausdorff and packing (or strong) dimensions will be
based on Theorem 2.8. By restricting the set of gales that are allowed to different
classes of computable gales, we will obtain effective versions of dimension that will
be meaningful in different subclasses ofΣ∞. This will be developed in the following
sections.

Eggleston [14] proved the following classical result on the Hausdorff dimension of a
set of sequences with a fixed asymptotic frequency.

The frequency of a nonempty binary string w ∈ {0, 1}∗ is the ratio freq(w) =
#(1,w)
|w| , where #(b, w) denotes the number of occurrences of the bit b in w. For each

α ∈ [0, 1], we define the set

FREQ(α) =
{
S ∈ {0, 1}∞

∣
∣
∣ lim

n→∞ freq(S [0..n− 1]) = α
}
.

The binary Shannon entropy function H : [0, 1] → [0, 1] is defined as H(x) =
x log 1

x + (1 − x) log 1
1−x , with H(0) = H(1) = 0.

Theorem 2.9 ([14]) For each real number α ∈ [0, 1],

dimH(FREQ(α)) = H(α).

We will reformulate this last result in the contexts of the dimensions defined in sec-
tions 3, 4, and 5.

We finish this section with the fact that scaled dimension in Σ∞ admits a similar
characterization.

The notion of scaled gales is introduced in [27].

Definition. Let Σ be a finite alphabet with |Σ| ≥ 2, let h be a scale, and let s ∈
[0,∞). An h-scaled s-gale (briefly, an s(h)-gale) is a function d : Σ∗ → [0,∞) that
satisfies the condition

h(|Σ|−|w|, s) d(w) = h(|Σ|−(|w|+1), s)
∑

a∈Σ

d(wa)

for all w ∈ Σ∗.

Notice that our definition of gale (Definition 2.3) corresponds to the scale h0(x, s) =
xs, so an s(h0)-gale is just an s-gale.

Observation 2.10 Let h, h′ be scales, let s, s′ ∈ [0,∞), and let d : Σ∗ → [0,∞). d
is an s(h)-gale if and only if

d′(w) =
h(|Σ|−|w|, s)
h′(|Σ|−|w|, s′)d(w)

is an s′(h
′)-gale.

Effective Fractal Dimension in Algorithmic Information Theory 269

Success and strong success are defined as follows.

Definition. Let d be an s(h)-gale, where h is a scale, let s ∈ [0,∞), and let S ∈ Σ∞.
We say that d succeeds on S, and we write S ∈ S∞[d], if
lim supt→∞ d(S[0..t−1]) =∞. We say that d succeeds strongly on S, and we write
S ∈ S∞str[d], if lim inft→∞ d(S[0..t− 1]) =∞.

Lutz et al. defined a scaled dimension in Cantor space directly using gales in [27].
Here we introduced a more general concept of scaled dimension for any metric space
and now characterize the Cantor space case.

Theorem 2.11 For all X ⊆ Σ∞,

dim(h)(X) = inf
{
s ∈ [0,∞)

∣
∣∣ there is an s(h)-gale d with X ⊆ S∞[d]

}

and

Dim(h)(X) = inf
{
s ∈ [0,∞)

∣
∣
∣ there is an s(h)-gale d with X ⊆ S∞str[d]

}
.

For space reasons, we prefer not to include a full proof of Theorem 2.11 here. The
proof can be done by nontrivially adapting the proofs of both parts of Theorem 2.8
that can be found in [45] and [1], respectively.

Our last property identifies the scales for which Cantor space has dimension 1.

Proposition 2.12 Let h be a scale such that h(x, s) = Ω(x) for every s < 1 and
h(x, s) = O(x) for every s > 1. Then

dim(h)(Σ∞) = Dim(h)(Σ∞) = 1.

For every k ∈ Z,
dim(k)(Σ∞) = Dim(k)(Σ∞) = 1.

Proof. The property follows from Proposition 2.4. ��

2.4 Effective dimensions

We are mainly interested in subsets of sequences that have some computability or
partial computability property, which implies that we will deal with countable sets.
Since a countable set of sequences has dimension 0, the classical definitions of
(scaled)-Hausdorff and packing dimensions are not useful in this context. The gale
characterizations in Theorems 2.11 and 2.8 provide a natural way to generalize them
as follows.

Definition. Let Γ be a class of functions. Let X ⊆ Σ∞, the Γ -dimension of X
is

dimΓ (X) = inf {s ∈ [0,∞) | there is an s-gale d ∈ Γ with X ⊆ S∞[d]} ,

270 Elvira Mayordomo

and the Γ -strong dimension of X is

DimΓ (X) = inf {s ∈ [0,∞) | there is an s-gale d ∈ Γ with X ⊆ S∞str[d]} .

In the rest of the paper we will use different classes Γ , ranging from constructive to
finite state computable functions, and investigate the properties of the correspond-
ing Γ -dimensions inside different sequence sets. The existence of correspondence
principles, introduced later on, will also imply that the effective dimension coincides
with the classical Hausdorff dimension on sufficiently simple sets.

For scaled-dimensions, it is convenient that the scale itself is “computable” in-
side Γ in order to obtain meaningful results. Given a scale h, we will say that
h is Γ -computable if the function dh : N × [0,∞) → [0,∞), dh(k, s) =
h(|Σ|−k−1, s)/h(|Σ|−k, s) is in Γ . The definitions of dim(h)

Γ and Dim(h)
Γ are similar

to those of Γ -dimensions, but use s(h)-gales in Γ .

3 Finite-state dimension

Our first effectivization of Hausdorff dimension will be the most restrictive of those
presented here, and we will go all the way to the level of finite-state computa-
tion. In this section we use gales computed by finite-state gamblers to develop the
finite-state dimensions of sets of infinite sequences and individual infinite sequences.
Finite-state dimension was introduced by Dai et al. in [6], and its dual, strong finite-
state dimension is from [1]. The definition has proven to be robust because it has
been shown to admit equivalent definitions in terms of information-lossless finite-
state compressors [6, 1], finite-state decompression [10], finite-state predictors in
the log-loss model [26, 1], and block-entropy rates [2]. In each case, the definitions
of dimFS(S) and DimFS(S) are exactly dual, differing only in that a limit infe-
rior appears in one definition where a limit superior appears in the other. These two
finite-state dimensions are thus, like their counterparts in fractal geometry, robust
quantities and not artifacts of a particular definition. In addition, the sequences S
satisfying dimFS(S) = 1 are precisely the normal sequences ([2], also follows from
[66]).

In this section we present the finite-state dimension and its characterizations and
summarize the main results on Eggleston theorem, existence of low complexity se-
quences of any dimension, invariance of finite-state dimension under arithmetic op-
erations with rational numbers, and base dependence of the dimensions.

We start by introducing the concept of a finite-state gambler that is used to develop
the finite-state dimension. Intuitively, a finite-state gambler is a finite-state device
that places a bet on each of the successive symbols of its input sequence. Bets are
required to be rational numbers in B = Q ∩ [0, 1].

Effective Fractal Dimension in Algorithmic Information Theory 271

Definition. A finite-state gambler (FSG) is a 4-tupleG = (Q, δ, β, q0), where

• Q is a nonempty, finite set of states,

• δ : Q×Σ → Q is the transition function,

• β : Q×Σ → B is the betting function, with
∑

a∈Σ β(q, a) = 1 for every
q ∈ Q, and

• q0 ∈ Q is the initial state.

Dai et al. [6] consider an equivalent model, the k-account finite-state gambler, in
which the capital is divided into k separate accounts for a fixed k. This model
allows simpler descriptions and a smaller number of states in the gambler defini-
tions.

Our model of finite-state gambling has been considered (in essentially equivalent
form) by Schnorr and Stimm [66], Feder [18], and others.

Intuitively, if a FSG G = (Q, δ, β, q0) is in state q ∈ Q and its current capital is
c ∈ (Q ∩ [0,∞)), then it places the bet β(q, a) ∈ B on each possible value of the
next symbol. If the payoffs are fair, then after this bet, G will be in state δ(q, a) and
it will have capital |Σ| c β(q, a).

This suggests the following definition.

Definition. ([6]) Let G = (Q, δ, β, q0) be a finite-state gambler.

1. The martingale of G is the function dG : Σ∗ → [0,∞) defined by the recursion

dG(λ) = 1,

dG(wa) = |Σ| dG,i(w)β(q, a)

for all w ∈ Σ∗ and a ∈ Σ.

2. For s ∈ [0,∞), the s-gale of an FSG G is the function d(s)
G : Σ∗ → [0,∞)

defined by d(s)
G (w) = |Σ|(s−1)|w|dG(w) for all w ∈ Σ∗. In particular, note that

d
(1)
G = dG.

3. For s ∈ [0,∞), a finite-state s-gale is an s-gale d for which there exists an FSG

G such that d(s)
G = d.

We now use finite-state gales to define the finite-state dimension.

Definition. ([6, 1]) Let X ⊆ Σ∞.

1. The finite-state dimension of set X is

dimFS(X) = inf {s∈ [0,∞) | there is a finite-state s-gale d with X⊆S∞[d]} .

272 Elvira Mayordomo

2. The strong finite-state dimension of set X is

DimFS(X)= inf {s∈ [0,∞) | there is a finite-state s-gale d with X⊆S∞str[d]} .

3. The finite-state dimension and strong finite-state dimension of a sequence S ∈
Σ∞ are dimFS(S) = dimFS({S}) and DimFS(S) = DimFS({S}).

In general, dimFS(X) and DimFS(X) are real numbers satisfying 0 ≤ dimH(X)
≤ dimFS(X) ≤ DimFS(X) ≤ 1 and Dim(X) ≤ DimFS(X). The finite-state
dimension has a finite stability property.

Theorem 3.1 ([6]) For all X,Y ⊆ Σ∞,

dimFS(X ∪ Y) = max {dimFS(X), dimFS(Y)} .

The proof of basic properties such as this theorem in [6] benefits greatly from the
use of multiple account FSGs, since the equivalence of multiple accounts and our
1-account FSG seems to require an exponential blowup of states.

The main result in this section is that we can characterize the finite-state dimen-
sions of individual sequences in terms of finite-state compressibility. We first recall
the definition of an information-lossless finite-state compressor. (This idea is due to
Huffman [34]. Further exposition may be found in [35] or [36].)

Definition. A finite-state transducer is a 4-tuple C = (Q, δ, ν, q0), where Q
is a nonempty, finite set of states, δ : Q×Σ → Q is the transition function,
ν : Q×Σ → Σ∗ is the output function, and q0 ∈ Q is the initial state.

For q ∈ Q and w ∈ Σ∗, we define the output from state q on input w to be the string
ν(q, w) defined by the recursion

ν(q, λ) = λ,

ν(q, wa) = ν(q, w)ν(δ(q, w), a)

for all w ∈ Σ∗ and a ∈ Σ. We then define the output of C on input w ∈ Σ∗ to be
the string C(w) = ν(q0, w).

Definition. An information-lossless finite-state compressor (ILFSC) is a finite-state
transducer C = (Q, δ, ν, q0) such that the function f : Σ∗ → Σ∗ × Q, f(w) =
(C(w), δ(w)) is one-to-one.

That is, an ILFSC is a transducer whose input can be reconstructed from the output
and final state reached on that input.

Intuitively, C compresses a string w if |C(w)| is significantly less than |w|. Of
course, if C is IL, then not all strings can be compressed. Our interest here is in
the degree (if any) to which the prefixes of a given sequence S ∈ Σ∞ can be com-
pressed by an ILFSC. We will consider the cases of infinitely often (i.o.) and almost
everywhere (a.e.) compression ratio.

Effective Fractal Dimension in Algorithmic Information Theory 273

Definition.

1. If C is an ILFSC and S ∈ Σ∞, then the a.e. compression ratio of C on S is

ρC(S) = lim inf
n→∞

|C(S [0..n− 1])|
n log |Σ| .

2. The finite-state a.e. compression ratio of a sequence S ∈ Σ∞ is

ρFS(S) = inf {ρC(S)|C is an ILFSC} .

3. If C is an ILFSC and S ∈ Σ∞, then the a.e. compression ratio of C on S is

RC(S) = lim sup
n→∞

|C(S [0..n− 1])|
n log |Σ| .

4. The finite-state i.o. compression ratio of a sequence S ∈ Σ∞ is

RFS(S) = inf {RC(S)|C is an ILFSC} .

The following theorem says that finite-state dimension and finite-state compressibil-
ity are one and the same for individual sequences.

Theorem 3.2 ([6, 1]) For all S ∈ Σ∞,

dimFS(S) = ρFS(S),

and
DimFS(S) = RFS(S).

Doty and Moser [10] remarked that the finite-state dimension can be characterized in
terms of decompression by finite-state transducers based on earlier results by Shein-
wald et al. [67]. Notice that in this case finite-state machines are not required to be
information lossless.

Theorem 3.3 ([10]) For all S ∈ Σ∞,

dimFS(S) = inf
T finite-state
transducer

lim inf
n→∞

minπ∈Σ∗ {|π| | T (π) = S [0..n− 1]}
n log |Σ|

and

DimFS(S) = inf
T finite-state
transducer

lim sup
n→∞

minπ∈Σ∗ {|π| | T (π) = S [0..n− 1]}
n log |Σ| .

274 Elvira Mayordomo

Theorems 3.2 and 3.3 are instances of the existing relation between dimension and
information. It is interesting to view them in comparison with other information
characterizations of effective dimension that we will develop in the following sec-
tions. In the case of constructive dimension, the characterization is based on general
Kolmogorov complexity, which can only be viewed as decompression. For space
bounds, dimension can be characterized either by space-bounded compressors or
by decompressors, whereas in the case of polynomial-time dimension, the known
characterization requires consideration of polynomial-time compressors that are also
decompressible in polynomial time. The above results show that the finite-state di-
mension is similar to space dimension in this matter and apparently simpler than the
time-bounded and constructive cases.

We now present a third characterization of the finite-state dimension, this time in
terms of block-entropy rates.

Definition. Let w ∈ Σ∗, S ∈ Σ∞.

1. Let P (w, S[0..k|w| − 1]) = 1
k |{0 ≤ i < k |S[i|w|..(i+ 1)|w| − 1] = w}|.

2. The lth block-entropy rate of S is

Hl(S) = lim inf
k→∞

− 1
l log |Σ|

∑

|w|=l

P (w, S[0..kl − 1]) log(P (w, S[0..kl − 1])).

3. The block entropy rate of S is H(S) = inf l∈N Hl(S).

4. The lth upper block-entropy rate of S is

Hl(S) = lim sup
k→∞

− 1
l log |Σ|

∑

|w|=l

P (w, S[0..kl − 1]) log(P (w, S[0..kl − 1])).

5. The upper block-entropy rate of S is H(S) = inf l∈N Hl(S).

Theorem 3.4 ([2]) Let S ∈ Σ∞. DimFS(S) = H(S), and dimFS(S) = H(S).

The first part of Theorem 3.4 follows from [37] and [1].

We can also consider “sliding window” entropy, based on the number of times each
string w ∈ Σ∗ appears inside an infinite sequence S ∈ Σ∞ when occurrences can
partially overlap.

Definition. Let w ∈ Σ∗, S ∈ Σ∞.

1. Let P ′(w, S[0..n− 1]) = |w|
n |{0 ≤ i ≤ n− |w| |S[i..i+ |w| − 1] = w}|.

2. The lth entropy rate of S is

H ′l(S) = lim inf
n→∞ − 1

l log |Σ|
∑

|w|=l

P ′(w, S[0..n− 1]) log(P ′(w, S[0..n− 1])).

Effective Fractal Dimension in Algorithmic Information Theory 275

3. The entropy rate of S is H ′(S) = inf l∈N H
′
l(S).

4. The lth upper entropy rate of S is

H ′l(S) = lim sup
n→∞

− 1
l log |Σ|

∑

|w|=l

P ′(w, S[0..n− 1]) log(P ′(w, S[0..n− 1])).

5. The upper entropy rate of S is H ′(S) = inf l∈N H
′
l(S).

The following characterization follows from the results in [37] and Theorem 3.4.

Theorem 3.5 Let S ∈ Σ∞. DimFS(S) = H ′(S), and dimFS(S) = H ′(S).

Notice that the definitions of entropy consider only frequency properties of the se-
quence and do not involve finite-state machines; i.e., the finite-state dimension admits
a “machine-independent” characterization.

As a consequence of Theorem 3.4 and previous results in [6], the sequences that
have finite-state dimension 1 are exactly the (Borel) normal sequences. Therefore,
the finite-state dimension is base dependent.

Theorem 3.6 There exists a real number α ∈ [0, 1] and n,m ∈ N such that the
sequences S and S′ that represent α in bases n and m, respectively, have different
finite-state dimensions.

The proof of this last theorem is based on the existence of normal sequences that
are not absolutely normal, that is, the existence of a real number α and two bases
n,m such that the representation of α in base n is a normal sequence, whereas the
representation in base m is not normal (proven by Cassels in [5]).

The Hausdorff and packing dimensions are both base independent, and it is known
[33] that the polynomial-time dimension is also base independent.

We conclude this section with a summary of the other results on the finite-state di-
mension.

The theorem of Eggleston [14] (Theorem 2.9) holds for the finite-state dimen-
sion.

Theorem 3.7 ([6]) For all α ∈ Q ∩ [0, 1],

dimFS(FREQ(α)) = H(α).

The following theorem says that every rational number r ∈ [0, 1] is the finite-state
dimension of a reasonably simple sequence.

Theorem 3.8 ([6]) For every r ∈ Q ∩ [0, 1], there exists S ∈ AC0 such that
dimFS(S) = r.

Doty et al. prove that the finite-state dimension is invariant under arithmetical oper-
ations with a rational number.

276 Elvira Mayordomo

Theorem 3.9 ([9]) Let k ∈ N, q ∈ Q with q �= 0, α ∈ R. Then

dimFS(Sq+α) = dimFS(Sqα) = dimFS(Sα),

where Sx is the representation of x in base k. The same result holds for DimFS in
the place of dimFS.

The scaled dimension has not been used in the context of the finite-state dimension.
Notice that only scales of the form xf(s) are finite-state-computable.

The finite-state dimension is a real-time effectivization of a powerful tool of fractal
geometry. As such it should prove to be a useful tool for improving our understanding
of real-time information processing.

4 Constructive dimension

Our next effective version of the Hausdorff dimension is defined by restricting the
class of gales to those that are lower semicomputable. We give the definitions of
constructive dimension and constructive strong dimension of a set, and also of a
sequence, and we relate them and give their main properties, which make it very
powerful. We first have absolute stability, which means it can be applied to an ar-
bitrary union of sets. Then there is a precise characterization of the dimension of
a sequence in terms of the Kolmogorov complexity of its elements, and finally in
many interesting cases, constructive dimension coincides with the classic Hausdorff
dimension. We also summarize the known relationships of this concept with Martin–
Löf random sequences.

An s-gale d is constructive if it is lower semicomputable; that is, its lower graph
{(w, z) | z < d(w)} is c.e. We define constructive dimension as follows.

Definition. ([46, 1]) Let X ⊆ Σ∞.

1. The constructive dimension of a set X ⊆ Σ∞ is

cdim(X)= inf {s∈ [0,∞) | there is a constructive s-gale d with X⊆S∞[d]} .

2. The constructive strong dimension of a set X ⊆ Σ∞ is

cDim(X)= inf {s∈ [0,∞) | there is a constructive s-gale d with X⊆S∞str[d]} .

3. The (constructive) dimension and strong dimension of an individual sequence
S ∈ Σ∞ are dim(S) = cdim({S}) and Dim(S) = cDim({S}).

By the gale characterizations of the Hausdorff dimension (Theorem 2.8), we con-
clude that cdim(X) ≥ dimH(X) for all X ⊆ Σ∞. But in fact much more is true for
certain classes, as Hitchcock shows in [24]. For sets that are low in the arithmetical
hierarchy, constructive dimension and Hausdorff dimension coincide.

Effective Fractal Dimension in Algorithmic Information Theory 277

Theorem 4.1 ([24]) If X ⊆ Σ∞ is a union of Π0
1 sets, then dimH(X) = cdim(X).

Hitchcock also proves that this is an optimal result for the arithmetical hierarchy,
since it cannot be extended to sets in Π0

2 . It is open whether such a correspondence
principle holds for a strong constructive dimension and a packing dimension.

For the Hausdorff dimension, all singletons have dimension 0 and in fact all count-
able sets have Hausdorff dimension 0. The situation changes dramatically when we
restrict to constructive gales, since a singleton can have a positive constructive di-
mension and in fact can have any constructive dimension.

Theorem 4.2 ([46]) For every α ∈ [0, 1], there is anS ∈ Σ∞ such that dim(S) = α.

A sequence is c-regular if its (constructive) dimension and strong dimensions coin-
cide. In fact, these two dimensions can have any arbitrary two values.

Theorem 4.3 ([1]) For every α, β ∈ [0, 1] with α ≤ β, there is an S ∈ Σ∞ such
that dim(S) = α and Dim(S) = β.

An interesting example of a c-regular sequence is θs
A that generalizes Chaitin’s Ω

and has been defined by Tadaki [72] and Mayordomo [50]. θs
A has dimension and

strong dimension s.

The constructive dimension of any set X ⊆ Σ∞ is determined completely by the
dimension of the individual sequences in the set.

Theorem 4.4 ([46, 1]) For all X ⊆ Σ∞,

cdim(X) = sup
x∈X

dim(x)

and
cDim(X) = sup

x∈X
Dim(x).

There is no analog of this last theorem for the Hausdorff dimension or for any
of the concepts defined in sections 3 and 5. The key ingredient in the proof of
Theorem 4.4 is the existence of optimal constructive supergales, that is, construc-
tive supergales that multiplicatively dominate any other constructive supergale. This
is analogous to the existence of universal tests of randomness in the theory of random
sequences.

Theorem 4.1 together with Theorem 4.4 implies that the classical Hausdorff dimen-
sion of every Σ0

2 set X ⊆ Σ∞ has the pointwise characterization dimH(X) =
supx∈X dim(x).

Theorem 4.4 immediately implies that constructive and strong constructive dimen-
sions have the absolute stability property. Classical Hausdorff and packing dimen-
sions have only countable stability.

278 Elvira Mayordomo

Corollary 4.5 ([46, 1]) For any I

cdim

(
⋃

i∈I

Xi

)

= sup
i∈I

cdim(Xi),

cDim

(
⋃

i∈I

Xi

)

= sup
i∈I

cDim(Xi).

The (constructive) dimension of a sequence can be characterized in terms of the
Kolmogorov complexities of its prefixes.

Theorem 4.6 ([50]) For all A ∈ Σ∞,

dim(A) = lim inf
n→∞

K(A [0..n− 1])
n log |Σ| .

This latest theorem justifies the intuition that the constructive dimension of a se-
quence is a measure of its algorithmic information density. Several authors have
studied the close relation of the Hausdorff dimension to measures of information
content. Ryabko [57, 58], Staiger [68, 69], and Cai and Hartmanis [3] proved re-
sults relating the Hausdorff dimension to Kolmogorov complexity. Ryabko [60] and
Staiger [69] studied computable exponents of increase that correspond to a com-
putable dimension [45], defined in terms of computable gales and that is strictly
above the constructive dimension. See [46] for a complete chronology.

We note that Theorem 4.6 yields a new proof of Theorem 4.1 above that of Theorem 5
of Staiger [69]. Also, Theorem 4.6 yields a new proof of Theorem 4.2 below that of
Lemma 3.4 of Cai and Hartmanis [3].

A dual result holds for the constructive strong dimension as proven in [1]; that is, for
any A ∈ Σ∞,

Dim(A) = lim sup
n→∞

K(A [0..n− 1])
n log |Σ| .

Alternative characterizations of the constructive dimension in terms of variations of
Martin–Löf tests and effectivizations of the Hausdorff measure have been given by
Reimann and Stephan [54] and Calude et al. [4]. Doty has considered the Turing
reduction compression ratio in [8].

We now briefly state the main results proven so far on constructive dimension, in-
cluding the existence of sequences of any dimension, the constructive version of
Eggleston theorem, and the constructive dimension of sequences that are random
relative to a nonuniform distribution.

This is the constructive version of the classical Theorem 2.9 (Eggleston [14]).

Theorem 4.7 ([46]) If α is Δ0
2-computable real number in [0, 1], then

cdim(FREQ(α)) = H(α).

Effective Fractal Dimension in Algorithmic Information Theory 279

An alternative proof of Theorem 4.7 can be derived from Theorem 4.6 and from
earlier results of Eggleston [14] and Kolmogorov [75]. In fact, this approach shows
that Theorem 4.7 holds for arbitrary α ∈ [0, 1].

A binary sequence is (Martin–Löf) random [48] if it passes every algorithmically
implementable test of randomness. This can be reformulated in terms of martingales
as follows:

Definition. ([62]) A sequence A ∈ {0, 1}∞ is (Martin–Löf) random if there is no
constructive martingale d such that A ∈ S∞[d].

By definition, random sequences have constructive dimension 1. For nonuniform
distributions, we have the concept of β-randomness, for β any real number in (0, 1)
representing the bias.

Definition. ([62]) Let β ∈ (0, 1).

1. A β-martingale is a function d : {0, 1}∗ → [0,∞) that satisfies the condition

d(w) = (1− β) d(w0) + β d(w1)

for all w ∈ {0, 1}∗.

2. A sequence A ∈ {0, 1}∞ is (Martin–Löf) random relative to β if there is no
constructive β-martingale d such that A ∈ S∞[d].

Lutz relates randomness relative to a nonuniform distribution to Shannon informa-
tion theory.

Theorem 4.8 ([46]) Let β ∈ (0, 1) be a computable real number. Let A ∈ {0, 1}∞
be random relative to β. Then dim(A) = H(β).

A more general result for randomness relative to sequences of coin-tosses is obtained
in [46], and extended in [1], where constructive and constructive strong dimension
of such a random sequence are shown to be the lower and upper average entropy of
the bias, respectively.

A very recent line of research is the comparison of positive dimension sequences
with (Martin–Löf) random sequences (relative to bias 1/2) in terms of their comput-
ing power. The main issue is whether positive dimension sequences can substitute
random sequences as randomness sources [51]. Doty [7], based on earlier results by
Ryabko [57, 58], has proven that a sequence of positive dimension is Turing equiv-
alent to a sequence of strong dimension arbitrarily close to 1. Nies and Reimann
[53] and Stephan [70] study the existence of weak-truth-table degrees or lower cones
of arbitrary dimension. Gu and Lutz [22] show that positive dimension sequences
can substitute randomness in the context of probabilistic polynomial-time computa-
tion.

We end this section by going back to scaled dimension. We think that the constructive
dimension can benefit particularly from the flexibility provided by using different
scales.

280 Elvira Mayordomo

Let h be a scale such that (i) h(x, 1) = Θ(x) and (ii) dh : N × [0,∞) → [0,∞);
dh(k, s) = h(|Σ|−k−1, s)/h(|Σ|−k, s) is a computable function. Given a sequence
S we define

dim(h)(S)= inf
{
s ∈ [0,∞)

∣
∣∣ there is a constructive s(h)-gale d with S ∈S∞[d]

}
.

The results in [32] can be extended as follows.

Theorem 4.9 Let h be a scale as above and such that h(x, s) ≤ (log(1/x))−1−ε for
some epsilon (that may depend on s). Then the following are equivalent.

1. dim(h)(S) < s.

2. K(S[0..n− 1]) < − log(h(|Σ|−n, s)) for infinitely many n.

There is a strong dimension version of Theorem 4.9 in which the Kolmogorov com-
plexity is bounded for almost every prefix of the sequence. In both cases the upper
bound on the scale can be substituted by differentiability of h.

5 Resource-bounded dimension

In this section we briefly review the properties of a resource-bounded dimension
more directly related to algorithmic information theory. For a recent summary of
dimension in complexity classes, the reader may consult [28].

We will consider polynomial-time and polynomial-space dimensions. We define p
to be the class of polynomial-time computable functions, pspace, as the class of
polynomial space functions. Let Δ be either p or pspace.

Definition. ([45]) Let X ⊆ Σ∞.

1. The Δ-dimension of a set X ⊆ Σ∞ is

dimΔ(X) = inf {s ∈ [0,∞) | there is a s-gale d ∈ Δ with X ⊆ S∞[d]} .

2. The Δ strong dimension of a set X ⊆ Σ∞ is

DimΔ(X) = inf {s ∈ [0,∞) | there is a s-gale d ∈ Δ with X ⊆ S∞str[d]} .

Let us mention that Eggleston theorem also holds for the resource-bounded case
[45], for each p-computable (pspace-computable) α, dimp(FREQ(α)) = H(α)
(dimpspace(FREQ(α)) = H(α)), and even for sublinear time-bounds [52].

Hitchcock [25] has characterized the pspace dimension in terms of space-bounded
Kolmogorov complexity as follows. Let KSf(n)(w) be the Kolmogorov complexity
of the string w when only space f(|w|) is allowed in the computation of w from its
description [40].

Effective Fractal Dimension in Algorithmic Information Theory 281

Theorem 5.1 ([25]) For all X ⊆ Σ∞,

dimpspace(X) = inf
c

sup
A∈X

lim inf
n→∞

KSnc

(A [0..n− 1])
n log |Σ| ,

Dimpspace(X) = inf
c

sup
A∈X

lim sup
n→∞

KSnc

(A [0..n− 1])
n log |Σ| .

This result can also be extended to a scaled dimension.

Theorem 5.2 ([32]) For z ∈ {−1, 0, 1}, the following are equivalent.

1. dim(z)
pspace(X) < s.

2. There exists c such that for every S ∈ X ,

KSnc

(S[0..n− 1]) < − log(hz(|Σ|−n, s)) for infinitely many n.

Theorem 5.2 has a strong dimension version in which the Kolmogorov complexity
is bounded for almost every prefix of the sequence.

The case of the polynomial-time dimension seems much harder, since time-bounded
Kolmogorov complexity has proven difficult to analyze. After attempts from Hitch-
cock and Vinodchandran in [29], the right approach seems to be the consideration of
polynomial-time compressors that can also be inverted in polynomial time. López-
Valdés and Mayordomo [41] prove the following.

Definition. ([41]) Let (C,D) be polynomial-time algorithms such that for every
w ∈ Σ∗, D(C(w), |w|) = w. (C,D) does not start from scratch if ∀ ε > 0 and for
almost every w ∈ {0, 1}∗, there exists k = O(log(|w|)), k > 0, such that

∑

|u|≤k

|Σ|−|C(wu)| ≤ |Σ|εk|Σ|−|C(w)|.

Let PC be the class of polynomial-time compressors that do not start from scratch.

Theorem 5.3 ([41]) Let X ⊆ Σ∞,

dimp(X) = inf
(C,D)∈PC

sup
A∈X

lim inf
n

|C(A[0..n− 1])|
n log |Σ| ,

Dimp(X) = inf
(C,D)∈PC

sup
A∈X

lim sup
n

|C(A[0..n− 1])|
n log |Σ| .

Connection of resource-bounded dimension with sequence analysis models from
computational learning has proven successful in [31], [26] and [20].

Acknowledgments. I thank an anonymous referee, Philippe Moser, and David Doty
for many helpful suggestions.

282 Elvira Mayordomo

References

1. K. B. Athreya, J. M. Hitchcock, J. H. Lutz, and E. Mayordomo. Effective strong di-
mension in algorithmic information and computational complexity. SIAM Journal on
Computing. To appear.

2. C. Bourke, J. M. Hitchcock, and N. V. Vinodchandran. Entropy rates and finite-state
dimension. Theoretical Computer Science, 349:392–406, 2005.

3. J. Cai and J. Hartmanis. On Hausdorff and topological dimensions of the Kolmogorov
complexity of the real line. Journal of Computer and Systems Sciences, 49:605–619,
1994.

4. C. S. Calude, L. Staiger, and S. A. Terwijn. On partial randomness. Annals of Pure and
Applied Logic, 138:20–30, 2006.

5. J. W. S. Cassels. On a problem of Steinhaus about normal numbers. Colloquium Mathe-
maticum, 7:95–101, 1959.

6. J. J. Dai, J. I. Lathrop, J. H. Lutz, and E. Mayordomo. Finite-state dimension. Theoretical
Computer Science, 310:1–33, 2004.

7. D. Doty. Dimension extractors. Technical Report cs.CC/0606078, Computing Research
Repository, 2006.

8. D. Doty. Every sequence is decompressible from a random one. In Proceedings of Second
Conference on Computability in Europe, Lecture Notes in Computer Science, pages 153–
162. Springer-Verlag, 2006.

9. D. Doty, J. H. Lutz, and S. Nandakumar. Finite-state dimension and real arithmetic. In
Proceedings of the 33rd International Colloquium on Automata, Languages, and Pro-
gramming, Lecture Notes in Computer Science. Springer-Verlag, 2006.

10. D. Doty and P. Moser. Personal communication, based on [67]. 2006.
11. R. Downey and D. Hirschfeldt. Algorithmic Randomness and Complexity. Book Draft,

2006.
12. G. A. Edgar. Integral, Probability, and Fractal Measures. Springer-Verlag, 1998.
13. G. A. Edgar. Measure, Topology, and Fractal Geometry. Springer-Verlag, 1990.
14. H.G. Eggleston. The fractional dimension of a set defined by decimal properties. Quar-

terly Journal of Mathematics, Oxford Series 20:31–36, 1949.
15. K. Falconer. The Geometry of Fractal Sets. Cambridge University Press, 1985.
16. K. Falconer. Fractal Geometry: Mathematical Foundations and Applications. John Wiley

& Sons, 2003.
17. K. Falconer. Techniques in Fractal Geometry. John Wiley & Sons, 2003.
18. M. Feder. Gambling using a finite state machine. IEEE Transactions on Information

Theory, 37:1459–1461, 1991.
19. H. Federer. Geometric Measure Theory. Springer-Verlag, 1969.
20. L. Fortnow and J. H. Lutz. Prediction and dimension. Journal of Computer and System

Sciences. To appear. Preliminary version appeared in Proceedings of the 15th Annual
Conference on Computational Learning Theory, LNCS 2375, pages 380–395, 2002.

21. X. Gu, J. H. Lutz, and E. Mayordomo. Points on computable curves. In Proceedings of
the Forty-Seventh Annual IEEE Symposium on Foundations of Computer Science, 2006.
To appear.

22. X. Gu and J. H. Lutz. Dimension characterizations of complexity classes. In Proceedings
of the 31st International Symposium on Mathematical Foundations of Computer Science,
Lecture Notes in Computer Science, pages 471–479. Springer-Verlag, 2006.

23. F. Hausdorff. Dimension und äußeres Maß. Math. Ann., 79:157–179, 1919.

Effective Fractal Dimension in Algorithmic Information Theory 283

24. J. Hitchcock. Correspondence principles for effective dimensions. In Proceedings of the
29th Colloquium on Automata, Languages and Programming. Springer Lecture Notes in
Computer Science, 2002. To appear.

25. J. M. Hitchcock. Effective Fractal Dimension: Foundations and Applications. PhD thesis,
Iowa State University, 2003.

26. J. M. Hitchcock. Fractal dimension and logarithmic loss unpredictability. Theoretical
Computer Science, 304(1–3):431–441, 2003.

27. J. M. Hitchcock, J. H. Lutz, and E. Mayordomo. Scaled dimension and nonuniform
complexity. Journal of Computer and System Sciences, 69:97–122, 2004.

28. J. M. Hitchcock, J. H. Lutz, and E. Mayordomo. The fractal geometry of complexity
classes. SIGACT News Complexity Theory Column, 36:24–38, 2005.

29. J. M. Hitchcock and N. V. Vinodchandran. Dimension, entropy rates, and compression.
Journal of Computer and System Sciences, 72(4):760–782, 2006.

30. J. M. Hitchcock. Effective fractal dimension bibliography.
http://www.cs.uwyo.edu/ jhitchco/bib/dim.shtml.

31. J. M. Hitchcock. Online learning and resource-bounded dimension: Winnow yields new
lower bounds for hard sets. SIAM Journal on Computing, 2006. To appear.

32. J. M. Hitchcock, M. López-Valdés, and E. Mayordomo. Scaled dimension and the Kol-
mogorov complexity of Turing-hard sets. In Proceedings of the 29th International Sympo-
sium on Mathematical Foundations of Computer Science, volume 3153 of Lecture Notes
in Computer Science, pages 476–487. Springer-Verlag, 2004.

33. J. M. Hitchcock and E. Mayordomo. Base invariance of feasible dimension. Manuscript,
2003.

34. D. A. Huffman. Canonical forms for information-lossless finite-state logical machines.
IRE Trans. Circuit Theory CT-6 (Special Supplement), pages 41–59, 1959. Also available
in E.F. Moore (ed.), Sequential Machine: Selected Papers, Addison-Wesley, 1964, pages
866-871.

35. Z. Kohavi. Switching and Finite Automata Theory (Second Edition). McGraw-Hill, 1978.
36. A. A. Kurmit. Information-Lossless Automata of Finite Order. Wiley, 1974.
37. A. Lempel and J. Ziv. Compression of individual sequences via variable rate coding.

IEEE Transaction on Information Theory, 24:530–536, 1978.
38. P. Lévy. Propriétés asymptotiques des sommes de variables indépendantes ou enchainées.

Journal des mathématiques pures et appliquées. Series 9, 14(4):347–402, 1935.
39. P. Lévy. Théorie de l’Addition des Variables Aleatoires. Gauthier-Villars, 1937 (second

edition 1954).
40. M. Li and P. M. B. Vitányi. An Introduction to Kolmogorov Complexity and its Applica-

tions (Second Edition). Springer-Verlag, 1997.
41. M. López-Valdés and E. Mayordomo. Dimension is compression. In Proceedings of

the 30th International Symposium on Mathematical Foundations of Computer Science,
volume 3618 of Lecture Notes in Computer Science, pages 676–685. Springer-Verlag,
2005.

42. J. H. Lutz. Almost everywhere high nonuniform complexity. Journal of Computer and
System Sciences, 44(2):220–258, 1992.

43. J. H. Lutz. The quantitative structure of exponential time. In L. A. Hemaspaandra and
A. L. Selman, editors, Complexity Theory Retrospective II, pages 225–254. Springer-
Verlag, 1997.

44. J. H. Lutz. Resource-bounded measure. In Proceedings of the 13th IEEE Conference on
Computational Complexity, pages 236–248, 1998.

45. J. H. Lutz. Dimension in complexity classes. SIAM Journal on Computing, 32:1236–
1259, 2003.

284 Elvira Mayordomo

46. J. H. Lutz. The dimensions of individual strings and sequences. Information and Compu-
tation, 187:49–79, 2003.

47. J. H. Lutz and E. Mayordomo. Dimensions of points in self-similar fractals. Abstract
published in the Proceedings of the Third International Conference on Computability and
Complexity in Analysis.

48. P. Martin-Löf. The definition of random sequences. Information and Control, 9:602–619,
1966.

49. P. Matilla. Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifia-
bility. Cambridge University Press, 1995.

50. E. Mayordomo. A Kolmogorov complexity characterization of constructive Hausdorff
dimension. Information Processing Letters, 84(1):1–3, 2002.

51. J. S. Miller and A. Nies. Randomness and computability: open questions. Bulletin of
Symbolic Logic, 12:390–410, 2006.

52. P. Moser. Martingale families and dimension in P. In Logical Approaches to Computa-
tional Barriers, Second Conference on Computability in Europe, CiE 2006, volume 3988
of Lecture Notes in Computer Science, pages 388–397. Springer-Verlag, 2006.

53. A. Nies and J. Reimann. A lower cone in the wtt degrees of non-integral effective dimen-
sion. In Proceedings of IMS Workshop on Computational Prospects of Infinity, 2006. To
appear.

54. J. Reimann and F. Stephan. Effective Hausdorff dimension. In Logic Colloquium ’01,
number 20 in Lecture Notes in Logic, pages 369–385. Association for Symbolic Logic,
2005.

55. J. Reimann and F. Stephan. On hierarchies of randomness tests. In Proceedings of the 9th
Asian Logic Conference 2005. World Scientific, 2006.

56. C. A. Rogers. Hausdorff Measures. Cambridge University Press, 1998. Originally pub-
lished in 1970.

57. B. Ya. Ryabko. Coding of combinatorial sources and Hausdorff dimension. Soviets Math-
ematics Doklady, 30:219–222, 1984.

58. B. Ya. Ryabko. Noiseless coding of combinatorial sources. Problems of Information
Transmission, 22:170–179, 1986.

59. B. Ya. Ryabko. Algorithmic approach to the prediction problem. Problems of Information
Transmission, 29:186–193, 1993.

60. B. Ya. Ryabko. The complexity and effectiveness of prediction problems. Journal of
Complexity, 10:281–295, 1994.

61. C. P. Schnorr. Klassifikation der Zufallsgesetze nach Komplexität und Ordnung. Z.
Wahrscheinlichkeitstheorie verw. Geb., 16:1–21, 1970.

62. C. P. Schnorr. A unified approach to the definition of random sequences. Mathematical
Systems Theory, 5:246–258, 1971.

63. C. P. Schnorr. Zufälligkeit und Wahrscheinlichkeit. Lecture Notes in Mathematics, 218,
1971.

64. C. P. Schnorr. Process complexity and effective random tests. Journal of Computer and
System Sciences, 7:376–388, 1973.

65. C. P. Schnorr. A survey of the theory of random sequences. In R. E. Butts and J. Hintikka,
editors, Basic Problems in Methodology and Linguistics, pages 193–210. D. Reidel, 1977.

66. C. P. Schnorr and H. Stimm. Endliche automaten und zufallsfolgen. Acta Informatica,
1:345–359, 1972.

67. D. Sheinwald, A. Lempel, and J. Ziv. On compression with two-way head machines. In
Data Compression Conference, pages 218–227, 1991.

68. L. Staiger. Kolmogorov complexity and Hausdorff dimension. Information and Compu-
tation, 103:159–94, 1993.

Effective Fractal Dimension in Algorithmic Information Theory 285

69. L. Staiger. A tight upper bound on Kolmogorov complexity and uniformly optimal pre-
diction. Theory of Computing Systems, 31:215–29, 1998.

70. F. Stephan. Hausdorff-dimension and weak truth-table reducibility. Technical Report
TR52/05, National University of Singapore, School of Computing, 2005.

71. D. Sullivan. Entropy, Hausdorff measures old and new, and limit sets of geometrically
finite Kleinian groups. Acta Mathematica, 153:259–277, 1984.

72. K. Tadaki. A generalization of Chaitin’s halting probability ω and halting self-similar
sets. Hokkaido Mathematical Journal, 31:219–253, 2002.

73. C. Tricot. Two definitions of fractional dimension. Mathematical Proceedings of the
Cambridge Philosophical Society, 91:57–74, 1982.

74. J. Ville. Étude Critique de la Notion de Collectif. Gauthier–Villars, 1939.
75. A. K. Zvonkin and L. A. Levin. The complexity of finite objects and the development

of the concepts of information and randomness by means of the theory of algorithms.
Russian Mathematical Surveys, 25:83–124, 1970.

Metamathematical Properties of Intuitionistic Set
Theories with Choice Principles

Michael Rathjen∗

Department of Pure Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom,
and
Department of Mathematics, Ohio State University, Columbus, OH 43210, U.S.A.
rathjen@math.ohio-state.edu

Summary. This paper is concerned with metamathematical properties of intuitionistic set the-
ories with choice principles. It is proved that the disjunction property, the numerical existence
property, Church’s rule, and several other metamathematical properties hold true for construc-
tive Zermelo–Fraenkel Set Theory and full intuitionistic Zermelo–Fraenkel augmented by any
combination of the principles of countable choice, dependent choices, and the presentation
axiom. Also Markov’s principle may be added. Moreover, these properties hold effectively.
For instance from a proof of a statement ∀n ∈ ω ∃m ∈ ω ϕ(n,m), one can construct effec-
tively an index e of a recursive function such that ∀n ∈ ω ϕ(n, {e}(n)) is provable. Thus
we have an explicit method of witness and program extraction from proofs involving choice
principles.

As for the proof technique, this paper is a continuation of [29]. In [29], a self-validating
semantics for CZF is introduced that combines realizability for extensional set theory and
truth.

1 Introduction

The objective of this paper is to investigate several metamathematical properties
of Constructive Zermelo–Fraenkel Set Theory, CZF, and Intuitionistic Zermelo–
Fraenkel Set Theory, IZF, augmented by choice principles, and to provide an ex-
plicit method for extracting computational information from proofs of such
theories.

IZF and CZF have the same language as ZF. Both theories are based on intuition-
istic logic. Although IZF is squarely built on the idea of basing Zermelo–Fraenkel

∗ This material is based on work supported by the National Science Foundation under Award
DMS-0301162.

288 Michael Rathjen

set theory on intuitionistic logic, CZF is a standard reference theory for developing
constructive predicative mathematics (cf. [1, 2, 3, 4]).

The axioms of IZF comprise Extensionality, Pairing, Union, Infinity, Separation,
and Powerset. Instead of Replacement, IZF has Collection

∀x ∈ a ∃y ϕ(x, y) → ∃z ∀x ∈ a ∃y ∈ z ϕ(x, y),

and rather than Foundation, it has the Set Induction scheme

∀x [∀y ∈ xψ(y) → ψ(x)] → ∀xψ(x).

The set theoretic axioms of CZF are Extensionality, Pairing, Union, Infinity, the Set
Induction scheme, and the following:
Bounded Separation scheme ∀a ∃x∀y (y ∈ x ↔ y ∈ a ∧ ϕ(y)), for every
bounded formula ϕ(y), where a formula ϕ(x) is bounded (or restricted or Δ0) if
all the quantifiers occurring in it are bounded, i.e., of the form ∀x∈b or ∃x∈b.
Subset Collection scheme

∀a ∀b ∃c ∀u [∀x∈a ∃y∈b ψ(x, y, u)

→ ∃d∈c (∀x∈a ∃y∈d ψ(x, y, u) ∧ ∀y∈d ∃x∈a ψ(x, y, u))].

Strong Collection scheme

∀x∈a ∃y ϕ(x, y) → ∃b [∀x∈a ∃y∈b ϕ(x, y) ∧ ∀y∈b ∃x∈a ϕ(x, y)]

for all formulae ψ(x, y, u) and ϕ(x, y).

There are well-known metamathematical properties such as the disjunction and the
numerical existence property that are often considered to be hallmarks of intuition-
istic theories. The next definition gives a list of the well-known and some of the
lesser-known metamathematical properties that intuitionistic theories may or may
not have.

Definition 1.1 Let T be a theory whose language, L(T), encompasses the language
of set theory. Moreover, for simplicity, we shall assume that L(T) has a constant
ω denoting the set of von Neumann natural numbers and for each n a constant n̄
denoting the n-th element of ω.2

1. T has the disjunction property, DP, if whenever T - ψ ∨ θ holds for sentences
ψ and θ of T , then T - ψ or T - θ.

2. T has the numerical existence property, NEP, if whenever T - (∃x∈ω)φ(x)
holds for a formula φ(x) with at most the free variable x, then T - φ(n̄) for
some n.

2 The usual language of set theory does not have numerals, strictly speaking. Instead of
adding numerals to the language, one could take ϕ(n̄) to mean ∃x [ηn(x) ∧ ϕ(x)], where
ηn is a formula defining the natural number n in a canonical way.

Metamathematical Properties of Intuitionistic Set Theories with Choice Principles 289

3. T has the existence property, EP, if whenever T - ∃xφ(x) holds for a formula
φ(x) having at most the free variable x, then there is a formula ϑ(x) with exactly
x free, so that

T - ∃!x [ϑ(x) ∧ φ(x)].

4. T has the weak existence property, wEP, if whenever

T - ∃xφ(x)

holds for a formula φ(x) having at most the free variable x, then there is a for-
mula ϑ(x) with exactly x free, so that

T - ∃!xϑ(x),

T - ∀x [ϑ(x) → ∃u u ∈ x],

T - ∀x [ϑ(x) → ∀u ∈ xφ(x)].

5. T is closed under Church’s rule, CR, if whenever T - (∀x∈ ω)(∃y∈ω)φ(x, y)
holds for some formula of T with at most the free variables shown, then, for
some number e,

T - (∀x∈ω)φ(x, {ē}(x)),

where {e}(x) stands for the result of applying the e-th partial recursive function
to x.

6. T is closed under the Extended Church’s rule, ECR, if whenever

T - (∀x∈ ω)[¬ψ(x) → (∃y∈ω)φ(x, y)]

holds for formulae of T with at most the free variables shown, then, for some
number e,

T - (∀x∈ω)[¬ψ(x) → {ē}(x) ∈ ω ∧ φ(x, {ē}(x))].

Note that ¬ψ(x) could be replaced by any formula that is provably equivalent in
T to its double negation. This comprises arithmetic formulae that are both ∨-free
and ∃-free.

7. Let f : ω → ω convey that f is a function from ω to ω. T is closed under the
variant of Church’s rule, CR1, if whenever T - ∃f [f : ω → ω ∧ ψ(f)] (with
ψ(f) having no variables but f), then, for some number e, T - (∀x ∈ ω)(∃y ∈
ω)({ē}(x) = y) ∧ ψ({ē}).

8. T is closed under the Unzerlegbarkeits rule, UZR, if whenever T - ∀x[ψ(x) ∨
¬ψ(x)], then

T - ∀xψ(x) or T - ∀x¬ψ(x).

290 Michael Rathjen

9. T is closed under the Uniformity rule, UR, if whenever T - ∀x (∃y ∈
ω)ψ(x, y), then

T - (∃y ∈ ω)∀xψ(x, y).

Slightly abusing terminology, we shall also say that T enjoys any of these properties
if this, strictly speaking, holds only for a definitional extension of T .

Actually, DP follows easily from NEP, and conversely, DP implies NEP for
systems containing a modicum of arithmetic (see [13]).

Also note that ECR entails CR, taking ψ(x) to be x �= x.

A detailed historical account of metamathematical properties of intuitionistic set the-
ories can be found in [29]. However, for the reader’s convenience, we will quote from
the preface to [29]:

“Realizability semantics are of paramount importance in the study of intuitionistic
theories. They were first proposed by Kleene [17] in 1945. It appears that the first
realizability definition for set theory was given by Tharp [33] who used (indices
of) Σ1 definable partial (class) functions as realizers. This form of realizability is
a straightforward extension of Kleene’s 1945 realizability for numbers in that a re-
alizer for a universally quantified statement ∀xφ(x) is an index e of a Σ1 partial
function such that {e}(x) is a realizer for φ(x) for all sets x. In the same vein, e
realizes ∃xφ(x) if e is a pair 〈a, e′〉 with e′ being a realizer for φ(a). A markedly
different strand of realizability originates with Kreisel’s and Troelstra’s [21] defini-
tion of realizability for second-order Heyting arithmetic and the theory of species.
Here, the clauses for the realizability relation
 relating to second-order quantifiers
are as follows: e
 ∀Xφ(X) ⇔ ∀X e
 φ(X), e
 ∃Xφ(X) ⇔ ∃X e
 φ(X).
This type of realizability does not seem to give any constructive interpretation to set
quantifiers; realizing numbers “pass through” quantifiers. However, one could also
say that thereby the collection of sets of natural numbers is conceived generically.
On the intuitionistic view, the only way to arrive at the truth of a statement ∀Xφ(X)
is a proof. A collection of objects may be called generic if no member of it has an
intensional aspect that can make any difference to a proof.

Kreisel–Troelstra realizability was applied to systems of higher order arithmetic and
set theory by Friedman [12]. A realizability-notion akin to Kleene’s slash [18, 19]
was extended to various intuitionistic set theories by Myhill [26, 27]. In [26], it
was shown that intuitionistic ZF with Replacement was shown instead of Collec-
tion (dubbed IZFR henceforth) has the DP, NEP, and EP. In [27], it was proved
that the constructive set theory CST enjoys the DP and the NEP, and the theory
without the axioms of countable and dependent choice, CST−, also has the EP.
It was left open in [27] whether the full existence property holds in the presence of
relativized dependent choice, RDC. Friedman and Ščedrov [15] then established
that IZFR + RDC satisfies the EP also. The Myhill–Friedman approach [26, 27]
proceeds in two steps. The first, which appears to make the whole procedure nonef-
fective, consists in finding a conservative extension T ′ of the given theory T , which

Metamathematical Properties of Intuitionistic Set Theories with Choice Principles 291

contains names for all the objects asserted to exist in T . T ′ is obtained by inductively
adding names and defining an increasing sequence of theories Tα through all the
countable ordinals α < ω1 and letting T ′ =

⋃
α<ω1

Tα.3 The second step consists in
defining a notion of realizability for T ′ that is a variant of Kleene’s “slash.”

Several systems of set theory for constructive mathematical practice were pro-
pounded by Friedman in [14]. The metamathematical properties of these theories
and several others as well were subsequently investigated by Beeson [5, 6]. In par-
ticular, Beeson showed that IZF has the DP and NEP. He used a combination
of Kreisel–Troelstra realizability and Kleene’s [17, 18, 19, 20] q-realizability. How-
ever, while Myhill and Friedman developed realizability directly for extensional set
theories, Beeson engineered his realizability for nonextensional set theories and ob-
tained results for the extensional set theories of [14] only via an interpretation in
their nonextensional counterparts. This detour had the disadvantage that in many
cases (where the theory does not have full Separation or Powerset), the DP and
NEP for the corresponding extensional set theory T -ext could only be established
for a restricted class of formulas; [5] Theorem 5.2 proves that NEP holds for T -ext
when T -ext - (∃x ∈ ω)(x ∈ Q), where Q is a definable set of T . It appears unlikely
that the Myhill–Friedman techniques or Beeson’s detour through q-realizability for
nonextensional set theories can be employed to yield the DP and NEP for CZF.
The theories considered by Myhill and Friedman have Replacement instead of Col-
lection, and in all probability, their approach is limited to such theories, whereas
Beeson’s techniques yield numerical explicit definability, not for all formulae ϕ(u),
but only for ϕ(u) of the form u ∈ Q, where Q is a specific definable set. But there
was another approach available. McCarty [23, 24] adapted Kreisel–Troelstra realiz-
ability directly to extensional set theories. In [23, 24], though, they were concerned
with realizability for intuitionistic Zermelo–Fraenkel set theory (having Collection
instead of Replacement), IZF, and employed transfinite iterations of the powerset
operation through all the ordinals in defining a realizability (class) structure. More-
over, in addition to the powerset axiom, this approach also availed itself of unfettered
separation axioms. At first blush, this seemed to render the approach unworkable for
CZF as this theory lacks the powerset axiom and has only bounded separation.
Notwithstanding that, it was shown in [30] that these obstacles can be overcome. In-
deed, this notion of realizability provides a self-validating semantics for CZF, viz.
it can be formalized in CZF, and demonstrably in CZF, it can be verified that every
theorem of CZF is realized.” ([29], pp. 1234–1236.)

The paper [29] introduced a new realizability structure V∗, which arises by amalga-
mating the realizability structure with the universe of sets in a coherent, albeit rather
complicated, way. The main semantical notion presented and used in [29] combines
realizability for extensional set theory over V∗ with truth in the background universe
V . A combination of realizability with truth has previously been considered in the
context of realizability notions for first and higher order arithmetic. It was called rnt-

3 This type of construction is due to J.R. Moschovakis [25] §8 & 9.

292 Michael Rathjen

realizability in [34]. The main metamathematical result obtained via this tool was as
follows.

Theorem 1.2 The DP and the NEP hold true for CZF and CZF + REA. Both
theories are closed under CR, ECR, CR1, UZR, and UR, too.

Proof. [29], Theorem 1.2. ��

This paper presents another proof of Beeson’s result that IZF has the DP and the
NEP and a proof that IZF is closed under CR, ECR, CR1, UZR, and UR.
There are a number of further metamathematical results that can be obtained via this
technology. For example, it will be shown that Markov’s principle can be added to
any of the foregoing theories. But the main bulk of this paper is devoted to showing
that the technology is particularly suited to the choice principles of countable choice,
dependent choices, and the presentation axiom. As a consequence, we can deduce
that CZF augmented by any combination of these principles also has the properties
stated in Theorem 1.2. The same holds for IZF.

2 Choice principles

In many a text on constructive mathematics, axioms of countable choice and depen-
dent choices are accepted as constructive principles. This is, for instance, the case
in Bishop’s constructive mathematics (cf. [8]) as well as in Brouwer’s intuitionistic
analysis (cf. [35], Chap. 4, Sect. 2). Myhill also incorporated these axioms in his
constructive set theory [27].

The weakest constructive choice principle we shall consider is the Axiom of Count-
able Choice, ACω; i.e., whenever F is a function with domain ω such that ∀i ∈
ω ∃y ∈ F (i), then there exists a function f with domain ω such that ∀i ∈ ω f(i) ∈
F (i).

Let xRy stand for 〈x, y〉 ∈ R. A mathematically very useful axiom to have in set
theory is the Dependent Choices Axiom, DC; i.e., for all sets a and (set) relations
R ⊆ a× a, whenever

(∀x∈a) (∃y∈a)xRy

and b0 ∈ a, then there exists a function f : ω → a such that f(0) = b0 and

(∀n ∈ ω) f(n)Rf(n+ 1).

Even more useful in constructive set theory is the Relativized Dependent Choices
Axiom, RDC. It asserts that for arbitrary formulae φ and ψ, whenever

∀x
[
φ(x) → ∃y

(
φ(y) ∧ ψ(x, y)

)]

Metamathematical Properties of Intuitionistic Set Theories with Choice Principles 293

and φ(b0), then there exists a function f with domain ω such that f(0) = b0
and

(∀n ∈ ω)
[
φ(f(n)) ∧ ψ(f(n), f(n+ 1))

]
.

Let CZF− be CZF without Subset Collection.

Proposition 2.1 Provably in CZF− the following hold:

(i) DC implies ACω.

(ii) RDC implies DC.

Proof. This is a well-known fact. ��

The presentation axiom, PAx, is an example of a choice principle that is validated
on interpretation in type theory. In category theory it is also known as the existence
of enough projective sets, EPsets (cf. [7]). In a category C, an object P in C is

projective (in C) if for all objects A,B in C, and morphismsA
f� B, P

g� B

with f an epimorphism, there exists a morphism P
h� A such that the following

diagram commutes:

A
f �� B

P

h

��

g

���������

It easily follows that in the category of sets, a set P is projective if for any P -indexed
family (Xa)a∈P of inhabited sets Xa, there exists a function f with domain P such
that, for all a ∈ P , f(a) ∈ Xa.

PAx (or EPsets) is the statement that every set is the surjective image of a projec-
tive set.

Alternatively, projective sets have also been called bases, and we shall follow that
usage henceforth. In this terminology, ACω expresses that ω is a base, whereas AC
amounts to saying that every set is a base.

Proposition 2.2 (CZF−) PAx implies DC.

Proof. See [1] or [7], Theorem 6.2. ��

The implications of Propositions 2.1 and 2.2 cannot be reversed, not even on the
basis of ZF.

Proposition 2.3 ZF + DC does not prove PAx.

Proof. See [31] Proposition 5.2. ��

294 Michael Rathjen

3 The partial combinatory algebra Kl

In order to define a realizability interpretation we must have a notion of realizing
functions on hand. A particularly general and elegant approach to realizability builds
on structures that have been variably called partial combinatory algebras, applica-
tive structures, or Schönfinkel algebras. These structures are best described as the
models of a theory APP (cf. [10, 11, 6, 35]). The language of APP is a first-
order language with a ternary relation symbol App, a unary relation symbol N (for
a copy of the natural numbers), and equality, =, as primitives. The language has an
infinite collection of variables, denoted x, y, z, . . ., and nine distinguished constants:
0, sN ,pN ,k, s,d,p,p0,p1 for, respectively, zero, successor on N , predecessor on
N , the two basic combinators, definition by cases, pairing, and the corresponding two
projections. No arity is associated with the various constants. The terms of APP are
just the variables and constants. We write t1t2 & t3 for App(t1, t2, t3).

Formulae are then generated from atomic formulae using the propositional connec-
tives and the quantifiers.

In order to facilitate the formulation of the axioms, the language of APP is expanded
definitionally with the symbol & and the auxiliary notion of an application term is
introduced. The set of application terms is given by two clauses:

1. all terms of APP are application terms; and

2. if s and t are application terms, then (st) is an application term.

For s and t application terms, we have auxiliary, defined formulae of the form:

s & t := ∀y(s & y ↔ t & y),

if t is not a variable. Here s & a (for a a free variable) is inductively defined
by:

s & a is

{
s = a, if s is a term of APP,

∃x, y[s1 & x ∧ s2 & y ∧ App(x, y, a)]if s is of the form (s1s2).

Some abbreviations are t1t2 . . . tn for ((. . . (t1t2). . .)tn); t ↓ for ∃y(t & y) and φ(t)
for ∃y(t & y ∧ φ(y)).

Some further conventions are useful. Systematic notation for n-tuples is introduced
as follows: (t) is t, (s, t) is pst, and (t1, . . . , tn) is defined by ((t1, . . . , tn−1), tn).
In this paper, the logic of APP is assumed to be that of intuitionistic predicate logic
with identity. APP’s nonlogical axioms are the following:

Applicative Axioms

1. App(a, b, c1) ∧ App(a, b, c2) → c1 = c2.

Metamathematical Properties of Intuitionistic Set Theories with Choice Principles 295

2. (kab) ↓ ∧ kab & a.

3. (sab) ↓ ∧ sabc & ac(bc).

4. (pa0a1) ↓ ∧ (p0a) ↓ ∧ (p1a) ↓ ∧ pi(pa0a1) & ai for i = 0, 1.

5. N(c1) ∧ N(c2) ∧ c1 = c2 → dabc1c2 ↓ ∧ dabc1c2 & a.

6. N(c1) ∧ N(c2) ∧ c1 �= c2 → dabc1c2 ↓ ∧ dabc1c2 & b.

7. ∀x
(
N(x)→

[
sNx ↓ ∧ sNx �= 0 ∧ N(sNx)

])
.

8. N(0) ∧ ∀x
(
N(x) ∧ x �= 0→

[
pNx ↓ ∧ sN (pNx) = x

])
.

9. ∀x
[
N(x) → pN (sNx) = x

]
.

10. ϕ(0) ∧ ∀x
[
N(x) ∧ ϕ(x) → ϕ(sNx)

]
→ ∀x

[
N(x) → ϕ(x)

]
.

Let 1 := sN 0. The applicative axioms entail that 1 is an application term that
evaluates to an object falling under N but is distinct from 0; i.e., 1 ↓, N(1) and
0 �= 1.

Employing the axioms for the combinators k and s one can deduce an abstraction
lemma yielding λ-terms of one argument. This can be generalized using n–tuples
and projections.

Lemma 3.1 ((cf. [10]) (Abstraction Lemma)) For each application term t there is
a new application term t∗ such that the parameters of t∗ are among the parameters
of t minus x1, . . . , xn and such that

APP - t∗ ↓ ∧ t∗x1 . . . xn & t.

λ(x1, . . . , xn).t is written for t∗.

The most important consequence of the Abstraction Lemma is the Recursion Theorem.
It can be derived in the same way as for the λ–calculus (cf. [10], [11], [6], VI.2.7).
Actually, one can prove a uniform version of the following in APP.

Corollary 3.2 (Recursion Theorem)

∀f∃g∀x1 . . .∀xn g(x1, . . . , xn) & f(g, x1, . . . , xn).

The “standard” applicative structure is Kl in which the universe |Kl| is ω and
AppKl(x, y, z) is the Turing machine application:

AppKl(x, y, z) iff {x}(y) & z.

The primitive constants of APP are interpreted over |Kl| in the obvious way. Thus
there are nine distinguished elements 0

Kl

, s
Kl

N
,p

Kl

N
,k

Kl

, s
Kl

,d
Kl

,p
Kl

,p0
Kl

,p1
Kl

of ω pertaining to the axioms of APP. For details, see [23], chap. 3, sec. 2, or [6],
VI.2.7. In the following we will be solely concerned with the standard applicative

296 Michael Rathjen

structure Kl. We will also be assuming that the notion of an applicative structure and
in particular the structure Kl have been formalized in CZF, and that CZF proves
that Kl is a model of APP. We will usually drop the superscript “Kl” when referring
to any of the special constants of Kl.

4 The general realizability structure

If a is an ordered pair, i.e., a = 〈x, y〉 for some sets x, y, then we use 1st(a) and
2nd(a) to denote the first and second projection of a, respectively; that is, 1st(a) = x
and 2nd(a) = y. For a class X we denote by P(X) the class of all sets y such that
y ⊆ X .

Definition 4.1 Ordinals are transitive sets whose elements are transitive also. As
usual, we use lowercase Greek letters to range over ordinals.

V∗α =
⋃

β∈α

{
〈a, b〉 : a ∈ Vβ; b ⊆ ω × V∗β; (∀x ∈ b) 1st(2nd(x)) ∈ a

}
, (1)

Vα =
⋃

β∈α

P(Vβ),

V∗ =
⋃

α

V∗α,

V =
⋃

α

Vα.

As the powerset operation is not available in CZF, it is not clear whether the classes
V and V∗ can be formalized in CZF. However, employing the fact that CZF accom-
modates inductively defined classes, this can be demonstrated in the same vein as in
[30], Lemma 3.4.

The definition of V∗α in (1) is perhaps a bit involved. Note first that all the elements
of V∗ are ordered pairs 〈a, b〉 such that b ⊆ ω × V∗. For an ordered pair 〈a, b〉 to
enter V∗α the first conditions to be met are that a ∈ Vβ and b ⊆ ω × V∗β for some
β ∈ α. Furthermore, it is required that a contains enough elements from the transitive
closure of b in that whenever 〈e, c〉 ∈ b, then 1st(c) ∈ a.

Lemma 4.2 (CZF)

(i) V and V∗ are cumulative: for β ∈ α, Vβ ⊆ Vα and V∗β ⊆ V∗α.

(ii) For all sets a, a ∈ V.

(iii)If a, b are sets, b ⊆ ω × V∗ and (∀x ∈ b) 1st(2nd(x)) ∈ a, then 〈a, b〉 ∈ V∗.

Proof. [29], Lemma 4.2. ��

Metamathematical Properties of Intuitionistic Set Theories with Choice Principles 297

5 Defining realizability

We now proceed to define a notion of realizability over V∗. We use lowercase
gothic letters a, b, c, d, e, f, g, h, n,m, p, q . . . as variables to range over elements of
V∗, whereas variables e, c, d, f, g, . . . will be reserved for elements of ω. Each ele-
ment a of V∗ is an ordered pair 〈x, y〉, where x ∈ V and y ⊆ ω × V∗; and we define
the components of a by

a◦ := 1st(a) = x,

a∗ := 2nd(a) = y.

Lemma 5.1 For every a ∈ V∗, if 〈e, c〉 ∈ a∗, then c◦ ∈ a◦.

Proof. This is immediate by the definition of V∗. ��

If ϕ is a sentence with parameters in V∗, then ϕ◦ denotes the formula obtained from
ϕ by replacing each parameter a in ϕ with a◦.

Definition 5.2 Bounded quantifiers will be treated as quantifiers in their own right;
i.e., bounded and unbounded quantifiers are treated as syntactically different kinds
of quantifiers.

We define e

rt
φ for sentences φ with parameters in V∗. (The subscript rt is sup-

posed to serve as a reminder of “realizability with truth.”)

We shall use the abbreviations (x, y), (x)0, and (x)1 for pxy, p0x, and p1x, respec-
tively.

e

rt

a ∈ b iff a◦ ∈ b◦ ∧ ∃ c
[
〈(e)0, c〉 ∈ b∗ ∧ (e)1
rt

a = c
]

e

rt

a = b iff a◦ = b◦ ∧ ∀f∀c
[
〈f, c〉 ∈ a∗ → (e)0f
rt

c ∈ b
]

∧ ∀f∀c
[
〈f, c〉 ∈ b∗ → (e)1f
rt

c ∈ a
]

e

rt
φ ∧ ψ iff (e)0
rt

φ ∧ (e)1
rt
ψ

e

rt
φ ∨ ψ iff

[
(e)0 = 0 ∧ (e)1
rt

φ
]
∨
[
(e)0 �= 0 ∧ (e)1
rt

ψ
]

e
rt ¬φ iff ¬φ◦ ∧ ∀f ¬f
rt φ

e

rt
φ→ ψ iff (φ◦ → ψ◦) ∧ ∀f

[
f

rt
φ → ef

rt
ψ
]

e
rt (∀x ∈ a) φ iff (∀x ∈ a◦)φ◦ ∧

∀f ∀b
(
〈f, b〉 ∈ a∗ → ef

rt
φ[x/b]

)

e

rt

(∃x ∈ a)φ iff ∃b
(
〈(e)0, b〉 ∈ a∗ ∧ (e)1
rt

φ[x/b]
)

e

rt
∀xφ iff ∀a e

rt
φ[x/a]

e
rt ∃xφ iff ∃a e
rt φ[x/a].

298 Michael Rathjen

Notice that e

rt
u ∈ v and e

rt
u = v can be defined for arbitrary sets u, v, viz.,

not just for u, v ∈ V∗. The definitions of e

rt
u ∈ v and e

rt
u = v fall under the

scope of definitions by transfinite recursion.

Definition 5.3 By ∈-recursion we define for every set x a set xst as follows:

xst = 〈x, {〈0, ust〉 : u ∈ x}〉. (2)

Lemma 5.4 For all sets x, xst ∈ V∗ and (xst)◦ = x.

Proof. [29], Lemma 5.4. ��

Lemma 5.5 If ψ(b◦) holds for all b ∈ V∗, then ∀xψ(x).

Proof. [29], Lemma 5.5. ��

Lemma 5.6 If a ∈ V∗ and (∀b ∈ V∗)[b◦ ∈ a◦ → ψ(b◦)], then (∀x ∈ a◦)ψ(x).

Proof. [29], Lemma 5.6. ��

Lemma 5.7 If e

rt
φ, then φ◦.

Proof. [29], Lemma 5.7. ��

Our hopes for showing DP and NEP for CZF and related systems rest on the
following results.

Lemma 5.8 If e

rt

(∃x ∈ a)φ, then

∃b
(
〈(e)0, b〉 ∈ a∗ ∧ φ◦[x/b◦]

)
.

Proof. Obvious by 5.7. ��

Lemma 5.9 If e

rt
φ ∨ ψ, then
[
(e)0 = 0 ∧ φ◦

]
∨
[
(e)0 �= 0 ∧ ψ◦

]
.

Proof. Obvious by 5.7. ��

Lemma 5.10 Negated formulae are self-realizing, which is to say, if ψ is a statement
with parameters in V∗, then

¬ψ◦ → 0

rt
¬ψ.

Proof. Assume ¬ψ◦. From f
rt ψ we would get ψ◦ by Lemma 5.8. But this is
absurd. Hence ∀f ¬f

rt
ψ, and therefore, 0

rt
¬ψ. ��

Definition 5.11 Let t be an application term and ψ be a formula of set theory. Then
t
rt ψ is short for (∃e ∈ ω)[t & e ∧ e
rt ψ].

Metamathematical Properties of Intuitionistic Set Theories with Choice Principles 299

Theorem 5.12 For every theorem θ of CZF, there exists a closed application term
t such that

CZF - (t
rt θ).

Moreover, the proof of this soundness theorem is effective in that the application term
t can be effectively constructed from the CZF proof of θ.

Proof. [29], Theorem 6.1. ��

Remark 5.13 Theorem 5.12 holds also for CZF augmented by other large set ax-
ioms such as “Every set is contained in an inaccessible set” or “Every set is con-
tained in a Mahlo set.” For definitions of “inaccessible set” and “Mahlo set” see
[4, 9]. For example, in the case of the so-called regular extension axiom, this was
carried out in [29], Theorem 7.2.

6 Extending the interpretation to IZF

In this section we address several extensions of earlier results. We show that in
Theorem 5.12 CZF can be replaced by IZF and also that Markov’s principle may
be added.

Theorem 6.1 For every theorem θ of IZF, there exists an application term t such
that

IZF - (t
rt θ).

Moreover, the proof of this soundness theorem is effective in that the application term
t can be effectively constructed from the IZF proof of θ.

Proof. In view of Theorem 5.12 we only need to show that IZF proves that the
Powerset Axiom and the Full Separation Axiom are realized with respect to

rt
.

(Full Separation): Let ϕ(x) be an arbitrary formula with parameters in V∗. We want
to find e, e′ ∈ ω such that for all a ∈ V∗, there exists a b ∈ V∗ such that

(
e

rt
∀x ∈ b [x ∈ a ∧ ϕ(x)]

)
∧
(
e′

rt
∀x ∈ a[ϕ(x) → x ∈ b]

)
. (3)

For a ∈ V∗, define

Sep(a, ϕ) = {〈pfg, c〉 : f, g ∈ ω ∧ 〈g, c〉 ∈ a∗ ∧ f
rt ϕ[x/c]},

b = 〈{x ∈ a◦ : ϕ◦(x)}, Sep(a, ϕ)〉.

Sep(a, ϕ) is a set by full separation, and hence, b is a set. To ensure that b ∈ V∗,
let 〈h, c〉 ∈ Sep(a, ϕ). Then 〈g, c〉 ∈ a∗ and f

rt
ϕ[x/c] for some f, g ∈ ω. Thus

c◦ ∈ a◦, and by Lemma 5.7, ϕ◦[x/c◦], yielding c◦ ∈ {x ∈ a◦ : ϕ◦(x)}. Therefore,
by Lemma 4.2, we have b ∈ V∗.

300 Michael Rathjen

To verify (3), first assume 〈h, c〉 ∈ b∗ and c◦ ∈ b◦. Then h = pfg for some f, g ∈ ω
and 〈g, c〉 ∈ a∗ and f

rt
ϕ[x/c]. Since c◦ ∈ b◦ holds, it follows that c◦ ∈ a◦.

As a result, c◦ ∈ a◦ ∧ 〈g, c〉 ∈ a∗ ∧ ir
rt c = c, and consequently, we have
p(h)1ir
rt

b ∈ a and (h)0
rt
ϕ[x/c], where ir is the realizer of the identity

axiom ∀xx = x (see [23], Chapter 2, sections 5 and 6). Moreover, we have (∀x ∈
b◦)
(
x ∈ a◦ ∧ ϕ◦(x)

)
. Therefore with e = p(p(λu.(u)1)ir)(λu.(u)0), we get

e

rt
∀x ∈ b [x ∈ a ∧ ϕ(x)].

Now assume 〈g, c〉 ∈ a, c◦ ∈ a◦ and f

rt
ϕ[x/c]. Then 〈pfg, c〉 ∈ b∗ and also

c◦ ∈ b◦ as ϕ◦[x/c◦] is a consequence of f

rt
ϕ[x/c] by Lemma 5.7. Therefore

p(pfg)ir
rt c ∈ b. Finally, by the very definition of b, we have (∀x ∈ a◦)[ϕ◦(x) →
x ∈ b◦], and hence with e′ = λu.λv.p(pvu)ir , we get e′

rt
(∀x ∈ a)[ϕ(x) → x ∈

b].

(Powerset): It suffices to find a realizer for the formula ∀x∃y ∀z [z ⊆ x → z ∈ y]
as it implies the Powerset Axiom with the aid of Bounded Separation. Let a ∈ V∗.
Put A = {d : ∃g 〈g, d〉 ∈ a∗}. For y ⊆ ω ×A, let

ay := 〈{c◦ : ∃f 〈f, c〉 ∈ y}, y〉.

Note that ay ∈ V∗. The role of a set large enough to comprise the powerset of a in
V∗ will be played by the following set:

p := 〈P(a◦), {〈0, ay〉 : y ⊆ ω ×A}〉.

p is a set in our background theory IZF. For 〈0, ay〉 ∈ p∗, we have a◦y ⊆ a◦, and
thus a◦y ∈ P(a◦), so it follows that p ∈ V∗.

Now suppose e

rt

b ⊆ a. Put

yb := {〈(d, f), x〉 : d, f ∈ ω ∧ 〈(df)0, x〉 ∈ a∗ ∧∃c [〈d, c〉 ∈ b∗ ∧ (df)1
rt x = c]}.
(4)

(Recall that (x, y) stands for pxy.) By definition of yb, yb ⊆ ω ×A, and therefore,
〈0, ayb

〉 ∈ p∗.

If 〈f, c〉 ∈ b∗, it follows that ef

rt

c ∈ a since e

rt

b ⊆ a; and hence, there exists
x such that 〈(ef)0, x〉 ∈ a∗ and (ef)1
rt x = c when 〈(e, f), x〉 ∈ yb and therefore
((e, f), (ef)1)
rt

c ∈ ayb
. Thus we can infer that λf.((e, f), (ef)1)
rt

b ⊆ ayb
.

Conversely, if 〈g, x〉 ∈ a∗yb
= yb, then there exist d, f , and c such that g = (d, f),

〈d, c〉 ∈ b∗, and (df)1
rt
c = x, which entails that ((g)0, ((g)0(g)1)1)
rt

x ∈ b. As
a result, η(e)

rt
b = ayb

, where η(e) = (λf.((e, f), (ef)1), λg.((g)0, ((g)0(g)1)1)).
Hence (0, η(e))

rt
b ∈ p, so that

λe.(0, η(e))

rt
∀y [y ⊆ a → y ∈ p],

and therefore, by the genericity of quantifiers,

λe.(0, η(e))
rt ∀x∃y ∀z [z ⊆ x→ z ∈ y]. (5)

��

Metamathematical Properties of Intuitionistic Set Theories with Choice Principles 301

Invoking Theorem 7.2 of [29], we may replace IZF in the foregoing theorem by
IZF + REA. Inspection of the preceding proof shows also that Full Separation is
self-validating so that the theory CZF+Full Separation is self-validating. The same
is true of the Powerset Axiom in tandem with Bounded Separation. So we also get
the following result:

Corollary 6.2 Let T be any of the theories CZF + Powerset, CZF + Full
Separation, CZF + REA + Powerset, CZF+REA+ Full Separation, or IZF+
REA. Then for every theorem θ of T , there exists an application term t such that

T - (t

rt
θ).

More than that, the proof of this soundness theorem is effective in that the application
term t can be effectively constructed from the T proof of θ.

Theorem 6.3 IZF has the DP and NEP, and IZF is closed under CR, ECR,
CR1, UZR, and UR, too. The same is true of the theories of Corollary 6.2.

Proof. This follows from Theorem 6.1 and Corollary 6.2 by the proof of [29],
Theorem 1.2. ��
Remark 6.4 The preceding Theorem 6.3 and [29], Theorem 1.2, allow for general-
izations to extensions of CZF, CZF + REA, IZF (and the theories of Corollary
6.2) via “true” axioms of the form ¬ψ. This follows easily from the proofs of these
theorems and the fact that negated statements are self-realizing (see Lemma 5.10).
As a consequence, we get, for example, that if ¬ϑ is a true sentence and CZF -
¬ϑ → (φ ∨ ψ), then CZF - ¬ϑ → φ or CZF - ¬ϑ → ψ. Likewise,
CZF - ¬ϑ→ (∃x ∈ ω)θ(x) implies CZF - (∃x ∈ ω)[¬ϑ→ θ(x)].

The above results can be extended to include a classically valid principle. Markov’s
Principle, MP, is closely associated with the work of the school of Russian con-
structivists. The version of MP most appropriate to the set-theoretic context is the
schema

∀n ∈ ω
[
ϕ(n) ∨ ¬ϕ(n)

]
∧ ¬¬∃n ∈ ω ϕ(n) → ∃n ∈ ωϕ(n).

The variant
¬¬∃n ∈ ω R(n)→ ∃n ∈ ωR(n),

with R being a primitive recursive predicate, will be denoted by MPPR. Obviously,
MPPR is implied by MP.

Theorem 6.5 Let T be any of the theories CZF, CZF + REA, IZF, and IZF +
REA, or any of the theories of Corollary 6.2. For every theorem θ of T +MP, there
exists an application term t such that

T + MP - (t

rt
θ).

Moreover, the proof of this soundness theorem is effective in that the application term
t can be effectively constructed from the T + MP proof of θ.

302 Michael Rathjen

Proof. Arguing in T + MP, it remains to find realizing terms for MP. We assume
that

(e)0
rt (∀x∈ω)
[
ϕ(x) ∨ ¬ϕ(x)

]
, (6)

(e)1
rt
¬¬(∃x∈ω)ϕ(x). (7)

Let e′ = (e)0. Unraveling the definition of
rt for negated formulas, it is a
consequence of (7) that (∀d∈ω)¬ (∀f∈ω) ¬f

rt
(∃x∈ω)ϕ(x), and hence that

¬ (∀f∈ω) ¬f

rt

(∃x∈ω)ϕ(x), which implies ¬¬(∃f ∈ ω)f

rt

(∃x∈ω)ϕ(x)
(just using intuitionistic logic), and hence

¬¬(∃f ∈ ω)(f)1
rt
ϕ[x/(f)0]. (8)

(6) yields that (∀n∈ω)e′n ↓ and

(∀n∈ω)
(
[(e′n)0 = 0 ∧ (e′n)1
rt

ϕ[x/n]] ∨ [(e′n)0 �= 0 ∧ (e′n)1
rt
¬ϕ[x/n]]

)
.

Since (e′n)1
rt ¬ϕ(n) entails that ¬(e′n)1
rt ϕ(n), we arrive at

(∀n∈ω)[ψ(n) ∨ ¬ψ(n)], (9)

where ψ(n) is the formula (e′n)0 = 0 ∧ (e′n)1
rt
ϕ[x/n]. Utilizing that MP holds

in the background theory, from (8) and (9), we can deduce that there exists a natural
number m such that ψ(m) is true; i.e., (e′m)0 = 0 and (e′m)1
rt

ϕ[x/m]. Then,
with r := μn.(e′n)0 = 0,

(e′r)1
rt
ϕ[x/m].

r can be computed by a partial recursive function ζ from e′. Taking into account
that for any instance θ of MP with parameters in V∗, θ◦ is an instance of MP,
too, the upshot of the foregoing is that λe.(ζ((e)0), ((e)0ζ((e)0))1) is a realizer for
MP. ��

Theorem 6.6 If T is any of the theories CZF, CZF + REA, IZF, and IZF +
REA, or any of the theories of Corollary 6.2, then T + MP has the DP and the
NEP, and T + MP is closed under CR, ECR, CR1, UZR, and UR.

Proof. This follows from Theorem 6.5 and the proof of [29], Theorem 1.2. ��

7 Realizability for choice principles

The intent of this section is to show that
rt -realizability can be used to validate the
choice principles ACω, DC, RDC, and PAx, providing they hold in the back-
ground theory.

Metamathematical Properties of Intuitionistic Set Theories with Choice Principles 303

7.1 Internal pairing

As choice principles assert the existence of functions, the natural first step in the
investigation of choice principles over V∗ is the isolation of the V∗-internal versions
of pairs and ordered pairs.

If ϕ is a formula with parameters from V∗ we shall frequently write ‘V∗ |= ϕ’ to
convey that there is a closed application term t such that t
rt ϕ. It will be obvious
from the context how to construct t.

If SC is a scheme of formulae we take V∗ |= SC to mean that for every instance ϕ of
SC there is a closed application term t (uniformly depending on ϕ) such that t

rt
ϕ

holds.

Definition 7.1 For a, b ∈ V∗, set

{a, b} := 〈{a◦, b◦}, {〈0, a〉, 〈1, b〉}〉,

{a} := {a, a},

〈a, b〉 := 〈〈a◦, b◦〉, {〈0, {a}〉, 〈1, {a, b}〉}〉.

Lemma 7.2 (i) {a, b}◦ = {a◦, b◦}.

(ii) 〈a, b〉 ◦ = 〈a◦, b◦〉.

(iii){a, b}, 〈a, b〉 ∈ V∗.

(iv)V∗ |= c ∈ {a, b} ↔ [c = a ∨ c = b].

(v) V∗ |= c ∈ 〈a, b〉 ↔ [c = {a} ∨ c = {a, b}].

Proof. (i) and (ii) are obvious. To show (iii) we employ Lemma 4.2 (iii). Let x ∈
{a, b}∗. Then 2nd(x) ∈ {a, b} and thus 1st(2nd(x)) ∈ {a, b} ◦ by (i).

Now let y ∈ 〈a, b〉 ∗. Then 2nd(y) ∈ {{a}, {a, b}}, and hence, by (i), 1st(2nd(y)) ∈
{{a◦}, {a◦, b◦}}; thus 1st(2nd(y)) ∈ 〈a, b〉 ◦ by (ii).

One easily checks that (λx.x, λx.dx(1, (x)1)(x)00) provides a realizer for (iv).

In a similar vein one can construct a realizer for (v). ��

7.2 Axioms of choice in V∗

Theorem 7.3 (i) (CZF + ACω) V∗ |= ACω.

(ii) (CZF + DC) V∗ |= DC.

(iii)(CZF + RDC) V∗ |= RDC.

(iv)(CZF + PAx) V∗ |= PAx.

304 Michael Rathjen

Proof. In the following proof we will frequently use the phrase that “e′ is (effectively)
computable from e1, . . . , ek.” By this we mean that there exists a closed application
term q (which we cannot be bothered to exhibit) such that qe1 . . . ek & e′ holds in
the partial combinatory algebra Kl.

Ad (i): Recall from the proof of [29], Theorem 6.1, that the set ω is represented in
V∗ by ω, which is given via an injection of ω into V∗:

n = 〈n, {〈k, k〉 : k < n}〉, (10)

ω = 〈ω, {〈n, n〉 : n ∈ ω}〉. (11)

Now suppose

e

rt
∀x ∈ ω ∃y ϕ(x, y).

Then ∀n ∈ ω [en ↓ ∧ en
rt ∃y ϕ(n, y)], and hence,

∀n ∈ ω ∃a [en ↓ ∧ en

rt
ϕ(n, a)].

Invoking ACω in the background theory, there exists a function F : ω → V∗ such
that ∀n ∈ ω en

rt
ϕ(n, F (n)). Next, we internalize F . Letting F0 : ω → V

and F1 : ω → V∗ be defined by F0(n) := (F (n))◦ and F1(n) := 〈n, F (n)〉,
respectively, put

f = 〈F0, F1〉.

Lemma 7.2 and Lemma 4.2 (iii) entail that f ∈ V∗.

First, because of the properties of internal pairing in V∗ discerned in Lemma 7.2, it
will be shown that, internally in V∗, f is a functional relation with domain ω and that
this holds with a witness obtainable independently of e. To see that f is realizably
functional, assume that

h
rt 〈a, b〉 ∈ f and j
rt 〈a, c〉 ∈ f.

Then,

h1
rt
〈a, b〉 = 〈h0, F (h0)〉 and j1
rt

〈a, c〉 = 〈j0, F (j0)〉, (12)

where h1 = (h)1 and j1 = (j)1. This holds strictly in virtue of the definition of f and
the conditions on statements of membership. (12) in conjunction with Lemma 7.2 im-
plies that d

rt
h0 = j0 for some d, and hence, (h0)◦ = (j0)◦ by Lemma 5.7. Thus,

in view of the definition of n, we have h0 = j0, and consequently, F (h0) = F (j0).
As a result, ((h, j)

rt
b = c, with ((h, j) an application term easily constructed

from h and j.

Finally, we have to check on the realizability of ∀x ∈ ω ϕ(x, f(x)). Since ∀n ∈
ω en

rt
ϕ(n, F (n)), we deduce by Lemma 5.7 that ∀n ∈ ω ϕ◦(n, (F (n))◦) and

hence that ∀n ∈ ω ϕ◦(n, f◦(n)) as f◦ = F0. Since ∀n ∈ ω en

rt
ϕ(n, F (n)) and

Metamathematical Properties of Intuitionistic Set Theories with Choice Principles 305

f∗ = {〈n, 〈n, F (n)〉〉 : n ∈ ω}, we can now also construct a q independent of e such
that ∀n ∈ ω (qe)n

rt
ϕ(n, f(n)). So the upshot of the above is that we can cook up

a realizer r such that

r

rt
∀x ∈ ω ∃y ϕ(x, y) → ∃f [fun(f) ∧ dom(f) = ω ∧ ∀x ∈ ω ϕ(x, f(x))].

Ad (ii): Suppose

e
 ∀x ∈ a ∃y ∈ aϕ(x, y) and (13)

d
 b ∈ a. (14)

Then we have b◦ ∈ a◦ and there exists cb such that

〈(d)0, cb〉 ∈ a∗ ∧ (d)1
rt
b = cb. (15)

Moreover, (13) entails that

∀k ∀c (〈k, c〉 ∈ a∗ → ∃d [〈(ek)0, d〉 ∈ a∗ ∧ (ek)1
rt
ϕ(c, d)]) ,

and hence,

∀〈k, c〉 ∈ a∗ ∃〈m, d〉 ∈ a∗ ϕ�(〈k, c〉, 〈m, d〉), (16)

where ϕ�(〈n, c〉, 〈m, d〉) stands for en ↓ ∧ m = (en)0 ∧ (en)1
rt
ϕ(c, d).

By DC in the background theory, there are functions f : ω → ω and g : ω → V∗

such that f(0) = (d)0, g(0) = cb, ∀n ∈ ω 〈f(n), g(n)〉 ∈ a∗, and

∀n ∈ ω ϕ�(〈f(n), g(n)〉, 〈f(n+ 1), g(n+ 1)〉). (17)

(17) implies that

∀n ∈ ω [f(n+ 1) = (e(f(n)))0 ∧ (e(f(n)))1
rt
ϕ(g(n), g(n+ 1))] . (18)

Now put

F := {〈n, (g(n))◦ 〉 : n ∈ ω},

G := {〈n, 〈n, g(n)〉 〉 : n ∈ ω},

g := 〈F,G〉.

Lemma 7.2 and Lemma 4.2 (iii) guarantee that g ∈ V∗. First, because of the proper-
ties of internal pairing in V∗ discerned in Lemma 7.2, it will be shown that, internally
in V∗, g is a functional relation with domain ω and that this holds with a witness ob-
tainable independently of e and d. To see that g is realizably functional, assume that

h
rt 〈a, b〉 ∈ g and j
rt 〈a, c〉 ∈ g.

Then,

h1
rt
〈a, b〉 = 〈h0, F (h0)〉 and j1
rt

〈a, c〉 = 〈j0, F (j0)〉, (19)

306 Michael Rathjen

where h1 = (h)1 and j1 = (j)1. This holds strictly in virtue of the definition of g and
the conditions on statements of membership. (12) in conjunction with Lemma 7.2
implies that d
rt h0 = j0 for some d, and hence (h0)◦ = (j0)◦ by Lemma 5.7. Thus,
in view of the definition of n, we have h0 = j0 and consequently F (h0) = F (j0).
As a result, ((h, j)

rt
b = c, with ((h, j) an application term easily constructed

from h and j.

Finally, we have to effectively calculate a realizer ((e, d) from e and d such that

((e, d)

rt

g(0) = b ∧ ∀x ∈ ω ϕ(g(x), g(x + 1)). (20)

Since d

rt

b ∈ a and g(0) = cb it follows from (16) that we can construct a realizer
d̃ from d such that d̃
rt g(0) = b. Moreover, in view of (19) the function f is
recursive. Let ρ(n) := (e(f(n)))0. The S-m-n theorem shows how to compute an
index of the function ρ from e. Since

pnir
rt
〈n, g(n)〉 ∈ g,

ρ(n)

rt
ϕ(g(n), g(n+ 1)),

this shows that we can effectively construct an index ((e, d) from e and d such that
(20) holds.

Ad (iii): RDC implies DC (see [28], Lemma 3.4), and on the basis of CZF+DC,
the scheme RDC follows from the scheme:

∀x
(
ϕ(x) → ∃y

[
ϕ(y) ∧ ψ(x, y)

])
∧ ϕ(b) (21)

→ ∃z
(
b ∈ z ∧ ∀x ∈ z ∃y ∈ z [ϕ(y) ∧ ψ(x, y)]

)
.

Thus, in view of part (ii) of this theorem, it suffices to show that, working in CZF+
RDC, V∗ validates (21). So suppose b ∈ V∗ and

e
 ∀x
(
ϕ(x) → ∃y

[
ϕ(y) ∧ ψ(x, y)

])
and

d
 ϕ(b).

Then, for all k ∈ ω and a ∈ V∗, we have

(k
 ϕ(x)) → ∃c
[
(ek)0
rt

ϕ(c) ∧ (ef)1
rt
ψ(a, c)

]
.

By applying RDC to the above, we can extract functions ı : ω → ω, j : ω → ω,
and (: ω → V∗ such that ı(0) = d, ((0) = b, and for all n ∈ ω:

ı(n)

rt
ϕ(((n)) and j(n)

rt
ψ(((n), ((n+ 1)), (22)

ı(n+ 1) = (e(ı(n)))0 and j(n) = (e(ı(n)))1. (23)

By the last line, ı and j are recursive functions whose indices can be effectively
computed from e and d. Now set

Metamathematical Properties of Intuitionistic Set Theories with Choice Principles 307

d = 〈{(((n))◦ : n ∈ ω}, {〈n, ((n)〉 : n ∈ ω}〉 .

Obviously, d belongs to V∗. We have

p0ir
rt
b ∈ d. (24)

(22) entails that

∀n ∈ ω p(ı(n+ 1))(j(n))

rt
ϕ(((n)) ∧ ψ(((n), ((n+ 1))

and hence that

∀n ∈ ω p(n+ 1) (p(ı(n+ 1))(j(n)))

rt
∃y ∈ d [ϕ(((n)) ∧ ψ(((n), y)] .

Thus choosing an index ẽ such that ẽn = p(n+1) (p(ı(n+ 1))(j(n))), we arrive at

ẽ

rt
∀x ∈ d∃y ∈ d [ϕ(x) ∧ ψ(x, y)] . (25)

Note that ẽ can be effectively calculated from e and d. As a result, (24) and (25)
entail that we can construct a realizer q for (21).

Ad (iv): For the proof of V∗ |= PAx, fix an arbitrary a in V∗. Since PAx holds in
the background theory we can find bases X and Y and surjections f : X → a◦ and
g : Y → a∗. Define

X̃ := {〈0, v〉 : v ∈ X}, (26)

Ỹ := {〈g0(u) + 1, u〉 : u ∈ Y }, (27)

where g0 : Y → ω is defined by g0(u) := 1st(g(u)).

As X̃ is in one-to-one correspondence withX and Ỹ is in one-to-one correspondence
with Y , X̃ and Ỹ are bases, too. Moreover,

B := X̃ ∪ Ỹ (28)

is a basis as well because X̃ and Ỹ do not have any elements in common, and for an
arbitrary x ∈ B, we can decide whether it belongs to X̃ or Ỹ by inspecting 1st(x)
and determining whether 1st(x) = 0 or 1st(x) �= 0 since 1st(x) ∈ ω. We thus may
define a function F : B → a◦ by

F(x) =

{
f(2nd(x)) if x ∈ X̃,
(
2nd(g(2nd(x)))

)◦
if x ∈ Ỹ .

(29)

Since for u ∈ Y we have
(
2nd(g(2nd(〈g0(u) + 1, u〉)))

)◦ =
(
2nd(g(u))

)◦ ∈ a◦, F
clearly takes its values in a◦. Moreover,F is surjective as f is surjective. Now set

℘(u) := 〈g0(u) + 1, ust〉 for u ∈ Y , (30)

B+ := {〈 g0(u), ℘(u)〉 : u ∈ Y }, (31)

b := 〈B,B+〉. (32)

308 Michael Rathjen

By Lemmata 7.2 and 5.4, and the fact that (n)◦ = n (see (10) for the definition of

n), we see that (℘(u))◦ =
(
〈g0(u) + 1, ust〉

)◦
= 〈g0(u) + 1, u〉 ∈ B for u ∈ Y ,

it follows that b ∈ V∗. The latter also entails that ℘ is one-to-one and therefore
u �→ 〈 g0(u), ℘(u)〉 is a one-to-one correspondence between Y and B+, showing
that B+ is a base as well.

We shall verify that, internally in V∗, b is a base that can be surjected onto a. To
define this surjection, let

((u) := 〈℘(u), 2nd(g(u))〉 for u ∈ Y , (33)

G := {〈g0(u), ((u)〉 : u ∈ Y }, (34)

h := 〈F ,G〉. (35)

To see that h ∈ V∗, let x ∈ h∗. Then x ∈ G, so x = 〈g0(u), ((u)〉 for

some u ∈ Y . Thus 1st(2nd(x)) = (((u))◦ =
〈
(℘(u))◦ ,

(
2nd(g(u))

)◦〉 =
〈
〈g0(u) + 1, u〉,

(
2nd(g(u))

)◦〉 ∈ F .

First, we aim at showing that

V∗ |= h is a surjection from b onto a. (36)

To verify V∗ |= h ⊆ b × a, suppose e

rt
〈c, d〉 ∈ h. Then there exists u ∈ Y

such that (e)0 = g0(u) and (e)1
rt
〈c, d〉 = 〈℘(u), 2nd(g(u))〉. Hence, because of

p(g0(u))ir
rt
2nd(g(u)) ∈ a, one can effectively calculate an index e′ from e such

that e′
rt c ∈ b ∧ d ∈ a, showing that

V∗ |= h ⊆ b × a. (37)

To see that h is realizably total on b, assume that e

rt

c ∈ b. Then there exists d
such that 〈(e)0, d〉 ∈ b∗ and (e)1
rt c = d. Moreover, by virtue of the definition of
b∗, there exists u ∈ Y such that 〈(e)0, d〉 = 〈g0(u), ℘(u)〉, and thus, by definition of
h, (e)0ir
rt

〈d, 2nd(g(u))〉 ∈ h. Therefore an ẽ can be computed from e such that
ẽ

rt
c is in the domain of h, so that with (37) we can conclude that for

some e+ effectively obtainable from e, e+

rt

b is in the domain of h. As
a result, V∗ |= b ⊆ dom(h), so that in view of (37), we have

V∗ |= dom(h) = b. (38)

To establish realizable functionality of h, suppose e

rt
〈c, d〉 ∈ h and d

rt
〈c, e〉 ∈

h. Then there exist u, v ∈ Y such that (e)0 = g0(u), (d)0 = g0(v), (e)1
rt
〈c, d〉 =

〈℘(u), 2nd(g(u))〉, and (d)1
rt
〈c, e〉 = 〈℘(v), 2nd(g(v))〉. Hence

rt
℘(u) = ℘(v),

i.e.,
rt 〈g0(u) + 1, ust〉 = 〈g0(v) + 1, vst〉, and therefore
rt u
st = vst, yielding

u = (ust)◦ = (vst)◦ = v. As a result, q

rt

d = e for some q effectively computable
from e and d. We have thus established that

Metamathematical Properties of Intuitionistic Set Theories with Choice Principles 309

V∗ |= h is a function. (39)

For (36) it remains to be shown that h realizably maps onto a. So let e

rt

c ∈ a.
Then 〈(e)0, d〉 ∈ a∗ and (e)1
rt

c = d for some d. As g maps Y onto a∗,
there exists u ∈ Y such that g(u) = 〈(e)0, d〉 = 〈g0(u), 2nd(g(u))〉. Since

〈g0(u), ℘(u)〉 ∈ b∗ and
〈
g0(u), 〈℘(u), 2nd(g(u))〉

〉
∈ h∗, we have p(e)0ir
rt

℘(u) ∈ b and p(e)0ir
rt
〈℘(u), d〉 ∈ h. Therefore we can effectively compute an

index ẽ from e such that ẽ

rt

c is in the range of h. As a consequence,
V∗ |= h maps onto a. The latter in conjunction with (37), (38), and (39) yields
(36).

Finally, we have to verify that

V∗ |= b is a base. (40)

So assume that

e

rt
∀x ∈ b ∃y ϕ(x, y) (41)

for some formula ϕ(x, y) (parameters from V∗ allowed). To ensure (40) we have to
describe how to obtain an index e′ calculably from e satisfying

e′
rt ∃G [fun(G) ∧ dom(G) ⊇ b ∧ ∀x ∈ bϕ(x,G(x))] . (42)

From (41) it follows that ∀x ∈ b◦ ∃y ϕ◦(x, y), and hence, since b◦ = B = X̃ ∪ Ỹ ,

∀x ∈ X̃ ∃y ϕ◦(x, y). (43)

(41) also implies ∀ 〈n, c〉 ∈ b∗ ∃d en

rt
ϕ(c, d), yielding

∀u ∈ Y ∃d e(g0(u))

rt
ϕ(℘(u), d). (44)

X̃ and Y being bases, there exist functions K and L such that dom(K) = X̃ and
L : Y → V∗ satisfying

∀x ∈ X̃ ϕ◦(x,K(x)), (45)

∀u ∈ Y e(g0(u))

rt
ϕ(℘(u), L(u)). (46)

(46) implies that ∀u ∈ Y ϕ◦ (〈g0(u) + 1, u〉, (L(u))◦), so that we have ∀u ∈
Ỹ ϕ◦

(
x, (L(2nd(x)))◦

)
. Hence, for the same reasons as in the definition of F , (29)

we can define a function M with domain B = X̃ ∪ Ỹ by

M(x) =

{
K(x) if x ∈ X̃,
(
L(2nd(x))

)◦
if x ∈ Ỹ .

(47)

As a result,

∀x ∈ b◦ ϕ◦(x,M(x)). (48)

310 Michael Rathjen

Next, to internalize M in V∗ put

M := {〈 g0(u), 〈℘(u), L(u)〉 〉 : u ∈ Y }, (49)

m := 〈M,M〉. (50)

For y ∈ m∗ = M we have y = 〈 g0(u), 〈℘(u), L(u)〉 〉 for some u ∈ Y , and
thus 1st(2nd(y)) = 〈(℘(u))◦, (L(u))◦〉 = 〈 〈g0(u) + 1, u〉, (L(u))◦ 〉, so that with
x := 〈g0(u) + 1, u〉, we have x ∈ Ỹ and (L(u))◦ =

(
L(2nd(x))

)◦
, showing that

1st(2nd(y)) ∈M . As a consequence, we see that m ∈ V∗.

It remains to show that

e′

rt

fun(m) ∧ dom(m) ⊇ b ∧ ∀x ∈ bϕ(x,m(x)) (51)

for some index e′ that is calculable from e.

To establish the realizable functionality of m, suppose a

rt
〈c, d〉 ∈ m and b

rt

〈c, e〉 ∈ m. Then there exist u, v ∈ Y such that (a)0 = g0(u), (b)0 = g0(v), (a)1
rt

〈c, d〉 = 〈℘(u), L(u)〉, and (b)1
rt 〈c, e〉 = 〈℘(v), L(v)〉. Hence
rt ℘(u) = ℘(v),
i.e.

rt
〈g0(u) + 1, ust〉 = 〈g0(v) + 1, vst〉, and therefore

rt
ust = vst, yielding

u = (ust)◦ = (vst)◦ = v. As a result, q

rt

d = e for some q effectively computable
from a and b.

Next, we would like to verify that m is realizably defined on elements of b. An ele-
ment of b∗ is of the form 〈g0(u), ℘(u)〉 for some u ∈ Y . As 〈 g0(u), 〈℘(u), L(u)〉 〉 ∈
m∗, it is obvious how to construct q̃ such that q̃(g0(u))

rt
〈g0(u), ℘(u)〉 ∈

dom(m), and hence,

V∗ |= b ⊆ dom(m). (52)

Finally we have to ensure that

ẽ

rt
∀x ∈ bϕ(x,m(x)) (53)

for some ẽ computable from e. Now, each element of b∗ is of the form 〈g0(u), ℘(u)〉
for some u ∈ Y . Since 〈 g0(u), 〈℘(u), L(u)〉 〉 ∈ m∗ and e(g0(u))

rt
ϕ(℘(u), L(u))

holds by (46), we can cook up an index r such that (re)(g0(u))
rt ϕ(℘(u),m(℘(u))),
and therefore, noting that ∀x ∈ b◦ ϕ◦(x,m◦(x)) is true, we get ẽ

rt
∀x ∈

bϕ(x,m(x)) for an index ẽ effectively computable from e. ��

Theorem 7.4 If T is any of the theories CZF, CZF+REA, IZF, or IZF+REA
(or any of the theories of Corollary 6.2), and S is any combination of the axioms and
schemes MP, ACω, DC, RDC, and PAx, then T +S has the DP and the NEP,
and T + S is closed under CR, ECR, CR1, UZR, and UR.

Proof. This follows from Theorems 7.3 and 6.5 and the proof of [29], Theorem 1.2.
��

Metamathematical Properties of Intuitionistic Set Theories with Choice Principles 311

Remark 7.5 Theorem 7.4 can be extended to include large set axioms such as “Ev-
ery set is contained in an inaccessible set” or “Every set is contained in a Mahlo
set.” For definitions of “inaccessible set” and “Mahlo set” see [4, 9]. The proofs are
similar to the one for the regular extension axiom, which was carried out in [29],
Theorem 7.2.

References

1. P. Aczel: The type theoretic interpretation of constructive set theory. In: MacIntyre, A.
and Pacholski, L. and Paris, J, editor, Logic Colloquium ’77 (North Holland, Amsterdam
1978) 55–66.

2. P. Aczel: The type theoretic interpretation of constructive set theory: Choice principles.
In: A.S. Troelstra and D. van Dalen, editors, The L.E.J. Brouwer Centenary Symposium
(North Holland, Amsterdam 1982) 1–40.

3. P. Aczel: The type theoretic interpretation of constructive set theory: Inductive defini-
tions. In: R.B. Marcus, et al. editors, Logic, Methodology and Philosophy of Science VII
(North Holland, Amsterdam 1986) 17–49.

4. P. Aczel, M. Rathjen: Notes on constructive set theory, Technical Report
40, Institut Mittag-Leffler (The Royal Swedish Academy of Sciences, 2001).
http://www.ml.kva.se/preprints/archive2000-2001.php

5. M. Beeson: Continuity in intuitionistic set theories. In: M Boffa, D. van Dalen, K.
McAloon, editors, Logic Colloquium ’78 (North-Holland, Amsterdam 1979).

6. M. Beeson: Foundations of Constructive Mathematics. (Springer-Verlag, Berlin, Heidel-
berg, New York, Tokyo 1985).

7. A. Blass: Injectivity, projectivity, and the axiom of choice. Transactions of the AMS 255
(1979) 31–59.

8. E. Bishop and D. Bridges: Constructive Analysis. (Springer-Verlag, Berlin, Heidelberg,
New York, Tokyo 1985).

9. L. Crosilla, M. Rathjen: Inaccessible set axioms may have little consistency strength.
Annals of Pure and Applied Logic 115 (2002) 33–70.

10. S. Feferman: A language and axioms for explicit mathematics. In: J.N. Crossley, editor,
Algebra and Logic, Lecture Notes in Math. 450 (Springer, Berlin 1975) 87–139.

11. S. Feferman: Constructive theories of functions and classes. In: M. Boffa, D. van Dalen,
K. McAloon, editors, Logic Colloquium ’78 (North-Holland, Amsterdam 1979) 159–
224.

12. H. Friedman: Some applications of Kleene’s method for intuitionistic systems. In: A.
Mathias and H. Rogers, editors, Cambridge Summer School in Mathematical Logic, vol-
ume 337 of Lectures Notes in Mathematics (Springer, Berlin, 1973) 113–170.

13. H. Friedman: The disjunction property implies the numerical existence property. Pro-
ceedings of the National Academy of Sciences of the United States of America 72 (1975)
2877–2878.

14. H. Friedman: Set-theoretic foundations for constructive analysis. Annals of Mathematics
105 (1977) 868–870.

15. H. Friedman, S. Ščedrov: Set existence property for intuitionistic theories with dependent
choice. Annals of Pure and Applied Logic 25 (1983) 129–140.

16. H. Friedman, S. Ščedrov: The lack of definable witnesses and provably recursive func-
tions in intuitionistic set theory. Advances in Mathematics 57 (1985) 1–13.

312 Michael Rathjen

17. S.C. Kleene: On the interpretation of intuitionistic number theory. The Journal of Sym-
bolic Logic 10 (1945) 109–124.

18. S.C. Kleene: Disjunction and existence under implication in elementary intuitionistic
formalisms. The Journal of Symbolic Logic 27 (1962) 11–18.

19. S.C. Kleene: An addendum. Journal of Symbolic Logic 28 (1963) 154–156.
20. S.C. Kleene: Formalized recursive functionals and formalized realizability. Memoirs of

the AMS 89 (AMS, Providence 1969).
21. G. Kreisel, A.S. Troelstra: Formal systems for some branches of intuitionistic analysis.

Annals of Mathematical Logic 1 (1970) 229–387.
22. J. Lipton: Realizability, set theory and term extraction. In: The Curry-Howard isomor-

phism, Cahiers du Centre de Logique de l’Universite Catholique de Louvain, vol. 8
(1995) 257–364.

23. D.C. McCarty: Realizability and recursive mathematics, PhD thesis, Oxford University
(1984), 281 pages.

24. D.C. McCarty: Realizability and recursive set theory, Annals of Pure and Applied Logic
32 (1986) 153–183.

25. J.R. Moschovakis: Disjunction and existence in formalized intuitionistic analysis. In:
J.N. Crossley, editor, Sets, models and recursion theory. (North-Holland, Amsterdam
1967) 309–331.

26. J. Myhill: Some properties of Intuitionistic Zermelo-Fraenkel set theory. In: A. Mathias
and H. Rogers (eds.): Cambridge Summer School in Mathematical Logic, volume 337 of
Lectures Notes in Mathematics (Springer, Berlin 1973) 206–231.

27. J. Myhill: Constructive set theory. The Journal of Symbolic Logic 40 (1975) 347–382.
28. M. Rathjen: The anti-foundation axiom in constructive set theories. In: G. Mints,

R. Muskens, editors, Games, Logic, and Constructive Sets. (CSLI Publications, Stanford
2003) 87–108.

29. M. Rathjen: The disjunction and other properties for constructive Zermelo-Fraenkel set
theory. The Journal of Symbolic Logic 70 (2005) 1233–1254.

30. M. Rathjen: Realizability for constructive Zermelo-Fraenkel set theory. In: J. Väänänen,
V. Stoltenberg-Hansen, editors, Logic Colloquium ’03. Lecture Notes in Logic 24 (A.K.
Peters, 2006) 282–314.

31. M. Rathjen: Choice principles in constructive and classical set theories. In: Z. Chatzi-
dakis, P. Koepke, W. Pohlers, editors, Logic Colloquium ’02. Lecture Notes in Logic 27
(A.K. Peters 2006).

32. M. Rathjen, S. Tupailo: Characterizing the interpretation of set theory in Martin-Löf type
theory. Annals of Pure and Applied Logic 141 (2006) 442–471.

33. L. Tharp: A quasi-intuitionistic set theory. Journal of Symbolic Logic 36 (1971) 456–
460.

34. A.S. Troelstra: Realizability. In: S.R. Buss, editor, Handbook of Proof Theory (Elsevier,
Amsterdam 1998) 407–473.

35. A.S. Troelstra, D. van Dalen: Constructivism in Mathematics, Volumes I, II. (North Hol-
land, Amsterdam 1988).

New Developments in Proofs and Computations

Helmut Schwichtenberg

Mathematisches Institut der Universität München, D-80333 München, Germany
schwicht@math.lmu.de

It is a tempting idea to use formal existence proofs as a means to precisely and ver-
ifiably express algorithmic ideas. This is clearly possible for “constructive” proofs,
which are informally understood via the Brouwer–Heyting–Kolmogorov interpreta-
tion (BHK-interpretation, for short). This interpretation of intuitionistic (and min-
imal) logic explains what it means to prove a logically compound statement in
terms of what it means to prove its components; the explanations use the notions
of construction and constructive proof as unexplained primitive notions. For prime
formulas, the notion of proof is supposed to be given. The clauses of the BHK-
interpretation are:

• p proves A ∧B if and only if p is a pair 〈p0, p1〉 and p0 provesA, p1 proves B;

• p proves A→ B if and only if p is a construction transforming any proof q of A
into a proof p(q) of B;

• ⊥ is a proposition without proof;

• p proves ∀x∈DA(x) if and only if p is a construction such that for all d ∈ D,
p(d) provesA(d);

• p proves ∃x∈DA(x) if and only if p is of the form 〈d, q〉 with d an element of D,
and q a proof of A(d).

The problem with the BHK-interpretation is its reliance on the unexplained concepts
of construction and constructive proof. Gödel (1958) tried to replace the notion of
constructive proof by something more definite, less abstract, his principal candidate
being a notion of “computable functional of finite type,” which is to be accepted
as sufficiently well understood to justify the axioms and rules of his system T, an
essentially logic-free theory of functionals of finite type. One only needs to know
that certain basic functionals are computable (including primitive recursion opera-
tors in finite types), and that the computable functionals are closed under composi-
tion.

314 Helmut Schwichtenberg

The general framework for proof interpretations as we understand it is to assign to
every formula A a new one ∃xA1(x) with A1(x) ∃-free. Then from a derivation
M : A we want to extract a “realizing” term r such that A1(r) can be proved. The
intention here is that its meaning should in some sense be related to the meaning
of the original formula A. The well-known (modified) realizability interpretation
and Gödel’s Dialectica interpretation both fall under this scheme (cf. Oliva (2006)).
However, Gödel explicitly states in Gödel (1958) that his Dialectica interpretation is
not the one intended by BHK-interpretation.

One might think that from the informal idea of a particular constructive proof it
should be clear what is its algorithmic content. This, however, is not always true.
An example is Tait’s proof of the existence of normal forms for the simply typed
λ-calculus, which uses so-called computability predicates. Somewhat unexpectedly,
it turns out that its computational content is the normalization-by-evaluation algo-
rithm. This has first been observed by Berger (1993) and formally treated (including
machine extraction of programs) in Berger et al. (2006).

An even greater challenge is the task of finding computational content in proofs of
classical existence theorems, of the form¬∀y¬A0(y) withA0(y) quantifier-free; we
use the shorthand ∃̃yA0(y) for such formulas. It is well known that we need to require
that the kernelA0(y) is quantifier-free. Then the whole proof can be seen as deriving
falsity from the (false) assumption ∀y¬A0(y). Now consider the long normal form of
this proof. In this long normal form, each instance of the false assumption ∀y¬A0(y)
must be applied to a closed term ri of type N, and for at least one of those ri, the
kernel ¬A0(ri) must be false and hence A0(ri) is true. This “direct method” has
been described in Schwichtenberg (1993); in Berger and Schwichtenberg (1995), it
has been shown that it gives the same results as the so-called A-translation of
Friedman (1978) (and moreover, that we have the same algorithm in both cases).
A refined form of the A-translation has been introduced in Berger et al. (2002) and
further studied and applied in Berger et al. (2001) and Seisenberger (2003).

An alternative to extract computational content from proofs of classic existence the-
orems is Gödel’s Dialectica interpretation (1958), which is what we want to con-
centrate on in the present paper. Gödel assigned to every formula A a new one
∃�x∀�yAD(�x, �y) with AD(�x, �y) quantifier-free. Here �x, �y are lists of variables of finite
types; the use of higher types is necessary even when the original formula A was
first order. He did this in such a way that whenever a proof of A say in constructive
arithmetic was given, one could produce closed terms �r such that the quantifier-free
formula AD(�r, �y) is provable in T.

In Gödel (1958), Gödel referred to a Hilbert-style proof calculus. However, since the
realizers will be formed in a λ-calculus formulation of system T, Gödel’s interpre-
tation becomes a lot more perspicious when it is done for a natural deduction cal-
culus. Such a natural deduction-based treatment of the Dialectica interpretation has
been given by Jørgensen (2001) and Hernest (2006). Both authors use a formulation
of natural deduction where open assumptions are viewed as formulas, and conse-
quently, the necessity of contractions arises when an application of the implication

New Developments in Proofs and Computations 315

introduction rule →+ discharges more than one assumption formula. However, it
seems to be more in the spirit of the Curry–Howard correspondence (formulas cor-
respond to types, and proofs to terms) to view assumptions as assumption variables.
This is particularly important when—say in an implementation—one wants to as-
sign object terms (“realizers”, in Gödel’s T) to proof terms. To see the point, notice
that a proof term M may have many occurrences of a free assumption variable uA.
The associated realizer [[M]] then needs to contain an object variable xτ(A)

u uniquely
associated with uA, again with many occurrences. To organize this in an appro-
priate way it seems mandatory to be able to refer to an assumption A by means
of its “label” u. The present exposition differs from previous ones mainly in this
respect.

The rest of the paper is rather technical. We give a detailed natural deduction-based
proof of the soundness theorem for the Dialectica interpretation, and extend it to the
Dialectica interpretation with majorants (or “monotone” Dialectica interpretation),
introduced by Kohlenbach (1992) and Kohlenbach (1996).

The main motivation for this work has been the desire to have a clean and explicit
natural deduction-based proof of the soundness theorem, for the exact Dialectica in-
terpretation, as well as for its variant with majorants, in such a way that this proof
can be used as a template for an implementation. For the very same reason we have
added a simplified and implementation-friendly proof of the fact—first observed by
Kohlenbach (1992)—that WKL can be formulated as a ∀∃≤∀-axiom, and hence is
covered by the Dialectica interpretation with majorants. However, it remains to be
seen to what extent such an implementation will succeed in producing informa-
tive and usable realizers. A promising first step in this direction has been done by
Hernest (2006); particularly interesting is his successful integration of the noncom-
putational (“uniform”) quantifiers of Berger (1993), Berger (2005).

We begin in Sec. 1 with a description of the arithmetic HAω in finite types that we
consider. Sec. 2 contains a proof of the Soundness Theorem for Gödel’s Dialectica
interpretation, and Sec. 3 gives the majorant-based version of it. The final subsection
contains a proof that WKL can be formulated as a ∀∃≤∀-axiom.

1 Arithmetic in Finite Types

1.1 Types

Our type system is defined by two type-forming operations: arrow types ρ → σ and
the formation of inductively generated types μ�α�κ, where �α = (αj)j=1,...,N is a list
of distinct “type variables”, and �κ = (κi)i=1,...,k is a list of “constructor types,”
whose argument types contain α1, . . . , αN in strictly positive positions only.

For instance, μα(α, α→ α) is the type of natural numbers; here the list (α, α→ α)
stands for two generation principles: α for “there is a natural number” (the 0), and
α→ α for “for every natural number there is a next one” (its successor).

316 Helmut Schwichtenberg

Definition. Let �α = (αj)j=1,...,N be a list of distinct type variables. Types
ρ, σ, τ, μ ∈ Ty and constructor types κ ∈ KT�α are defined inductively:

ρ, σ ∈ Ty
ρ→ σ ∈ Ty

,
�ρ, �σ1, . . . , �σn ∈ Ty

�ρ→ (�σ1 → αj1) → · · · → (�σn → αjn)→ αj ∈ KT�α
(n ≥ 0),

�κ∈KT�α, ∀0<j≤N∃j1,...,jn<jκj = �ρ→ (�σ1 → αj1)→ · · · → (�σn → αjn)→ αj

(μ�α(κ1, . . . , κk))j ∈ Ty
,

with 1 ≤ N ≤ k; we call κ1,. . . ,κN nullary constructor types. Here �ρ → σ means

ρ1 → · · · → ρm → σ, associated with the right. We reserve μ for types of the form
(μ�α(κ1, . . . , κk))j . The parameter types of μ are the members of all �ρ appearing in
its constructor types κ1, . . . , κk.

In the present paper it suffices to only consider the μ-types

U := μαα,

B := μα(α, α),

N := μα(α, α→ α),

bin := μα(α, α→ α, α→ α),
ρ ∧ σ := μα(ρ→ σ → α).

A type is finitary if it is a μ-type with all its parameter types �ρ finitary, and all its
constructor types are of the form �ρ → αj1 → · · · → αjn → αj , so the �σ1, . . . , �σn

in the general definition are all empty. For example, U, B, N, bin are finitary, and
ρ ∧ σ is finitary provided its parameter types are.

1.2 Constants

For each of our base types we have constructors Cμ
i and recursion operatorsRτ

μ, as
follows:

ttB := CB
1 , ffB := CB

2 ,

Rτ
B : B→ τ → τ → τ,

0N := CN
1 , SN→N := CN

2 ,

Rτ
N : N→ τ → (N → τ → τ) → τ,

1bin := Cbin
1 , Sbin→bin

0 := Cbin
2 , Sbin→bin

1 := Cbin
3 ,

Rτ
bin : bin→ τ → (bin → τ → τ) → (bin→ τ → τ) → τ,

(
∧+

ρσ

)ρ→σ→ρ∧σ := Cρ∧σ
1 ,

Rτ
ρ∧σ : ρ ∧ σ → (ρ→ σ → τ) → τ.

New Developments in Proofs and Computations 317

1.3 Terms

Terms are inductively defined from typed variables xρ and the constants, that is, con-
structors Cμ

i and recursion operatorsRτ
μ, by abstraction (λxρMσ)ρ→σ and applica-

tion (Mρ→σNρ)σ . It is well known that every such term has a uniquely determined
long normal form w.r.t. β- and R-conversions and η-expansions. We consider two
terms to be definitionally equal if they have the same long normal form and identify
such terms.

Notice that in the more general setting of Schwichtenberg (2006), where we also
allow constants defined by computation rules, definitional equality should mean that
there is a purely equational proof of their equality based on β- and R-conversions
and η-expansions.

Notice also that the boolean “recursion” operator Rτ
B does not make any recursive

calls. We denote Rτ
Btrs by [if t then r else s] (which also indicates that this term

should be evaluated “lazily”).

Using the recursion operators we can define boolean-valued functions represent-
ing (decidable) equality =μ : μ → μ → B for finitary base types μ, for instance
N:

(0 = 0) := tt,

(0 = S(n)) := ff,

(S(m) = 0) := ff,

(S(m) = S(n)) := (m = n).

The projections of a pair to its components can be defined easily:

r0 := Rρ
ρ∧σr

ρ∧σ(λxρ,yσxρ), r1 := Rρ
ρ∧σr

ρ∧σ(λxρ,yσyσ).

We also define the canonical inhabitant ερ of a type ρ:

εμj := C�μ
j ε

�ρ(λ�x1ε
μj1) · · · (λ�xn

εμjn), ερ→σ := λxε
σ.

There are many canonical isomorphisms between types; (ρ ∧ σ → τ) ∼ (ρ →
σ → τ) is an example. The isomorphism pairs can be constructed explicitly from the
functions above.

1.4 Formulas

Atomic formulas are atom(rB), indicating that the argument is true. We may also
allow other predicate constants, for instance, inductively defined ones, like Leibniz
equality.

Notice that there is no need for (logical) falsity ⊥, since we can take the atomic
formulaF := atom(ff) – called arithmetical falsity—built from the boolean constant
ff instead.

The formulas of HAω are built from atomic ones by the connectives→, ∀, ∃, and ∧.
We define negation ¬A by A→ F .

318 Helmut Schwichtenberg

1.5 Proof terms

We use Gentzen’s natural deduction calculus for logical derivations consisting of the
well-known rules→+,→−, ∀+, and ∀−. It will be convenient to write derivations as
terms, where the derived formula is viewed as the type of the term. This representa-
tion is known under the name Curry–Howard correspondence.

We give an inductive definition of derivation terms in Table 1, where for clarity we
have written the corresponding derivations to the left. For the universal quantifier ∀,

derivation term

u : A uA

[u : A]

|M
B →+uA→ B

(λuAMB)A→B

|M
A→ B

| N
A →−

B

(MA→BNA)B

|M
A ∀+x (with var.cond.)∀xA

(λxM
A)∀xA (with var.cond.)

|M
∀xA(x) r

∀−
A(r)

(M∀xA(x)r)A(r)

Table 1. Derivation terms for →, ∀

there is an introduction rule ∀+x and an elimination rule ∀−, whose right premise
is the term r to be substituted. The rule ∀+x is subject to the following (Eigen-)
variable condition: The derivation term M of the premise A should not contain any
open assumption with x as a free variable.

New Developments in Proofs and Computations 319

1.6 Axioms

The logical axioms are the truth axiom Axtt : atom(tt), the introduction and elimi-
nation axioms ∃+ and ∃− for existence, and ∧+, ∧− for conjunction:

∃+ : ∀z(A→ ∃zA),

∃− : ∃zA→ ∀z(A→ B) → B (z /∈ FV(B)),

∧+ : A→ B → A ∧B,

∧− : A ∧B → (A→ B → C) → C,

and the induction axioms

Indp,A : ∀p

(
A(tt)→ A(ff) → A(pB)

)
,

Indn,A : ∀m

(
A(0) → ∀n(A(n) → A(Sn)) → A(mN)

)
,

Indb,A : ∀b

(
A(1)→ ∀b(A(b) → A(S0b))→ ∀b(A(b) → A(S1b)) → A(bbin)

)
,

Indx,A : ∀x

(
∀yρ,zσA(〈y, z〉) → A(xρ∧σ)

)
,

where 〈y, z〉 is shorthand for ∧+yz. The final axiom expresses that every object of a
pair type is a pair; it is sometimes called pair elimination axiom.

Using boolean induction Indp,A, we can derive the arithmetical form of ex-falso-
quodlibet, that is, F → atom(pB) (recall F := atom(ff)), and then F → A for
arbitrary formulas A. Similarly—again using the fact that we only have decidable
atoms of the form atom(rB)—we can prove compatibility

x1 =μ x2 → A(x1)→ A(x2) (μ finitary base type).

Let HAω be the theory based on the axioms above including the induction axioms,
and MLω be the (many-sorted) minimal logic, where the induction axioms are left
out.

We define pointwise equality =ρ, by induction on the type. x =μ y for μ a finitary
base type is already defined, and

(x =ρ→σ y) := ∀z(xz =σ yz),

(x =ρ∧σ y) := (x0 =ρ y0) ∧ (x1 =σ y1).

The extensionality axioms are

y1 =ρ y2 → xρ→σy1 =σ x
ρ→σy2.

We write E-HAω when the extensionality axioms are present.

In Troelstra (1973), Howard proved that already the first nontrivial instance of the
extensionality scheme

320 Helmut Schwichtenberg

y1 =1 y2 → xy1 =N xy2

(with 1 := N → N) does not have a Dialectica realizer. In fact, he introduced the
majorizing relation as a tool to prove this result. This is in contrast to the realiz-
ability interpretation, where extensionality axioms are unproblematic, since they are
∃-free.

As a substitute for extensionality one may add the weak extensionality rule

A0 → r =ρ s

A0 → t(r) =σ t(s)
(A0 quantifier-free)

to the formal system considered. This “rule” is special in the sense that its premise
must have been derived without open assumptions. Since the conclusion is (equiv-
alent to) a purely universal formula, adding the weak extensionality rule does not
change the behavior of the formal system w.r.t. the Dialectica interpretation.

We write WE-HAω when the weak extensionality rule is present but not the exten-
sionality axioms.

We will also consider some more axiom schemes. The axiom of choice (AC) is the
scheme

∀xρ∃yσA(x, y) → ∃fρ→σ∀xρA(x, f(x)).

Independence of premise (IP∀) is the scheme

(A→ ∃xρB)→ ∃xρ(A→ B) (x /∈ FV(A))

with A of the form ∀yσA0, A0 quantifier-free. Moreover, we need the (constructively
doubtful) Markov principle (MP), for a higher type variable xρ and quantifier-free
formulas A0, B0:

(∀xρA0 → B0) → ∃xρ(A0 → B0) (xρ /∈ FV(B0)).

2 Gödel’s Dialectica Interpretation

Gödel (1958) assigned to every formula A a new one ∃�x∀�yAD(�x, �y) with AD(�x, �y)
quantifier-free. Here �x, �y are lists of variables of finite types; the use of higher types
is necessary even when the original formula A was first order. He did this in such a
way that whenever a proof of A say in constructive arithmetic was given, one could
produce closed terms �r such that the quantifier-free formula AD(�r, �y) is provable in
T. Rather than working with tupels of variables and terms, we prefer to work with
product types, in order to simplify the implementation. So we assign to every formula
A its Gödel translation ∃x∀y|A|xy , with |A|xy quantifier-free.

New Developments in Proofs and Computations 321

2.1 Positive and Negative Types

To determine the types of x and y, we assign to every formula A objects τ+(A),
τ−(A) (a type or the “nulltype” symbol ε). τ+(A) is intended to be the type of a
(Dialectica-)realizer to be extracted from a proof of A, and τ−(A) the type of a
challenge for the claim that this term realizes A. The definition can be conveniently
written if we extend the use of ρ→ σ and ρ ∧ σ to the nulltype symbol ε:

(ρ→ ε) := ε,

(ε→ σ) := σ,

(ε→ ε) := ε,

(ρ ∧ ε) := ρ,

(ε ∧ σ) := σ,

(ε ∧ ε) := ε.

With this understanding of ρ→ σ and ρ ∧ σ, we can simply write

τ+(P (�s)) := ε,

τ+(A ∧B) := τ+(A) ∧ τ+(B),

τ+(∀xρA) := ρ→ τ+(A),

τ+(∃xρA) := ρ ∧ τ+(A),

τ−(P (�s)) := ε,

τ−(A ∧B) := τ−(A) ∧ τ−(B),

τ−(∀xρA) := ρ ∧ τ−(A),

τ−(∃xρA) := τ−(A).

and for implication

τ+(A→ B) :=
(
τ+(A)→ τ+(B)

)
∧
(
τ+(A) → τ−(B) → τ−(A)

)
,

τ−(A→ B) := τ+(A) ∧ τ−(B).

In case τ+(A) (τ−(A)) is �= ε we say that A has positive (negative) computational
content. For formulas without positive or without negative content one can give an
easy characterization, involving the well-known notion of positive or negative occur-
rences of quantifiers in a formula:

τ+(A) = ε↔ A has no positive ∃ and no negative ∀,

τ−(A) = ε↔ A has no positive ∀ and no negative ∃,

τ+(A) = τ−(A) = ε↔ A is quantifier-free.

Examples.

(a) For quantifier-free A0, B0,

τ+(∀xρA0) = ε, τ−(∀xρA0) = ρ,

τ+(∃xρA0) = ρ, τ−(∃xρA0) = ε,

τ+(∀xρ∃yσA0) = (ρ→ σ), τ−(∀xρ∃yσA0) = ρ.

322 Helmut Schwichtenberg

(b) For arbitrary A,B, writing τ±A for τ±(A)

τ+(∀zρ(A→ B)) = ρ→ (τ+A→ τ+B) ∧ (τ+A→ τ−B → τ−A),

τ+(∃zρA→ B) = (ρ ∧ τ+A→ τ+B) ∧ (ρ ∧ τ+A→ τ−B → τ−A),

τ−(∀zρ(A→ B)) = ρ ∧ (τ+A ∧ τ−B),

τ−(∃zρA→ B) = (ρ ∧ τ+A) ∧ τ−B.

It is interesting to note that for an existential formula with a quantifier-free kernel,
the positive and negative type is the same, irrespective of the choice of the existential
quantifier, constructive or classical.

Lemma. τ±(∃̃xA0) = τ±(∃xA0) for A0 quantifier-free. In more detail,

(a) τ+(∃̃xA) = τ+(∃xA) = ρ ∧ τ+(A) provided τ−(A) = ε,

(b) τ−(∃̃xA) = τ−(∃xA) = τ−(A) provided τ+(A) = ε.

Proof. For an arbitrary formula A we have

τ+(∀xρ(A→ ⊥)→ ⊥)

= τ+(∀xρ(A→ ⊥))→ τ−(∀xρ(A→ ⊥))

= (ρ→ τ+(A→ ⊥))→ (ρ ∧ τ−(A→ ⊥))

= (ρ→ τ+(A) → τ−(A)) → (ρ ∧ τ+(A)),

τ+(∃xρA) = ρ ∧ τ+(A).

Both types are equal if τ−(A) = ε. Similarly

τ−(∀xρ(A→⊥)→ ⊥) = τ+(∀xρ(A→⊥)) = τ+(A→⊥) = τ+(A) → τ−(A),

τ−(∃xρA) = τ−(A).

Both types are = τ−(A) if τ+(A) = ε. ��

2.2 Gödel Translation

For every formula A and terms r of type τ+(A) and s of type τ−(A), we define a
new quantifier-free formula |A|rs by induction on A.

|P (�s)|rs := P (�s),

|∀xA(x)|rs := |A(s0)|r(s0)
s1 ,

|∃xA(x)|rs := |A(r0)|r1
s ,

|A ∧B|rs := |A|r0
s0 ∧ |B|r1

s1,

|A→ B|rs := |A|s0r1(s0)(s1) → |B|r0(s0)
s1 .

New Developments in Proofs and Computations 323

The formula ∃x∀y|A|xy is called the Gödel translation of A and is often denoted
by AD. Its quantifier-free kernel |A|xy is called Gödel kernel of A; it is denoted by
AD .

For readability we sometimes write terms of a pair type in pair form:

|∀zA|fz,y := |A|fz
y ,

|∃zA|z,x
y := |A|xy ,

|A ∧B|x,z
y,u := |A|xy ∧ |B|zu,

|A→ B|f,g
x,u := |A|xgxu → |B|fx

u .

Examples.

(a) For quantifier-free formulas A0, B0 with xρ /∈ FV(B0)

τ+(∀xρA0 → B0) = τ−(∀xρA0) = ρ,

τ+(∃xρ(A0 → B0)) = ρ,

τ−(∀xρA0 → B0) = ε,

τ−(∃xρ(A0 → B0)) = ε.

Then

|∀xρA0 → B0|xε = |∀xρA0|εx → |B0|εε = A0 → B0,

|∃xρ(A0 → B0)|xε = A0 → B0.

(b) For A with τ+(A) = ε and z /∈ FV(A), and arbitrary B

τ+(A→ ∃zρB) = (ρ ∧ τ+(B)) ∧ (τ+(B) → τ−(A)),

τ+(∃zρ(A→ B)) = ρ ∧ (τ+(B) ∧ (τ+(B) → τ−(A))),

τ−(A→ ∃zρB) = τ−(B),

τ−(∃zρ(A→ B)) = τ−(B).

Then

|A→ ∃zρB|〈z,y〉,g
v = |A|εgv → |∃zρB|z,y

v = |A|εgv → |B|yv,

|∃zρ(A→ B)|z,〈y,g〉
v = |A→ B|y,g

v = |A|εgv → |B|yv.

(c) For arbitrary A,B

τ+(∀xρ∃yσA(x, y)) = (ρ→ σ ∧ τ+(A)),

τ+(∃fρ→σ∀xρA(x, fx)) = (ρ→ σ) ∧ (ρ→ τ+(A)),

τ−(∀xρ∃yσA(x, y)) = ρ ∧ τ−(A),

τ−(∃fρ→σ∀xρA(x, fx)) = ρ ∧ τ−(A).

324 Helmut Schwichtenberg

Then

|∀xρ∃yσA(x, y)|λx〈fx,z〉
x,u = |∃yσA(x, y)|fx,z

u = |A(x, fx)|zu,

|∃fρ→σ∀xρA(x, fx)|f,λxz
x,u = |∀xρA(x, fx)|λxz

x,u = |A(x, fx)|zu.

(d) For arbitrary A, writing τ±A for τ±(A)

τ+(∀zρ(A→ ∃zρA)) = ρ→ (τ+A→ ρ ∧ τ+A) ∧ (τ+A→ τ−A→ τ−A),

τ−(∀zρ(A→ ∃zρA)) = ρ ∧ (τ+A ∧ τ−A).

Then

|∀zρ(A→ ∃zρA)|λz〈λx〈z,x〉,λx,w w〉
z,〈x,w〉 = |A→ ∃zρA|λx〈z,x〉,λx,w w

x,w

= |A|xw → |∃zρA|z,x
w

= |A|xw → |A|xw.

2.3 Characterization

We consider the question when the Gödel translation of a formula A is equivalent to
the formula itself.

Theorem. (Characterization)

AC + IP∀ + MP - A↔ ∃x∀y |A|xy .

Proof. Induction on A; we only treat one case.

(A→ B) ↔ (∃x∀y |A|xy → ∃v∀u |B|vu) by IH

↔ ∀x(∀y |A|xy → ∃v∀u |B|vu)

↔ ∀x∃v(∀y |A|xy → ∀u |B|vu) by (IP∀)

↔ ∀x∃v∀u(∀y |A|xy → |B|vu)

↔ ∀x∃v∀u∃y(|A|xy → |B|vu) by (MP)

↔ ∃f∀x∀u∃y(|A|xy → |B|fx
u) by (AC)

↔ ∃f,g∀x,u(|A|xgxu → |B|fx
u) by (AC)

↔ ∃f,g∀x,u|A→ B|f,g
x,u,

where the last step is by definition. ��

New Developments in Proofs and Computations 325

Without the Markov principle one can still prove some relations between A and its
Gödel translation. This, however, requires conditions G+(A), G−(A) on A, defined
inductively by

G±(P (�s)) := 3,

G+(A→ B) := (τ−(A) = ε) ∧G−(A) ∧G+(B),

G−(A→ B) := G+(A) ∧G−(B),

G±(A ∧B) := G±(A) ∧G±(B),

G±(∀xA) := G±(A), G±(∃xA) := G±(A).

Proposition.

AC - ∃x∀y |A|xy → A if G−(A), (1)

AC - A→ ∃x∀y |A|xy if G+(A).

Proof. Both directions are proved simultaneously, by induction on A. ��

2.4 Soundness

We prove soundness of the Dialectica interpretation, for our natural deduction for-
mulation of the underlying logic.

We first treat some axioms, and show that each of them has a “logical Dialectica
realizer,” that is, a term t such that ∀y|A|ty can be proved logically.

For (∃+) this was proved in Example (d) of 2.2. Conjunction introduction (∧+) and
elimination (∧−) have obvious Dialectica realizers.

The axioms (∃−), (MP), (IP∀) and (AC) all have the formC → D where τ+(C) ∼
τ+(D) and τ−(C) ∼ τ−(D), with ρ ∼ σ indicating that ρ and σ are canonically
isomorphic. This has been verfied

• for the existence elimination axiom—written in the equivalent form ∀zρ(A →
B)→ ∃zρA→ B—in Example (b) of 2.1;

• for (MP), (IP∀) and (AC) in Examples (a)–(c) of 2.2, respectively.

Such canonical isomorphisms can be expressed by λ-terms

f+ : τ+(C) → τ+(D),

g+ : τ+(D) → τ+(C),

f− : τ−(C) → τ−(D),

g− : τ−(D)→ τ−(C).

326 Helmut Schwichtenberg

(they have been written explicitly in Examples (a)–(c) of 2.2). It is easy to check
that the Gödel translations |C|ug−v and |D|f+u

v are equal (modulo β-conversion). But
then 〈f+, λu g

−〉 is a Dialectica realizer for the axiom C → D, because

|C → D|f
+,λu g−

u,v = |C|ug−v → |D|f
+u

v .

Theorem. (Soundness) Let M be a derivation

WE-HAω + AC + IP∀ + MP + Ax∀ - A

from assumptions ui : Ci (i = 1, . . . , n). Let xi of type τ+(Ci) be variables for
realizers of the assumptions, and y be a variable of type τ−(A) for a challenge of
the goal. Then we can find terms [[M]]+ =: t of type τ+(A) with y /∈ FV(t) and
[[M]]−i =: ri of type τ−(Ci), and a derivation μ(M)

WE-HAω + Ax∀ - |A|ty

from assumptions ūi : |Ci|xi
ri

.

Proof. Induction on M . We begin with the logical rules and leave treatment of the
axioms for the end. The axioms (∧±), (∃±), (MP), (IP∀), and (AC) have just been
dealt with, so we will only need to consider induction, Ax∀, and the weak extension-
ality rule.

Case u : A. Let x of type τ+(A) be a variable for a realizer of the assumption u.
Define [[u]]+ := x and [[u]]− := y.

Case λuAMB . By IH we have a derivation of |B|tz from ū : |A|xr and ūi : |Ci|xi
ri

,
where ū : |A|xr may be absent. Substitute y0 for x and y1 for z. By (→+) we obtain

|A|y0
r[x,z:=y0,y1] → |B|t[x:=y0]

y1 , which is (up to β-conversion)

|A→ B|λxt,λx,zr
y , from ū′i : |Ci|xi

ri[x,z:=y0,y1].

Here r is the canonical inhabitant of the type τ−(A) in case ū : |A|xr is absent. Hence
we can define the required terms by (assuming that uA is u1)

[[λuM]]+ := (λx[[M]]+, λx,z[[M]]−1),

[[λuM]]−i := [[M]]−i+1[x, z := y0, y1].

Case MA→BNA. By IH we have a derivation of

|A→ B|tx = |A|x0
t1(x0)(x1) → |B|t0(x0)

x1 from |Ci|xi
pi

, |Ck|xk
pk

, and of

|A|sz from |Cj |xj
qj , |Ck|xk

qk
.

New Developments in Proofs and Computations 327

Substituting 〈s, y〉 for x in the first derivation and of t1sy for z in the second deriva-
tion gives

|A|st1sy → |B|t0s
y from |Ci|xi

p′
i
, |Ck|xk

p′
k

, and

|A|st1sy from |Cj |xj

q′
j

, |Ck|xk

q′
k

.

Now we contract |Ck|xk

p′
k

and |Ck|xk

q′
k

: since |Ck|xk
w is quantifier-free, there is a

boolean-valued term rCk
such that

|Ck|xk
w ↔ rCk

w = tt. (2)

Hence with rk := [if rCk
p′k then q′k else p′k] we can derive both |Ck|xk

p′
k

and |Ck|xk

q′
k

from |Ck|xk
rk

. The derivation proceeds by cases on the boolean term rCk
p′k. If it is

true, then rk converts into q′k, and we only need to derive |Ck|xk

p′
k

. But this follows by

substituting p′k for w in (2). If rCk
p′k is false, then rk converts into p′k, and we only

need to derive |Ck|xk

q′
k

, from |Ck|xk

p′
k

. But the latter implies ff = tt (substitute again p′k
for w in (2)) and therefore every quantifier-free formula, in particular |Ck|xk

q′
k

.

Using (→−) we obtain

|B|t0s
y from |Ci|xi

p′
i
, |Cj |xj

q′
j

, |Ck|xk
rk

.

Let [[MN]]+ := t0s and [[MN]]−i := p′i, [[MN]]−j := q′j , [[MN]]−k := rk.

Case λxM
A(x). By IH we have a derivation of |A(x)|tz from ūi : |Ci|xi

ri
. Substitute

y0 for x and y1 for z. We obtain |A(y0)|t[x:=y0]
y1 , which is (up to β-conversion)

|∀xA(x)|λxt
y , from ū′i : |Ci|xi

ri[x,z:=y0,y1].

Hence we can define the required terms by

[[λxM]]+ := λx[[M]]+,

[[λxM]]−i := [[M]]−i [x, z := y0, y1].

Case M∀xA(x)s. By IH we have a derivation of |∀xA(x)|tz = |A(z0)|t(z0)
z1 from

|Ci|xi
ri

. Substituting 〈s, y〉 for z gives

|A(s)|tsy from |Ci|xi

ri[z:=〈s,y〉].

Let [[Ms]]+ := ts and [[Ms]]−i := ri[z := 〈s, y〉].

We now come to induction, Ax∀, and the weak extensionality rule. For induction,
consider for instance the algebra of natural numbers, given by constructors 0 and S.
The induction schema then reads as follows:

328 Helmut Schwichtenberg

∀n

(
A(0)→ ∀m(A(m) → A(m+ 1)) → A(n)

)
.

Let B(n) := A(0) → ∀m(A(m) → A(m + 1)) → A(n). Clearly we can derive
B(0) and B(n)→ B(n+ 1). By those parts of the proof of the Soundness Theorem
that we have dealt with already, we obtain realizing terms s and t, r and derivations
of |B(0)|sy and of |B(n)→ B(n+ 1)|t,rx,u; hence, of

|B(n)|xrxu → |B(n+ 1)|txu ,

∀y |B(n)|xy → |B(n+ 1)|txu ,

∀y |B(n)|xy → ∀y |B(n+ 1)|txy .

So if we define g(0) := s and g(n+1) := t(g(n)), then we have proved by induction
that ∀y |B(n)|g(n)

y , and hence that ∃g∀y |∀nB(n)|gy .

Now consider a purely universal formula B = ∀xA0, with A0 quantifier-free.
Then τ+(B) = ε, and moreover |B|εy = A0. Hence such axioms are inter-
preted by themselves. The weak extensionality rule can be dealt with in the same
way. ��

2.5 Practical Aspects of Constructing Dialectica Realizers

In the proof of the Soundness Theorem above, at two points we have made (implicit)
use of Dialectica realizers for logically derivable formulas:

• In the treatment of ∃−, the equivalence of ∃zρA → ∀zρ(A → B) → B with
∀zρ(A→ B)→ ∃zρA→ B, and

• for induction, that we can derive B(0) and B(n) → B(n + 1), for B(n) :=
A(0)→ ∀m(A(m) → A(m+ 1))→ A(n).

Although these logical derivations are very easy, the fact that the formulas involved
contain nested implications makes their Dialectica realizers complex. This shows
up drastically in an implementation of the Dialectica interpretation. Two such imple-
mentations are presently available, both in the proof assistant and program extraction
system Minlog1: one by Hernest (2006), and another one by the author, following the
present paper.

Much more perspicious Dialectica realizers are obtained if one replaces the existence
elimination and induction axioms by their equivalent rule formulations. Technically
in our natural deduction setting with derivation terms, this means that the deriva-
tion constants ∃− and Ind appear with sufficiently many arguments. Clearly this can
always be assumed (use η-expansion). Then Dialectica realizers are constructed as
follows.

1 See http://www.minlog-system.de

New Developments in Proofs and Computations 329

Case Indn,AmM
A(0)
0 M

∀n(A(n)→A(n+1))
1 . By IH we have derivations of

|∀n(A(n) → A(n+ 1))|tn,f,y

= |A(n) → A(n+ 1)|tnf,y

= |A(n)|ftn1fy → |A(n+ 1)|tn0f
y from |Ci|xi

ri1(n,f,y)

and of

|A(0)|t0x0
from |Ci|xi

ri0(x0)
.

i ranges over all assumption variables in Indn,AmM0M1 (if necessary choose
canonical terms ri0 and ri1). It suffices to construct terms (involving recursion oper-
ators) t̃, r̃i with free variables among �x such that

∀m,y

(
(|Ci|xi

r̃imy)i → |A(m)|t̃my
)
. (3)

For then we can define [[Indn,AmM0M1]]+ := t̃m and [[Indn,AmM0M1]]−i :=
r̃imy. The recursion equations for t̃ are

t̃0 = t0, t̃(n+ 1) = tn0(t̃n)

and for r̃i

r̃i0y = ri0, r̃i(n+ 1)y =

⎧
⎨

⎩

ri1(n, t̃n, y) =: s if ¬|Ci|xi
s ,

r̃in(tn1(t̃n)y) otherwise.

t̃, r̃i can be written explicitly with recursion operators:

t̃m = Rmt0(λn(tn0)),

r̃im = Rm(λyri0)
(
λn,p,y[if rCis then p(tn1(t̃n)y) else s]

)

with s as above. It remains to prove (3). We only consider the successor case. Assume

|Ci|xi

r̃i(n+1)y for all i. We must show |A(n + 1)|t̃(n+1)
y . If ¬|Ci|xi

s for some i, then
by definition r̃i(n + 1)y = s and we have |Ci|xi

s , a contradiction. Hence |Ci|xi
s for

all i, and therefore r̃i(n + 1)y = r̃in(tn1(t̃n)y). The IH (3) with y := tn1(t̃n)y
gives |A(n)|t̃n

tn1(t̃n)y
. Recall that the global IH (for the step derivation) gives with

f := t̃n

(|Ci|xi
s)i → |A(n)|t̃ntn1(t̃n)y → |A(n+ 1)|tn0(t̃n)

y

and we are done.

Case ∃−x,A,BM
∃xAN∀x(A→B). We proceed similar to the treatment of (→−) above.

By IH we have a derivation of

330 Helmut Schwichtenberg

|∀x(A(x) → B)|tx = |A(x0) → B|t(x0)
x1

= |A(x0)|x10
t(x0)1(x10)(x11) → |B|t(x0)0(x10)

x11

from |Ci|xi
pi

, |Ck|xk
pk

, and of

|∃xA(x)|sz = |A(s0)|s1z from |Cj |xj
qj , |Ck|xk

qk
.

Substituting 〈s0, 〈s1, y〉〉 for x in the first derivation and of t(s0)1(s1)y for z in the
second derivation gives

|A(s0)|s1t(s0)1(s1)y → |B|t(s0)0(s1)y from |Ci|xi

p′
i
, |Ck|xk

p′
k

, and

|A(s0)|s1t(s0)1(s1)y from |Cj |xj

q′
j

, |Ck|xk

q′
k

.

Now we contract |Ck|xk

p′
k

and |Ck|xk

q′
k

as in the case (→−) above; with

rk := [if rCk
p′k then q′k else p′k],

we can derive both |Ck|xk

p′
k

and |Ck|xk

q′
k

from |Ck|xk
rk

. Using (→−), we obtain

|B|t(s0)0(s1)y from |Ci|xi

p′
i
, |Cj |xj

q′
j

, |Ck|xk
rk

.

So [[∃−MN]]+ := t(s0)0(s1) and

[[∃−MN]]−i := p′i, [[∃−MN]]−j := q′j , [[∃−MN]]−k := rk.

2.6 A Unified Treatment of Modified Realizability and the Dialectica
Interpretation

Following Oliva (2006), we show that modified realizability can be treated in such a
way that similarities with the Dialectica interpretation become visible. To this end,
one needs to change the definitions of τ+(A) and τ−(A) and of the Gödel translation
|A|xy in the implicational case, as follows.

τ+
mr(A→ B) := τ+

mr(A) → τ+
mr(B),

τ−mr(A→ B) := τ+
mr(A) ∧ τ−mr(B),

||A→ B||fx,u := ∀y||A||xy → ||B||fx
u .

Notice that the (changed) Gödel translation ||A||xy is not quantifier-free any more but

can be expressed in terms of the (new) ||A||xy :

- r mr A↔ ∀y||A||ry .

This is proved by induction on A. For prime formulas, the claim is obvious. Case
A→ B, with τ+

mr(A) �= ε, τ−mr(A) �= ε.

(1973))
only ∃-free. Then the standard definition of modified realizability mr (cf. Troelstra

New Developments in Proofs and Computations 331

r mr (A→ B) ↔ ∀x(x mr A→ rx mr B) by definition

↔ ∀x(∀y ||A||xy → ∀u ||B||rx
u) by IH

↔ ∀x,u(∀y ||A||xy → ||B||rx
u)

= ∀x,u ||A→ B||rx,u by definition.

The other cases are similar (even easier).

2.7 Extraction

As a consequence of the soundness and characterization theorems, we obtain

Theorem. (Extraction) Assume

WE-HAω + AC + IP∀ + MP + Ax∀ - ∀x∃yA(x, y)

with A arbitrary. Then we can find a closed HAω-term t such that

WE-HAω + AC + IP∀ + MP + Ax∀ - ∀xA(x, tx).

Moreover, in case the condition G−(A) is satisfied, we even have

WE-HAω + AC + Ax∀ - ∀xA(x, tx).

Proof. Recall that

|∀x∃yA(x, y)|λx〈fx,gx〉
x,b = |∃yA(x, y)|fx,gx

b = |A(x, fx)|gx
b .

By the Soundness Theorem, we obtain closed terms t, s such that

WE-HAω + Ax∀ - ∀x,b|A(x, tx)|sx
b

and hence,
WE-HAω + Ax∀ - ∀x∃a∀b|A(x, tx)|ab .

By the Characterization Theorem, we have

AC + IP∀ + MP - ∃a∀b |A(x, tx)|ab → A(x, tx).

By (1), (IP∀) and (MP) are not needed here provided the condition G−(A) is
satisfied. Therefore the claim follows. ��

Theorem. (Extraction from classical proofs) Assume

WE-HAω + AC + IP∀ + MP + Ax∀ - ∀x∃̃yA0(x, y),

A0(x, y) a quantifier-free formula with at most the displayed variables free. Then we
can find a closed HAω-term t such that

WE-HAω + Ax∀ - ∀xA0(x, tx).

332 Helmut Schwichtenberg

Proof. This follows from the Soundness Theorem in 2.4 and

|∀x∃̃yA0(x, y)|tx = |∃̃yA0(x, y)|txε = ¬¬A0(x, tx). ��

3 Gödel’s Dialectica Interpretation With Majorants

Generally, the Dialectica interpretation has a strong tendency to produce complex
extracted terms, as opposed to the realizability interpretation. This is partially due to
contraction (necessary in the→−-rule). Therefore it is advisable (even more so than
for the realizability interpretation) to

• consider derivations from lemmata (whose proofs are not analyzed), and

• try to simplify extracted terms by only aiming at majorants.

This has led Kohlenbach (1992) and Kohlenbach (1996) to develop his “monotone
Dialectica interpretation,” where one only looks for bounds of realizers rather than
exact realizers.

An essential point observed by Kohlenbach (1996) is that when one restricts atten-
tion to bounds rather than to exact realizers, then one can conveniently deal with
additional assumptions Ax∀∃≤∀ of the form

∀xρ∃y≤σrx∀zτA0(x, y, z) (A0 quantifier-free),

with r a closed term of type ρ→ σ. We then need to consider strenghtened versions
Ax′∀∃≤∀ of these assumptions as well:

∃Y≤ρ→σr∀xρ,zτA0(x, Y x, z).

Note that with (AC) one can prove the strenghtened version from the original
one.

3.1 Majorization

We define pointwise majorization ≥ρ, by induction on the type. x ≥μ y for μ s
finitary base type is already defined, and

(x ≥ρ→σ y) := ∀z(xz ≥σ yz),

(x ≥ρ∧σ y) := (x0 ≥ρ y0) ∧ (x1 ≥ρ y1).

For simplicity we treat the majorization relation of Howard (1973) just for types
built from the base type N by ρ→ σ. We extend ≥N to higher types, in a pointwise
fashion (as we did for =μ in 1.6 above)

New Developments in Proofs and Computations 333

(x1 ≥ρ→σ x2) := ∀y(x1y ≥σ x2y).

Following Howard (1973), we define a relation x∗ majρ x (x∗ hereditarily majorizes
x) for x∗, x ∈ Gρ, by induction on the type ρ:

(x∗ majμ x) := (x∗ ≥μ x),

(x∗ majρ→σ x) := ∀y∗,y(y∗ majρ y → x∗y∗ majσ xy).

Lemma.

(a) - x∗ =ρ x̃
∗ → x =ρ x̃→ x∗ majρ x→ x̃∗ majρ x̃.

(b) - x∗ majρ x→ x ≥ρ x̃→ x∗ majρ x̃.

Proof. Induction on ρ. We argue informally and only treat (b). Case ρ→ σ. Assume
y∗ majρ y. Then x∗y∗ majσ xy and xy ≥σ x̃y, hence by IH x∗y∗ majσ x̃y. ��

3.2 Majorization of Closed HAω-Terms

Let 1 denote the type N→ N. Clearly, for every monotone functionD of type 1, we
have D maj D. Moreover,Rτ

μ is hereditarily majorizable:

Lemma. (Majorization)

(a) Define M : (μ→ τ) → μ→ τ with τ = �ρ→ μ′ by

Mfn�x := max
i≤n

fi�x.

Then HAω - ∀nf̄n maj fn→Mf̄ maj f .

(b) HAω - f∗, g∗ maj f, g →Rμf
∗g∗n maj Rμfgn.

(c) DefineR∗μfg := M(Rμfg). Then HAω - R∗μ maj Rμ.

Proof. We argue informally.

(a) Let n∗ ≥ n and �x∗ maj �x; we must show Mf̄n∗�x∗ ≥ fn�x.

Mf̄n∗�x∗ = max
i≤n∗

f̄ i�x∗ ≥ f̄n�x∗ ≥ fn�x.

(b) Induction on n; for simplicity we assume μ = N. For 0 the claim is obvious,
and in the step we have by IH Rf∗g∗(Sn) := g∗n(Rf∗g∗n) maj gn(Rfgn) :=
Rfg(Sn), where := is definitional equality.

(c) Let f∗, g∗ maj f, g. We must show M(Rf∗g∗) maj Rfg. By (a) it suffices to
prove ∀nRf∗g∗n maj Rfgn. But this holds by (b). ��

The following theorem is due to Howard (1973).

334 Helmut Schwichtenberg

Theorem. Let r(�x) be a HAω-term with free variables among �x. Assume that
HAω - c∗ maj c for all constants c in r. Let r∗ be r with all constants c replaced by
c∗. Then HAω - �x∗ maj �x→ r∗(�x∗) maj r(�x).

Proof. Induction on r. Case λy r(y, �x). We argue informally. Assume �x∗ maj �x. We
must show y∗ maj y → (λy r

∗(y, �x∗))y∗ maj (λy r(y, �x))y. So assume y∗ maj y.
Then by IH r∗(y∗, �x∗) maj r(y, �x), which is our claim. ��

Hence every closed term r of HAω is hereditarily majorizable. In fact, we have con-
structed a closed term r∗ of HAω such that r∗ maj r.

3.3 Soundness with Majorants

Theorem. (Soundness with majorants) Let M be a derivation

WE-HAω + AC + IP− + MP + Ax∀∃≤∀ - A

from assumptions ui : Ci (i = 1, . . . , n). Let xi of type τ+(Ci) be variables for
realizers of the assumptions, and let y of type τ−(A) be a variable for a challenge
of the goal. Let �z of type �ρ be the variables free in M . Then we can find closed
terms [[λ�z,�u M]]∗+ =: T ∗ of type τ+(C1) → · · · → τ+(Cn) → �ρ → τ+(A) and
[[λ�z,�u M]]∗−i =: R∗i of type τ+(C1) → · · · → τ+(Cn) → �ρ → τ−(A) → τ−(Ci),
and a derivation μ(M) in

WE-HAω + Ax′∀∃≤∀

of the formula

∃T,R1,...,Rn

(
T ∗ maj T ∧R∗1 maj R1 ∧ · · · ∧R∗n maj Rn

∧ ∀�x,�z,y(|C1|x1
R1�x�zy → · · · → |Cn|xn

Rn�x�zy → |A|T�x�z
y)

)
.

Proof. Induction on M .

Case u : A. Let x of type τ+(A) be a variable for a realizer of the assumption u. We
need T ∗ and R∗ such that

∃T,R

(
T ∗ maj T ∧R∗ maj R ∧ ∀x,y(|A|xRxy → |A|Tx

y)
)
.

We can take Tx := x and Rxy := y, which both majorize themselves.

Case c : A, c an axiom. Consider an axiom

∀xρ∃y≤σrx∀zτA0(x, y, z) (A0 quantifier-free),

New Developments in Proofs and Computations 335

with r a closed term of type ρ→ σ. We have to find a majorant of some T such that
the following holds:

∀x,z|∀xρ∃y≤σrx∀zτA0(x, y, z)|Tx,z,

∀x,z|∃y≤σrx∀zτA0(x, y, z)|Tx
z ,

∀x,z(Tx ≤ rx ∧ |∀zτA0(x, Tx, z)|z),

∀x,z(Tx ≤ rx ∧A0(x, Tx, z)).

We now use the corresponding axiom in Ax′∀∃≤∀:

∃Y≤ρ→σr∀xρ,zτA0(x, Y x, z).

Pick this Y as the desired T . Then as a majorant for Y , we can take a closed term r∗

majorizing r.

For the other axioms we have already constructed a Dialectica realizer, and we can
take an arbitrary majorant of it. However, we can also provide directly a majorant of
some Dialectica realizer.

Case λuAMB . By IH we have a derivation of

∃T,R1,...,Rn,R

(
T ∗ maj T ∧R∗1 maj R1 ∧ · · · ∧R∗n maj Rn ∧R∗ maj R

∧ ∀x1,...,xn,x,z(|C1|x1
R1x1...xnxz → · · · → |Cn|xn

Rnx1...xnxz

→ |A|xRx1...xnxz → |B|Tx1...xnx
z)

)
.

We argue informally. Instantiating x with y0 and z with y1 gives

∀x1,...,xn,y(|C1|x1
R1x1...xn(y0)(y1) → · · · → |Cn|xn

Rnx1...xn(y0)(y1)

→ |A|y0
Rx1...xn(y0)(y1) → |B|Tx1...xn(y0)

z),

which is

∀x1,...,xn,y(|C1|x1
R1x1...xn(y0)(y1) → . . . |Cn|xn

Rnx1...xn(y0)(y1)

→ |A→ B|Tx1...xn,Rx1...xn
y .

Therefore we can define the required T̃ ∗, R̃∗i by

T̃ ∗�x := 〈T ∗�x,R∗�x 〉, R̃∗i �xy := R∗i �x(y0)(y1).

Case MA→BNA. We argue informally. By IH we have

336 Helmut Schwichtenberg

|A→B|T�xi�xk
x = |A|x0

T�xi�xk1(x0)(x1) → |B|T�xi�xk0(x0)
x1

from |Ci|xi

Pi�xi�xkx, |Ck|xk

Pk�xi�xkx

|A|S�xj�xk
z from |Cj |xj

Qj�xj�xkz , |Ck|xk

Qk�xj�xkz .

Instantiating xwith 〈S�xj�xk, y〉 in the first and z with T�xi�xk1(S�xj�xk)y in the second
derivation gives

|A|S�xj�xk

T�xi�xk1(S�xj�xk)y → |B|T�xi�xk0(S�xj�xk)
y from |Ci|xi

p′
i
, |Ck|xk

p′
k

, and

|A|S�xj�xk

T�xi�xk1(S�xj�xk)y from |Cj |xj

q′
j

, |Ck|xk

q′
k

,

with

p′i := Pi�xi�xk〈S�xj�xk, y〉, p′k := Pk�xi�xk〈S�xj�xk, y〉,

q′j := Qj�xj�xk(T�xi�xk1(S�xj�xk)y), q′k := Qk�xj�xk(T�xi�xk1(S�xj�xk)y).

Hence we can take

T̃ ∗�xi�xj�xk := T ∗�xi�xk0(S∗�xj�xk),

R∗i �xi�xj�xky := P ∗i �xi�xk〈S∗�xj�xk, y〉,

R∗j�xi�xj�xky := Q∗j�xj�xk(T ∗�xi�xk1(S∗�xj�xk)y),

R∗k�xi�xj�xky := max(P ∗k �xi�xk〈S∗�xj�xk, y〉, Q∗k�xj�xk(T ∗�xi�xk1(S∗�xj�xk)y)).

For the verifying derivation we again need to contract |Ck|xk

p′
k

and |Ck|xk

q′
k

: since

|Ck|xk
w is quantifier-free, there is a boolean-valued term rCk

such that

|Ck|xk
w ↔ rCk

w = tt.

Hence with rk := [if rCk
p′k then q′k else p′k], we can derive both |Ck|xk

p′
k

and |Ck|xk

q′
k

from |Ck|xk
rk

. Using (→−), we obtain

|B|T�xi�xk0(S�xj�xk)
y from |Ci|xi

p′
i
, |Cj |xj

q′
j

, |Ck|xk
rk

.

Case λx M
A(x). By IH we have a derivation of |A(x)|Tx1...xnx

z from |Ci|xi

Rix1...xnxz .

Instantiating x with y0 and z with y1 gives |A(y0)|Tx1...xn(y0)
y1 , which is

|∀xA(x)|Tx1...xn
y , from |Ci|xi

Rix1...xn(y0)(y1).

Hence we can take

T̃ ∗x1 . . . xn := T ∗x1 . . . xn,

R̃∗i x1 . . . xny := R∗i x1 . . . xn(y0)(y1).

New Developments in Proofs and Computations 337

Case M∀xA(x)s. By IH we have in this case a derivation of |∀xA(x)|Tx1...xn
z , which

is |A(z0)|Tx1...xn(z0)
z1 , from |Ci|xi

Rix1...xnz . Instantiating z with 〈s, y〉 gives

|A(s)|Tx1...xns
y from |Ci|xi

Rix1...xn〈s,y〉.

Assume for simplicity that s is closed. Then we can take

T̃ ∗x1 . . . xn := T ∗x1 . . . xns
∗,

R̃∗i x1 . . . xny := R∗i x1 . . . xn〈s∗, y〉. ��

3.4 The Weak Lemma of König as a ∀∃≤∀-Axiom

We show that the “weak” (that is, binary) Lemma of König WKL can be brought into
the form of an axiom in Ax∀∃≤∀. This has been observed by Kohlenbach (1992).
Here we give a somewhat simplified proof of this fact; it is based on ideas of
Ishihara (2006).

WKL says that every infinite binary tree has an infinite path. When we try to for-
malize it directly in our (functional) language, it does not quite have the required
form, since the assumption that the given tree is infinite needs an additional ∀ in the
premise. However, one can easily find an equivalent statement of the required form.
To this end, we define the “infinite extension” of a given tree, and we let WKL′ say
that for every t, the infinite extension I(t̂) of its “associated tree” t̂ has an infinite
path. It then is easy to see that WKL and WKL′ are equivalent.

Let us first introduce some basic definitions. Let N be the type of unary and bin the
type of binary natural numbers. It is convenient here to view binary numbers as lists
of booleans tt, ff , and to write these lists in reverse order, that is, add elements at the
end. We fix the types of some variables and state their intended meaning:

a, b, c of type bin for nodes,

r, s, t of type bin → B for decidable sets of nodes,

f, g, h of type N→ B for paths,

n,m, k, i, j of type N for natural numbers,

p, q of type B for booleans.

Let lh(a) be the length of a (viewed as list of booleans). Let ā(n) denote the initial
segment of a of length n, if n ≤ lh(a), and a otherwise. Similarly let f̄(n) denote the
initial segment of f of length n, that is, the list (f(0), f(1), . . . , f(n− 1)). Let (a)n

denote the n-th element of a, if n < lh(a), and tt otherwise. f is a path in t if all its
initial segments f̄(n) are in t. Call t infinite if for every n, there is a node of length
n in t. Call t a tree if it is downwards closed; i.e., ∀a∀n≤lh(a)(a ∈ t → ā(n) ∈ t).
So WKL says that

338 Helmut Schwichtenberg

∀t

(
∀a∀n≤lh(a)(a ∈ t→ ā(n) ∈ t) → (t is a tree),

∀n∃a∈tlh(a) = n→ (t is infinite),

∃f∀nf̄(n) ∈ t
)

(t has an infinite path),

which—because of the two premises saying that t is an infinite tree—is not of the
required logical form.

To obtain an equivalent formulation in the required form, we introduce some further
notions.

t̂ := { a | ∀n<lh(a)ā(n) ∈ t } the associated tree t̂ for t,

b = a ∗ ttlh(b)−lh(a) b is the tt-extension of a,

∀c;lh(c)=lh(b)c /∈ t̂ b is t-big;

here ∗ denotes concatenation of lists. Let minlex denote the minimum of a set of
nodes w.r.t. the lexicographical ordering, and maxlen<n(t) be the maximal length
of all nodes of t of length < n. Then lln(t) is the leftmost largest node in t of length
< n:

maxlen<n(t) := max{ lh(a) | a ∈ t ∧ lh(a) < n },

lln(t) := minlex{ c ∈ t | lh(c) = maxlen<n(t) }.

We can now define the infinite extension I(t) of a tree t:

I(t) := { b | b ∈ t ∨ (b is t-big ∧ b is the tt-extension of lllh(b)) }.

All these notions are definable in HAω. They clearly have the following proper-
ties:

t̂ is a tree;

if t is a tree, then t̂ = t;

if t is a tree, then I(t) is an infinite tree extending t;

if t is an infinite tree, then I(t) = t.

Then WKL is equivalent (provably in HAω) to

WKL′ := ∀t∃f∀nf̄(n) ∈ I(t̂).

To see this, assume WKL, and let t be arbitrary. Then I(t̂) is an infinite tree extend-
ing t. By WKL applied to I(t̂), ∃f∀nf̄(n) ∈ I(t̂). Conversely, let t be an infinite
tree. Then I(t̂) = t, and therefore, ∃f∀nf̄(n) ∈ t.

Remark. From the results of Ishihara (1990), it is known that WKL implies
Brouwer’s fan theorem. Moreover, a direct proof of this implication has been given

New Developments in Proofs and Computations 339

by Ishihara in 2002 (published in Ishihara (2006)). In Berger and Ishihara (2005), it
is shown a weakened form WKL! of WKL, where as an additional hypothesis as it is
required that in an effective sense infinite paths are unique, is equivalent to Fan. One
direction (WKL! implies Fan) is essentially the proof by Ishihara (2006), enhanced
by the additional requirement that the tree extension to be constructed satisfies the ef-
fective uniqueness condition (as in Berger and Ishihara (2005)). The main tool of this
proof is the construction of I(t̂) described above. The other direction (Fan implies
WKL!) is far less directly proved in Berger and Ishihara (2005), where the empha-
sis rather was to provide a fair number of equivalents to Fan, and to do the proof
economically by giving a circle of implications. A direct proof of the equivalence
of Fan with WKL! is in Schwichtenberg (2005). The latter paper also reports on a
formalization in the Minlog proof assistant and gives rather short and perspicious
realizing terms (w.r.t. modified realizability) machine-extracted from each of the two
directions of this proof.

References

[Berger (1993)] U. Berger. Program extraction from normalization proofs. In M. Bezem and
J. Groote, editors, Typed Lambda Calculi and Applications, volume 664 of LNCS, pages
91–106. Springer Verlag, Berlin, Heidelberg, New York, 1993.

[Berger (2005)] U. Berger. Uniform Heyting arithmetic. Annals Pure Applied Logic, 133:
125–148, 2005

[Berger et al. (2001)] U. Berger, H. Schwichtenberg, and M. Seisenberger. The Warshall Al-
gorithm and Dickson’s Lemma: Two Examples of Realistic Program Extraction. Journal
of Automated Reasoning, 26: 205–221, 2001.

[Berger et al. (2002)] U. Berger, W. Buchholz, and H. Schwichtenberg. Refined program
extraction from classical proofs. Annals of Pure and Applied Logic, 114: 3–25, 2002.

[Berger et al. (2006)] U. Berger, S. Berghofer, P. Letouzey, and H. Schwichtenberg. Program
extraction from normalization proofs. Studia Logica, 82: 27–51, 2006.

[Berger and Ishihara (2005)] J. Berger and H. Ishihara. Brouwer’s fan theorem and unique
existence in constructive analysis. Mathematical Logic Quarterly, 51 (4): 360–364, 2005.

[Berger and Schwichtenberg (1995)] U. Berger and H. Schwichtenberg. Program develop-
ment by proof transformation. In H. Schwichtenberg, editor, Proof and Computation,
volume 139 of Series F: Computer and Systems Sciences, pages 1–45. NATO Advanced
Study Institute, International Summer School held in Marktoberdorf, Germany, July 20 –
August 1, 1993, Springer Verlag, Berlin, Heidelberg, New York, 1995.

[Friedman (1978)] H. Friedman. Classically and intuitionistically provably recursive func-
tions. In D. Scott and G. Müller, editors, Higher Set Theory, volume 669 of Lecture Notes
in Mathematics, pages 21–28. Springer Verlag, Berlin, Heidelberg, New York, 1978.

[Gödel (1958)] K. Gödel. Über eine bisher noch nicht benützte Erweiterung des finiten Stand-
punkts. Dialectica, 12: 280–287, 1958.

[Hernest (2006)] M.-D. Hernest. Feasible programs from (non-constructive) proofs by the
light (monotone) Dialectica interpretation. PhD thesis, Ecole Polytechnique Paris and
LMU München, 2006.

340 Helmut Schwichtenberg

[Howard (1973)] W. A. Howard. Hereditarily majorizable functionals of finite type. In
A. Troelstra, editor, Mathematical Investigation of Intuitionistic Arithmetic and Analysis,
volume 344 of Lecture Notes in Mathematics, pages 454–461. Springer Verlag, Berlin,
Heidelberg, New York, 1973.

[Ishihara (1990)] H. Ishihara. An omniscience principle, the König lemma and the Hahn-
Banach theorem. Zeitschr. f. math. Logik und Grundlagen d. Math., 36: 237–240, 1990.

[Ishihara (2006)] H. Ishihara. Weak König lemma implies Brouwer’s fan theorem: a direct
proof. Notre Dame J. Formal Logic, 47: 249–252, 2006.

[Jørgensen (2001)] K. F. Jørgensen. Finite type arithmetic. Master’s thesis, University of
Roskilde, 2001.

[Kohlenbach (1992)] U. Kohlenbach. Effective bounds from ineffective proofs in analysis: an
application of functional interpretation and majorization. The Journal of Symbolic Logic,
57(4): 1239–1273, 1992.

[Kohlenbach (1996)] U. Kohlenbach. Analysing proofs in analysis. In W. Hodges, M. Hy-
land, C. Steinhorn, and J. Truss, editors, Logic: from Foundations to Applications. Euro-
pean Logic Colloquium (Keele, 1993), pages 225–260. Oxford University Press, 1996.

[Oliva (2006)] P. Oliva. Unifying functional interpretations. Notre Dame J. Formal Logic,
47: 262–290, 2006.

[Schwichtenberg (1993)] H. Schwichtenberg. Proofs as programs. In P. Aczel, H. Simmons,
and S. Wainer, editors, Proof Theory. A selection of papers from the Leeds Proof Theory
Programme 1990, pages 81–113. Cambridge University Press, 1993.

[Schwichtenberg (2005)] H. Schwichtenberg. A direct proof of the equivalence between
Brouwer’s fan theorem and König’s lemma with a uniqueness hypothesis. Journal of
Universal Computer Science, 11 (12): 2086–2095, 2005. http://www.jucs.org/
jucs_11_12/a_direct_proof_of.

[Schwichtenberg (2006)] H. Schwichtenberg. Recursion on the partial continuous function-
als. In C. Dimitracopoulos, L. Newelski, D. Normann, and J. Steel, editors, Logic Collo-
quium ’05, volume 28 of Lecture Notes in Logic, pages 173–201. Association for Sym-
bolic Logic, 2006.

[Seisenberger (2003)] M. Seisenberger. On the constructive content of proofs. PhD thesis,
Mathematisches Institut der Universität München, 2003.

[Troelstra (1973)] A. S. Troelstra, editor. Metamathematical Investigation of Intuitionistic
Arithmetic and Analysis, volume 344 of Lecture Notes in Mathematics. Springer Verlag,
Berlin, Heidelberg, New York, 1973.

From Cells to (Silicon) Computers, and Back

Gheorghe Păun

Institute of Mathematics of the Romanian Academy
014700 Bucureşti, Romania
and
Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Sevilla
Avda, 41012 Sevilla, Spain
george.paun@imar.ro, gpaun@us.es

Summary. Although the whole history of computer science is marked by events related to
and inspired from “computations” taking place in living cells and organisms (human being
included), in the last decades, this became a mainstream research direction, with important
and well-established areas, such as evolutionary computing and neural computing, and with
exciting new areas, such as DNA and membrane (cellular) computing. All these have both
consequences on the efficiency of using standard computers, hopefully leading also to new
types of hardware, and—maybe more importantly—on the very understanding of the notion
of computing and, at the edge of science towards science fiction.

Topics of this kind will be touched in the paper, mainly in relation with DNA and membrane
computing.

1 Preliminary warnings

What follows is not a mathematical or computer science paper, is not even a well-
structured general essay, but it is mainly a sequence of personal thoughts, shuffled
with lecture notes, and based on the personal experience in computer science (over 30
years) and, especially, in bio-inspired (DNA and membrane) natural computing (over
10 years). There are here mainly questions rather than answers, while the paragraphs
form only the skeleton on which a much longer construction can/should be built in or-
der to have any chance to cover the subject at hand. What is a computation/computer,
does nature compute, are DNA and cellular computing feasible/useful, which are the
limits of natural computing, do we dream too much, which can be the consequences
of nanocomputers, these and others—more specific or more speculative—questions
will be directly or implicitly formulated below, but each of them deserves a separate

344 Gheorghe Păun

(chapter in a) book and efforts of a different scale than the present author can afford
and the present text can include.

2 What is a computation?

This is already a trap question, context sensitive, and able to push the discussion in
many divergent directions. I start from (and adhere to) the standard mathematical
definition of what is computable, and the most convincing answer is provided by
the Turing machine. It was about 70 years ago; there were several attempts to give a
mathematical definition to what Hilbert called “mechanically” computable, and the
one provided by Turing [62] was the most convincing (Gödel himself was one of the
first to acknowledge this). In this framework, a computation is an algorithmic process
relating an input to an output, and it is an algorithmic function. Rather reductionistic
but accurate and, somewhat surprisingly when materialized in the form of a Turing
machine, the most general concept of algorithmic computation, a fact commonly
known as the Turing–Church thesis.

It is instructive to note that when defining the “machine” that today bears his name,
Turing was explicitly trying to abstract what a clerk from a bank is doing when
computing with numbers. What is essential and minimal to this activity? A support
of information (the simplest one is a tape with cells that can hold symbols from
a finite alphabet), the access to this information (the most reduced one is to see
only one cell of the tape, with the possibility to move to left and right along the
tape), a way to change the information, locally (the most local action is to change
only one symbol at a time), everything under the control of a “state of the mind”
(then, let us take states from a finite set given in advance), and according to a precise
procedure (the simplest command/instruction, in our framework can be: in a given
state, reading a given symbol from a cell of the tape, change that symbol, change
the state, and move the control one cell to left, to right, or do not move at all; when
changing a symbol or a state, we can also “change” it by itself). If we add the fact
that we start in a special initial state, with an input written on the tape (one symbol
in a cell), and we consider a computation finished when there is nothing to do (we
halt), then we have, in plain words, what is called a Turing machine. It is a toy
by all means but still the most general definition of an algorithm, the standard one
now.

Actually, what made this “toy” immediately successful was not its definition only,
but the fact that it can simulate other computing models (such as Church’s lambda
calculus) and, mainly, Turing universality theorem: there is a universal Turing ma-
chine, TU , which can simulate any particular Turing machine TM , in the following
sense. If we give as input to TU a code of TM as well as an input x of TM , then
TU will provide the same output as TM when starting from x; somewhat formally,
TU(code(TM)x) = TM(x). We have skipped several details, e.g., concerning the
coding/decoding of inputs/outputs, because the important point is already here: the

From Cells to (Silicon) Computers, and Back 345

program of TU is the operating system, code(TM), is the program to run, x is the
data handled by this program (note that programs and data are stored in the same
place), hence exactly the architecture of a “Turing–von Neumann computer”. This
is not incidental, as von Neumann has explicitly declared that he was influenced
directly by Turing ideas when designing the first computers.

Let us record this observation—from the bank clerk to computers, via Turing ma-
chines (also noting that today there is no bank clerk without a computer on the
desk!)—and let us return to the idea of computation. Despite its (mathematical) gen-
erality, Turing concept is very restrictive. One input, one output, one processor; halt-
ing as an essential condition; finitely many states and symbols. It is difficult to see
a desk computer from a bank, and still lesser the server of the bank, working day
and night, as a materialization of a Turing machine. The same with any parallel ma-
chine. Do we overpass in such a case the Turing–Church “barrier” and compute the
uncomputable? Not exactly. We just move the discussion in another territory that of
processes that handle information. This syntagma is so general that in these terms
“everything is a computation”; it is a matter of point of view (“for every process there
is an observer which can interpret the process as a computation”).

3 Does nature compute?

The previous discussion already provides two positive answers to this question: na-
ture computes (at least. . .) at the level of bank clerks, and depending on the observer,
nature computes everywhere. . . . This explains/illustrates the two opposite positions,
the over-orthodox one, which accepts as bio-computations only what Homo Sapiens
is doing and calling so, and the over-relaxed one, which sees computations every-
where, from the genomic level, to cells and tissues, and to populations of organisms.
“Life is computation. Every single living cell reads information from a memory,
rewrites it, receives data input (information about the state of its environment), pro-
cesses the data and acts according to the results of all this computation. Globally,
the zillions of cells populating the biosphere certainly perform more computation
steps per unit of time than all man made computers put together.” We can read this
statement at the beginning of [24].

In what follows, I choose a sort of annexionistic (but honest) position, somewhat
specific to natural computing: having in mind the mathematical definition of com-
puting, let us look at nature, especially at living nature, in biology, searching ideas,
data supports and data structures, operations, architectures, processes, etc. that can
inspire abstract computing models and/or new computing devices that can be of in-
terest for humans. Especially by the last words, this looks like a pretty restrictive
point of view, ruling out, for instance, “computations” taking place in nature in such
a way that we cannot use them at least in theory, but this is not exactly the case.
I said “of interest for” not “usable by” humans. Take the case of ciliates. They carry
out wonderful list-processing operations (billions of years before McCarthy invented

346 Gheorghe Păun

lists. . .) when unscrambling the micronuclear genes and passing to the macronuclear
genes, see [18], with the goal of this process not related to computing; however, we,
the humans, can see computations in ciliates, as we can see computations in each cell
of a leaf, despite the fact that both the ciliates and the cells of a leaf have a unique
purpose to live and nothing to do with (Turing) computations. Still, if we can at least
define a (Turing) computing device abstracting from ciliates or leaf cells activity—as
this happens already, see [18], [50], etc.—then (the mathematical representation of)
the respective processes become computations.

The need to have such a reductionistic/restrictive position appears when we want to
rule out “purely” analogical computations (in some sense, most of the computations
“carried out” by biological processes are analogical). Just a striking example: when
falling down, a drop of liquid instantaneously “solves” difficult differential equations
on its surface. Is this a computation? I choose to answer in the negative as long as
we cannot learn from here a computing model and/or as long as we cannot put our
equation in the drop of liquid to have it solved (and the result is “read” somehow
after the computation is completed).

A similar position, relating computations to an observer, is expressed in [60]: “We’ve
just seen that it is not useful to call ‘computation’ just any nontrivial yet some-
what disciplined coupling between state variables. We also want this coupling to
have been intentionally set up for the purpose of predicting or manipulating—in
other words, for knowing or doing something. This is what shall distinguish bona-
fide computation from other intriguing function–composition phenomena such as
weather patterns or stock-exchange cycles. But now we have new questions, namely,
‘Set up by whom or what?’, ‘What is it good for?’, and ‘How do we recognize
intention?”’

Far from me to want to sneak animistic, spiritualistic, or even simply anthropic
considerations into the makeup of computation! “The concept of computation must
emerge as a natural, well-characterized, objective construct, recognizable by and
useful to humans, Martians and robots alike” (my emphasis, Gh.P.).

4 The limits of current computers

It is debatable whether, in newspaper style, “computers are the most important in-
vention of the twentieth century,” the one that had—or will have—the most visible
impact on humankind (let us hope that this role will not be claimed by the atomic
bomb), but what is clear already is that our lives depend today a lot on computers;
we live already in a cyberspace that has “confiscated” us step by step without let-
ting us notice it. Despite that—or because of that—the computers as they are present
around us have drastic limitations. For good or for bad, this is an issue to discuss
(not only the good guys use computers, but also the bad guys—for instance, making
insecure the bank transactions). Let us think positively, and note that there still are

From Cells to (Silicon) Computers, and Back 347

a lot of things that the computers cannot do and that we would like to have them
be able to do. The computers can handle huge amounts of data, at a speed that has
continuously increased in the last decades; they are used in so many areas, from
technology to medicine and to meteorology, they are every day more reliable and
friendly, and they can play chess even better than the world champion. Well, but they
are much behind us in speech and text understanding, recognizing faces, writing the-
orems, and (why not?) in playing GO, the ultimate challenge to AI, as it was written
somewhere.

Moving to mathematics (“the numbers are sure things,” said Galileo): the Turing–von
Neumann computers (uniprocessor, working sequentially) have embarrassing limits:
the class of problems tractable by such computers is pretty small; most of the real-life
problems are intractable.

A parenthesis is worth opening here. At the beginning it was the question of what it
means to compute. After having the Turing machine and many other classes of (math-
ematical) computing devices—such as Markov algorithms, Post systems, Chomsky
grammars—one of the main questions was related to how much we can compute
in principle (what is computable, what is decidable, how powerful a new computing
model is). The discussion was centered on competence. Soon, it was realized that this
is a beautiful issue from a mathematical and philosophical point of view, but from
a practical point of view, it is much more relevant to deal with the performances
of various computing models, with what can we compute now and here, with the
computers we have, and what we can expect to have tomorrow. The first definition
of tractability was related to the distinction between polynomial and exponential: a
problem solvable in a time that increases at most polynomially in terms of its size
was considered tractable. A beautiful theory of computational complexity was devel-
oped, aiming to classify the problems according to their time and space complexity;
see, e.g., [46]. This beautiful theory has three important “drawbacks”: (i) It cannot
tell us, yet, whether P = NP (with P, the class of polynomially solvable problems
being traditionally associated with “tractable,” and NP, the class of problems that
can be solved in a polynomially time by first guessing a solution and then checking
it, a superclass of P that contains a lot of practically relevant problems about which
we do not know whether they are in P or not, hence whether they are tractable); (ii) it
does not take care of “details,” such as the coefficients and the degree of polynomi-
als; both a problem that can be solved in 2n2 steps and one that needs k · n10000, for
a large k, are in P, but for a real computation the difference between the two prob-
lems is striking; (iii) it deals with the worst cases, i.e., counts the number of steps
for solving the most difficult (“pathological”) instance of the problem, whereas in
reality, the “average” problem is the one of current interest. That is why, the borders
of tractability were redefined continuously.

Still, what is clear is that the current computers cannot handle many of the problems
that we encounter in reality, and that we would like to have solved. Let us sum–up
this in the slogan: the Turing–von Neumann computers cannot handle problems that
request an exponential time to solve.

348 Gheorghe Păun

One more parenthesis, related to the (in)famous P = NP problem—actually, more
frequently presented as the P �= NP conjecture. Its importance for computer
science, witnessed, for instance, by the fact that it is the first of the seven Millen-
nium Prize Problems of Clay Mathematics Institute (see www.claymath.org),
whose solution is rewarded with one million dollars, is difficult to overestimate, but
it is also very possible that its practical importance is much overestimated. Discus-
sions about this topic can be found in many places;—see, e.g., [12]. If P �= NP,
as most computer scientists believe, nothing is changed from a practical point of
view (for instance, we can continue to trust cryptographic systems/protocols based
on NP-complete problems, and we can also continue to complain that too many prob-
lems remain untractable for the Turing–von Neumann computers. . .). If the equality
would be proven in a nonconstructive manner, or in a constructive but intractable
manner, then again nothing is changed from a practical point of view (well, almost
nothing, because the possibility remains to find easy polynomial solutions to certain
problems in a direct way, not based on the proof of P = NP). If a feasible pas-
sage from NP to P will be obtained, then, indeed, many things in computer science
and computer practice should be reconsidered, but, as said before, the community
does not believe in such a possibility (unfortunately, in mathematics the votes do not
validate theorems. . .).

Back to the slogan concerning the current difficulty to solve exponentially hard prob-
lems: there are several ways to handle this difficulty, most of them related to nat-
ural computing: (i) looking for (massively) parallel computations, (ii) looking for
nondeterministic computations, (iii) being satisfied with approximate solutions, and
(iv) being satisfied with probabilistic solutions.

5 The promises of natural computing

All four previously mentioned ideas are well investigated in the framework of “stan-
dard” computer science, the one based on electronic chips. Multiprocessor comput-
ers are already commercially available, but this does not mean massive parallelism.
When many processors are put together, new difficulties appear, for instance, related
to the communication complexity, which, with the increase of the number of pro-
cessors, starts to be prohibitive (there is already a well-developed theory behind it;
see, e.g., [32]). Then, randomized algorithms are provably better than deterministic
algorithms—with the problem arising of finding truly random numbers, which is not
possible on the usual computer (but this seems to be solved via quantum comput-
ing: a quantum device generating random bits and possible to plug in a usual PC
was recently launched on the market). Brute force algorithms for addressing hard
optimization problems and providing sometimes satisfactory enough solutions were
reported since the “old times” of computer science. In turn, the theory of probabilistic
algorithms is also well developed.

From Cells to (Silicon) Computers, and Back 349

However, all these should be contrasted with what happens in biology, in a cell, for
instance. A huge number of chemicals (ions, simple molecules, macromolecules,
DNA molecules, proteins, etc.) evolve together, in a highly parallel manner, with
a high degree of nondeterminism, with an intricate coordination, in a robust man-
ner, coping successfully with the environment influences, displaying such attrac-
tive features as self-healing, adaptation, and learning. Then, we can discuss other,
more technical details, such as reversibility of certain processes, or the energetic
efficiency, with the number of operations per Joule much higher than in the case
of electronic processing of information. It seems, indeed, that nature has consid-
ered the four ideas listed at the end of the previous section and, during billions
of years, has polished better and better ways to implement them. Just pointing
out that evolution led to the man, a quite parallel “machine,” via (nondeterminis-
tic) mutations and other evolutionary processes after billions of years, is fully en-
couraging for computer science, in the attempt to learn from life for the benefit of
computability.

And thus, natural computing has appeared: genetic algorithms as a way to drive the
search through the space of candidate solutions to optimization problems imitating
the Darwinian evolution, and neural networks, trying to imitate the human brain,
again leading to approximate solutions, especially to pattern recognition problems.
Later, DNA computing, proposing the DNA as a support for computations—hence
proposing a massively parallel hardware, of a genuinely new type (bio-chips). Still
later, membrane computing, with the aim of abstracting computationally useful (or
at least interesting) ideas from the cell structure and functioning. And many oth-
ers, related, for instance, to the collective behavior of ant colonies or of bacteria
populations—not to forget quantum computing, which is also considered part of nat-
ural computing, although not biologically inspired.

6 Everything goes back to Turing

What is interesting, and also somewhat confusing, is that in some sense the whole
history of computer science is the history of natural computing, of getting inspira-
tion from life. I have mentioned before that Turing, in 1935–1936, when defining
his machine, explicitly wanted to abstract and model what a human is doing when
computing with numbers. One decade later, McCullock, Pitts, and Kleene founded
the finite automata theory starting from modeling the neuron and the neural nets; still
later, this led to what is called now neural computing—whose roots can be, however,
found in unpublished papers of the same A. Turing.

This is a nice story, about the influence of sociology (of not-over-inspired group
leaders) on science (on pure scientists, much more interested in their research than
in publicizing it): In 1948, Turing wrote a short paper, “Intelligent machinery,” which
remained unpublished until 1968, just because his boss at the National Physical Lab-
oratory in London (by the way, it was Sir Charles Darwin, the grandson of the great

350 Gheorghe Păun

naturalist with the same name) dismissed the manuscript as a “schoolboy essay.”
“This paper was the first manifesto of the field of artificial intelligence. In the work
(...) the British mathematician not only set out the fundamentals of connectionism
but also brilliantly introduced many of the concepts that were later to become cen-
tral to AI, in some cases after reinvention by others.” —citation from [16]. Among
others, the paper also introduced two types of randomly connected nets of “neu-
rons,” as a step toward creating an intelligent machine; one of the key features of
these nets was the possibility of learning, of training them in order to solve prob-
lems. Nothing else than neural computing avant la lettre, with ideas rediscovered
later, without reference to Turing. Details about Turing’s “unorganized machines”
can be found, e.g., in [58] and [57], whereas from [4] one can learn more about the
“official” history of neural computing. At http://www.AlanTuring.net, one
can find more about unpublished papers of Turing and recent efforts to reevaluate
them.

The same A. Turing, in the same year 1948, proposed “genetical or evolution-
ary search,” probably the first ideas of evolutionary computing. Also this area has
had an interesting evolution, with many related branches independently initiated
and developed—then merging in what is called today evolutionary computing. The
domain now has four main branches: evolutionary programming (Fogel, Owens,
Walsh), genetic algorithms (Holland), evolution strategies (Rechenberg, Schwefel),
all three initiated in 1960s, and genetic programming (Koza, in 1990s). The first
computer experiments on “optimization through evolution and recombination” were
carried out by Bremermann, in 1962. For details and bibliographical information, we
refer to [19].

It would be nice, and maybe not totally unexpected, to find also DNA and membrane
computing ideas in the unpublished manuscripts of Turing. . . .

It is interesting to remark that Turing himself also conceived ways to compute
“beyond Turing,” looking for devices able to surpass Turing machines. Curiously
and sadly, the proposal was exposed in his doctoral thesis at Princeton Univer-
sity, in 1938, hence not in an unknown manuscript, but still the idea has been
largely forgotten, as remarked in [16]. The hypermachine imagined by Turing,
under the name of O-machine, was a Turing machine with an oracle, an exter-
nal agent able to solve (“for free” as the computational cost) any decision prob-
lem from a given class of problems. This looks a little bit like cheating, because
the extra power is explicitly introduced through the oracle, which is a black box
whose functioning we do not care about. However, in current computability, the
oracles are used in several areas (complexity, learning), without any reference to
Turing.

Let us close this paragraph with mentioning that Turing can be seen as a pioneer
not only of artificial intelligence, but also of artificial life: in his last years he was
interested in morphogenesis, in the simulation of the processes of passing from the
genes of a fertilized egg to the structure of the resulting animal.

From Cells to (Silicon) Computers, and Back 351

7 A (simulated) wondering: why are genetic algorithms so
good?

In order to see the (sometimes unexpected) benefits we can have when learning
from nature how to compute (or to solve problems), it is instructive to examine in
a few details the case of genetic algorithms. They are a combination of the slogan
“if you do not know the right direction, then walk randomly,” with the necessity to
define what “randomly” means, and the solution is “like in nature, when evolving
species.”

More specifically, genetic algorithms try to imitate the bio-evolution in solving op-
timization problems: the candidate solutions to a problem are encoded as “chromo-
somes” (strings of abstract symbols, binary numbers, real numbers, representations
of permutations, etc.), which are evolved by means of crossover (two chromosomes
are cut in several parts and the parts are recombined, thus producing two new chro-
mosomes) and point mutation (local changes, randomly produced) operations and
are selected from a generation to the next one by means of a fitness mapping; the
trials to improve the fitness mapping continue until either no essential improvement
is obtained for a number of steps or until a given number of iterations are performed.
The biological metaphors are numerous and obvious. What is not obvious (from a
mathematical point of view) is why such a, basically, brute force approach is as suc-
cessful as it happens to be (with a high probability, the genetic algorithms provide a
good enough solution in a large number of applications; in many cases, the genetic
algorithms escape from local maxima, converge very rapidly at the beginning of the
process, and provide nonintuitive solutions that are hard to imagine otherwise). The
most convincing “explanation” is probably “because nature has used the same strat-
egy in improving species.” This kind of bio-mystical “explanation” provides a rather
optimistic motivation for related research: if genetic algorithms prove to be so suc-
cessful (despite the lack of a convincing mathematical ground), why not try to bring
to computer science other life features; if we are inspired enough (or lucky enough),
then we may obtain similarly good ideas for using the existing computers (hence,
ideas for new types of algorithms) or, why not, for new types of computers. We have
reached in this way one of the most interesting attempts of natural computing: using
the DNA molecules as a support for computations.

8 Adleman experiment

Like in most areas of science, there is a history and a pre-history of DNA computing.
The history starts with Adleman’s experiment [1], of solving a small Instance of
the Hamiltonian Path Problem (HPP) in a biochemical laboratory; the pre-history
goes back to Feinmann, with his much-quoted phrase “there is plenty of room at the
bottom,” then to Bennett, Conrad, and others who speculated in the 1970s about the
possible use of molecules—in particular, bio-molecules—for computing.

352 Gheorghe Păun

These speculations were confirmed in 1994, when L. Adleman solved HPP in a lab,
in linear time (as the number of lab operations), although the problem is known to be
NP-complete, just by handling DNA by techniques already standard in biochemistry.
Now, more than one decade later, the experiment looks strikingly simple (actually, it
is simple; in one of the many interviews given after the event, Adleman said that after
getting the idea, everything was so clear that he was sure that the experiment would
succeed, but he effectively carried it out mainly for making the paper publishable. . .):
the nodes of the graph are encoded by single-stranded DNA molecules, of length 20;
if two nodes i, j, encoded by xi, xj , are linked by an arrow from i to j, then we also
construct a single-stranded DNA molecule of length 20, with the first 10 nucleotides
being complementary to the last 10 nucleotides from xi and the last 10 nucleotides
being complementary to the first 10 nucleotides from xj ; let us denote by si,j this
molecule. Millions of copies of each molecule of the two types were synthesized
and put in a test tube; the temperature was decreased so that the single strands have
annealed, producing double-stranded DNA molecules. Thus, the molecules si,j acted
as splints for the molecules xi, xj ; now, if an arrow exists also from node j to a node
k, then a longer molecule is created, and so on, building in the test tube molecules
representing paths in the graph. It is important to note that everything is done in a
massively parallel manner, with all paths created at the same time, in one step of the
computation.

Of course, there are several details here (the biochemical technicalities are skipped):
the paths are created only in the extent of existing enough initial “bricks,” copies of
molecules of types xi and si,j ; we do not consider here the chronological time of
carrying out the experiment, but the computational time, the number of steps as a
function of the size of the problem—here the number of nodes in the graph.

Adleman has considered a graph with seven nodes. This means that if a Hamiltonian
path exists, then it is represented by a molecule of length 140. Selecting molecules
by length is routine in biochemistry: by gel electrophoresis, one can distinguish even
molecules differing in a few base pairs. After selecting all molecules of length 140,
it was necessary to check whether among them there is one representing a path that
visits all nodes (because we know the length, this also implies that each node is vis-
ited only once). This is again an easy procedure for biochemists: filtering according
to a submolecule (by denaturation, polymerase chain reaction starting with an ap-
propriate primer, gel electrophoresis, repeatedly for each node). In total, a number of
steps of the order to the number of nodes: generating all possible paths, selecting the
molecules of length 140, filtering once for each node. After a linear number of steps,
the answer was found: the considered graph contained a Hamiltonian path.

9 DNA computing, pros and cons

The graph considered by Adleman was small, with the solution visible by a sim-
ple inspection (the electronic computers can handle HPP for graphs with 100–200

From Cells to (Silicon) Computers, and Back 353

nodes), and the whole experiment took about one week, but still the enthusiasm
was great. In terms of [27], this was a demo that we can compute by using DNA.
(Hartmanis compares/contrasts computer science, which progresses by demonstra-
tions that something new can be done, with physics, which progresses by means of
crucial experiments.) The novelty of the experiment is obvious, making realistic the
dream to solve hard problems in a feasible amount of time, by exploiting the massive
parallelism possible due to the very compact way of storing information on DNA
molecules (bits at the molecular level, with some orders of efficiency over silicon
supports). In this way, billions of “computing chips” can be accommodated in a tiny
test tube, much more than on electronic supports.

Still, several problems appear. First, we have to observe that we trade here space
for time, with the space measured in DNA nucleotides. The same Hartmanis, af-
ter expressing his enthusiasm, has also calculated how many molecules we need
in order to handle a graph with 100 nodes, and the conclusion was something like
. . . an Olympic-size swimming pool, [28], which is much more than any biochemist
can dream to handle. (In this way, besides the classic measures of computational
complexity, time, space, and, more recently, the communication complexity, another
one was proposed: the weight of the computer! There is no joke here, because in
DNA computing the information has a physical representation, each bit of infor-
mation has a weight. . .) One may claim that the previous drawback, related to the
quantity of necessary DNA, due to the fact that in the first stage one generates all
paths in the graph, is specific to Adleman experiment—but this is only partially
true. As long as the algorithm is intended to give the exact solution, there is no
way to avoid this drawback (this would lead to redefining complexity classes in stan-
dard computational complexity theory); if we are satisfied with probabilistic answers
to the problem, then we can avoid using an exponential amount of ADN, but then
there is no big achievement, probabilistic algorithms are available also on the usual
computers.

Actually, the big practical advantage of DNA-based algorithms is in moving forward
the feasibility borderlines. We not only handle simultaneously billions of molecules,
hence of “processors,” but this is done in ways that avoid the difficulties related to
using a large number of electronic processors. There is no need for synchronization,
controlled communication, and other related difficult issues; everything proceeds in
parallel, with a good degree of nondeterminism.

This nondeterminism has good effects and bad effects. Good, when we have
“enough” molecules, so that “everything which has a chance to happen, actually
happens”; hence we can explore at once a large space of candidate solutions. Bad,
because in the case when we get a negative answer, we cannot know whether this
is due to the fact that the problem has no solution or the experiment itself failed to
find one. Note the fact that Adleman has chosen a graph possessing a Hamiltonian
path. This discussion is related to the difference between so-called false-positive and
false-negative solutions: although the first type of solutions can be checked, the sec-
ond ones cannot. This observation makes DNA computing mainly suitable to address

354 Gheorghe Păun

problems where we can check the correctness of the solution, and one good candi-
date in this respect is cryptography—after getting a key, we check it, and, if it is not
correct, we repeat the experiment.

The errors in processing DNA (and any other molecules) are a major issue of re-
search, both from a mathematical point of view (designing the input molecules in
such a way to prevent wrong reactions, choosing error resistent problems, and de-
signing error-resistant algorithms) and from a lab point of view (there are several
proposals of filtering out the errors).

Anyway, after the initial enthusiasm (with a yearly international conference started in
1995, with books, research groups, projects, PhD theses, a huge bibliography, a lot of
reported successful experiments, and surely, many more unsuccessful experiments,
never reported. . .), the overall impression is that from the computer science point
of view, the area has reached a sort of deadlock; if no additional breakthrough will
appear, then no way is seen to scale up to practically useful computations. On the
other hand, the biochemical progresses motivated by DNA computing should not be
ignored; see, e.g., the so-called XPCR, reported in [20], or the by-products related to
nano-technology (I will come back to this last point).

10 The marvellous DNA molecule

For computer science, DNA computing fuels several hopes, mainly related to the
massive parallelism mentioned above; on this basis, we can simulate nondeterminism
(which is anyway present in biochemistry), so that one can address in this framework
computationally hard problems, with the possibility to push with some steps forward
the feasibility barriers—at least for certain problems.

Other good features of DNA are also mentioned as a support for computations
(energy efficiency, stability, reversibility of certain processes), but I switch here
to a purely theoretical observation, which is simply spectacular from a general
computability point of view: in a certain sense, all Turing computable languages
are “hidden” in the DNA molecules, and any particular language can be “read
off” from this blueprint of computability by the simplest transducer, the finite state
one!

This informal style statement has a precise mathematical counterpart, which was
first mentioned in [55]. Everything starts with an old characterization of recursively
enumerable (RE) languages, as the projection of the intersection of a so-called twin-
shuffle language with a regular language. However, both the projection and the in-
tersection with a regular language, and the decoding of the symbols of an arbitrary
alphabet from codes over a binary alphabet, can be computed by a sequential trans-
ducer. Therefore, every RE language is the image through a sequential transducer
of the twin-shuffle language over the alphabet with two symbols. Now, a clever ob-
servation from [55] relates the twin-shuffle language over two symbols to certain

From Cells to (Silicon) Computers, and Back 355

“readings” of DNA molecules (one goes along the two strands of a molecule, step by
step but with randomly varying speed, and producing a single string, by interleaving
the visited nucleotides; this reading can be done either starting from the same end
of a double-stranded molecule, or from opposite ends, for instance, according to the
directionality of the two strands). Thus, every RE language can be obtained through
a finite state transducer from the pool of readings of DNA molecules! The double-
stranded data structure, with the corresponding nucleotides related by the Watson–
Crick complementarity relation, is intrinsically universal from a computational point
of view.

This observation (mathematical details can be found in [52], together with the fol-
lowing interesting strengthening: it is enough to use three nucleotides, two of them
being complementary to each other and one of them its own complementary; from
the computability point of view, the DNA is redundant—as it happens in many sit-
uations in nature) should bring to theoretical DNA computing a similar degree of
optimism as genetic algorithms bring to practical natural computing.

Talking about computations and redundancy, let us also recall that most of the DNA
molecule is traditionally considered as “junk DNA”, as a way to express the fact
that more than 90% of the nucleotides do not encode genes, and it is not clear that
is their role; the percentage of “junk DNA” decreased with the advance of genetic
knowledge, but still a large part of the DNA molecules seem to be unused. Let us
speculate, starting from the observation that in the immunitary activity, the cell has
to perform a truly computational task, for instance, when recognizing viruses, which
are, basically, sequences of nucleotides; hence they have to be “parsed” as strings
in a language. At which level, in the Turing hierarchy of computability, should this
“computation” be done? Presumably, at a level as general as possible, maybe at the
level of Turing machines themselves, in order to be able to recognize all intruders.
However, this means that in recognizing a string of a given length, the working space
we need can be exponentially large. Maybe the part of the DNA without a genetic
function is just the workspace used in parsing aggressing agents—or in other “com-
putations” done by the living cell.

11 Computing by splicing

Let us quit (for a while) this speculative type of discussion and return to DNA com-
puting in a mathematical sense. At a theoretical level, DNA computing started before
Adleman, namely in 1987, when T. Head introduced a language-theoretical formal-
ization of what he called the splicing operation, a model of the recombinant behav-
ior of DNA molecules under the influence of restriction enzymes and ligase [26].
Somebody said that the restriction enzymes are the most intelligent tools the na-
ture gave us. They are a sort of “context-sensitive scissors”: they recognize a short
(usually, 6, 8, 10, 12 base pairs) submolecule of a DNA double-stranded molecule,
and they cut (in most cases in the interior of this submolecule, but in some cases

356 Gheorghe Păun

also outside, at a well-defined distance) the molecule in such a way that (again, in
most cases) the two fragments have staggered ends; they are called sticky ends, be-
cause the single strands with unpaired nucleotides are available to annealing with
corresponding complementary single strands. In this way, fragments with identical
sticky ends, produced by the same restriction enzyme or by different restriction en-
zymes that leave identical sticky ends, can be recombined, producing new molecules
(the pasting together of fragments also needs the presence of certain enzymes called
ligase).

Because this operation is rather interesting, we illustrate it in Figure 1, in a schematic
manner. The DNA molecules x and y are cut by two different enzymes, one using
the site u1zu2 and the second one the site v1zv2; important is that the sticky ends
are the same, which is indicated here by z. (I have omitted a series of biochemi-
cal details, such as the complementarity of the sticky ends, the inverse direction-
ality of the two strand, and the role of the ligase.) The fragments obtained after
cutting can either recombine into the starting molecules or into new molecules; if
we come back to the molecules x, y, then the enzymes will cut again; hence, after
a while “all” molecules x, y will be consumed and only recombined molecules will
remain.

x1 u1 z v2 y2

y1 v1 z u2 x2
�

recombine (paste)

x1 u1 z u2 x2

y1 v1 z v2 y2

x

y

x1 u1
u2 x2

y1 v1 v2 y2

z

z�cut

Fig. 1. A schematic representation of the splicing operation

Because of the precise Watson–Crick complementarity and because we can associate
the sticky end with one of the contexts of cutting, we can abstract from here, without
betraying too much the reality, an operation with strings, the splicing. I present it
in the form introduced in [48] (used also in [52]), which is a generalization of the
operation from [26].

A splicing rule over an alphabet V is a string r = u1#u2$v1#v2, with u1, u2, v1, v2
strings over V and #, $ symbols not in V . For two strings x, y over V , we
write

From Cells to (Silicon) Computers, and Back 357

(x, y) -r (w, z) iff x = x1u1u2x2, y = y1v1v2y2,

w = x1u1v2y2, z = y1v1u2x2,

for some x1, x2, y1, y2 ∈ V ∗.

We say that we have spliced x, y at sites u1u2, v1v2, respectively, obtaining the
strings w, z.

Now, this operation can be extended in a natural way to sets of strings and to sets of
rules, and then it can be iterated. Starting from a finite set of strings and a finite set
of splicing rules, we get a language that can be infinite.

It was proved already in 1991, by K. Culik and T. Harju (for the form of splicing rules
considered by T. Head), that in this way we obtain at most a regular language. The
proof was extended in 1997 by D. Pixton (with a recent easier proof by V. Manca)
also to the above type of rules. This is not too much: “computing by splicing” (that
is, by using restriction enzymes) is under the competence of finite automata, the
simplest class of automata (of restrictions of Turing machines). However, if some
simple controls about the use of rules, such as permitting or forbidding conditions
(a rule is applied to two string only if they contain—do not contain, respectively—
a specified symbol), taking care of the multiplicity of certain molecules, throwing
away all molecules that are not used, and continuing only with the results of the
splicing, etc., then we can directly jump at the level of Turing machines, and we
can generate all languages recognized by Turing machines. Details can be found in
[52].

12 What does it mean to compute “in a natural way?”

The previously mentioned results raise a series of interesting questions.

Traditionally, computer science uses in almost all computing models/theories strings
as a data structure and the rewriting as the basic operation—where by rewriting we
understand a local change in a string. The suggestive example is that of Chomsky
phrase structure grammars, with their rules of the form u→ v, where u, v are strings.
The same is true for Turing machines, Post systems, Markov algorithms, etc. Nature
instead uses mainly recombination, as modeled by splicing, in the process of repro-
duction, whereas local mutations occur only accidentally, and most of the resulting
beings are rejected; only at large intervals of time does the evolution accept a mu-
tated individual. The difference between rewriting and recombination is apparent.
Still, both rewriting and recombination (the latter one enhanced with some other
context sensing abilities, such as permitting symbols) are computationally universal
(hence equal in power). Coming from nature, we may say that the “natural” way
to compute is by recombination (cut-and-paste). Why then has computer science
not considered recombination as a basic operation? Because the human beings, as

358 Gheorghe Păun

macroscopic “computers”, are intrinsically closer to the Turing machine than to their
internal micro(nano)scopic processes? Because it is easier to process strings locally?
Because Hilbert asked what is mechanically computable and related the question
(his answer) to formal systems, where substitution is the basic inference operation?
It may be a little from all these, but still the question remains of whether it makes
sense to reconstruct the computability and the computer science itself in terms of
recombination. The results mentioned above show that this is, in principle, possible.
Is this also useful?

Then, another observation related to the question in the title of this paragraph is
the following. Uncontrolled iterated splicing can characterize the power of finite au-
tomata, weakly controlled splicing leads directly to the power of Turing machines,
without any simple characterization of intermediate classes, for instance, of classes
of languages in Chomsky hierarchy. Does this mean that these intermediate classes
are not “natural?” In some sense, this is the case. The definition of context-free
languages have a mathematical-linguistic flavor, whereas the context-sensitive lan-
guages have a computational complexity definition.

Furthermore, the level of finite automata is not attractive for computability, not
only because it is too weak, but also because there is no universality result for fi-
nite automata (hence at this level we cannot have programmable computers); going
to Turing machines requests an additional control on the splicing operations, of a
type that is met but not usual in nature. Otherwise stated, it seems that nature com-
putes by splicing at the level of finite automata only. This raises serious doubts over
whether programmable DNA “computers” based on splicing can be ever constructed
(of course, such a computer should work autonomously, not having the user as part
of the computation—as it is the case, e.g., in Adleman’s experiment, where, actu-
ally, Adleman has computed, not using paper and pencil, but DNA and enzymes).
This observation is worth remembering when discussing the possible intrinsic diffi-
culties/limits of natural computing in general.

13 The marvellous cell

Let us pass now to the smallest living unit, the cell (what is alive/nonalive depends
on the definition used, but the cell is unanimously considered alive, whereas, for
instance, the viruses are not considered so, because they need other cells to repli-
cate and do not have their own metabolism). The cell is a small but very complex
“factory,” with a complicate internal structure and activity, robust and sensitive at
the same time, facing—alone or in tissues, organs, organisms—the environment ag-
gressions in a wonderful way, handling billions of chemical compounds, from ions
to complicatedly folded proteins, as well as information (see again the quote from
[24]).

We do not enter here into the fascinating discussion about the role of cells in mak-
ing possible the life—details can be found in any book about the biology of the

From Cells to (Silicon) Computers, and Back 359

cell, such as the comprehensive [2]—but we only cite from [30] the title itself, as
a slogan (life means surfaces inside surfaces), then, through [29], a paragraph from
[34]: “The secret of life, the wellspring of reproduction, is not to be found in the
beauty of Watson–Crick pairing, but in the achievements of collective catalytic clo-
sure.”

The previous quotes point to one of the essential cell features/ingredients: the mem-
branes. The cell itself exists, can be delimited as an autonomous unit, because it is
separated from the environment by its external membrane. Then, inside the cell, sev-
eral membranes delimit “protected reactors,” where a specific biochemical activity
takes place. The nucleus, with the hereditary material (in the eucaryotic cells), the
complicated Golgy apparatus, mitochondria, vesicles, several membranes arranged
in a hierarchical manner, in three or four levels. Moreover, the membranes of a cell do
not only delimit compartments where specific reactions take place in solution, hence
inside the compartments, but many reactions in a cell develop on the membranes,
catalyzed by the many proteins bound on them. It is said that when a compartment
is too large for the local biochemistry to be efficient, life creates membranes, both in
order to create smaller “reactors” (small enough that, through the Brownian motion,
any two of the enclosed molecules can collide frequently enough), and in order to
create further “reaction surfaces.”

Rather interesting, all membranes from a cell have in principle the same structure:
they are bilayers of phospholipidic molecules, with a hydrophilic head and a hy-
drophobic tail (consisting of two fatty acids), so that, in the water that both surrounds
the cell and fills in the cell these molecules self-arrange to form a bilayer, “hiding”
the hydrophobic tails in the middle, and closing a 3D surface—thus spontaneously
delimiting an “inside” and an “outside.” In between the lipidic molecules there are
placed a variety of other molecules, especially proteins, cholesterol, and others, with
the proteins either forming channels from a side of the membrane to the other side,
or placed on only one side of the membrane. The protein channels have a crucial
role in the passage of chemicals across the membrane. Polarized molecules and large
molecules cannot pass through a membrane composed only of lipidic molecules, but
they can pass through protein channels. This passage is highly selective, with the se-
lection done by size or, the most interesting case, by the very nature of the chemicals.
Moreover, the passage of molecules through protein channels is done, by osmosis,
from a higher concentration to a lower concentration, hence without a consumption
of energy, but proteins also exist that move substances against the gradient—this time
with a consumption of metabolic energy. In most cases, the molecules pass one at a
time through a protein channel, but there also are cases when two molecules pass
together (without being possible for them to pass alone), either in the same direction
or in opposite directions. The first situation is called symport, and the latter one is
called antiport. These local phenomena are sometimes rather intricate, with several
intermediate steps, or they are coupled in more complex trans-membrane transport
processes.

360 Gheorghe Păun

Furthermore, “[m]any proteins in living cells appear to have as their primary function
the transfer and processing of information, rather than the chemical transformation
of metabolic intermediates or the building of cellular structures. Such proteins are
functionally linked through allosteric or other mechanisms into biochemical ‘cir-
cuits’ that perform a variety of simple computational tasks including amplification,
integration and information storage.” This was the very abstract of [7], whose title
is also very suggestive for another direction in which the cell inner activity can be
considered: the computational aspects. Actually, as we have seen also from [24], the
computational (information processing) aspects of life are a current topic for dis-
cussions coming from semiotics (the case of Hoffmeyer), biology (see Bray above,
but also [25]—the cytoskeleton itself, biochemically “less active” than the mem-
brane proteins, can be seen as an automaton—while [40] builds a whole theory on
the informational aspects of cell life), computer science, artificial life. We close this
discussion with a quote from [41], where the issue is synthesized in an equational
form with a suggestive computer science flavor: Life = DNA software + membrane
hardware.

Now, let us remark that only some cells live alone (such as ciliates, bacteria), but
in general the cells are organized in tissues, organs, organisms, and communities of
organisms. All these suppose a specific organization, starting with the direct com-
munication/cooperation among neighboring cells (adjacent cells can communicate
directly, through proteins which are realizing direct channels from a cell to another
cell), and ending with the interaction with the environment, at various levels. Also
many of these intercellular processes can be considered as computations—not to
speak about the fact that the neurons themselves are cells, specialized in information
processing.

A short parenthesis here, illustrating once again how intricate and surprising nature
can be from a computational point of view. The standard dimensions of computations
are time and space. This is true for computer science, not necessarily for the brain,
where a great part of computations use time as a sort of resource, as a support of data,
in so-called spiking neurons. Such a neuron sends through its axon and dendrites an
electrical pulse, which is independent from the inputs to the neuron; however, the
time when the impulse is produced depends on the input. This highly differs from
the understanding of neurons as captured in artificial neural nets, leading to the “third
generation of neural network models”; see [42].

And now the question arises: what can we learn from the cell biology useful to com-
puter science? Membrane computing is an answer to this question.

14 A glimpse to membrane computing

As we have said in the beginning of this discussion, membrane computing is one
of the youngest areas of natural computing (the paper [49] was first circulated in

From Cells to (Silicon) Computers, and Back 361

November 1998 on web), and the first one starting explicitly from the cell structure
and functioning and systematically investigating computing models inspired both
from the life of separate cells and from the functioning of conglomerates of cells,
such as tissues or neural nets. The theory is much developed for cell-like membrane
systems (P systems), with a considerable recent advance of population P systems
(tissue-like P systems), and with a promising beginning of investigations of neural-
like P systems, where a lot of work remains to be done.

In what follows, in order to have an idea of what membrane computing means, we
only discuss the case of cell-like P systems.

The basic idea is to consider a hierarchical arrangement of membranes, like in a cell,
delimiting compartments where various chemicals (we call them objects) evolve ac-
cording to local reaction rules. These objects can also pass through membranes, un-
der the control of specific rules. Because the chemicals in a cell are swimming in
an aqueous solution, the data structure we consider is that of a multiset—a set with
multiplicities associated with its elements. The reaction rules are applied in a parallel
manner, with the objects to evolve by them and with the reactions themselves chosen
in a nondeterministic manner. In this way, we can define transitions from a config-
uration to another configuration; hence we can define computations. A computation
that halts (reaches a configuration where no rule is applicable) provides a result, for
instance, in the form of the number of objects present in the halting configuration in
a specified compartment.

There are many variants of this very basic type of a computing device. In all cases,
one the fundamental ingredients is that of the membrane structure.

The meaning of this notion is illustrated in Figure 2, and this is what we can see when
looking (through mathematical glasses, hence abstracting as much as necessary in
order to obtain a formal model) to a standard cell.

The typical kind of rule for evolving objects is a multiset-rewriting one, of the form
u → v, where u and v are multisets of objects (this is much like a usual equation
describing a chemical reaction), with several variants. A rule of the general form is
called cooperative, when u consists of a single objects the rule is called noncoop-
erative (this corresponds to context-free rules in Chomsky grammars), whereas an
intermediate (interesting) case is that of catalytic rules, of the form ca → cv, where
c is an object that behaves like a catalyst, it never changes, but only helps object a to
get transformed into multiset v.

A very important type of rules are those that correspond to symport and an-
tiport trans-membrane operations: we write (x, in) or (x, out) for a symport mov-
ing the objects from multiset x inside, or outside a membrane, respectively, and
(x, out; y, in) for an antiport that moves the objects of x outside at the same time
with bringing the objects of y inside.

We skip here all technical details, and we refer the interested reader to [50] for a com-
prehensive presentation (at the level of the spring of 2002), with recent information

362 Gheorghe Păun

�

�

�

	

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

membranes

elementary membrane

environment environment

regions

skin

1 2

3

4
5

6

7

8

9

�

����

����������

�
�

�
�� ������ �

�
�

�
��	

�
�

���

���

Fig. 2. A membrane structure

available in [65], and we only mention the two main classes of results in membrane
computing:

1. Most classes of P systems are computationally universal, equal in power with
Turing machines; for instance, this is true for multiset-rewriting systems with
catalytic rules (with two catalysts, see [21]), and also for symport/antiport P
systems ([47]), even with rules of rather small sizes (see [3]).

2. When systems with an enhanced parallelism are used, e.g., having rules that
allow the division of membranes, like in biology; then computationally hard
problems (typically, NP-complete problems) can be solved in a polynomial (of-
ten linear) time in this framework; of course, the trick lies in the time–space
trade-off made possible by means of the fact that, by membrane division, an ex-
ponential number of membranes (encapsulated “processors”) can be created in a
linear number of steps.

We can conclude with the observation that the “computing cell” is a very powerful
and efficient “computer.”

The previous results, both concerning the power (competence) and the efficiency
(performance) of membrane computing, are of a theoretical interest, but they are
. . . theory. However, membrane computing started to become a more and more suc-
cessful framework for applications. Biology, linguistics, management, and computer
science are areas where several applications were reported; see [13] and [65]. The
applications to biology take in general processes that develop at the level of the cell,
build a model in terms of P systems (in many cases with probabilities/reaction rates
associated with the rules), then build a computer program simulating the P system,
and experiment with this program, tuning parameters or inputs and following the
evolution of the process along a large number of steps. The applications to linguis-

From Cells to (Silicon) Computers, and Back 363

tics and management are mainly using the language of membrane computing, the
graphical one, the mathematical formalism, etc. A recent approach to apllications
in economics was started in [51], where a genuinely new class of P systems was
introduced, with numerical variables placed in membranes, evolving by production–
repartition programs. Very promising are the computer science applications, for in-
stance, in computer graphics and in devising approximate algorithms for solving
hard optimization problems (this last idea was recently proposed in [44] and was
checked with very good results for the traveling salesman problem, the optimization
counterpart of HPP).

15 At the edge of science fiction

As mentioned above, there are many convincing achievements of natural computing,
many bio-inspired areas of computer science have important practical applications,
or/and they are appealing from a theoretical point of view. Sometimes, the usefulness
of the bio-inspired models and tools has a somewhat mysterious source/explanation;
in other cases, the matter is simpler and more transparent. Anyway, we try here to
compose a list of attractive features of this attempt, of learning from the living nature
to the benefit of computer science (most of these features can be called “hopes,” as
not being confirmed yet by current natural computing): in many cases, we look for
ideas for improving the use of the existing computers, for new types of algorithms;
in other cases, a new hardware is sought for; as new ideas to be found in nature, we
can learn new data structures (such as the double strand with complementary pairs
of symbols), or new operations (crossover and point mutations, splicing, annealing,
and so on and so forth); bio-computing can make available a massive parallelism,
reversible computations, nondeterminism, energy efficiency, maybe also evolvable
hardware/software, self-healing, robust; new ideas learned from biology can lead to
a complete reconstruction of computability theory, on nonstandard bases (e.g., using
the splicing operation, quite different from the rewriting operation, which is standard
in computability); nature can suggest new computer architectures, new ways to cope
with such difficulties of parallel computing as communication, (de)centralization,
synchronization, controlling distributed processes, etc.

All these are somewhat standard attempts/hopes, but there are many others that step
vigorously in the after tomorrow science, if not directly in science fiction.

Let us return to hypercomputations. Nothing from physics and biology prevents the
possibility that devices computing more than Turing machines can exist. In partic-
ular, besides the idea of using an oracle, there are several other ideas, in principle,
“more realistic,” to go ‘beyond Turing.” Nine other such possibilities are discussed in
[45]—among them, accelerated Turing machines. The idea goes back to B. Russell
(1936), R. Blake (1926), and H. Weyl (1927), who imagined processes that take one
time unit for the first step, a half for the second step, and so on, always halving the
time to complete the next step. Imported to computability, this idea leads to Turing

364 Gheorghe Păun

machines that finish an infinite computation in two time units, and this makes pos-
sible computing what a usual Turing machine cannot compute. Thus, let us recall
the observation that nature creates internal membranes in a cell (also) in order to
enhance the possibility of chemicals to collide, hence to facilitate reactions. Then,
let us assume that the reactions that develop in membranes placed on lower levels in
a cell are faster than reactions from the upper levels; let us push this hypothesis to
having a continuous acceleration and provide the way of creating inner membranes
during a computation. What we obtain is an accelerated P system, and such a de-
vice, motivated biologically as we have seen above, can compute more than Turing
machines. The proof can be found in [9].

Now, in what concerns the practical consequences of computing beyond Turing, they
can be bigger than the consequences of the possible efficient proof of the equality
P = NP—details can be found in [15], [16], [45].

Let us return to the lab: in 2001 an important achievement of DNA computing has
been announced—implementing a finite automaton [5]. Not too much as computing
power, but very much as strategy: the “machine” was capable of an autonomous com-
putation. Moreover, the degree of parallelism was massive. Here is a paragraph from
[5]: “In our implementation 1012 automata sharing the same software run indepen-
dently and in parallel on inputs (which could, in principle, be distinct) in 120μl solu-
tion at room temperature at a combined rate of 109 transitions per second with a tran-
sition fidelity greater than 99.8%, consuming less than 10−10W.” Fully impressive—
with the only “small” detail that the automaton that was implemented had only two
states, and as usual in DNA computing, scaling-up at a level of a practical interest is
not yet possible.

Still, something important remains: the possibility to do it, for finite automata. Finite
automata can parse simple languages, for instance, can identify given patterns in
an arbitrary string (this is one of the ways of searching texts, such as the current
one, for given words). Now, remember that genes are strings, that many diseases are
supposed to be encoded in genes, and that a hope of the future medicine is to cure
such diseases by editing the respective parts of genes. Doing it by usually eaten or
injected medicines is a waste of medicines, much more efficient looks the idea to send
the necessary gene-editing–machinery directly at the place where an intervention is
needed. To this aim, we need a vector able to carry the gene editor at the right place
and a way to find the right place. The second task is covered by a finite automaton.
Nicely enough, also the first task can be, in principle, covered, by building a nano-
carrier, able to inspect cells, and inside cells, their genome. Some details of this nano-
robot were presented in [6]—not incidentally, the finite automaton was implemented
in the same team.

Many things remain to be done, hence the possibility (danger?) to have our body
continuously scanned by a gene repairing robot is not at all at horizon. However,
DNA motors, moving nano-constructions, periodically opening and closing scissors-
like DNA molecules are already realized in several laboratories, as part of the fast

From Cells to (Silicon) Computers, and Back 365

growing area of nano-technology (with the mentioning that this means in most cases
DNA–based technology). Details and references can be found, e.g., in [54].

Other similar speculations? No problem, because there are no limits of speculating,
even starting from very sound scientific grounds. Maybe it deserves to be mentioned
here F. Tipler, with his (controversial) eternal life in terms of an informational exis-
tence (what else is this than artificial life at an universal scale?), from [59].

16 Do we dream too much?

However, let us come back on the Earth, to natural computing as we have it today and
as we hope to have it in the near future, and let us take a more skeptical (realistic?)
position, contrasting with the positive attitude of the previous paragraphs and with
the enthusiastic or even over-enthusiastic position of many authors.

For promoting a young research area, the enthusiasm is understandable—but nat-
ural computing is no longer a young area, by Turing it is as old as computer sci-
ence. A more lucid position is similarly helpful as a blindly optimistic one, so that
we balance here the previous discussion with a list of difficulties of implementing
bio-ideas in computer science: nature has (in a certain sense, unlimited) time and
resources, nature is cruel, kills what is not fit (all these are difficult to incorporate in
computers, let them be based on electronic hardware or on a hypothetic bio-ware);
nature has other goals than computing; many biochemical processes have a degree of
nondeterminism that we cannot afford/allow in our computations; the life processes
are complex, with a high degree of redundancy; biology seems to deal with noncrisp
mathematics, with probabilities, with fuzzy estimations, which are not fully manage-
able in computations. And, last but not least, maybe we dream too much even from
a theoretical point of view. First, the space–time trade-off specific to molecular com-
puting, cannot redefine complexity classes, and it is sometimes too costly in space
(in the size of used bio-ware). Then, M. Conrad [14] warned us that programma-
bility (universality), efficiency, and evolvability are three contradictory features of
any computing model; no computing device can simultaneously have all these three
good qualities. . . . Both observations indicate that there is no free lunch in computer
science, even in the bio-inspired one.

Similar to Conrad, impossibility theorems are the result from [22] (see also [39]),
about the impossibility of computing beyond Turing as soon as four conditions are
to be observed.1

1 Specifically, Gandy wanted to have a proof of a theorem of the form “what can be calculated
by a machine is computable by a Turing machine,” as an anthropic-free version of the
Turing–Church thesis, which has, in Turing understanding, the formulation “what can be
calculated by an abstract human being working in a routine way is computable by a Turing
machine.” To this aim, one first introduces four criteria for “being a machine,” and then one
proves that the behavior of any device, abstract or physical, which satisfies these criteria can

366 Gheorghe Păun

Now, in what concerns the applications of computer science in biology, let us remark
that there are serious limits in this respect. Everything starts with the fact that the cell,
as small as it is, is a complex system, with a nonlinear behavior, difficult to capture
in simple models, difficult also for complex models based on differential equations
(with the success from physics, such models were obsessively tried in biology, with
not so good results: the models are difficult to understand, difficult to change, difficult
to scale up). It was said in several places that, after completing the genome project,
the major task of bioinformatics is the simulation of a cell—see the very title of
[61].

This last observation has led to a major preoccupation of the last years for the mod-
eling of the cell, in the framework of a new fashion called “systems biology,” with
several manifestos in well-known journals, such as Science [37], Nature [38], with
many projects in many countries, with serious research efforts put in this attempt,
to have an overall model of a cell and to simulate this model on a computer, and
then to use this, in relation with data mining, drug and treatment discovery, until
transforming biology and medicine into precise engineering (the last words of [38]).
The goals are noble (and feasible, at least at a medium run), but the insistence with
which the syntagma “systems biology” is repeated made by O. Wolkenhauer to ask
himself already from the title of [64] whether this is a genuinely new area of research
or is just a “reincarnation of systems theory applied in biology.” The paper recalls
the efforts made in the 1960s to apply systems theory in biology, with an obvious
disappointment at that time, due, among others, to the limits in available data and in
the computability power (let us recall that the currently accepted model of the cell
membrane, the Singer–Nicolson fluid–mosaic model, dates from 1972 only). But,
maybe there is something else that is necessary, coming from the biology itself as
a level of maturity (as formal science). This observation is soundly expressed in the
last paragraph of [64], where one of the important names of classic systems theory,
M. Mesarović, is invoked: “Mihajlo Mesarović wrote in 1968 that ‘in spite of the
considerable interest and efforts, the application of systems theory in biology has not
quite lived up to expectations. (. . .) One of the main reasons for the existing lag is
that systems theory has not been directly concerned with some of the problems of vi-
tal importance in biology’. His advice for biologists was that progress could be made
by more direct and stronger interactions with systems scientists. ‘The real advance in
the application of systems theory to biology will come about only when the biologists
start asking questions which are based on the system–theoretic concepts rather than

be simulated by a Turing machine. We have here the starting point of a fascinating debate
about issues that we only mention (in a form recently formulated to me by J. Kelemen), and
we refer to [31], [35], [36] for well-documented related discussions: what is a computer?
how much human features and how much more general features we associate with this
concept? Are they living beings with the ability to compute machines? In what sense? It
is interesting to note that the answer to these questions has historically evolved, somewhat
in parallel with issues related to the nature of robots—from organic, to electro-mechanical,
electronic, and, presumably, back to organic; this is well documented, e.g., in [31], and a
similar analysis can be carried out also for the history of computing/computers.

From Cells to (Silicon) Computers, and Back 367

using these concepts to represent in still another way the phenomena which are al-
ready explained in terms of biophysical or biochemical principles. (. . .) Then we will
not have the applications of engineering principles to biology problems but rather a
field of systems biology with its own identity and in its own right’.” [43].

Transforming biology and medicine into precise engineering can be put in relation
with the proposal from [6] and in contrast with the current limits of understand-
ing life, materialized, among others, in the current limits of AI and AL, with many
former dreams drastically reshaped. Think, for instance, is still too difficult for any
computer Turing test. In general, the computers are perceived as powerful machines,
but not at all displaying intelligence (they are already spectacular in IA—intelligence
amplification—but not similarly successful in AI—artificial intelligence, [63]). All
these suggest, in terms of [8], that, despite the many spectacular achievements, “we
might be missing something fundamental and currently unimagined in our models of
biology.” The computers are good in crunching numbers, but not “at modelling living
systems, at small or large scales.” The clear intuition is that life is more than biochem-
istry, but what else should be considered can be something unimagined, something
“invisible to us right now.” “It is not completely impossible that we might discover
some new properties of biomolecules or some new ingredient.” An example of such
“new stuff” can be the quantum effects in the microtubules of nerve cells, which,
according to [53], “might be the locus of consciousness at the level of individual
cells, which combines in bigger wave functions at the organism level.” ([8], page
410).

A similar position is expressed by J. McCarthy in [10]. “Human–level intelligence
is a difficult scientific problem and probably needs some new ideas. These are more
likely to be invented by a person of genius than as part of a Government or industry
project.”

And, maybe, we have here one of the sources of introducing difficulty in the stage: on
the one hand, we want to make the computers behave like humans, trying to improve
them by looking in nature, to the ways life “computes,” from cells to the brain, and,
on the other hand, we try to understand (model, simulate) the cells themselves, the
brain, the life, in computational terms, projecting our computer science experience
to biology. Isn’t it here a sort of a (vicious) circle?

Anyway, the search for a “new stuff” may start with realizing that we need such
a “new stuff,” but, as many crucial steps forward in science prove, this does not
necessarily make the discovery more plausible or rapid.

17 Closing remarks

The journey from cells (biology) to models (mathematics) and to computers, and
then back to cells is fascinating, marked with many achievements and much more un-
solved tasks, full of promises and attractive scientifically, with sure payoffs for both

368 Gheorghe Păun

partner areas—biology (medicine included) and computer science. The current dis-
cussion was only a brief description of this journey, from a subjective point of view,
leading to a few general key observations: (i) In all its history, computer science has
tried to learn from biology, at various levels; (ii) this is a highly rewarding attempt,
at least for computer science; (iii) it starts to be rewarding also for biology; (iv) the
future progresses in this area cannot be overestimated; (v) in general we expect too
much (and too soon) from the biology–computability symbiosis; (v) we ignore the
genuine differences between the two domains, the inherent limits of computability,
and the fact that biology is not yet a mathematized science; (vi) it is possible that
maybe a new mathematics is not necessary, but something essentially new, related to
the difference between living and nonliving; and (vii) independent of any practical
usefulness, all this scientific adventure is challenging, attractive, worth carrying on,
with possible by-products that cannot be foreseen.

If bio-informatics will not (help to) produce a Golem, it will at least prove why this
is not possible. . . and, to recall the title of [17], this is enough in order to prevent “the
end of computing science.”

References

1. L.M. Adleman: Molecular computation of solutions to combinatorial problems. Science,
226 (Nov. 1994), 1021–1024.

2. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter: Molecular Biology of
the Cell, 4th ed. Garland Science, New York, 2002.

3. A. Alhazov, M. Margenstern, V. Rogozhin, Y. Rogozhin, S. Verlan: Communicative P
systems with minimal cooperation. In Membrane Computing. International Workshop
WMC5, Milan, Italy, 2004. Revised Papers (G. Mauri, Gh. Păun, M.J. Pérez–Jiménez,
G. Rozenberg, C. Zandron, eds.), Lecture Notes in Computer Science, 3365, Springer,
Berlin, 2005, 162–178.

4. J.A. Anderson: An Introduction to Neural Networks. The MIT Press, Cambridge, MA,
1996.

5. Y. Benenson, T. Paz–Elizur, R. Adar, E. Keinan, Z. Livneh, E. Shapiro: Programmable
and autonomous computing machine made of biomolecules. Nature, 414 (Nov. 2001),
430–434.

6. Y. Benenson, E. Shapiro, B. Gill, U. Ben–Dor, R. Adar: Molecular computer. A ‘smart
drug’ in a test tube. Proc. of Tenth DNA Computing Conference, Milano, 2004 (C. Ferretti,
G. Mauri, C. Zandron, eds.), Univ. of Milano–Bicocca, 2004, 49 (abstract of invited talk).

7. D. Bray: Protein molecules as computational elements in living cells. Nature, 376 (July
1995), 307–312.

8. R. Brooks: The relationship between matter and life. Nature, 409 (Jan. 2001), 409–411.
9. C. Calude, Gh. Păun: Bio–steps beyond Turing. BioSystems, 77 (2004), 175–194.

10. J. Mc Carthy: Problems and projection in CS for the next 49 years. Journal of the ACM,
50, 1 (2003), 73–79.

11. J.L. Casti. Computing the uncomputable, The New Scientist, 154/2082, 17 (May 1997),
34.

From Cells to (Silicon) Computers, and Back 369

12. S. Cook: The importance of the P versus NP question. Journal of the ACM, 50, 1 (2003),
27–29.

13. G. Ciobanu, Gh. Păun, M.J. Pérez–Jiménez, eds.: Applications of Membrane Computing.
Springer, Berlin, 2006.

14. M. Conrad: The price of programmability. In The Universal Turing Machine: A Half–
Century Survey (R. Herken, ed.), Kammerer and Unverzagt, Hamburg, 1988, 285–307.

15. B.J. Copeland: Hypercomputation. Minds and Machines, 12, 4 (2002), 461–502.
16. B.J. Copeland, D. Proudfoot: Alan Turing’s forgotten ideas in computer science. Scientific

American, 280 (April 1999), 77–81.
17. E.W. Dijkstra: The end of computer science? Communications of the ACM, 44, 3 (2000),

92.
18. A. Ehrenfeucht, T. Harju, I. Petre, D.M. Prescott, G. Rozenberg: Computation in Living

Cells. Gene Assembly in Ciliates. Springer, Berlin, 2004.
19. A.E. Eiben, J.E. Smith: Introduction to Evolutionary Computing. Springer, Berlin, 2003.
20. G. Franco, C. Giabulli, C. Laudana, V. Manca: DNA extraction by cross pairing PCR.

Proc. of Tenth DNA Computing Conference, Milano, 2004 (C. Ferretti, G. Mauri, C. Zan-
dron, eds.), Univ. of Milano–Bicocca, 2004, 193–201.

21. R. Freund, L. Kari, M. Oswald, P. Sosik: Computationally universal P systems without
priorities: two catalysts are sufficient. Theoretical Computer Sci., 330, 2 (2005), 251–266.

22. R. Gandy: Church’s thesis and principles for mechanisms. In The Kleene Symposium (J.
Barwise et al., eds.), North–Holland, Amsterdam, 1980, 123–148.

23. M.R. Garey, D.S. Johnson: Computers and Intractability. A Guide to the Theory of NP–
Completeness. Freeman, San Francisco, CA, 1979.

24. M. Gross: Molecular computation. Chapter 2 of Non–Standard Computation (T. Gramss,
S. Bornholdt, M. Gross, M. Mitchel, Th. Pellizzari, eds.), Wiley–VCH, Weinheim, 1998.

25. S.R. Hameroff, J.D. Dayhoff, R. Lahoz–Beltra, A.V. Samsonovich, S. Rasmussen: Mod-
els for molecular computation: Conformational automata in the cytoskeleton. Computer,
25 (Nov. 1992), 30–39.

26. T. Head: Formal language theory and DNA: An analysis of the generative capacity of
specific recombinant behaviors. Bulletin of Mathematical Biology, 49 (1987), 737–759.

27. J. Hartmanis: About the nature of computer science. Bulletin of the EATCS, 53 (June
1994), 170–190.

28. J. Hartmanis: On the weight of computation. Bulletin of the EATCS, 55 (Febr. 1995),
136–138.

29. J. Hoffmeyer: Surfaces inside surfaces. On the origin of agency and life. Cybernetics and
Human Knowing, 5, 1 (1998), 33–42.

30. J. Hoffmeyer: Semiosis and living membranes. First Seminário Avançado de Comuni-
cação e Semiótica. Biossemiótica e Semiótica Cognitiva, São Paolo, Brasil, 1998, 9–19.

31. J. Horáková, J. Kelemen: Čapek, Turing, von Neumann, and the 20th century evolution
of the concept of machine. In Proceedings of the International Conference in Memoriam
John von Neumann, Budapest Polytechnic, 2003, 121–135.

32. J. Hromkovic: Communication Complexity and Parallel Computing. Springer, Berlin,
1997.

33. S. Ji: The cell as the smallest DNA–based molecular computer. BioSystems, 52 (1999),
123–133.

34. S. Kauffman: At Home in the Universe. Oxford Univ. Press, New York, 1995.
35. J. Kelemen: Bodouci Altamira (The New Altamira). Votobia, Olomouc, 1996.
36. J. Kelemen: Kybergolem (Cybergolem). Votobia, Olomouc, 2001.
37. H. Kitano: Systems biology: A brief overview. Science, 295 (March 2002), 1662–1664.

370 Gheorghe Păun

38. H. Kitano: Computational systems biology. Nature, 420 (Nov. 2002), 206–210.
39. V. Kreinovich, L. Longprè: Fast quantum algorithms for handling probabilistic and inter-

val uncertainty. Math. Logic Quart., 50 (2004), 405–416.
40. W.R. Loewenstein: The Touchstone of Life. Molecular Information, Cell Communication,

and the Foundations of Life. Oxford University Press, New York, Oxford, 1999.
41. S. Marcus: Bridging P systems and genomics: A preliminary approach. In Membrane

Computing. International Workshop, WMC–CdeA 2002, Curtea de Argeş, Romania, Re-
vised Papers (Gh. Păun, G. Rozenberg, A. Salomaa, C. Zandron, eds.), Lecture Notes in
Computer Science, 2597, Springer, Berlin, 2003, 371–376.

42. W. Mass: Networks of spiking neurons: The third generation of neural network models.
Neural Networks, 10, 9 (1997), 1659–1671.

43. M.D. Mesarović: System theory and biology – view of a theoretician. In System Theory
and Biology (M.D. Mesarović, ed.), Springer, New York, 1968, 59–87.

44. T.Y. Nishida: An application of P system: A new algorithm for NP–complete optimization
problems. In Proceedings of the 8th World Multi–Conference on Systems, Cybernetics and
Informatics (N. Callaos et al, eds.), vol. V, 2004, 109–112.

45. T. Ord: Hypercomputation: Computing More Than the Turing Machine. Honours Thesis,
Department of Computer Science, University of Melbourne, 2003.

46. C.H. Papadimitriou: Computational Complexity. Addison–Wesley, Reading, MA., 1994.
47. A. Păun, Gh. Păun: The power of communication: P systems with symport/antiport. New

Generation Computing, 20, 3 (2002), 295–306.
48. Gh. Păun: On the splicing operation. Discrete Appl. Math., 70 (1996), 57–79
49. Gh. Păun: Computing with membranes. Journal of Computer and System Sciences, 61, 1

(2000), 108–143 (and Turku Center for Computer Science–TUCS Report 208, November
1998, www.tucs.fi).

50. Gh. Păun: Membrane Computing: An Introduction. Springer, Berlin, 2002.
51. Gh. Păun, R. Păun: Membrane computing and economics: Numerical P systems. Submit-

ted, 2005 (available at [65]).
52. Gh. Păun, G. Rozenberg, A. Salomaa: DNA Computing. New Computing Paradigms.

Springer, Berlin, 1998.
53. R. Penrose: The Emperor’s New Mind. Concerning Computers, Minds, and the Laws of

Physics. Oxford University Press, Oxford, 1989.
54. J.H. Reif, T.H. LaBean, S. Sahu, H. Yan, P. Yin: Design, simulation, and experimental

demonstration of self–assembled DNA nanostructures and motors. Proceedings of the
Workshop on Unconventional Programming Paradigms, UPP04, Le Mont Saint–Michel,
September 2004, Springer, Berlin, 2005.

55. G. Rozenberg, A. Salomaa: Watson–Crick complementarity, universal computations, and
genetic engineering. Techn. Report 96–28, Department of Computer Science, Leiden
Univ., Oct. 1996.

56. P. Sosik: The computational power of cell division in P systems: Beating down parallel
computers? Natural Computing, 2, 3 (2003), 287–298.

57. C. Teuscher, ed.: Alan Turing. Life and Legacy of a Great Thinker. Springer, Berlin, 2003.
58. C. Teuscher, E. Sanchez: A revival of Turing’s forgotten connectionist ideas: exploring

unorganized machines. Proc. Connectionist Models of Learning, Development and Evo-
lution, Liege, Belgium, 2000 (R.M. French, J.J. Sougne, eds.), Springer-Verlag, London,
2001, 153–162.

59. F. Tipler: The Physics of Immortality. Doubleday, New York, 1994.
60. T. Toffoli: Nothing makes sense in computing except in the light of evolution. Int. J. of

Unconventional Computing, 1 (2005), 3–29.

From Cells to (Silicon) Computers, and Back 371

61. M. Tomita: Whole–cell simulation: A grand challenge of the 21st century. Trends in
Biotechnology, 19 (2001), 205–210.

62. A.M. Turing: On computable numbers, with an application to the Entscheidungsproblem.
Proceedings of the London Mathematical Society, Ser. 2, 42 (1936), 230–265; a correc-
tion, 43 (1936), 544–546.

63. V. Vinge: Technological singularity. VISION–21 Symposium, March 1993 (available at
http://www.frc.ri.cmu.edu/ hpm/book98/com.chl/vinge.singularity.html.

64. O. Wolkenhauer: Systems biology: The reincarnation of systems theory applied in biol-
ogy? Briefings in Bioinformatics, 2, 3 (2001), 258–270.

65. The Web Page of Membrane Computing: http://psystems.disco.unimib.it

Computer Science, Informatics, and Natural
Computing—Personal Reflections

Grzegorz Rozenberg

Department of Computer Science, University of Colorado at Boulder
Boulder, CO 80309, U.S.A.
and
Leiden Institute of Advanced Computer Science (LIACS), Leiden University,
2300 RA Leiden, the Netherlands
rozenber@liacs.nl

Summary. The paper presents personal reflections on natural computing: its scope, some of
its history, and its relationship to (and the influence on) computer science. It also reflects on
the nature of computer science, and argues why “informatics” is a better term than “computer
science”.

The classic notion of computation is firmly rooted in the notion of an algorithm that
informally speaking is a set of rules for performing a task. The quest for formalizing
the notion of an algorithm so that it could be “mechanised” dates back at least to
the work of Gottfried W. Leibnitz. Leibnitz (1646–1716) wanted to formalize human
reasoning in such a way that it could be described as a collection of rules, which then
could be executed in a mechanistic way.

The motivation for his passionate research was stated by Leibnitz as follows: “[I]t
is unworthy of excellent men to lose hours like slaves in the labor of calculation
which could safely be relegated to anyone else if the machine was used” (see, e.g.,
[4]). Thus the motivation was rooted in the specific “negative idea” that the task
of performing calculations is a waste of time. This, however, can be turned into
a positive motivation, viz., the need to understand which mental processes can be
formalized so that they can be automated—this point of view is closer to the current
thinking in computer science.

This research into the understanding of the notion of an algorithm was carried on by
many outstanding scientists, and it culminated in the works of Kurt Gödel, Alonzo
Church, Alan Mathison Turing, and Emil Post approximately in the period 1930–
1940.

374 Grzegorz Rozenberg

The formalization of the notion of an algorithm by these four giants, and especially
the work by Alan Mathison Turing, led to the construction of the first computers, and
to the beginnings of computer science. In formalizing the notion of an algorithm,
Turing has focused on what a person performing calculations did when following
a set of rules, hence following a given algorithm. Thus the beginnings of computer
science were rooted in human-designed computing.

The scope and importance of computer science has grown tremendously since its be-
ginnings. In fact, the spectacular progress in Information and Communication Tech-
nology (ICT) is very much supported by the evolution of computer science, which
designs and develops the instruments needed for this progress: computers, computer
networks, software methodologies, etc. Since ICT has such a tremendous impact on
our everyday life, so does computer science.

However, there is much more to computer science than ICT: it is the science of infor-
mation processing, and as such it is a fundamental science for other scientific disci-
plines. As a matter of fact, the only common denominator for research done in all the
areas so diverse of computer science is thinking about various aspects of information
processing. Therefore, the frequently used (mostly in Europe) term “informatics” is
much better than “computer science”—the latter stipulates that a specific instrument,
viz., computer, is the main research topic of our discipline. On the other hand, one
of the important developments of the last century for a number of other scientific
disciplines is the adoption of information and information processing as their central
notions and thinking habits—biology and physics are beautiful examples here. For
these scientific disciplines informatics provides not only instruments but also a way
of thinking.

I am convinced that one of the grand challenges of informatics is to understand the
world around us in terms of information processing. Each time progress is made in
achieving this goal, both the world around us and informatics benefits. Since nature is
a dominating part of the world around us, one way to understand this world in terms
of information processing is to study computing taking place in nature. Natural com-
puting is concerned with this type of computing as well as with its main benefit for
informatics, viz., human-designed computing inspired by nature. Research in natu-
ral computing is genuinely interdisciplinary, and therefore, natural computing forms
a bridge between informatics and natural sciences. It has already contributed enor-
mously to human-designed computing through the use of paradigms, principles, and
mechanisms underlying natural systems. Some disciplines of this type of computing
are relatively old (in the young history of computer science) and are well established
by now. Well-known examples of such disciplines are evolutionary computing and
neural computing. Evolutionary algorithms are based on the concepts of mutation,
recombination, and natural selection from the theory of evolution, whereas neural
networks are based on concepts originating in the study of the highly interconnected
neural structures in the brain and the nervous system. On the other hand, molecu-
lar computing and quantum computing are younger disciplines of natural comput-

Computer Science, Informatics, and Natural Computing—Personal Reflections 375

ing: molecular computing is based on paradigms from molecular biology, whereas
quantum computing is based on quantum physics and exploits quantum parallelism.
Human-designed computing inspired by nature includes also other subdisciplines
and paradigms.

Thus research in natural computing had already a big impact on the development
of informatics, and in particular, it contributed to our understanding of the nature of
computation. Since the understanding of the nature of computation is the main task
of theoretical computer science, it is important to point out here that the interaction of
theoretical computer science and natural sciences dates back to the very beginnings
of computer science and has continued since then. Here are some examples of this
interaction.

Some of the most important foundational research in automata theory was inspired
by the work of W.S. McCulloch and W. Pitts [13], which considers neurons as bi-
nary transmitters of information. The theory of L-systems initiated by A. Linden-
mayer (see, e.g., [10] and [14]) was motivated by modeling the development of
simple organisms, and it had a fundamental impact on formal language theory, as
well as a significant impact on the modeling of plants. The DNA revolution, which
in the last 50 years had such tremendous impact on biology and many other ar-
eas of science (as well as on our everyday life), had also a big influence on the-
oretical computer science. For example, the overwhelming success in sequencing
of the human and other genomes was to a large extent based on the development
of pattern matching and other string processing algorithms. The whole area of de-
sign and analysis of pattern matching and editing algorithms benefited enormously
from the intense research concerned with sequencing of genomes. It is certainly
interesting to mention in this context that A.M. Turing was genuinely interested
in natural computing. This is witnessed by his work on morphogenesis [17] and
by his work on neural networks architecture (see, e.g., [16]). This interest is very
clearly stated in his letter to W. Ross Ashby (see, e.g., [16]): “In working on the
ACE [Automatic Computing Engine] I am more interested in the possibility of
producing models of the action of the brain than in the practical applications to
computing.”

As is clear from the above, interdisciplinarity is a key feature of research in natural
computing and an important ingredient of evolution of the whole field of informat-
ics.

I consider myself to be an interdisciplinary scientist. The support for this classi-
fication is given by my education and my research. My first degree is an engi-
neer of electronics, my second degree is a master of computer science, and my
third degree is a Ph.D. in mathematics. Then, for over 30 years, a big part of my
research was concerned with the understanding of the principles of biological in-
formation processing. A considerable part of this research involved an intense co-
operation with biologists. Therefore I would like to say a few words now about

376 Grzegorz Rozenberg

interdisciplinary research and, in particular, about research in natural computing.
Since my interdisciplinary research involves theoretical computer science on the
one hand and biology on the other, my reflections concern this specific research
interaction.

Research on formal modeling of biological phenomena requires an a priori realiza-
tion that the value or utility of the obtained models may be quite temporary. A for-
mal model will at best reflect the biological knowledge at the time of its formula-
tion. Biological knowledge is very dynamic, and new important facts are discovered
all the time—some of these findings may change, sometimes dramatically, our un-
derstanding of the nature and working of certain biological phenomena. If they in-
volve a phenomenon that we model, then often the model must be adapted, changed,
or even totally discarded. Therefore one should strive, whenever possible, that the
formal model also be solid and interesting from the formal point of view. In this
way, during an often long trajectory of creating, adapting, and modifying a formal
model, one may get an interesting and lasting contribution to theoretical computer
science.

Another piece of advice based on my experience is that the formulation of the model
should begin with an understanding of the biological nature of the problem and then
continue with a very critical assessment of the tools that we have available (as spe-
cialists in theoretical computer science). Very often such a critical assessment will
lead to the conclusion that one needs to formulate a genuinely new model and then
to develop tools for its study as one goes along. This is definitely a preferred way
of proceeding, rather than to bend (and often distort) biological knowledge in such a
way that it fits one’s tools!!

Finally in developing a formal model one should not forget that such a model
consists of two parts: (1) a mathematical formal construct, and (2) its interpreta-
tion in the modeled domain. The second part is too often forgotten, although it is
often really crucial in the choice of a “good model”: among all models that are
equivalent (in some formal sense), the only relevant models are those with good
interpretability.

Natural computing is a fast-growing and dynamic research area. When I introduced
this name more than 25 years ago, it was considered as a sort of science fiction,
but today it is really popular and flourishing. There are institutes, journals, book
series, conferences, professorships, ... of/on natural computing (it was interesting
for me to learn recently that even Microsoft is establishing a Natural Computing
Group).

As I have written above several scientific disciplines, most notably biology and
physics, have adopted information and information processing as their central no-
tions and thinking habits. Here are examples of this development.

Computer Science, Informatics, and Natural Computing—Personal Reflections 377

System biology is a recent (and very fashionable) discipline of biology that at-
tempts to understand biological systems at the system level. The key issue here is
the understanding of the dynamics/behavior of the whole system based on the un-
derstanding of interactions between (molecular) components (see, e.g., [9]). These
interactions are often understood/expressed in computational terms. This is (or cer-
tainly should be) especially true in computational system biology, where the inter-
actions of components are considered as a computational process (and often in-
dividual components of a system are considered as computational devices); see,
e.g., [1].

An interesting example is research concerning the fundamental question, “What is
life?” T. Ganti (see, e.g., [8]) proposes that the minimal system of life is chematon,
which is a fluid (chemical) automaton consisting of three different units (connected
with each other stoichmetrically), each of which is a reproductive fluid automaton.
The abstract chematon model, based on chemical reactions, is very much a model of
computation in the sense of theoretical computer science.

One of the central goals of synthetic biology is to engineer a synthetic cell
(protocell)—it must satisfy 12 requirements for life (see [6]), 3 of which refer ex-
plicitly to capturing, using, and mutating information.

Perhaps the most clear and explicit statements concerning the understanding of the
nature of life belong to Richard Dawkins ([5]): “If you want to understand life,
don’t think about vibrant, throbbing gels and oozes, think about information tech-
nology.”

One of the most compelling examples of the information processing paradigm in bi-
ology is a recent, very impressive book The Regulatory Genome by E.H. Davidson
[3]. Here, gene regulatory networks in development are presented in terms of com-
putational circuits demonstrating in this way (in words of S. Istrail) “the biological
computer of cell regulation.” This book is a wonderful illustration of the statement
by A. Lindenmayer and myself made over 30 years ago ([11]): “The development
of an organism. . . may be considered as the execution of “developmental program”
present in the fertilized egg. . . . A central task of developmental biology is to discover
the underlying algorithm from the course of development.”

Finally, concerning the role of information processing in physics, the recent book
Programming the Universe by S. Lloyd ([12]) is a wonderful example of it. Let me
quote here the beginning of the introduction to this book: “This book is the story
of the universe and the bit. The universe is the biggest thing there is and the bit is
the smallest possible chunck of information. The universe is made of bits. Every
molecule, atom, and elementary particle registers bits of information. Every interac-
tion between those pieces of the universe processes that information by altering those
bits. That is, the universe computes, and because the universe is governed by the laws
of quantum mechanics, it computes in an intrinsically quantum-mechanical fashion;
its bits are quantum bits. The history of the universe is, in effect, a huge and ongoing

378 Grzegorz Rozenberg

quantum computation. The universe is a quantum computer. This begs the question:
What does the universe compute? It computes itself. The universe computes its own
behavior. As soon as the universe began, it began computing.”

I am myself especially fascinated by molecular computing, which is a good exam-
ple of a research area that has evolved in a very interesting way. It really began
as DNA Computing with the initial goal of providing a computing technology that
will be a competition to the current silicon technology for computers. However, it
has evolved into a science of molecular programming concerned with problems of
the following type: “How to design a set of initial molecules so that a certain type
of molecular complexes will be formed.” In this way a large stream of research in
molecular programming became a part of nanoscience and nanoengineering, where,
e.g., in human-designed self-assembly one considers the same type of problems. The
combination of nanoscale science and engineering with nanoscale computing is cer-
tainly an exciting development (see, e.g., [2]), which will have tremendous impact
on the science and technology of computing.

Now if we return to the part of natural computing that studies computing taking
place in Nature, then the large question is “How does Nature compute?” In order to
answer this question, we have to consider and study various processes taking place in
Nature as computational processes. But what does “computational” mean here? We
will have to redefine the notion of computation, which must be able to accommodate
also information processing taking place in nature. This is an exciting adventure that
has only just begun. I have no doubts that it will lead to a new science of computation
that will provide a broader and deeper understanding of what “computation” is about.
As a matter of fact, research in natural computing led already to a reexamination of
the axioms/paradigms underlying traditional notions of computation (see, e.g., [15]
and [7]).

Let us now conclude by going back to informatics with all its facets. The attrac-
tiveness and beauty of informatics as a science is that although it is a fundamental
science for a number of scientific disciplines, it is also the main force behind the
development of ICT, and through this development, it influences and revolutionizes
our everyday life. Natural computing is an important vehicle of progress for both of
these facets of informatics. Let us propagate and develop the science of informatics
and present it to “the outside world” using this framework. Both informatics, viewed
as above, and natural computing have a great future!

Acknowledgments

I am indebted to the editors of this volume for inviting me to write personal reflec-
tions on natural computing and computer science (informatics).

Computer Science, Informatics, and Natural Computing—Personal Reflections 379

References

1. Cardelli, L., Abstract machines of systems biology, Transactions on Computational Sys-
tems Biology, III: 145–168, 2005.

2. Chen, J., Jonoska, N., and Rozenberg, G. (eds.), Nanotechnology: Science and Compu-
tation, Springer–Verlag, Berlin, 2006.

3. Davidson, E.H., The Regulatory Genome: Gene Regulatory Networks in Development
and Evolution, Academic Press/Elsevier, Burlington, 2006.

4. Davis, M., Engines of Logic, W.W. Norton and Company, Inc., New York, 2000.
5. Dawkins, R., The Blind Watchmaker, Penguin, Harmondsworth, 1986.
6. Deamer, D., A giant step towards artificial life, Trends in Biotechnology, 23: 336–338,

2005.
7. Ehrenfeucht, A. and Rozenberg, G., Reaction systems, Fundamenta Informaticae, 2006,

to appear.
8. Ganti, T., The Principles of Life, Oxford University Press, Oxford, 2003.
9. Kitano, H., Systems biology: a brief overview, Science, 295: 1662–1664, 2002.

10. Lindenmayer, A., Mathematical models for cellular interaction in development, I and II,
Journal of Theoretical Biology, 18: 280–315, 1968.

11. Lindenmayer, A. and Rozenberg, G., Introduction, in Lindenmayer, A. and Rozenberg,
G. (eds.), Automata, Languages, Development, v–vi, North Holland, Amsterdam, 1976.

12. Lloyd, S., Programming the Universe: A Quantum Computer Scientist Takes on the Cos-
mos, Jonathan Cape, London, 2006.

13. McCulloch, W.S. and Pitts, W.H., A logical calculus of the ideas immanent in neural
nets, Bulletin of Mathematical Biophysics, 5: 115–133, 1943.

14. Rozenberg, G. and Salomaa, A., The Mathematical Theory of L Systems, Academic Press,
Inc., New York, 1980.

15. Stepney, S., Braunstein, S.L., Clark, J.A., Tyrrell, A., Adamatzky, A., Smith, R.E., Addis,
T., Johnson, C., Timmis, J., Welch, P., Milner, R., Partidge, D., Journeys in non-classical
computation I: a grand challenge for computing research, International Journal of Par-
allel, Emergent and Distributed Systems, 30(1): 5–19, 2005.

16. Teuscher, C., Turing’s Connectionism: An Investigation of Neural Networks Architec-
tures, Springer–Verlag, London, 2002.

17. Turing, A.M., The chemical basis of morphogenesis, Philosophical Transactions of the
Royal Society of London, B 237: 37–72, 1952.

A Survey on Continuous Time Computations

Olivier Bournez1,2 and Manuel L. Campagnolo3,4

1 INRIA Lorraine
2 LORIA (UMR 7503 CNRS-INPL-INRIA-Nancy2-UHP), 54506 Vandœuvre-Lès-Nancy,

France,
Olivier.Bournez@loria.fr

3 DM/ISA, Technical University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa,
Portugal

4 SQIG/IT Lisboa
mlc@math.isa.utl.pt

Summary. We provide an overview of theories of continuous time computation. These theo-
ries allow us to understand both the hardness of questions related to continuous time dynam-
ical systems and the computational power of continuous time analog models. We survey the
existing models, summarizing results, and point to relevant references in the literature.

1 Introduction

Continuous time systems arise as soon as one attempts to model systems that evolve
over a continuous space with a continuous time. They can even emerge as natural
descriptions of discrete time or space systems. Utilizing continuous time systems is
a common approach in fields such as biology, physics or chemistry, when a huge
population of agents (molecules, individuals, . . .) is abstracted into real quantities
such as proportions or thermodynamic data [100], [148].

Several approaches have led to theories on continuous time computations. We will
explore in greater depth two primary approaches. One, which we call inspired by
continuous time analog machines, has its roots in models of natural or artificial ana-
log machinery. The other, which we refer to as inspired by continuous time system
theories, is broader in scope. It comes from research on continuous time systems
theory from a computational perspective. Hybrid systems and automata theory, for
example, are two sources.

A wide range of problems related to theories of continuous time computations are
encompassed by these two approaches. They originate in fields as diverse as verifi-
cation (see, e.g., [20]), control theory (see, e.g., [44]), VLSI design (see, e.g., [140],

384 Olivier Bournez and Manuel L. Campagnolo

[141]), neural networks (see, e.g., [160]), and recursion theory on the reals (see,
e.g., [145]).

At its beginning, continuous time computation theory was concerned mainly with
analog machines. Determining which systems can actually be considered as com-
putational models is a very intriguing question. It relates to the philosophical dis-
cussion about what is a programmable machine, which is beyond the scope of this
chapter. Nonetheless, some early examples of built analog devices are generally ac-
cepted as programmable machines. They include Bush’s landmark 1931 Differen-
tial Analyzer [50], as well as Bill Phillips’s Finance Phalograph, Hermann’s 1814
Planimeter, Pascal’s 1642 Pascaline, or even the 87 B.C. Antikythera mechanism;
see [70]. Continuous time computational models also include neural networks and
systems that can be built using electronic analog devices. Since continuous time sys-
tems are conducive to modeling huge populations, one might speculate that they
will have a prominent role in analyzing massively parallel systems such as the
Internet [162].

The first true model of a universal continuous time machine was proposed by Shan-
non [183], who introduced it as a model of the differential analyzer. During the 1950s
and 1960s, an extensive body of literature was published about the programming of
such machines.5 There were also a number of significant publications on how to use
analog devices to solve discrete or continuous problems; see, e.g., [200] and the refer-
ences therein. However, most of this early literature is now only marginally relevant
given the ways in which our current understanding of computability and complexity
theory have developed.

The research on artificial neural networks, despite the fact that it mainly focused
on discrete time analog models, has motivated a change of perspective due to its
many shared concepts and goals with today’s standard computability and complexity
theory [160], [158]. Another line of development of continuous time computation
theory has been motivated by hybrid systems, particularly by questions related to the
hardness of their verification and control; see, e.g., [44] and [20].

In recent years there has also been a surge of interest in alternatives to classic digital
models other than continuous time systems. Those alternatives include discrete-time,
analog-space models like artificial neural networks [160], optical models [205], sig-
nal machines [76], and the Blum Shub and Smale model [30]. More generally there
have also been many recent developments in nonclassical and more-or-less realistic
or futuristic models such as exotic cellular automata models [93], molecular or natu-
ral computations [96], [3], [122], [163], black hole computations [104], or quantum
computations [75], [94], [184], [109]. Some of these contributions are detailed in this
volume.

5 See for example the very instructive Doug Coward’s web Analog Computer Museum [70]
and its bibliography. This literature reveals the quite forgotten art of programming contin-
uous time and hybrid (digital–analog) machines, with a level of sophistication that is close
to today’s engineering programming.

A Survey on Continuous Time Computations 385

The computational power of discrete time models are fairly well known and under-
stood thanks in large part to the Church–Turing thesis. The Church–Turing thesis
states that all reasonable and sufficiently powerful models are equivalent. For con-
tinuous time computation, the situation is far from being so clear, and there has not
been a significant effort toward unifying concepts. Nonetheless, some recent results
establish the equivalence between apparently distinct models [89], [88], [90], and
[35], which give us hope that a unified theory of continuous time computation may
not be too far in the future.

This text can be considered an up-to-date version of Orponen’s 1997 survey [160].
Orponen states at the end of his introduction that the effects of imprecision and noise
in analog computations are still far from being understood and that a robust com-
plexity theory of continuous time models has yet to be developed. Although this
evaluation remains largely accurate with regard to imprecision and noise, we will
see in the current survey that in the intervening decade much progress in understand-
ing the computability and even the complexity of continuous time computations has
been made.

This chapter is organized as follows. In Section 2, we review the most relevant con-
tinuous time models. In sections 3 and 4, we discuss, respectively, computability
and complexity issues in continuous time computations. In these sections we focus
mainly on continuous time dynamical systems. In Section 5, we address the effect
of imprecision and noise in analog computations. Finally, in Section 6, we conclude
with some general insights and directions for further research in the field of continu-
ous time computation.

2 Continuous Time Models

With a historical perspective in mind, we outline in this section several of the major
classes of continuous time models that motivated interest in this field. These models
also illustrate concepts like continuous dynamics and input/output.

2.1 Models inspired by analog machines

GPAC and other circuit models

Probably, the best known universal continuous time machine is the Differential Ana-
lyzer, built at MIT under the supervision of Vannevar Bush [50] for the first time in
1931. The idea of assembling integrator devices to solve differential equations dates
back to Lord Kelvin in 1876 [195]. Mechanical,6 and later on electronic, differential
analyzers were used to solve various kinds of differential equations primarily related

6 And even MECANO machines; see [42].

386 Olivier Bournez and Manuel L. Campagnolo

to problems in the field of engineering; see for, e.g., [42], or more generally [204] for
historical accounts. By the 1960s, differential analysers were progressively discarded
in favor of digital technology.

The first theoretical study of the computational capabilities of continuous time uni-
versal machines was published by Shannon. In [183], he proposed what is now re-
ferred to as the General Purpose Analog Computer (GPAC) as a theoretical model
of Vannevar Bush’s differential analyzer. The model, later refined in the series of pa-
pers [166], [121], [89], [88], consists of families of circuits built with the basic units
presented in Figure 1. There are some restrictions to the kinds of interconnectivity
that are allowed to avoid undesirable behavior: e.g., nonunique outputs. For further
details and discussions, refer to [89] and [87].

Shannon, in his original paper, already mentions that the GPAC generates polyno-
mials, the exponential function, the usual trigonometric functions, and their inverses
(see Figure 2). More generally, he claimed in [183] that a function can be generated
by a GPAC if and only if it is differentially algebraic; i.e. it satisfies some algebraic
differential equation of the form

p
(
t, y, y′, ..., y(n)

)
= 0,

where p is a nonzero polynomial in all its variables. As a corollary, and noting that
the Gamma function Γ (x) =

∫∞
0
tx−1e−tdt or the Riemann’s Zeta function ζ(x) =∑∞

k=0
1

kx are not d.a. [175], it follows that the Gamma and the Zeta functions are
examples of functions that cannot be generated by a GPAC.

However, Shannon’s proof relating functions generated by GPACs with differentially
algebraic functions was incomplete (as pointed out and partially corrected by [166],
[121]). However, for the more robust class of GPACs defined in [89], the following
stronger property holds: a scalar function f : R → R is generated by a GPAC if and
only if it is a component of the solution of a system y′ = p(t, y), where p is a vector
of polynomials. A function f : R → Rk is generated by a GPAC if and only if all of
its components are also.

The Γ function is indeed GPAC computable, if a notion of computation inspired
from recursive analysis is considered [88]. GPAC computable functions in this sense
correspond precisely to computable functions over the reals [35].

Rubel proposed [176] an extension of Shannon’s original GPAC. In Rubel’s model,
the Extended Analog Computer (EAC), operations to solve boundary value prob-
lems, or to take certain infinite limits were added. We refer to [140] and [141] for
descriptions of actual working implementations of Rubel’s EAC.

More broadly, a discussion of circuits made of general basic units has been pre-
sented recently in [198]. Equational specifications of such circuits, as well as their
semantics, are given by fixed points of operators over the space of continuous
streams. Under suitable hypotheses, this operator is contracting and an extension

A Survey on Continuous Time Computations 387

of Banach fixed point theorem for metric spaces guarantees existence and unic-
ity of the fixed point. Moreover, that fixed point can also be proved to be con-
tinuous and concretely computable whenever the basic modules also have those
properties.

Hopfield network models

Another well-known continuous time model is the “neural network” model proposed
by John Hopfield in 1984 in [105]. These networks can be implemented in electrical
[105] or optical hardware [193].

A symmetric Hopfield network is made of a finite number, say n, of simple compu-
tational units, or neurons. The architecture of the network is given by some (nonori-
ented) graph whose nodes are the neurons and whose edges are labeled by some
weights, the synaptic weights. The graph can be assumed to be complete by replac-
ing the absence of a connection between two nodes by an edge whose weight is
null.

The state of each neuron i at time t is given by some real value ui(t). Starting from
some given initial state �u0 ∈ Rn, the global dynamic of the network is defined by a
system of differential equations

Ciu
′
i(t) =

∑

j

Wi,jVj − ui/Ri + Ii,

where Vi = σ(ui), σ is some saturating function such as σ(u) = α tanu + β,
Wi,j = Wj,i is the weight of the edge between i, and j,Ci, Ii, Ri are some constants
[105].

Hopfield proved in [105], by a Lyapunov-function argument, that such systems are
globally asymptotically stable; i.e., from any initial state, the system relaxes toward
some stable equilibrium state. Indeed, consider for example the energy function
[105]

E = −1
2

∑

i

∑

j

Wi,jViVj +
∑

i

1
Ri

∫ Vi

0

σ−1(V)dV +
∑

i

IiVi.

The functionE is bounded, and its derivative is negative. Hence the time evolution of
the whole system is a motion in a state space that seeks out (possibly local) minima
of E.

This convergence behavior has been used by Hopfield to explore various applications
such as associative memory or to solve combinatorial optimization problems [105],
[106].

An exponential lower bound on the convergence time of continuous time Hopfield
networks has been related to their dimension in [188]. Such continuous time sym-
metric networks can be proved to simulate any finite, binary-state, discrete-time,
recurrent neural network [161], [189].

388 Olivier Bournez and Manuel L. Campagnolo

Networks of spiking neurons

If one classifies, following [129], neural network models according to their activa-
tion functions and dynamics, three different generations can be distinguished. The
first generation, with discontinuous activation functions, includes multilayer percep-
trons, Hopfield networks, and Boltzmann machines (see, for example, [2] for an in-
troduction to all mentioned neural network models). The output of this generation
of networks is digital. The second generation of networks uses continuous activation
functions instead of step or threshold functions to compute the output signals. These
functions include feedforward and recurrent sigmoidal neural network, radial basis
functions networks, and continuous time Hopfield networks. Their input and output
is analog. The third generation of networks is based on spiking neurons and encodes
variables in time differences between pulses. This generation exhibits continuous
time dynamics and is the most biologically realistic [133].

There are several mathematical models of spiking neurons of which we will focus on
one, whose computational properties have been investigated in depth. The Spiking
Neural Network model is represented by a finite directed graph. To each node v
(neuron) of the graph is associated a threshold function θv : R+ → R ∪ {∞}, and
to each edge (u, v) (synapse) is associated a response-function εu,v : R+ → R and a
weight-function wu,v .

For a noninput neuron v, one defines its set Fv of firing times recursively. The first
element of Fv is inf{t|Pv(t) ≥ θv(0)}, and for any s ∈ Fv , the next larger element
of Fv is inf{t|t > s and Pv(t) ≥ θv(t− s)}, where

Pv(t) = 0 +
∑

u

∑

s∈Fu,s<t

wu,v(s)εu,v(t− s).

The 0 above can be replaced by some bias function. We use it here to guarantee that
Pv is well defined even if Fu = ∅ for all u with wu,v �= 0. To approximate biological
realism, restrictions are placed on the allowed response-functions and bias-functions
of these models; see [129], [130], [153], or [131], [132], for discussions on the model.
In particular, rapidly fading memory is a biological constraint that prevents chaotic
behavior in networks with a continuous time dynamic. Recently, the use of feedback
to overcome the limitations of such a constraint was analyzed in [134].

The study of the computational power of several variants of spiking neural networks
was initiated in [126]. Noisy extensions of the model have been considered [127],
[128], [135]. A survey of complexity results can be found in [190]. Restrictions
that are easier to implement in hardware versions have also been investigated in
[137].

R-recursive functions

Moore proposed a theory of recursive functions on the reals in [145], which is defined
in analogy with classical recursion theory and corresponds to a conceptual analog

A Survey on Continuous Time Computations 389

computer operating in continuous time. As we will see, this continuous time model
has in particular the capability of solving differential equations, which similar to an
idealized analog integrator of the GPAC. In fact, the theory of R-recursive functions
can be seen as an extension of Shannon’s theory for the GPAC. A general discussion
of the motivations behind R-recursion theory can be found in [150].

A function algebra [B1, B2, ...;O1, O2, ...] is the smallest set containing basic func-
tions {B1, B2, ...} and is closed under certain operations {O1, O2, ...}, which take
one or more functions in the class and create new ones. Although function alge-
bras have been defined in the context of recursion theory on the integers, and has
been widely used to characterize computability and complexity classes [62], they are
equally suitable to define classes of real-valued recursive functions.

The R-recursive functions were first defined in [145]. These functions are given
by the function algebra M = [0, 1, U ; comp, int,minim],7 where U is the set of
projection functions Ui(�x) = xi, comp is composition, int is an operation that
given f and g returns the solution of the initial value problem h(�x, 0) = f(�x)
and ∂yh(�x, y) = g(�x, y, h), and minim returns the smallest zero μyf(�x, y) of
a given f . Moore also studied the weaker algebra I = [0, 1,−1, U ; comp, int]
and claimed its equivalence with the class of unary functions generated by the
GPAC [145].

Many nonrecursively enumerable sets are R-recursive. Since minim is the opera-
tion in M that gives rise to uncomputable functions, a natural question is to ask
whether minim can be replaced by some other operation of mathematical analy-
sis. This was done in [149], where minim is replaced by the operation lim, which
returns the infinite limits of the functions in the algebra. These authors stratify
[0, 1,−1, U ; comp, int, lim] according to the allowed number (η) of nested limits and
relate the resulting η-hierarchy with the arithmetical and analytical hierarchies. In
[124] it is shown that the η-hierarchy does not collapse (see also [123]), which im-
plies that infinite limits and first-order integration are not interchangeable operations
[125].

The algebra I only contains analytic functions and is not closed under iteration [52].
However, if an arbitrarily smooth extension to the reals θ of the Heaviside function
is included in the set of basic functions of I, then I + θ contains extensions to the
reals of all primitive recursive functions.

The closure of fragments of I + θ = [0, 1,−1, θ, U ; comp, int] under discrete op-
erations like bounded products, bounded sums, and bounded recursion, has been
investigated in the thesis [54] and also in the papers [53], [55], [56].

In particular, several authors studied the function algebra

L = [0, 1,−1, π, θ, U ; comp, LI],

7 We consider that the operator int preserves analyticity (see [52], [55]).

390 Olivier Bournez and Manuel L. Campagnolo

where the LI can only solve linear differential equations (i.e., it restricts int to the
case ∂yh(�x, y) = g(�x, y)h(�x, y)). The class L contains extensions to the reals of all
the elementary functions [53].

Instead of asking which computable functions over N have extensions to R in a given
function algebra, Bournez and Hainry consider classes of functions over R com-
putable according to recursive analysis, and they characterize them precisely with
function algebras. This was done for the elementarily computable functions [36],
characterized as L closed under a restricted limit schema. This was extended to yield
a characterization of the whole class of computable functions over the reals [37],
adding a restricted minimisation schema. Those results provide syntactical charac-
terizations of real computable functions in a continuous setting, which is arguably
more natural than the higher order Turing machines of recursive analysis.

A more general approach to the structural complexity of real recursive classes, de-
veloped in [57], is based on the notion of approximation. This notion was used to
lift complexity results from N to R, and it was applied in particular to character-
ize L.

Somewhat surprisingly, the results above indicate that two distinct models of compu-
tation over the reals (computable analysis and real recursive functions) can be linked
in an elegant way.

2.2 Models inspired by continuous time system theories

Hybrid Systems

An increasing number of systems exhibit some interplay between discrete and analog
behaviors. The investigation of these systems has led to relevant new results about
continuous time computation.

A variety of models have been considered; see, for example, the conference series
Hybrid Systems Computation and Control or [43]. However, hybrid systems8 are
essentially modeled either as differential equations with discontinuous right-hand
sides, as differential equations with continuous and discrete variables, or as hybrid
automata. A hybrid automaton is a finite state automaton extended with variables.
Its associated dynamics consists of guarded discrete transitions between states of the
automaton that can reset some variables. Typical properties of hybrid systems that
have been considered are reachability, stability, and controllability.

With respect to the differential equation modeling approach, Branicky proved in [44]
that any hybrid system model that can implement a clock and implement general con-
tinuous ordinary differential equations can simulate Turing machines. Asarin, Maler,

8 “Hybrid” refers here to the fact that the systems have intermixed discrete and continuous
evolutions. This differs from historical literature about analog computations, where “hy-
brid” often refers to machines with a mixture of analog and digital components.

A Survey on Continuous Time Computations 391

and Pnueli proved in [20] that piecewise constant differential equations can simulate
Turing machines in R3, whereas the reachability problem for these systems in di-
mension d ≤ 2 is decidable [20]. Piecewise constant differential equations, as well
as many hybrid systems models, exhibit the so-called Zeno’s phenomenon: an infi-
nite number of discrete transitions may happen in a finite time. This has been used in
[19] to prove that arithmetical sets can be recognized in finite time by these systems.
Their exact computational power has been characterized in terms of their dimension
in [32] and [33]. The Jordan’s theorem-based argument of [20] to get decidability
for planar piecewise constant differential equations has been generalized for planar
polynomial systems [60] and for planar differential inclusion systems [22].

There is extensive literature on the hybrid automata modeling approach about deter-
mining the exact frontier between decidability and nondecidability for reachability
properties, according to the type of allowed dynamics, guards, and resets. The reach-
ability property has been proved decidable for timed automata [5]. By reduction
to this result, or by a finite bisimulation argument in the same spirit, this has also
been generalized to multirate automata [4], to specific classes of updatable timed au-
tomata in [38], [39], and to initialized rectangular automata in [98], [171]. There is
a multitude of undecidability results, most of which rely on simulations of Minsky
two-counter machines. For example, the reachability problem is semi-decidable but
nondecidable for linear hybrid automata [4], [156]. The same problem is known to
be undecidable for rectangular automata with at least five clocks and one two-slope
variable [98], or for timed automata with two skewed clocks [4]. For discussion of
these results, see also [21]. Refer to [28] and [66] or to the survey [29] for properties
other than reachability (for example, stability and observability).

O-minimal hybrid systems are initialized hybrid systems whose relevant sets and
flows are definable in an o-minimal theory. These systems always admit a finite
bisimulation [119]. However, their definition can be extended to a more general class
of “nondeterministic” o-minimal systems [46], for which the reachability problem is
undecidable in the Turing model, as well as in the Blum Shub Smale model of com-
putation [45]. Upper bounds have been obtained on the size of the finite bisimulation
for Pfaffian hybrid systems [116] [117] using the word encoding technique intro-
duced in [46].

Automata theory

There have been several attempts to adapt classical discrete automata theory to con-
tinuous time; this is sometimes referred to as the general program of Trakhtenbrot
[196].

One attempt is related to timed automata, which can be seen as languages recogniz-
ers [6]. Many specific decision problems have been considered for timed automata;
see survey [7]. Timed regular languages are known to be closed under intersection,
union, and renaming, but not under complementation. The membership and empty

392 Olivier Bournez and Manuel L. Campagnolo

language problems are decidable, whereas inclusion and universal language prob-
lems are undecidable. The closure of timed regular languages under shuffling is in-
vestigated in [82]. Several variants of Kleene’s theorem are established [15], [12],
[16], [40], [41], [18]. There have been some attempts to establish pumping lemmas
[23]. A review, with discussions and open problems related to this approach, can be
found in [10].

An alternative and independent automata theory over continuous time has been de-
veloped in [174], [197], and [173]. Here automata are not considered as language
recognizers but as computing operators on signals. A signal is a function from the
non-negative real numbers to a finite alphabet (the set of the channel’s states). Au-
tomata theory is extended to continuous time, and it is argued that the behavior of
finite state devices is ruled by so-called finite memory retrospective functions. These
are proved to be speed-independent, i.e. independent under “stretchings” of the time
axis. Closure properties of operators on signals are established, and the represen-
tation of finite memory retrospective functions by finite transition diagrams (trans-
ducers) is discussed. See also [84] for a detailed presentation of Trakhtenbrot and
Rabinovich’s theory and for discussions about the representation of finite memory
retrospective operators by circuits.

Finally, another independent approach is considered in [182], where Chomsky-like
hierarchies are established for families of sets of piecewise continuous functions.
Differential equations, associated with specific memory structures, are used to rec-
ognize sets of functions. Ruohonen shows that the resulting hierarchies are not trivial
and establishes closure properties and inclusions between classes.

2.3 Other computational models

In addition to the two previously described approaches, several other computa-
tional models have led to interesting developments in continuous time computation
theory.

The question of whether Einstein’s general relativity equations admit space-time so-
lutions that allow an observer to view an eternity in a finite time was investigated and
proved possible in [104]. The question of whether this implies that super-tasks can
in principle be solved has been investigated in [77], [102], [101], [103], [78], [154],
[155], and [203].

Some machine-inspired models are neither clearly digital nor analog. For example,
the power of planar mechanisms attracted great interest in England and France in
the late 1800s and in the 1940s in Russia. Specifically, these consisted of rigid bars
constrained to a plane and joined at either end by rotable rivets. A theorem attributed9

to Kempe [108] states that they are able to compute all algebraic functions; see for,
e.g., [9] or [194].
9 The theorem is very often attributed to Kempe [9], [194], even if he apparently never proved

exactly that.

A Survey on Continuous Time Computations 393

3 ODEs and properties

Most of the continuous time models described above have a continuous dynamics
described by differential equations. In Shannon’s GPAC and Hopfield networks, the
input corresponds to the initial condition, whereas the output is, respectively, the time
evolution or the equilibrium state of the system. Other models are language recogniz-
ers. The input again corresponds to the initial condition, or some initial control, and
the output is determined by some accepting region in the state space of the system.
All these systems therefore fall into the framework of dynamical systems.

In this section we will recall some fundamental results about dynamical systems
and differential equations and discuss how different models can be compared in this
general framework.

3.1 ODEs and dynamical systems

Let us consider that we are working in Rn (in general, we could consider any vector
space with a norm). Let us consider f : E → Rn, where E ⊂ Rn is open. An ODE
is given by y′ = f(y), and its solution is a differentiable function y : I ⊂ R → E
that satisfies the equation.

For any x ∈ E, the fundamental existence-uniqueness theorem (see, e.g., [100]) for
differential equations states that if f is Lipschitz on E, i.e., if there exists K such
that ||f(y1)− f(y2)|| < k||y1 − y2|| for all y1, y2 ∈ E, then the solution of

y′ = f(y), y(t0) = x (1)

exists and is unique on a certain maximal interval of existence I ⊂ R. In the termi-
nology of dynamical systems, y(t) is referred to as the trajectory, Rn as the phase
space, and the function φ(t, x), which gives the position y(t) of the solution at time
t with initial condition x, as the flow. The graph of y in Rn is called the orbit.

In particular, if f is continuously differentiable on E, then the existence-uniqueness
condition is fulfilled [100]. Most of the mathematical theory has been developed in
this case, but it can be extended to weaker conditions. In particular, if f is assumed
to be only continuous, then uniqueness is lost, but existence is guaranteed; see, for
example, [63]. If f is allowed to be discontinuous, then the definition of the solution
needs to be refined. This is explored by Filippov in [81]. Some hybrid system models
use distinct and ad hoc notions of solutions. For example, a solution of a piecewise
constant differential equation in [20] is a continuous function whose right derivative
satisfies the equation.

In general, a dynamical system can be defined as the action of a subgroup T of R on
a space X , i.e., by a function (a flow) φ : T ×X → X satisfying the following two
equations:

394 Olivier Bournez and Manuel L. Campagnolo

φ(0, x) = x, (2)

φ(t, φ(s, x)) = φ(t + s, x). (3)

It is well known that subgroups T of R are either dense in R or isomorphic to the
integers. In the first case, the time is called continuous, and in the latter case, dis-
crete.

Since flows obtained by initial value problems (IVP) of the form (1) satisfy equa-
tions (2) and (3), they correspond to specific continuous time and space dynamical
systems. Although not all continuous time and space dynamical systems can be put in
a form of a differential equation, IVPs of the form (1) are sufficiently general to cover
a very wide class of such systems. In particular, if φ is continuously differentiable,
then y′ = f(y), with f(y) = d

dtφ(t, y)
∣
∣
t=0

, describes the dynamical system.

For discrete time systems, we can assume without loss of generality that T is the inte-
gers. The analog of IVP (1) for discrete time systems is a recurrence equation of type

yt+1 = f(yt), y0 = x. (4)

A dynamical system whose space is discrete and that evolves discretely is termed
digital; otherwise it is analog. A classification of some computational models ac-
cording to the nature of their space and time can be found in Figure 3.

3.2 Dissipative and non-dissipative systems

A point x∗ of the state space is called an equilibrium point if f(x∗) = 0. If the
system is at x∗, it will remain there. It is said to be stable if for every neighborhood
U of x∗, there is a neighborhoodW of x∗ in U such that every solution starting from
a point x of W is defined and is in U for all time t > 0. The point is asymptotically
stable if, in addition to the properties above, we have lim y(t) = x∗ [100].

Some local conditions on the differential Df(x∗) of f in x∗ have been clearly es-
tablished. If at an equilibrium point x∗ all eigenvalues of Df(x∗) have negative real
parts, then x∗ is asymptotically stable, and furthermore, nearby solutions approach
x∗ exponentially. In that case, x∗ is called a sink. At a stable equilibrium point x∗,
no eigenvalue of Df(x∗) can have a positive real part [100].

In practice, Lyapunov’s stability theorem applies more broadly (i.e., even if x∗ is
not a sink). It states that if there exists a continuous function V defined on a neigh-
borhood of x∗, differentiable (except perhaps on x∗) with V (x∗) = 0, V (x) > 0
for x �= x∗, and dV (x)/dt ≤ 0 for x �= x∗, then x∗ is stable. If, in addition,
dV (x)/dt < 0 for x �= x∗, then x∗ is asymptotically stable; see [100].

If the function V satisfies the previous conditions everywhere, then the system is
globally asymptotically stable. Whatever the initial point x is, the trajectories will
eventually converge to local minima of V . In this context, the Lyapunov function
V can be interpreted as an energy, and its minima correspond to attractors of the

A Survey on Continuous Time Computations 395

k k
u

v
+ u+ v

u

v

∫
w

{
w′(t) = u(t)v′(t)
w(t0) = α

uv×u

v

A constant unit An adder unit

An integrator unit A multiplier unit

Fig. 1. Different types of units used in a GPAC.

∫ ∫ ∫

-1

�
�

t
y3

y2

y1

⎧
⎨

⎩

y′1 = y3 & y1(0) = 1
y′2 = y1 & y2(0) = 0
y′3 = −y1 & y3(0) = 0

Fig. 2. Generating cos and sin via a GPAC: circuit version on the left and ODE version on the
right. One has y1 = cos, y2 = sin, and y3 = − sin.

Space Discrete Continuous
Time

Discrete [199] machines Discrete time [105] neural networks
[61] lambda calculus [186] neural networks

[110] recursive functions [20] PCD systems
[164] systems [31] machines

Cellular automata [205] optical machines
Stack automata [76] signal machines

Finite state automata [146] dynamical recognizers
...

...
Continuous [72] BDE models [183] GPACs

Continuous time [105] neural networks
[44] hybrid systems
[20] PCD systems
[5] timed automata

[145] R-recursive functions
...

Fig. 3. A classification of some computational models, according to their space and time.

396 Olivier Bournez and Manuel L. Campagnolo

dynamical system. These are bounded subsets of the phase space to which regions of
initial conditions of nonzero volume converge as time increases.

A dynamical system is called dissipative if the volume of a set decreases under the
flow for some region of the phase space. Dissipative systems are characterized by
the presence of attractors. By opposition, a dynamical system is said to be volume-
preserving if the volume is conserved. For instance, all Hamiltonian systems are
volume-preserving because of Liouville’s theorem [8]. Volume-preserving dynami-
cal system cannot be globally asymptotically stable [8].

3.3 Computability of solutions of ODEs

Here we review some results on the computability of solutions of IVPs in the frame-
work of recursive analysis (see, e.g., [201] and the corresponding chapter in this
volume).

In general, given a computable function f , one can investigate if the solution of
the IVP (1) is also computable in the sense of recursive analysis. If we require that
the IVP has a unique solution, then that solution is computable. Formally, if f is
computable on [0, 1] × [−1, 1] and the IVP y′ = f(t, y), y(0) = 0 has a unique
solution on [0, b], 0 < b ≤ 1, then the solution y is computable on [0, b].

This result also holds for a general n-dimensional IVP if its solution is unique [179].
However, computability of solutions is lost as soon as uniqueness of solutions is
relaxed, even in dimension 1. Indeed, the famous result of [167] shows that there
exists a polynomial-time computable function f : [0, 1]× [−1, 1]→ R, such that the
equation y′ = f(t, y), with y(0) = 0, has nonunique solutions, but none of them is
computable on any closed finite time interval.

Similar phenomena hold for other natural equations: the three-dimensional wave
equation (which is a partial equation), with computable initial data, can have a unique
solution that is nowhere computable10 [168], [165]. Notice that, even if f is assumed
computable and analytic, and the solution unique, it may happen that the maximal in-
terval (α, β) of existence of the solution is noncomputable [92]. This same question
is open if f is polynomial. Those authors show, however, that if f and f ′ are contin-
uous and computable, then the solution of y′ = f(y, t), y(0) = x, for computable x,
is also computable on its maximal interval of existence. Refer also to [169] and [111]
for more uncomputability results, and also to [111] and [112] for related complexity
issues.

3.4 Static undecidability

As observed in [11] and [181], it is relatively simple but not very informative to
get undecidability results with continuous time dynamical systems, if f encodes a
10 However, in all these cases, the problems under study are ill-posed: either the solution is

not unique or it is unstable and the addition of some natural regularity conditions to prevent
ill-posedness do yield computability [202].

A Survey on Continuous Time Computations 397

undecidable problem. To illustrate this, we recall the following example in [181].
Ruohonen discusses the event detection problem: given a differential equation y′ =
f(t, y), with initial value y(0), decide whether a given condition gj(t, y(t), y′(t)) =
0, j = 1, · · · , k happens at some time t in a given interval I . Given the Turing
machineM, the sequence f0, f1, · · · of rationals defined by

fn =
{

2−m if M stops in m steps on input n
0 if M does not stop on input n

is not a computable sequence of rationals, but it is a computable sequence of reals,
following the nomenclature of [169]. Now, the detection of the event y(t) = 0 for
the ordinary differential equation y′ = 0, given n, and the initial value y(0) = fn, is
undecidable over any interval containing 0, because fn = 0 is undecidable.

Another modification can be obtained as follows in [181]. He defines the smooth
function

g(x) = f�x+1/2�e− tan2 πx,

which is computable on [0,∞). The detection of the event y1(t) = 0 for the
ODE {

y′1 = g(y2)− 1
y′2 = 0

given an initial value y1(0) = 1, y2(0) = n, where n is a nonnegative integer is then
undecidable on [0, 1].

As put forth in [11], undecidability results given by recursive analysis are somehow
built similarly.

3.5 Dynamic undecidability

To be able to discuss in more detail computability of differential equations, we will
focus on ODEs that encode the transitions of a Turing machine instead of the result
of the whole computation simulation.11 Typically, we start with some (simple) com-
putable injective function that encodes any configuration of a Turing machine M as
a point in Rn. Let x be the encoding of the initial configuration ofM. Then, we look
for a function f : E ⊂ Rn+1 → Rn such that the solution of y′(t) = f(y, t), with
y(0) = x, at time T ∈ N is the encoding of the configuration ofM after T steps. We
will see, in the remainder of this section, that f can be restricted to have low dimen-
sion, to be smooth or even analytic, or to be defined on a compact domain.

Instead of stating that the property above is a Turing machine simulation, we can
address it as a reachability result. Given the IVP defined by f and x, and any region
A ⊂ Rn, we are interested in deciding if there is a t ≥ 0 such y(t) ∈ A, i.e., if
the flow starting in x crosses A. It is clear that if f simulates a Turing machine in

11 This is called dynamic undecidability in [177].

398 Olivier Bournez and Manuel L. Campagnolo

the previous sense, then reachability for that system is undecidable (just consider
A as encoding the halting configurations of M). So, reachability is another way to
address the computability of ODEs, and a negative result is often a byproduct of the
simulation of Turing machines. Similarly, undecidability of event detection follows
from Turing simulation results.

Computability of reachable and invariant sets have been investigated in [64] for con-
tinuous time systems and in [65] for hybrid systems.

In general, viewing Turing machines as dynamical systems provides them a phys-
ical interpretation that is not provided by the von Neumann picture [54]. This also
shows that many qualitative features of (analog or nonanalog) dynamical systems,
e.g., questions about basins of attraction, chaotic behavior, or even periodicity, are
noncomputable [143]. Conversely, this brings into the realm of Turing machines and
computability in general questions traditionally related to dynamical systems. These
include in particular the relations between universality and chaos [11], necessary
conditions for universality [74], the computability of entropy [113], understanding
of edge of chaos [120], and relations with the shadowing property [107].

3.6 Embedding Turing machines in continuous time

The embedding of Turing machines in continuous dynamical systems is often real-
ized in two steps. Turing machines are first embedded into analog space, discrete
time systems, and then the obtained systems are in turn embedded into analog space
and time systems.

The first step can be realized with low-dimensional systems with simple dynamics:
[143], [177], [44], [181] consider general dynamical systems, [114] piecewise affine
maps, [187] sigmoidal neural nets, [115] closed form analytic maps, which can be
extended to be robust [90], and [118] one-dimensional very restricted piecewise-
defined maps.

For the second step, the most common technique is to build a continuous time and
space system whose discretization corresponds to the embedded analog space dis-
crete time system.

There are several classical ways to discretize a continuous time and space system;
see Figure 4. One way is to use a virtual stroboscope: the flow xt = φ(t, x), when t
is restricted to integers, defines the trajectories of a discrete time dynamical system.
Another possibility is through a Poincaré section: the sequence xt of the intersections
of trajectories with, for example, a hypersurface can provide the flow of a discrete
time dynamical system. See [100].

The opposite operation, called suspension, is usually achieved by extending and
smoothing equations, and it usually requires higher dimensional systems. This ex-
plains why Turing machines are simulated by three-dimensional smooth continuous
time systems in [143], [144] and [44] or by three-dimensional piecewise constant

A Survey on Continuous Time Computations 399

x8

x0

x1

x2

x3

x4

x5

x6

x7

x4x1 x2

x3

Fig. 4. Stroboscopic map (on left) and Poincaré map (on right) of the dynamic of a continuous
time system.

differential equations in [20], while they are known to be simulated in discrete time
by only two-dimensional piecewise affine maps in [114]. It is known that two-
dimensional piecewise constant differential equations cannot12 simulate arbitrary
Turing machines [20], while the question of whether one-dimensional piecewise
affine maps can simulate arbitrary Turing machines is open. Other simulations of
Turing machines by continuous time dynamical systems include the robust simula-
tion with polynomial ODEs in [90] and [91]. This result is an improved version of
the simulation of Turing machines with real recursive functions in [52], where it is
shown that smooth but nonanalytic classes of real recursive functions are closed un-
der iteration. Notice that while the solution of a polynomial ODE is computable on
its maximal interval of existence (see Section 3.3), the simulation result shows that
the reachability problem is undecidable for polynomial ODEs.

In addition to Turing machines, other discrete models can be simulated by differential
equations. Simulating two counter machines can be achieved in two dimensions, or
even one dimension, at the cost of a discontinuous ODE [181]. Simulating cellular
automata can be done with partial differential equations defined with C∞ functions
[157].

Notice that reversible computations of Turing machines (or counter machines, or
register machines) can be simulated by ODEs with backward-unique solutions
[177].

Continuous time dynamical systems can in turn be embedded into other contin-
uous time systems. For example, [134] proves that a large class Sn of systems
of differential equations are universal for analog computing on time-varying in-
puts in the following sense: a system of this class can reply to some external
input u(t) with the dynamics of any nth order differential equation of the form

12 See also already mentioned generalizations of this result in [60] and [22].

400 Olivier Bournez and Manuel L. Campagnolo

z(n)(t) = G(z(t), z′(t), · · · , z(n−1)(t)) + u(t), if a suitable memoryless feedback
and readout functions are added. As the nth order differential equation above can
simulate Turing machines, systems from Sn have the power of a universal Tur-
ing machine. But since G is arbitrary, systems from Sn can actually simulate any
conceivable continuous dynamic response to an input stream. Moreover, this results
holds for the case where inputs and outputs are required to be bounded.

3.7 Discussion issues

The key technique in embedding the time evolution of a Turing machine in a flow is
to use “continuous clocks” as in [44].13

The idea is to start from the function f : R → R, preserving the integers, and build
the ordinary differential equation over R3

y′1 = c(f(r(y2))− y1)3θ(sin(2πy3)),
y′2 = c(r(y1)− y2)3θ(− sin(2πy3)),
y′3 = 1.

Here r(x) is a rounding-like function that has value n whenever x ∈ [n − 1/4, n+
1/4] for some integer n, and θ(x) is 0 for x ≤ 0, exp(−1/x) for x > 0, and c is
some suitable constant.

The variable y3 = t is the time variable. Suppose y1(0) = y2(0) = x ∈ N. For
t ∈ [0, 1/2], y′2 = 0, and hence y2 is kept fixed to x. Now, if f(x) = x, then y1 will
be kept to x. If f(x) �= x, then y1(t) will approach f(x) on this time interval, and
from the computations in [54], if a large enough number is chosen for c we can be
sure that |y1(1/2)− f(x)| ≤ 1/4. Consequently, we will have r(y1(1/2)) = f(x).
Now, for t ∈ [1/2, 1], roles are inverted: y′1 = 0, and hence y1 is kept fixed to
the value f(x). On that interval, y2 approaches f(x), and r(y2(1)) = f(x). The
equation has a similar behavior for all subsequent intervals of the form [n, n+ 1/2]
and [n+1/2, n+1]. Hence, at all integer time t, f [t](x) = r(y1(t)).14 [124] proposes
a similar construction that returns f [�t�](x) for all t ∈ R.

In other words, the construction above transforms a function over R into a higher
dimensional ordinary differential equation that simulates its iterations. To do so,
θ(sin(2πy3)) is used as a kind of clock. Therefore, the construction is essentially
“hybrid” since it combines smooth dynamics with nondifferentiable, or at least non-
analytic clocks to simulate the discrete dynamics of a Turing machine. Even if the
flow is smooth (i.e., in C∞) with respect to time, the orbit does not admit a tangent
at every point since y1 and y2 are alternatively constant. Arguably, one can overcome
this limitation by restricting Turing machine simulations to analytic flows and maps.

13 Branicky attributes the idea of a two phase computation to [47] and [48]. A similar trick is
actually present in [177]. We will actually not follow [44] but its presentation in [54].

14 f [t](x) denotes the tth iteration of f on x.

A Survey on Continuous Time Computations 401

Although it was shown that analytic maps over unbounded domains are able to sim-
ulate the transition function of any Turing machine in [115], only recently it was
shown that Turing machines can be simulated with analytic flows over unbounded
domains in [90]. It would be desirable to extend the result to compact domains. How-
ever, it is conjectured in [147] that this is not possible, i.e., that no analytic map on a
compact finite-dimensional space can simulate a Turing machine through a reason-
able input and output encoding.

3.8 Time and space contractions

Turing machines can be simulated by ODEs in real time: for example, in the con-
structions we described above, the state y(T) at time T ∈ N of the solution of the
ordinary differential equation encodes the state after T steps of the Turing machine.
However, since continuous time systems might undergo arbitrary space and time
contractions, Turing machines, as well as accelerating Turing machines15 [71], [67],
[68] or even oracle Turing machines, can actually be simulated in an arbitrary short
time.

In the paragraphs below, we will follow Ruohonen [177] who denotes a continu-
ous time system by the triplet (F, n,A), where F defines the ordinary differential
equation y′ = F (y) over Rn, with accepting set A: some input x is accepted iff the
trajectory starting with initial condition x crosses A.

A machine M = (F, n,A) can be accelerated: the substitution t = eu − 1 for
instance changesM to ((G, 1), n+ 1, A× R), where

dg

du
= G(g(u), u) = F (g(u))eu and g(u) = y(eu − 1),

yielding an exponential time acceleration. Note that the derivatives of the solution
with respect to the new time variable u are exponentially larger. Furthermore, the
substitution t = tan(πu/2) gives an infinite time acceleration, i.e., compresses any
computation, even an infinite one, into the finite interval 0 ≤ u < 1. Now, the
derivatives go to infinity during the course of computation.

Turning to space contraction, replacing the state y(t) of the machineM = (F, n,A)
by r(t) = y(t)e−t gives an exponentially downscaled machine ((H, 1),m+ 1, H1)
where

dr

dt
= H(r(t), t) = F (r(t)et)e−t − r(t)

and
H1 = {(e−tq, t)|q ∈ A and t ≥ 0}.

Obviously, this transformation reduces exponentially the distance between trajecto-
ries, which require increased precision to be distinguished.

15 Similar possibilities of simulating accelerating Turing machines through quantum mechan-
ics are discussed in [51].

402 Olivier Bournez and Manuel L. Campagnolo

Hardness results in the levels of the arithmetical or analytical hierarchy for several
decision problems about continuous time systems are derived from similar construc-
tions in [177], [178], [145], and [19]. Completeness results, as well as exact char-
acterizations of the recognition power of piecewise constant derivative systems, ac-
cording to their dimensions have been obtained in [32] and [33]. Notice that such
phenomena are instances of the so-called Zeno’s phenomena in hybrid systems liter-
ature: [5] and [19].

It can be observed that previous constructions yield undecidability results only for
functions over infinite or half-open intervals, since positive reals, corresponding to
Turing machines integer time, are mapped to intervals of the form [0, 1). An ana-
lytical construction is indeed possible over a finite closed domain of the form [0, 1],
with a function G that is continuous and bounded on [0, 1], but nondifferentiable.
It follows that the event detection problem, for example, is undecidable even with
continuous functions over compact intervals [180].

Undecidability is ruled out, however, if the function G is sufficiently smooth (say, in
C1), if both G and the initial value are computable, and if a sufficiently robust accep-
tance condition is considered. Indeed, problems such as the event detection problem
then become decidable, since the system can be simulated effectively [180].

Instead of embedding Turing machines into continuous dynamical systems, it is nat-
ural to ask whether there is a better way to think about computation and complexity
for the dynamical systems that are commonly used to model the physical world. We
address this issue in the next section.

4 Toward a complexity theory

Here we discuss several different views on the complexity of continuous dynami-
cal systems. We consider general systems and question the difficulty of simulating
continuous time systems with a digital model. We then focus on dissipative systems,
where trajectories converge to attractors. In particular, we discuss the idea that the
computation time should be the natural time variable of the ODE. Finally, we re-
view complexity results for more general continuous time systems that correspond
to classes of real recursive functions.

4.1 General continuous dynamical systems

In [200] it was asked whether analog computers can be more efficient than digital
ones. Vergis et al. also postulated the “Strong Church’s Thesis,” which states that the
time required by a digital computer to simulate any analog computer is bounded by
a polynomial function of the resources used by the analog computer. They claim that

A Survey on Continuous Time Computations 403

the Strong Church’s Thesis is provably true for continuous time dynamical systems
described by any Lipschitzian ODE y′ = f(y).

The resources used by an analog computer include the time interval of operation, say
[0, T], the size of the system, which can measured by maxt∈[0,T] ||y(t)||, as well as
the bound on the derivatives of y. For instance, mass, time of operation, maximum
displacement, velocity, acceleration, and applied force are all resources used by a
particle described by Newtonian mechanics [200].

The claim above depends on the definition of “simulation.” In the article [200] it is
considered that the IVP y′ = f(y), y(0) = x is simulated if, given T and some
precision ε, one can compute an approximation of y(T) with a margin of error of at
most ε. Using Euler’s method to solve this problem, and considering that the round-
off error is less than σ, the total error bound is given by

||y(T)− y∗N || ≤
h

λ

[
R

2
+

σ

h2

]
(eTλ− 1), (5)

where y∗N is the approximation after N steps, h is the step size, λ is the Lipschitz
constant for f on [0, T], and R = max{||y′′(t)||, t ∈ [0, T]}. From the bound in
(5), Vergis et al. conclude that the number N of necessary steps in Euler’s method is
polynomial in R and 1

ε . They use this fact to claim that the Strong Church’s Thesis
is valid for ODEs. However,N is exponential in T , which is the time of operation of
this analog computer. This makes the argument in [200] inconclusive, as pointed out
in [160].

More recently, Smith discusses in [192] if hypercomputation is possible with respect
to the n-body problem in mechanics. In particular, he shows that the exponential
dependence in T can be eliminated. As observed in [192], all classical numerical
methods of fixed degree for solving differential equations suffer from the same ex-
ponential dependence in T . However, by considering a combination of Runge–Kutta
methods with degrees varying linearly with T , it is possible to derive a method that
only requires N to be polynomial in T , as long as the absolute value of each com-
ponent of f , y, and the absolute value of each partial derivative of f with respect to
any of its arguments, having total differentiation degree k, is in (kT)O(k) [192]. The
implications of these results for Strong Church’s Thesis are discussed in [192] and
[34].

The same question can be addressed in the framework of recursive analysis. When
f : [0, 1]× [−1, 1]→ R is polynomial time computable and satisfies a weak form of
the Lipschitz condition, the unique solution y on [0, 1] of IVP y′ = f(t, y), y(0) = 0
is always polynomial space computable [111]. Furthermore, solving in polynomial
time a differential equation with this weak Lipschitz condition is essentially as dif-
ficult as solving a PSPACE-complete problem, since there exists a polynomial time
computable function f as above whose solution y is not polynomial time computable
unless P = PSPACE [111], [112].

404 Olivier Bournez and Manuel L. Campagnolo

Ko’s results are not directly comparable with the polynomial bound shown in [192].
In recursive analysis, the input’s size is the number of bits of precision. If the bound
on the error of the approximation of y(t) is measured in bits; i.e., if ε = 2−d, then
the required number of steps N in [192] is exponential in d.

If f is analytic, then the solution of y′ = f(y) is also analytic. In that case, timestep-
ping methods can be avoided. That is the approach followed in [142], where it is
proved using recursive analysis that if f is analytic and polynomial time computable,
then the solution is also polynomial time computable.

In short, although Strong Church’s Thesis holds for analytic ODEs, it has not yet
been fully proved for general systems of Lipschitzian ODEs. Hence, the possibility
of super-polynomial computation by differential equations cannot be ruled out, at
least in principle. For informal discussions on Strong Church’s Thesis, refer to [1]
and [139].

Several authors have shown that certain decision or optimization problems (e.g.,
graph connectivity or linear programming) can be solved by specific continuous dy-
namical systems. Examples and references can be found in the papers [191], [200],
[48], [79], [97] and [27].

4.2 Dissipative systems

We now focus on dissipative systems and review two approaches. The first is about
neural network models, such as continuous Hopfield networks, that simulate circuits
in a nonuniform manner, and leads to lower bounds on the complexity of such net-
works. The second deals with convergence to attractors and considers suitable energy
functions as ways to measure the complexity of continuous time processes.

When considering dissipative systems, such as Hopfield neural networks, the fol-
lowing approach to a complexity theory is natural. Consider families (Cn)n∈N of
continuous time systems, for each input length n ≥ 0. Given some digital input
w ∈ {0, 1}∗, the system Cn evolves on input w (or some encoding of w), where n
is the length of w. It will eventually reach some stable state, which is considered the
result of the computation.

This circuit inspired notion of computability is the most common in the literature
about the computational complexity of neural networks models; see survey [190].
With respect to this approach, continuous time symmetric Hopfield networks with a
saturated linear activation function have been proved to simulate arbitrary discrete-
time binary recurrent neural networks, at the cost of only a linear size overhead
[161], [189]. This might be thought counterintuitive, since such symmetric networks,
which are constrained by some Liapunov energy function, can only exhibit conver-
gence phenomena, and hence cannot even realize a simple alternating bit. However,
the convergence of dissipative systems can be exponentially long in the size of the

A Survey on Continuous Time Computations 405

system [188], and hence the simulation can be accomplished using a subnetwork that
provides 2n clock pulses before converging.

The languages recognized by polynomial size families of discrete-time Hopfield net-
works have been proved in [159] to correspond to nonuniform complexity class
PSPACE/poly for arbitrary interconnection weights, and to P/poly for polyno-
mially bounded weights. Therefore, families of continuous time symmetric Hop-
field networks have the same lower bounds. However, these lower bounds may be
not tight, since upper bounds for continuous time dynamics are not known [189],
[190].

Let us now turn our attention to dissipative systems with a Lyapunov functionE.

Gori and Meer [86] consider a computational model that has the capability of finding
the minimizers (i.e., the points of local or global minimum) of E. To prevent the
complexity of a problem from being hidden in the description of E, this function
must be easy to compute. In that setting, a problem Π is considered easy if there
exists a unimodal function E (i.e., all local minimizers of E are global minimizers)
such that the solution of Π can be obtained from the global minimum of E.

More precisely, Gori and Meer investigate in [86] a model where a problem Π over
the reals is considered to be solved if there exists a family (En)n : Rn×Rq(n) → R
of energy functions, given by a uniform family of straight line programs (q is some
fixed polynomial), and another family (Nn)n of straight line programs, such that for
all input d, a solution Π(d) of the problem can be computed using Nq(n)(w∗), from
a global minimizer w∗ of w→ En(d, w).

Gori and Meer define classes U andNU in analogy with P andNP in classical com-
plexity. U corresponds to the above-mentioned case where for all d, w → En(d, w)
is unimodal, in opposition to NU where it needs not be unimodal. Notions of reduc-
tions are introduced, and it is proved that the natural optimization problem “find the
minimum of some linear objective function over a set defined by quadratic multivari-
ate polynomial constraints” is NU -hard. They show that there exist (artificial) NU
complete problems. These ideas are generalized to obtain a polynomial hierarchy,
with complete problems [86].

Actually, Gori and Meer’s proposed framework is rather abstract, avoiding several
problems connected to what one might expect of a true complexity theory for con-
tinuous time computations. Nonetheless, it has the great advantage of not relying
on any particular complexity measure for the computation of trajectories. See the
interesting discussion in [86].

However, one would like to understand the complexity of approaching the minima
of energy functions, which correspond to the equilibria of dynamical systems. First
steps toward this end have been investigated in [27], where dissipative systems with
exponential convergence are explored. Recall that if x∗ is a sink, then the rate of
convergence toward x∗ satisfies

|x(t)− x∗| ≡ e−λt,

406 Olivier Bournez and Manuel L. Campagnolo

where −λ is the largest real part of an eigenvalue of Df(x∗). This means that τ =
1/λ is a natural characteristic time of the attractor: every τ log 2 time units, a new bit
of the attractor is computed.

For the systems considered in [27], each sink has an attracting region, where the
trajectories are trapped. One can define the computation time tc of a dissipative con-
tinuous time dynamical system as tc = max(tc(ε), tc(U)), where tc(ε) is the time
required to reach some ε vicinity of some attractor, and tc(U) is the time required
to reach its attracting region. Then, T = tc

τ is a dimensionless complexity measure,
invariant under any linear time contraction.

Two continuous time algorithms, MAX to compute the maximum of n numbers,
and FLOW to compute the maximum flow problem have been studied in this frame-
work in [27]. MAX has been shown to belong to proposed complexity class CLOG
(continuous log time) and FLOW to CP (continuous polynomial time). The au-
thors conjecture that CP corresponds to classical polynomial time [27]. BothMAX
and FLOW algorithms are special cases of a flow proposed in [80] to solve linear
programming problems, which are further investigated in [24] and [25]. Variations
on definitions of complexity classes, as well as ways to introduce nondeterministic
classes in relation to computations by chaotic attractors, have also been discussed in
[185].

4.3 Complexity and real recursive functions

Real recursive functions are a convenient way to analyze the computational power of
certain operations over real functions. Additionally, given a continous time model, if
its equivalence with a function algebra of real recursive functions can be established,
then some properties of the model can be proved inductively over the function alge-
bra.

Since many time and space complexity classes have recursive characterizations over
N [62], structural complexity results about discrete operations may imply lower and
upper bounds on the computational complexity of real recursive functions. This ap-
proach was followed in [53] to show that L contains extensions of the elementary
functions, and it was further developed in [56] to obtain weaker classes that relate
to the exponential space hierarchy. This tells us something about the computational
complexity of certain dynamical systems. For instance, L corresponds to cascades of
finite depth, each level of which depends linearly on its own variables and the output
of the level before it.

Results about the idea of lifting computability questions over N to R have been dis-
cussed before. Concerning complexity, the questionP = NP in classical complexity
has been investigated using real recursive functions by Costa and Mycka. In partic-
ular, they propose two classes of real recursive functions such that their inequality
would imply P �= NP in [69] and [151]. More generally a part of Costa and My-
cka’s program, which is explicitly stated in [150] and [152], uses recursion theory

A Survey on Continuous Time Computations 407

on the reals to establish a bridge between computability and complexity theory and
mathematical analysis.

5 Noise and Robustness

Up to this point we have considered continuous time computations in idealized,
noise-free spaces. As was also the case in the survey by Orponen [160], most of
the results we discussed disregard the impact of noise and imprecision in continuous
time systems. This is a recurrently criticized weakness of the research in the field.
Although there have not been major breakthroughs with regard to these problems
as they relate specifically to continuous time computations, some interesting devel-
opments concerning noise and imprecision have come about in discrete time analog
computation studies. In this section we will broaden our scope to discuss a number of
discrete time results. We believe that some of these studies and results might be gen-
eralized to, or at least provide some insight into, the effects of noise and imprecision
on continuous time systems, although this work has yet to be done.

We first focus on systems with a bounded state space about which a folklore conjec-
ture claims that robustness implies decidability. We review some results that support
this conjecture as well as others that challenge it. At the end of this section, we dis-
cuss continuous time systems with unbounded state spaces.

Common techniques to simulate Turing machines by dynamical systems in bounded
state spaces require the encoding of the configuration of the Turing machine into
real numbers. Since Turing machines have unbounded tapes (otherwise they would
degenerate into finite automata), these simulations are destroyed if the real numbers
or the functions involved are not represented with infinite precision. This leads to the
folklore conjecture, popular in particular in the verification community, which states
that undecidability do not hold for “realistic,” “unprecise,” “noisy,” “fuzzy,” or “ro-
bust” systems. See, for example, [85] and [83] for various statements of this conjec-
ture and [13] for discussions on other arguments that lead to this conjecture.

There is no consensus on what is a realistic noise model. A discussion of this subject
would require to question what are good models of the physical world. In the absence
of a generally accepted noise model, one can however consider various models for
noise, imprecision, or smoothness conditions, and one can investigate the properties
of the resulting systems.

In particular, there have been several attempts to show that noisy analog systems are
at best equivalent to finite automata. Brockett proved that continuous time dynamical
systems can simulate arbitrary finite automata in [47]. Using topological arguments
based on homotopy equivalence relations and associated Deck transformations, he
showed in [49] that some automata can be associated with dissipative continuous
time systems.

408 Olivier Bournez and Manuel L. Campagnolo

Maass and Orponen proved that the presence of bounded noise reduces the power of
a large set of discrete time analog models to that of finite automata in [136]. This
extends a previous result established in [58] and [59] for the case where the output is
assumed to be perfectly reliable (i.e., ρ = 1/2 in what follows).

Maass and Orponen’s idea is to replace a perfect discrete time dynamic of type
xi+1 = f(xi, ai), where ai is the symbol input at time i, over a compact domain, by
a probabilistic dynamic

Probability (xi+1 ∈ B) =
∫

q∈B

z(f(xi, ai), q)dμ, (6)

where B is any Borel set. Here, z is a density kernel reflecting arbitrary noise, which
is assumed to be piecewise equicontinuous. This means that, for all ε, there exists δ
such that for all r, p, q, ‖p − q‖ ≤ δ implies |z(r, p) − z(r, q)| ≤ ε. They denote
by πx(q) the distribution of states after string x is processed from some fixed initial
state q, and they consider the following robust acceptance condition: a language L
is recognized, if there exists ρ > 0 such that x ∈ L iff

∫
F
πxu(q)dμ ≥ 1/2 + ρ for

some u ∈ {U}∗, and x �∈ L iff
∫

F πxu(q)dμ ≤ 1/2 − ρ for all u ∈ {U}∗, where
U is the blank symbol, and F is the set of accepting states. Then, they show that
the space of functions πx(.) can be partitioned into finitely many classes C such that
two functions πx(.) and πy(.) in the same class satisfy

∫
r |πx(r) − πy(r)|dμ ≤ ρ.

Therefore, two words x, y in the same class satisfy xw ∈ L iff yw ∈ L for all
words w.

In fact, for any common noise, such as Gaussian noise, which is nonzero on a suf-
ficiently large part of the state space, systems described by (6) are unable to rec-
ognize even arbitrary regular languages [138]. They recognize precisely the defi-
nite languages introduced by [172], as shown in [138] and [26]. If the noise level is
bounded, then all regular languages can be recognized [136]. Feedback continuous
time circuits in [134] have the same computational power when subject to bounded
noise.

As an alternative to the probabilistic approach of Maass and Orponen, noise can be
modeled through nondeterminism. One can associate with deterministic noise-free
discrete time dynamical system S defined by xi+1 = f(xi), the nondeterministic ε-
perturbated system Sε whose trajectories are sequences (xn)n with ‖xi+1−f(xi)‖ ≤
ε. For a dynamical system S, it is natural to consider the predicate Reach[S](x, y)
(respectively, Reachn[S](x, y)), which is true if there exists a trajectory of S from x
to y (resp. in i ≤ n steps). Then, algorithmic verification of safety of state properties
is closely related to the problem of computing reachable states. Given S, and a subset
of initial states S0, let Reach[S] denote the set of y’s such that Reach[S](x, y) for
some x ∈ S0. Given a state property p (i.e., a property that is either true or false in a
state s), let [[¬p]] denote the subset of states s where p is false. Then S is safe (p is
an invariant) iff Reach[S] ∩ [[¬p]] = ∅ (see, for example, [4] and [156]).

A Survey on Continuous Time Computations 409

If the class of systems under consideration is such that relation Reachn[S](x, y) is
recursive16 (assuming that S0 recursively enumerable), then Reach[S] is recursively
enumerable because Reach[S] =

⋃
n Reachn[S]. Several papers have been devoted

to prove that Reach[S] is indeed recursive for classes of dynamical systems under
different notions of robustness. We now review several of them.

Fränzle observes in [85] that the computation of Reach[Sε] by Reach[Sε] =
⋃

n

Reachn[Sε] must always terminate if Reach[Sε] has a strongly finite diameter. This
means that there exists an infinite number of points in Reach[Sε] at a mutual distance
of at least ε, which is not possible over a bounded domain. It follows that if we call
robust a system that is either unsafe or whose ε-perturbated system is safe for some
ε, then safety is decidable for robust systems over compact domains [85].

Consider as in [170] the relation Reachω[S] =
⋂

ε>0 Reach[Sε], corresponding to
states that stay reachable when noise converges to 0. Asarin and Bouajjani prove
in [14] that for large classes of discrete and continuous time dynamical systems
(Turing machines, piecewise affine maps, piecewise constant differential equations),
Reachω[S] is co-recursively enumerable. Furthermore, any co-recursively enumer-
able relation is of form Reachω[S] for some S for the classes that Asarin and Bouaj-
jani consider. Therefore, if we call robust a system such that Reach[S] = Reachω[S],
then computing Reach[S] is decidable for robust systems.

Asarin and Collins considered in [17] a model of Turing machines exposed to a small
stochastic noise, whose computational power have been characterized to correspond
to Π0

2 . It is interesting to compare this result with previous results where a small
nondeterministic noise lead to Π0

1 (co-recursively enumerable sets) computational
power only.

We now turn our attention to results that challenge the conjecture that robustness
implies decidability. A first example is that the safety of a system is still undecidable
if the transition relation of the system is open, as proved in [99], and [13]. However,
the question for the restriction to a uniform nondeterministic noise bounded from
below is open [13].

Noise can also be modeled by perturbating trajectories. Gupta, Henzinger, and Ja-
gadeesan consider in [95] a metric over trajectories of timed automata, and assume
that if a system accepts a trajectory, then it must accept neighboring trajectories also.
They prove that this notion of robustness is not sufficient to avoid undecidability of
complementation for Timed automata. Henzinger and Raskin prove in [99] that ma-
jor undecidability results about verification of hybrid systems are still undecidable
for robust systems in that sense.

Finally, we review a recent robustness result for continuous time dynamical sys-
tems with unbounded state space. Graça, Campagnolo, and Buescu prove in [91]
that polynomial differential equations can simulate robustly Turing machines in real
time. More precisely, let us consider that θ : N3 → N3 is the transition function

16 Recursive in x, y, and n.

410 Olivier Bournez and Manuel L. Campagnolo

some Turing machine M whose configuration is encoded on N3. Then, there is a
ε > 0, a solution f of a polynomial ODE, and an initial condition f(0) such that
the solution of y′ = f(t, y) encodes the state of M after t steps with error at most
ε. Moreover, this holds for a neighborhood of any integer t even if f and the initial
condition f(0) are perturbed. Obviously, this kind of simulation requires the system
to have an unbounded state space.

6 Conclusion

Having surveyed the field of continuous time computation theory, we see that it pro-
vides insights into many diverse areas such as verification, control theory, VLSI
design, neural networks, analog machines, recursion theory, theory of differential
equations, and computational complexity.

We have attempted to give a systematic overview of the most relevant models and
results on continuous time computations. In the last decade many new results have
been obtained, indicating that this is an active field of research. We reviewed re-
cent developments of the theory of continuous time computation with respect to
computability, complexity, and robustness to noise, and we identified several open
problems. To conclude, we will discuss some directions for future research related to
these areas.

Computability

It is not clear whether a unifying concept similar to the Church–Turing thesis exists
for continuous time computation. Although it has been shown that some continuous
time models exhibit super Turing power, these results rely on the use of an infi-
nite amount of resources such as time, space, precision, or energy. In general, it is
believed that “reasonable” continuous time models cannot compute beyond Turing
machines. This raises the question if physically realistic continuous time computa-
tion can be as powerful as digital computation. We saw that if we restrict continuous
time systems to evolve in a bounded state space and to be subjected to noise, then
they become comparable with finite automata. However, with a bounded state space,
Turing machines also degenerate into finite automata. Since analytic and robust con-
tinuous time systems can simulate Turing machines in an unbounded state space, we
believe that digital computation and analog continuous time computation are equally
powerful from the computability point of view. Moreover, as we saw, several re-
cent results establish the equivalence between functions computable by polynomial
ODEs, GPAC-computable functions and real computable functions in the framework
of recursive analysis. These kind of results reinforce the idea that there could be an
unified framework for continuous time computations, analogous to what occurs in
classical computation theory.

A Survey on Continuous Time Computations 411

We feel that a general paradigm of realistic continuous time computations ideally
should only involve analytic functions, since these are often considered as the most
acceptable from a physical point of view. Continuous dynamical systems are a nat-
ural form of representing continuous time processes. Classic systems like the van
der Pol equation, the Lotka–Volterra system, or the Lorenz equations are described
with differential equations with an analytic, even polynomial, right-hand side. These
physics-related arguments combined with the computability properties of systems of
polynomial differential equations lead us to suggest that this continuous time model
is a possible candidate for a general paradigm of continuous time computation. We
believe that this idea deserves further investigation.

Complexity

We saw that a complexity theory for continuous time computation is still under way
and that there has not been an agreement between authors on basic definitions such as
computation time or input size. The results described in Section 4 are either derived
from concepts that are intrinsic to the continuous time systems under study or related
to classical complexity theory. As computable analysis is a well-established and un-
derstood framework for the study of computational complexity of continuous time
systems, we believe that understanding relations between different approaches and
computable analysis from a complexity point of view is of first importance. There
are still many open questions about upper bounds for continuous time models. For
example, upper bounds are not known for Hopfield networks and general systems of
Lipschitizian ODEs, which compromises the validity of the Strong Turing thesis. We
saw that this thesis might hold for systems of analytic ODEs. This leads us to ask
whether a continuous time computation theory based on polynomial ODEs could be
naturally extended to a complexity theory.

Computable analysis also permits study of the complexity of real recursive functions.
One of the most intriguing areas of research in continuous time computation tries to
explore the link between real recursive functions and computational complexity to
establish a translation of open problems of classic complexity into analysis.

Robustness

We saw that very little research has been done with respect to the robustness and tol-
erance to noise of continuous time systems. One might ask how the power of analog
computations increases with their precision. This question was raised and formalized
for discrete time analog systems, in particular for dynamical recognizers, in [147],
but most of the research in that direction has yet to be done. Many interesting open
questions arise if one asks whether undecidability results for continuous time sys-
tems still hold for robust systems. This is of first importance for example for the
verification of hybrid systems, since this question is closely related to the question

412 Olivier Bournez and Manuel L. Campagnolo

of termination of automatic verification procedures. A better understanding of the
hypotheses under which noise yield decidability or undecidability is required. For
example, nondeterministic noise on open systems does not rule out undecidability,
but the question is unanswered for a uniform noise bounded from below [13].

Acknowledgments. We would like to thank all our colleagues in a wide sense, since
this survey benefited from recent and old discussions with a long list of people. Many
of them have their work cited in the text. We would also like to deeply thank Kathleen
Merrill for her careful reading of the text and for her suggestions to improve its
clarity and an anonymous referee for his/her helpful advice. This work was partially
supported by EGIDE and GRICES under the Program Pessoa through the project
Calculabilité et complexité des modèles de calculs à temps continu, by Fundação
para a Ciência e a Tecnologia and FEDER via the Center for Logic and Computation
- CLC and the project ConTComp POCTI/MAT/45978/2002.

References

1. Aaronson, S. (2005). NP-complete problems and physical reality. ACM SIGACT News,
36(1):30–52.

2. Abdi, H. (1994). A neural network primer. Journal of Biological Systems, 2:247–281.
3. Adleman, L. M. (1994). Molecular computation of solutions to combinatorial problems.

Science, 266:1021–1024.
4. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T. A., Ho, P. H., Nicollin, X., Oliv-

ero, A., Sifakis, J., and Yovine, S. (1995). The algorithmic analysis of hybrid systems.
Theoretical Computer Science, 138(1):3–34.

5. Alur, R. and Dill, D. L. (1990). Automata for modeling real-time systems. In Pater-
son, M., editor, Automata, Languages and Programming, 17th International Colloquium,
ICALP90, Warwick University, England, July 16-20, 1990, Proceedings, volume 443 of
Lecture Notes in Computer Science, pages 322–335. Springer.

6. Alur, R. and Dill, D. L. (1994). A theory of timed automata. Theoretical Computer
Science, 126(2):183–235.

7. Alur, R. and Madhusudan, P. (2004). Decision problems for timed automata: A survey.
In Bernardo, M. and Corradini, F., editors, Formal Methods for the Design of Real-Time
Systems, International School on Formal Methods for the Design of Computer, Com-
munication and Software Systems, SFM-RT 2004, Bertinoro, Italy, September 13-18,
2004, Revised Lectures, volume 3185 of Lecture Notes in Computer Science, pages 1–24.
Springer.

8. Arnold, V. I. (1989). Mathematical methods of classical mechanics, volume 60 of Grad-
uate Texts in Mathematics. Springer, second edition.

9. Artobolevskii, I. (1964). Mechanisms for the Generation of Plane Curves. Macmillan,
New York. Translated by R.D. Wills and W. Johnson.

10. Asarin (2004). Challenges in timed languages: From applied theory to basic theory.
Bulletin of the European Association for Theoretical Computer Science, 83:106–120.

11. Asarin, E. (1995). Chaos and undecidabilty (draft). Avalaible in http://www.
liafa.jussieu.fr/$\tilde{\}$asarin/.

A Survey on Continuous Time Computations 413

12. Asarin, E. (1998). Equations on timed languages. In Henzinger, T. A. and Sastry,
S., editors, Hybrid Systems: Computation and Control, First International Workshop,
HSCC’98, Berkeley, CA, April 13-15, 1998, Proceedings, volume 1386 of Lecture Notes
in Computer Science, pages 1–12. Springer.

13. Asarin, E. (2006). Noise and decidability. Continuous Dynamics and Computabil-
ity Colloquium. Video and sound available trough “Diffusion des savoirs de l’Ecole
Normale Supérieure,” on http://www.diffusion.ens.fr/en/index.php?
res=conf\&idconf=1226.

14. Asarin, E. and Bouajjani, A. (2001). Perturbed Turing machines and hybrid systems. In
Proceedings of the 16th Annual IEEE Symposium on Logic in Computer Science, pages
269–278, Los Alamitos, CA. IEEE Computer Society Press.

15. Asarin, E., Caspi, P., and Maler, O. (1997). A Kleene theorem for timed automata. In
Proceedings, 12th Annual IEEE Symposium on Logic in Computer Science, pages 160–
171, Warsaw, Poland. IEEE Computer Society Press.

16. Asarin, E., Caspi, P., and Maler, O. (2002). Timed regular expressions. Journal of the
ACM, 49(2):172–206.

17. Asarin, E. and Collins, P. (2005). Noisy Turing machines. In Caires, L., Italiano, G. F.,
Monteiro, L., Palamidessi, C., and Yung, M., editors, Automata, Languages and Pro-
gramming, 32nd International Colloquium, ICALP 2005, Lisbon, Portugal, July 11-15,
2005, Proceedings, volume 3580 of Lecture Notes in Computer Science, pages 1031–
1042. Springer.

18. Asarin, E. and Dima, C. (2002). Balanced timed regular expressions. Electronic Notes
in Theoretical Computer Science, 68(5).

19. Asarin, E. and Maler, O. (1998). Achilles and the tortoise climbing up the arithmetical
hierarchy. Journal of Computer and System Sciences, 57(3):389–398.

20. Asarin, E., Maler, O., and Pnueli, A. (1995). Reachability analysis of dynamical systems
having piecewise-constant derivatives. Theoretical Computer Science, 138(1):35–65.

21. Asarin, E. and Schneider, G. (2002). Widening the boundary between decidable and
undecidable hybrid systems. In Brim, L., Jancar, P., Kretínský, M., and Kucera, A.,
editors, CONCUR 2002 - Concurrency Theory, 13th International Conference, Brno,
Czech Republic, August 20-23, 2002, Proceedings, volume 2421 of Lecture Notes in
Computer Science, pages 193–208. Springer.

22. Asarin, E., Schneider, G., and Yovine, S. (2001). On the decidability of the reachability
problem for planar differential inclusions. In Benedetto, M. D. D. and Sangiovanni-
Vincentelli, A. L., editors, Hybrid Systems: Computation and Control, 4th International
Workshop, HSCC 2001, Rome, Italy, March 28-30, 2001, Proceedings, volume 2034 of
Lecture Notes in Computer Science, pages 89–104. Springer.

23. Beauquier, D. (1998). Pumping lemmas for timed automata. In Nivat, M., editor, Foun-
dations of Software Science and Computation Structure, First International Conference,
FoSSaCS’98, Held as Part of the European Joint Conferences on the Theory and Prac-
tice of Software, ETAPS’98, Lisbon, Portugal, March 28 - April 4, 1998, Proceedings,
volume 1378 of Lecture Notes in Computer Science, pages 81–94. Springer.

24. Ben-Hur, A., Feinberg, J., Fishman, S., and Siegelmann, H. T. (2003). Probabilistic anal-
ysis of a differential equation for linear programming. Journal of Complexity, 19(4):474–
510.

25. Ben-Hur, A., Feinberg, J., Fishman, S., and Siegelmann, H. T. (2004a). Random ma-
trix theory for the analysis of the performance of an analog computer: a scaling theory.
Physics Letters A, 323(3–4):204–209.

26. Ben-Hur, A., Roitershtein, A., and Siegelmann, H. T. (2004b). On probabilistic analog
automata. Theoretical Computer Science, 320(2–3):449–464.

414 Olivier Bournez and Manuel L. Campagnolo

27. Ben-Hur, A., Siegelmann, H. T., and Fishman, S. (2002). A theory of complexity for
continuous time systems. Journal of Complexity, 18(1):51–86.

28. Blondel, V. D. and Tsitsiklis, J. N. (1999). Complexity of stability and controllability of
elementary hybrid systems. Automatica, 35(3):479–489.

29. Blondel, V. D. and Tsitsiklis, J. N. (2000). A survey of computational complexity results
in systems and control. Automatica, 36(9):1249–1274.

30. Blum, L., Cucker, F., Shub, M., and Smale, S. (1998). Complexity and Real Computation.
Springer.

31. Blum, L., Shub, M., and Smale, S. (1989). On a theory of computation and complexity
over the real numbers; NP completeness, recursive functions and universal machines.
Bulletin of the American Mathematical Society, 21(1):1–46.

32. Bournez, O. (1999a). Achilles and the Tortoise climbing up the hyper-arithmetical hier-
archy. Theoretical Computer Science, 210(1):21–71.

33. Bournez, O. (1999b). Complexité Algorithmique des Systèmes Dynamiques Continus et
Hybrides. PhD thesis, Ecole Normale Supérieure de Lyon.

34. Bournez, O. (2006). How much can analog and hybrid systems be proved (super-)Turing.
Applied Mathematics and Computation, 178(1):58–71.

35. Bournez, O., Campagnolo, M. L., Graça, D. S., and Hainry, E. (2007). Polynomial differ-
ential equations compute all real computable functions on computable compact intervals.
Journal of Complexity. To appear.

36. Bournez, O. and Hainry, E. (2005). Elementarily computable functions over the real
numbers and R-sub-recursive functions. Theoretical Computer Science, 348(2–3):
130–147.

37. Bournez, O. and Hainry, E. (2006). Recursive analysis characterized as a class of real
recursive functions. Fundamenta Informaticae, 74(4):409–433.

38. Bouyer, P., Dufourd, C., Fleury, E., and Petit, A. (2000a). Are timed automata updatable?
In Emerson, E. A. and Sistla, A. P., editors, Computer Aided Verification, 12th Interna-
tional Conference, CAV 2000, Chicago, IL, July 15-19, 2000, Proceedings, volume 1855
of Lecture Notes in Computer Science, pages 464–479. Springer.

39. Bouyer, P., Dufourd, C., Fleury, E., and Petit, A. (2000b). Expressiveness of updatable
timed automata. In Nielsen, M. and Rovan, B., editors, Mathematical Foundations of
Computer Science 2000, 25th International Symposium, MFCS 2000, Bratislava, Slo-
vakia, August 28 - September 1, 2000, Proceedings, volume 1893 of Lecture Notes in
Computer Science, pages 232–242. Springer.

40. Bouyer, P. and Petit, A. (1999). Decomposition and composition of timed automata. In
Wiedermann, J., van Emde Boas, P., and Nielsen, M., editors, Automata, Languages and
Programming, 26th International Colloquium, ICALP’99, Prague, Czech Republic, July
11-15, 1999, Proceedings, volume 1644 of Lecture Notes in Computer Science, pages
210–219. Springer.

41. Bouyer, P. and Petit, A. (2002). A Kleene/Büchi-like theorem for clock languages. Jour-
nal of Automata, Languages and Combinatorics, 7(2):167–186.

42. Bowles, M. D. (1996). U.S. technological enthusiasm and British technological skepti-
cism in the age of the analog brain. IEEE Annals of the History of Computing, 18(4):
5–15.

43. Branicky, M. S. (1995a). Studies in Hybrid Systems: Modeling, Analysis, and Control.
PhD thesis, Laboratory for Information and Decision Systems, Massachusetts Institute
of Technology, Cambridge, MA.

44. Branicky, M. S. (1995b). Universal computation and other capabilities of hybrid and
continuous dynamical systems. Theoretical Computer Science, 138(1):67–100.

A Survey on Continuous Time Computations 415

45. Brihaye, T. (2006). A note on the undecidability of the reachability problem for o-
minimal dynamical systems. Math. Log. Q, 52(2):165–170.

46. Brihaye, Th. and Michaux, Ch. (2005). On the expressiveness and decidability of o-
minimal hybrid systems. Journal of Complexity, 21(4):447–478.

47. Brockett, R. W. (1989). Smooth dynamical systems which realize arithmetical and logical
operations. In Nijmeijer, H. and Schumacher, J. M., editors, Three Decades of Mathemat-
ical Systems Theory, volume 135 of Lecture Notes in Computer Science, pages 19–30.
Springer.

48. Brockett, R. W. (1991). Dynamical systems that sort lists, diagonalize matrices, and solve
linear programming problems. Linear Algebra and its Applications, 146:79–91.

49. Brockett, R. W. (1994). Dynamical systems and their associated automata. In U. Helmke,
R. M. and Saurer, J., editors, Systems and Networks: Mathematical Theory and Applica-
tions, volume 77, pages 49–69. Akademi-Verlag, Berlin.

50. Bush, V. (1931). The differential analyser. Journal of the Franklin Institute, 212(4):
447–488.

51. Calude, C. S. and Pavlov, B. (2002). Coins, Quantum measurements, and Turing’s bar-
rier. Quantum Information Processing, 1(1-2):107–127.

52. Campagnolo, M., Moore, C., and Costa, J. F. (2000). Iteration, inequalities, and differ-
entiability in analog computers. Journal of Complexity, 16(4):642–660.

53. Campagnolo, M., Moore, C., and Costa, J. F. (2002). An analog characterization of the
Grzegorczyk hierarchy. Journal of Complexity, 18(4):977–1000.

54. Campagnolo, M. L. (2001). Computational complexity of real valued recursive functions
and analog circuits. PhD thesis, IST, Universidade Técnica de Lisboa.

55. Campagnolo, M. L. (2002). The complexity of real recursive functions. In Calude, C.,
Dinneen, M., and Peper, F., editors, Unconventional Models of Computation, UMC’02,
Volume 2509 in Lecture Notes in Computer Science, pages 1–14. Springer.

56. Campagnolo, M. L. (2004). Continuous time computation with restricted integration
capabilities. Theoretical Computer Science, 317(4):147–165.

57. Campagnolo, M. L. and Ojakian, K. (2007). The elementary computable functions over
the real numbers: applying two new techniques. Archive for Mathematical Logic. To
appear.

58. Casey, M. (1996). The dynamics of discrete-time computation, with application to re-
current neural networks and finite state machine extraction. Neural Computation, 8:
1135–1178.

59. Casey, M. (1998). Correction to proof that recurrent neural networks can robustly recog-
nize only regular languages. Neural Computation, 10:1067–1069.

60. Ceraens, K. and Viksna, J. (1996). Deciding reachability for planar multi-polynomial
systems. In Hybrid Systems III, volume 1066 of Lecture Notes in Computer Science,
page 389. Springer-Verlag.

61. Church, A. (1936). An unsolvable problem of elementary number theory. American
Journal of Mathematics,, 58:345–363. Reprinted in [73].

62. Clote, P. (1998). Computational models and function algebras. In Griffor, E. R., editor,
Handbook of Computability Theory, pages 589–681. North-Holland, Amsterdam.

63. Coddington, E. A. and Levinson, N. (1972). Theory of Ordinary Differentiel Equations.
McGraw-Hill.

64. Collins, P. (2005). Continuity and computability on reachable sets. Theoretical Computer
Science, 341:162–195.

65. Collins, P. and Lygeros, J. (2005). Computability of finite-time reachable sets for hybrid
systems. In Proceedings of the 44th IEEE Conference on Decision and Control and the
European Control Conference, pages 4688–4693. IEEE Computer Society Press.

416 Olivier Bournez and Manuel L. Campagnolo

66. Collins, P. and van Schuppen, J. H. (2004). Observability of piecewise-affine hybrid sys-
tems. In Alur, R. and Pappas, G. J., editors, Hybrid Systems: Computation and Control,
7th International Workshop, HSCC 2004, Philadelphia, PA, March 25-27, 2004, Pro-
ceedings, volume 2993 of Lecture Notes in Computer Science, pages 265–279. Springer.

67. Copeland, B. J. (1998). Even Turing machines can compute uncomputable functions. In
Calude, C., Casti, J., and Dinneen, M., editors, Unconventional Models of Computations.
Springer.

68. Copeland, B. J. (2002). Accelerating Turing machines. Minds and Machines, 12:
281–301.

69. Costa, J. F. and Mycka, J. (2006). The conjecture P
= NP given by some analytic
condition. In Bekmann, A., Berger, U., Löwe, B., and Tucker, J., editors, Logical Ap-
proaches to Computational Barriers, Second conference on Computability in Europe,
CiE 2006, pages 47–57, Swansea, UK. Report CSR 7-26, Report Series, University of
Wales Swansea Press, 2006.

70. Coward, D. (2006). Doug Coward’s Analog Computer Museum. http://dcoward.
best.vwh.net/analog/.

71. Davies, E. B. (2001). Building infinite machines. The British Journal for the Philosophy
of Science, 52:671–682.

72. Dee, D. and Ghil, M. (1984). Boolean difference equations, I: Formulation and dynamic
behavior. SIAM Journal on Applied Mathematics, 44(1):111–126.

73. Davis M. (ed.) (1965) The Undecidable: Basic Papers on Undecidable Propositions,
Unsolvable Problems and Computable Functions, Raven, NY.

74. Delvenne, J.-C., Kurka, P., and Blondel, V. D. (2004). Computational universality in
symbolic dynamical systems. In Margenstern, M., editor, MCU: International Confer-
ence on Machines, Computations, and Universality, volume 3354 of Lecture Notes in
Computer Science, pages 104–115. Springer.

75. Deutsch, D. (1985). Quantum theory, the Church-Turing principle and the universal
quantum computer. Proceedings of the Royal Society (London), Series A, 400:97–117.

76. Durand-Lose, J. (2005). Abstract geometrical computation: Turing-computing ability
and undecidability. In Cooper, S. B., Löwe, B., and Torenvliet, L., editors, New Com-
putational Paradigms, First Conference on Computability in Europe, CiE 2005, Amster-
dam, The Netherlands, June 8-12, 2005, Proceedings, volume 3526 of Lecture Notes in
Computer Science, pages 106–116. Springer.

77. Earman, J. and Norton, J. D. (1993). Forever is a day: Supertasks in Pitowksy and
Malament-Hogarth spacetimes. Philosophy of Science, 60(1):22–42.

78. Etesi, G. and Németi, I. (2002). Non-Turing computations via Malament-Hogarth space-
times. International Journal Theoretical Physics, 41:341–370.

79. Faybusovich, L. (1991a). Dynamical systems which solve optimization problems with
linear constraints. IMA Journal of Mathematical Control and Information, 8:135–149.

80. Faybusovich, L. (1991b). Hamiltonian structure of dynamical systems which solve linear
programming problems. Physics, D53:217–232.

81. Filippov, A. (1988). Differential equations with discontinuous right-hand sides. Kluwer
Academic Publishers.

82. Finkel, O. (2006). On the shuffle of regular timed languages. Bulletin of the European
Association for Theoretical Computer Science, 88:182–184. Technical Contributions.

83. Foy, J. (2004). A dynamical system which must be stable whose stability cannot be
proved. Theoretical Computer Science, 328(3):355–361.

84. Francisco, A. P. L. (2002). Finite automata over continuous time. Diploma Thesis.
Universidade Técnica de Lisboa, Instituto Superior Técnico.

A Survey on Continuous Time Computations 417

85. Fränzle, M. (1999). Analysis of hybrid systems: An ounce of realism can save an infin-
ity of states. In Flum, J. and Rodríguez-Artalejo, M., editors, Computer Science Logic
(CSL’99), volume 1683 of Lecture Notes in Computer Science, pages 126–140. Springer
Verlag.

86. Gori, M. and Meer, K. (2002). A step towards a complexity theory for analog systems.
Mathematical Logic Quarterly, 48(Suppl. 1):45–58.

87. Graça, D. (2002). The general purpose analog computer and recursive functions over the
reals. Master’s thesis, IST, Universidade Técnica de Lisboa.

88. Graça, D. S. (2004). Some recent developments on Shannon’s general purpose analog
computer. Mathematical Logic Quarterly, 50(4–5):473–485.

89. Graça, D. S. and Costa, J. F. (2003). Analog computers and recursive functions over the
reals. Journal of Complexity, 19(5):644–664.

90. Graça, D., Campagnolo, M., and Buescu, J. (2005). Robust simulations of Turing ma-
chines with analytic maps and flows. In Cooper, B., Loewe, B., and Torenvliet, L., editors,
Proceedings of CiE’05, New Computational Paradigms, volume 3526 of Lecture Notes
in Computer Science, pages 169–179. Springer.

91. Graça, D. S., Campagnolo, M. L., and Buescu, J. (2007). Computability with polynomial
differential equations. Advances in Applied Mathematics. To appear.

92. Graça, D. S., Zhong, N., and Buescu, J. (2006). Computability, noncomputability and
undecidability of maximal intervals of IVPs. Transactions of the American Mathematical
Society. To appear.

93. Grigorieff, S. and Margenstern, M. (2004). Register cellular automata in the hyperbolic
plane. Fundamenta Informaticae, 1(61):19–27.

94. Gruska, J. (1997). Foundations of Computing. International Thomson Publishing.
95. Gupta, V., A., T., and Jagadeesan, R. (1997). Robust timed automata. In Maler, O., editor,

Hybrid and Real-Time Systems, International Workshop. HART’97, Grenoble, France,
March 26-28, 1997, Proceedings, volume 1201 of Lecture Notes in Computer Science,
pages 331–345. Springer.

96. Head, T. (1987). Formal language theory and DNA: An analysis of the generative capac-
ity of specific recombinant behaviors. Bulletin of Mathematical Biology, 49:737–759.

97. Helmke, U. and Moore, J. (1994). Optimization and Dynamical Systems. Communica-
tions and Control Engineering Series. Springer Verlag, London.

98. Henzinger, T. A., Kopke, P. W., Puri, A., and Varaiya, P. (1998). What’s decidable about
hybrid automata? Journal of Computer and System Sciences, 57(1):94–124.

99. Henzinger, T. A. and Raskin, J.-F. (2000). Robust undecidability of timed and hybrid
systems. In Lynch, N. A. and Krogh, B. H., editors, Hybrid Systems: Computation
and Control, Third International Workshop, HSCC 2000, Pittsburgh, PA, March 23-25,
2000, Proceedings, volume 1790 of Lecture Notes in Computer Science, pages 145–159.
Springer.

100. Hirsch, M. W., Smale, S., and Devaney, R. (2003). Differential Equations, Dynamical
Systems, and an Introduction to Chaos. Elsevier Academic Press.

101. Hogarth, M. (1994). Non-Turing computers and non-Turing computability. In Proceed-
ings of the Philosophy of Science Association (PSA’94), volume 1, pages 126–138.

102. Hogarth, M. (1996). Predictability, Computability and Spacetime. PhD thesis, Sidney
Sussex College, Cambridge.

103. Hogarth, M. (2006). Non-Turing computers are the new non-Eucliedean geometries.
In Future Trends in Hypercomputation. Sheffield, 11–13 September 2006. Available for
download on www.hypercomputation.net.

104. Hogarth, M. L. (1992). Does general relativity allow an observer to view an eternity in
a finite time? Foundations of Physics Letters, 5:173–181.

418 Olivier Bournez and Manuel L. Campagnolo

105. Hopfield, J. J. (1984). Neural networks with graded responses have collective computa-
tional properties like those of two-state neurons. Proceedings of the National Academy
of Sciences of the United States of America, 81:3088–3092.

106. Hopfield, J. J. and Tank, D. W. (1985). ‘Neural’ computation of decisions in optimization
problems. Biological Cybernetics, 52:141–152.

107. Hoyrup, M. (2006). Dynamical systems: stability and simulability. Technical report,
Département d’Informatique, ENS Paris.

108. Kempe, A. (1876). On a general method of describing plane curves of the n–th degree
by linkwork. Proceedings of the London Mathematical Society, 7:213–216.

109. Kieu, T. D. (2004). Hypercomputation with quantum adiabatic processes. Theoretical
Computer Science, 317(1-3):93–104.

110. Kleene, S. C. (1936). General recursive functions of natural numbers. Mathematical
Annals, 112:727–742. Reprinted in [73].

111. Ko, K.-I. (1983). On the computational complexity of ordinary differential equations.
Information and Control, 58(1-3):157–194.

112. Ko, K.-I. (1991). Complexity Theory of Real Functions. Progress in Theoretical Com-
puter Science. Birkhäuser, Boston.

113. Koiran, P. (2001). The topological entropy of iterated piecewise affine maps is uncom-
putable. Discrete Mathematics & Theoretical Computer Science, 4(2):351–356.

114. Koiran, P., Cosnard, M., and Garzon, M. (1994). Computability with low-dimensional
dynamical systems. Theoretical Computer Science, 132(1-2):113–128.

115. Koiran, P. and Moore, C. (1999). Closed-form analytic maps in one and two dimensions
can simulate universal Turing machines. Theoretical Computer Science, 210(1):217–223.

116. Korovina, M. V. and Vorobjov, N. (2004). Pfaffian hybrid systems. In Marcinkowski,
J. and Tarlecki, A., editors, Computer Science Logic, 18th International Workshop,
CSL 2004, 13th Annual Conference of the EACSL, Karpacz, Poland, September 20-24,
2004, Proceedings, volume 3210 of Lecture Notes in Computer Science, pages 430–441.
Springer.

117. Korovina, M. V. and Vorobjov, N. (2006). Upper and lower bounds on sizes of finite
bisimulations of Pfaffian hybrid systems. In Beckmann, A., Berger, U., Löwe, B., and
Tucker, J. V., editors, Logical Approaches to Computational Barriers, Second Conference
on Computability in Europe, CiE 2006, Swansea, UK, June 30-July 5, 2006, Proceedings,
volume 3988 of Lecture Notes in Computer Science, pages 267–276. Springer.

118. Kurganskyy, O. and Potapov, I. (2005). Computation in one-dimensional piecewise maps
and planar pseudo-billiard systems. In Calude, C., Dinneen, M. J., Paun, G., Pérez-
Jiménez, M. J., and Rozenberg, G., editors, Unconventional Computation, 4th Interna-
tional Conference, UC 2005, Sevilla, Spain, October 3-7, 2005, Proceedings, volume
3699 of Lecture Notes in Computer Science, pages 169–175. Springer.

119. Lafferriere, G. and Pappas, G. J. (2000). O-minimal hybrid systems. Mathematics of
Control, Signals, and Systems, 13:1–21.

120. Legenstein, R. and Maass, W. (2007). What makes a dynamical system computationally
powerful? In Haykin, S., Principe, J. C., Sejnowski, T., and McWhirter, J., editors, New
Directions in Statistical Signal Processing: From Systems to Brain, pages 127–154. MIT
Press, Cambridge, MA.

121. Lipshitz, L. and Rubel, L. A. (1987). A differentially algebraic replacement theorem,
and analog computability. Proceedings of the American Mathematical Society, 99(2):
367–372.

122. Lipton, R. J. (1995). DNA solution of hard computational problems. Science, 268:
542–545.

A Survey on Continuous Time Computations 419

123. Loff, B. (2007). A functional characterisation of the analytical hierarchy. In Computabil-
ity in Europe 2007: Computation and Logic in the Real World.

124. Loff, B., Costa, J. F., and Mycka, J. (2007a). Computability on reals, infinite limits and
differential equations. Applied Mathematics and Computation. To appear.

125. Loff, B., Costa, J. F., and Mycka, J. (2007b). The new promise of analog computation.
In Computability in Europe 2007: Computation and Logic in the Real World.

126. Maass, W. (1996a). Lower bounds for the computational power of networks of spiking
neurons. Neural Computation, 8(1):1–40.

127. Maass, W. (1996b). On the computational power of noisy spiking neurons. In Touret-
zky, D., Mozer, M. C., and Hasselmo, M. E., editors, Advances in Neural Information
Processing Systems, volume 8, pages 211–217. MIT Press, Cambridge, MA.

128. Maass, W. (1997a). A model for fast analog computations with noisy spiking neurons.
In Bower, J., editor, Computational Neuroscience: Trends in research, pages 123–127.

129. Maass, W. (1997b). Networks of spiking neurons: the third generation of neural network
models. Neural Networks, 10:1659–1671.

130. Maass, W. (1999). Computing with spiking neurons. In Maass, W. and Bishop, C. M.,
editors, Pulsed Neural Networks, pages 55–85. MIT Press, Cambridge, MA.

131. Maass, W. (2002). Computing with spikes. Special Issue on Foundations of Information
Processing of TELEMATIK, 8(1):32–36.

132. Maass, W. (2003). Computation with spiking neurons. In Arbib, M. A., editor,
The Handbook of Brain Theory and Neural Networks, pages 1080–1083. MIT Press,
Cambridge, MA. 2nd edition.

133. Maass, W. and Bishop, C. (1998). Pulsed Neural Networks. MIT Press, Cambridge,
MA.

134. Maass, W., Joshi, P., and Sontag, E. D. (2007). Computational aspects of feedback in
neural circuits. Public Library of Science Computational Biology, 3(1):1–20. e165.

135. Maass, W. and Natschläger, T. (2000). A model for fast analog computation based on
unreliable synapses. Neural Computation, 12(7):1679–1704.

136. Maass, W. and Orponen, P. (1998). On the effect of analog noise in discrete-time analog
computations. Neural Computation, 10(5):1071–1095.

137. Maass, W. and Ruf, B. (1999). On computation with pulses. Information and Computa-
tion, 148(2):202–218.

138. Maass, W. and Sontag, E. (1999). Analog neural nets with gaussian or other common
noise distributions cannot recognize arbitrary regular languages. Neural Computation,
11(3):771–782.

139. MacLennan, B. J. (2001). Can differential equations compute? citeseer.ist.
psu.edu/maclennan01can.html.

140. Mills, J. (1995). Programmable VLSI extended analog computer for cyclotron beam
control. Technical Report 441, Indiana University Computer Science.

141. Mills, J. W., Himebaugh, B., Allred, A., Bulwinkle, D., Deckard, N., Gopalakrishnan,
N., Miller, J., Miller, T., Nagai, K., Nakamura, J., Ololoweye, B., Vlas, R., Whitener,
P., Ye, M., , and Zhang, C. (2005). Extended analog computers: A unifying paradigm
for VLSI, plastic and colloidal computing systems. In Workshop on Unique Chips and
Systems (UCAS-1). Held in conjunction with IEEE International Symposium on Perfor-
mance Analysis of Systems and Software (ISPASS05), Austin, Texas.

142. Müller, N. and Moiske, B. (1993). Solving initial value problems in polynomial time. In
Proc. 22 JAIIO - PANEL ’93, Part 2, pages 283–293.

143. Moore, C. (1990). Unpredictability and undecidability in dynamical systems. Physical
Review Letters, 64(20):2354–2357.

420 Olivier Bournez and Manuel L. Campagnolo

144. Moore, C. (1991). Generalized shifts: unpredictability and undecidability in dynamical
systems. Nonlinearity, 4(3):199–230.

145. Moore, C. (1996). Recursion theory on the reals and continuous-time computation.
Theoretical Computer Science, 162(1):23–44.

146. Moore, C. (1998a). Dynamical recognizers: real-time language recognition by analog
computers. Theoretical Computer Science, 201(1–2):99–136.

147. Moore, C. (1998b). Finite-dimensional analog computers: Flows, maps, and recurrent
neural networks. In Calude, C. S., Casti, J. L., and Dinneen, M. J., editors, Unconven-
tional Models of Computation (UMC’98). Springer.

148. Murray, J. D. (2002). Mathematical Biology. I: An Introduction. Springer, third edition.
149. Mycka, J. and Costa, J. F. (2004). Real recursive functions and their hierarchy. Journal

of Complexity, 20(6):835–857.
150. Mycka, J. and Costa, J. F. (2005). What lies beyond the mountains? Computational sys-

tems beyond the Turing limit. European Association for Theoretical Computer Science
Bulletin, 85:181–189.

151. Mycka, J. and Costa, J. F. (2006). The P
= NP conjecture in the context of real and
complex analysis. Journal of Complexity, 22(2):287–303.

152. Mycka, J. and Costa, J. F. (2007). A new conceptual framework for analog computation.
Theoretical Computer Science, 374:277–290.

153. Natschläger, T. and Maass, W. (2002). Spiking neurons and the induction of finite
state machines. Theoretical Computer Science: Special Issue on Natural Computing,
287(1):251–265.

154. Németi, I. and Andréka, H. (2006). New physics and hypercomputation. In Wiedermann,
J., Tel, G., Pokorný, J., Bieliková, M., and Stuller, J., editors, SOFSEM 2006: Theory and
Practice of Computer Science, 32nd Conference on Current Trends in Theory and Prac-
tice of Computer Science, Merín, Czech Republic, January 21-27, 2006, Proceedings,
volume 3831 of Lecture Notes in Computer Science, page 63. Springer.

155. Németi, I. and Dávid, G. (2006). Relativistic computers and the Turing barrier. Applied
Mathematics and Computation, 178:118–142.

156. Nicollin, X., Olivero, A., Sifakis, J., and Yovine, S. (1993). An approach to the descrip-
tion and analysis of hybrid systems. In Grossman, R. L., Nerode, A., Ravn, A. P., and
Rischel, H., editors, Hybrid Systems, volume 736 of Lecture Notes in Computer Science,
pages 149–178. Springer.

157. Omohundro, S. (1984). Modelling cellular automata with partial differential equations.
Physica D, 10D(1–2):128–134.

158. Orponen, P. (1994). Computational complexity of neural networks: a survey. Nordic
Journal of Computing, 1(1):94–110.

159. Orponen, P. (1996). The computational power of discrete Hopfield nets with hidden
units. Neural Computation, 8(2):403–415.

160. Orponen, P. (1997). A survey of continuous-time computation theory. In Du, D.-Z. and
Ko, K.-I., editors, Advances in Algorithms, Languages, and Complexity, pages 209–224.
Kluwer Academic Publishers.

161. Orponen, P. and Šíma, J. (2000). A continuous-time Hopfield net simulation of discrete
neural networks. In Proceedings of the 2nd International ICSC Symposium on Neural
Computations (NC’2000), pages 36–42, Berlin, Germany. ICSC Academic Press, We-
taskiwin (Canada)

162. Papadimitriou, C. (2001). Algorithms, games, and the Internet. In Proceedings of the
33rd Annual ACM Symposium on Theory of Computing: Hersonissos, Crete, Greece, July
6–8, 2001, pages 749–753, New York, NY. ACM Press.

A Survey on Continuous Time Computations 421

163. Păun, G. (2002). Membrane Computing. An Introduction. Springer-Verlag, Berlin.
164. Post, E. (1946). A variant of a recursively unsolvable problem. Bulletin of the American

Math. Soc., 52:264–268.
165. Pour-El, M. and Zhong, N. (1997). The wave equation with computable initial

data whose unique solution is nowhere computable. Mathematical Logic Quarterly,
43(4):499–509.

166. Pour-El, M. B. (1974). Abstract computability and its relation to the general purpose
analog computer (some connections between logic, differential equations and analog
computers). Transactions of the American Mathematical Society, 199:1–28.

167. Pour-El, M. B. and Richards, J. I. (1979). A computable ordinary differential equation
which possesses no computable solution. Annals of Mathematical Logic, 17:61–90.

168. Pour-El, M. B. and Richards, J. I. (1981). The wave equation with computable initial
data such that its unique solution is not computable. Advances in Mathematics, 39:
215–239.

169. Pour-El, M. B. and Richards, J. I. (1989). Computability in Analysis and Physics.
Springer.

170. Puri, A. (1998). Dynamical properties of timed automata. In Ravn, A. P. and Rischel, H.,
editors, Formal Techniques in Real-Time and Fault-Tolerant Systems, 5th International
Symposium, FTRTFT’98, Lyngby, Denmark, September 14-18, 1998, Proceedings, vol-
ume 1486 of Lecture Notes in Computer Science, pages 210–227. Springer.

171. Puri, A. and Varaiya, P. (1994). Decidability of hybrid systems with rectangular differ-
ential inclusion. In Dill, D. L., editor, Computer Aided Verification, 6th International
Conference, CAV ’94, Stanford, CA. June 21-23, 1994, Proceedings, volume 818 of Lec-
ture Notes in Computer Science, pages 95–104. Springer.

172. Rabin, M. O. (1963). Probabilistic automata. Information and Control, 6(3):230–245.
173. Rabinovich, A. (2003). Automata over continuous time. Theoretical Computer Science,

300(1–3):331–363.
174. Rabinovich, A. M. and Trakhtenbrot, B. A. (1997). From finite automata toward hybrid

systems (extended abstract). In Chlebus, B. S. and Czaja, L., editors, Fundamentals of
Computation Theory, 11th International Symposium, FCT ’97, Kraków, Poland, Septem-
ber 1-3, 1997, Proceedings, volume 1279 of Lecture Notes in Computer Science, pages
411–422. Springer.

175. Rubel, L. A. (1989). A survey of transcendentally transcendental functions. American
Mathematical Monthly, 96(9):777–788.

176. Rubel, L. A. (1993). The extended analog computer. Advances in Applied Mathematics,
14:39–50.

177. Ruohonen, K. (1993). Undecidability of event detection for ODEs. Journal of Informa-
tion Processing and Cybernetics, 29:101–113.

178. Ruohonen, K. (1994). Event detection for ODEs and nonrecursive hierarchies. In
Karhumäki, J. and Maurer, H., editors, Proceedings of the Colloquium in Honor of Arto
Salomaa. Results and Trends in Theoretical Computer Science (Graz, Austria, June 10-
11, 1994), volume 812 of Lecture Notes in Computer Science, pages 358–371. Springer,
Berlin.

179. Ruohonen, K. (1996). An effective Cauchy-Peano existence theorem for unique solu-
tions. International Journal of Foundations of Computer Science, 7(2):151–160.

180. Ruohonen, K. (1997a). Decidability and complexity of event detection problems for
ODEs. Complexity, 2(6):41–53.

181. Ruohonen, K. (1997b). Undecidable event detection problems for ODEs of dimension
one and two. Theoretical Informatics and Applications, 31(1):67–79.

422 Olivier Bournez and Manuel L. Campagnolo

182. Ruohonen, K. (2004). Chomskian hierarchies of families of sets of piecewise continuous
functions. Theory of Computing Systems, 37(5):609–638.

183. Shannon, C. E. (1941). Mathematical theory of the differential analyser. Journal of
Mathematics and Physics MIT, 20:337–354.

184. Shor, P. W. (1994). Algorithms for quantum computation: Discrete logarithms and fac-
toring. In Goldwasser, S., editor, Proceedings of the 35th Annual Symposium on Founda-
tions of Computer Science, pages 124–134, Los Alamitos, CA. IEEE Computer Society
Press.

185. Siegelmann, H. T. and Fishman, S. (1998). Analog computation with dynamical systems.
Physica D, 120:214–235.

186. Siegelmann, H. T. and Sontag, E. D. (1994). Analog computation via neural networks.
Theoretical Computer Science, 131(2):331–360.

187. Siegelmann, H. T. and Sontag, E. D. (1995). On the computational power of neural nets.
Journal of Computer and System Sciences, 50(1):132–150.

188. Šíma and Orponen (2003a). Exponential transients in continuous-time Liapunov sys-
tems. Theoretical Computer Science, 306(1–3):353–372.

189. Šíma, J. and Orponen, P. (2003b). Continuous-time symmetric Hopfield nets are com-
putationally universal. Neural Computation, 15(3):693–733.

190. Šíma, J. and Orponen, P. (2003c). General-purpose computation with neural networks:
A survey of complexity theoretic results. Neural Computation, 15(12):2727–2778.

191. Smith, W. D. (1998). Plane mechanisms and the downhill principle. http://
citeseer.ist.psu.edu/475350.html.

192. Smith, W. D. (2006). Church’s thesis meets the N-body problem. Applied Mathematics
and Computation, 178(1):154–183.

193. Stoll, H. M. and Lee, L. S. (1988). A continuous-time optical neural network. In IEEE
Second International Conference on Neural Networks (2nd ICNN’88), volume II, pages
373–384, San Diego, CA. IEEE Society Press.

194. Svoboda, A. (1948). Computing Mechanisms and Linkages. McGraw Hill. Reprinted
by Dover Publications in 1965.

195. Thomson, W. (1876). On an instrument for calculating the integral of the product of
two given functions. In Proceedings of the Royal Society of London, volume 24, pages
266–276.

196. Trakhtenbrot, B. (1995). Origins and metamorphoses of the trinity: Logic, nets, au-
tomata. In Kozen, D., editor, Proceedings of the 10th Annual IEEE Symposium on Logic
in Computer Science San Diego, CA, June 26-29, 1995, pages 506–507. IEEE Computer
Society, Press.

197. Trakhtenbrot, B. A. (1999). Automata and their interaction: Definitional suggestions. In
Ciobanu, G. and Paun, G., editors, Fundamentals of Computation Theory, 12th Interna-
tional Symposium, FCT ’99, Iasi, Romania, August 30 - September 3, 1999, Proceedings,
volume 1684 of Lecture Notes in Computer Science, pages 54–89. Springer.

198. Tucker, J. V. and Zucker, J. I. (2007). Computability of analog networks. Theoretical
Computer Science, 371(1-2):115–146.

199. Turing, A. (1936). On computable numbers, with an application to the Entschei-
dungsproblem.̈ Proceedings of the London Mathematical Society, 42(2):230–265.
Reprinted in [73].

200. Vergis, A., Steiglitz, K., and Dickinson, B. (1986). The complexity of analog computa-
tion. Mathematics and Computers in Simulation, 28(2):91–113.

201. Weihrauch, K. (2000). Computable Analysis. Springer.

A Survey on Continuous Time Computations 423

202. Weihrauch, K. and Zhong, N. (2002). Is wave propagation computable or can wave
computers beat the Turing machine? Proceedings of the London Mathematical Society,
85(3):312–332.

203. Welch, P. D. (2006). The extent of computation in Malament-Hogarth spacetimes.
http://www.citebase.org/abstract?id=oai:arXiv.org:gr-qc/0609035.

204. Williams, M. R. (1996). About this issue. IEEE Annals of the History of Computing,
18(4).

205. Woods, D. and Naughton, T. J. (2005). An optical model of computation. Theoretical
Computer Science, 334(1-3):227–258.

A Tutorial on Computable Analysis

Vasco Brattka1, Peter Hertling2, and Klaus Weihrauch3

1 Laboratory of Foundational Aspects of Computer Science, Department of Mathematics and
Applied Mathematics, University of Cape Town, Rondebosch 7701, South Africa
Vasco.Brattka@uct.ac.za

2 Institut für Theoretische Informatik und Mathematik, Fakultät für Informatik, Universität
der Bundeswehr München, 85577 Neubiberg, Germany
Peter.Hertling@unibw.de

3 Faculty of Mathematics and Computer Science, University of Hagen, 58084 Hagen,
Germany
Klaus.Weihrauch@fernuni-hagen.de

Summary. This tutorial gives a brief introduction to computable analysis. The objective of
this theory is to study algorithmic aspects of real numbers, real number functions, subsets
of real numbers, and higher type operators over the real numbers. In this theory, the classical
computability notions and complexity notions based on the Turing machine model and studied
in computability theory and computational complexity theory are applied to computational
problems involving real numbers.

1 Introduction

This tutorial gives a brief introduction to computable analysis. In computable analy-
sis, computational problems over the real numbers are studied from the point of view
of computability theory and computational complexity theory.

A large part of today’s computing power all over the world is spent on computa-
tional problems that can best be modeled as computational problems involving real
numbers. These are mostly numerical problems but also geometric problems and
problems studied in other fields, e.g., in the theory of neural networks. Therefore, a
theory is needed that tells which computational problems over the real numbers can
be solved on a digital computer and how much time or how much computer memory
this will take. Computable analysis studies these questions on the basis of the no-
tions studied in computability theory and computational complexity theory that are
defined via the Turing machine model.

Computable analysis is based on the one hand on analysis and numerical analy-
sis and on the other hand on computability theory and computational complexity

426 Vasco Brattka, Peter Hertling, and Klaus Weihrauch

theory. Other mathematical or computer science disciplines that are closely related
to computable analysis are as follows:

• Constructive analysis. There are several schools and varieties of constructive
analysis. We give the following references: Bishop and Bridges [8], Bridges and
Richman [27], Troelstra and van Dalen [100, 101], Šanin [85], and Kušner [59].

• Domain theory. Domains are used for defining semantics of programming lan-
guages; see, e.g., Stoltenberg-Hansen et al. [98]. In our context this is especially
interesting for programming languages over the real numbers. One can also de-
fine computability notions over the real numbers via domains; see, for instance,
Edalat, Escardo, and Blanck [38, 37, 9].

• Mathematical logic. In fact, computability theory, constructive analysis, and do-
main theory can all be considered as subdisciplines of logic.

• Interval analysis; see, e.g., Moore [69]. Note that intervals of real numbers form
a domain.

• Algebraic complexity theory over the real numbers, as studied by Blum et al.
[10].

• Information-based complexity theory, a theory that studies mainly the computa-
tional complexity of problems involving function spaces over the real numbers
in an algebraic computation model; see Traub et al. [99].

Since real numbers and many other objects studied in analysis are “infinite” objects
containing an “infinite amount of information,” one has to approximate them by “fi-
nite” objects containing only a “finite amount of information” and to perform the
actual computations on these finite objects. This leads to the following three levels
of study of computational problems in analysis:

• Topology: how can one approximate infinite objects?

• Computability theory: how can one compute with infinite objects?

• Computational complexity theory: how can one compute efficiently with infinite
objects?

In this tutorial we will introduce the basic notions of computable analysis and present
selected results that are supposed to illustrate important aspects and ideas of com-
putable analysis and to give an overview of current areas of research in computable
analysis. The main focus of this article is on approximation and computability. Be-
cause of limited space, many important or interesting results, for example, from com-
plexity theory, are not mentioned, and the bibliography is far from being complete.
We apologize to all whose work is insufficiently, or not, mentioned. A bibliogra-
phy on computable analysis can be found through the web pages of the CCA (=
Computability and Complexity in Analysis) network: http://cca-net.de. We
will mostly use the approach via representations, which was developed by Hauck

A Tutorial on Computable Analysis 427

(see, e.g., [42, 43]), and by Kreitz and Weihrauch [58]. A more detailed presenta-
tion of computable analysis based on representations is the textbook by the third
author [109]. Another approach to computable analysis can be found in the textbook
by Pour-El and Richards [80]: via sequential computability and effective uniform
continuity of functions and via computability structures. This approach has been gen-
eralized from normed spaces to metric spaces by Yasugi et al. [114]. The textbook by
Ko [55] covers a large part of the complexity theoretic results in computable analysis
and is based on the notion of an oracle Turing machine; see the last two sections. The
paper [25] by Braverman and Cook is a short introduction into important basic no-
tions and ideas from computable analysis. This tutorial is based mostly on the slides
of the tutorial on computable analysis given by the first author at the conference
“Computability in Europe 2005” in June/July 2005 in Amsterdam, the Netherlands.
It should be readable by anyone with a basic knowledge in computability theory and
analysis and related fields. Here is the table of contents of the paper:

1. Introduction

2. Preliminaries

3. Computable Real Numbers

4. Computable Functions

5. Computability Notions for Subsets of Euclidean Space

6. Representations and Topological Considerations

7. Solvability of Some Problems Involving Sets and Functions

8. Computability of Linear Operators

9. Degrees of Unsolvability

10. Computational Complexity of Real Numbers and Real Number Functions

11. Computational Complexity of Sets and Operators over the Real Numbers

2 Preliminaries

First we introduce some notation. By N we denote the set of natural numbers, i.e.,
N = {0, 1, 2, 3, . . .}, by Q the set of rational numbers, by R the set of real numbers,
and by C the set of complex numbers. By d : Rn×Rn → R we denote the Euclidean
distance on Rn. Any finite set containing at least two elements is called an alphabet.
Usually we denote alphabets by uppercase Greek letters, e.g., Σ, Γ . Furthermore,
unless stated otherwise, we assume that 0 and 1 are elements of Σ. If Σ is an alpha-
bet, then Σ∗ denotes the set of all finite strings over Σ, Σω = {p | p : N → Σ}
the set of all one-way infinite sequences over Σ, and λ denotes the empty word. The
i-th component of a one-way infinite sequence p is written p(i) or pi. If X and Y are

428 Vasco Brattka, Peter Hertling, and Klaus Weihrauch

sets, then f :⊆ X → Y denotes a function whose domain dom(f) is contained in X
and whose range range(f) is contained in Y . If dom(f) = X , then we call f total
and may write f : X → Y . A sequence in X is simply a total function x : N → X
and is often written as (xn)n∈N.

We assume that the reader is familiar with the Turing machine model. Via the Tur-
ing machine model one defines computability of functions on Σ∗. We also consider
computability notions on Nn and Qm for n,m ∈ N \ {0} as basic. For completeness
sake and in order to avoid misunderstandings, we formally introduce computability
of functions on or between these sets via the Turing machine model. In order to do
that we have to represent elements of Nn and of Qm by strings. Let νN1 := νN :⊆
Σ∗ → N be the usual binary notation of natural numbers. Using the standard bi-
jection 〈·, ·〉 : N2 → N defined by 〈x, y〉 := (x+y)·(x+y+1)

2 + y and the derived
bijections 〈. . .〉 : Nk+1 → N defined by 〈x1, . . . , xk, xk+1〉 := 〈〈x1, . . . , xk〉, xk+1〉
for k ≥ 2, we define notations νNn :⊆ Σ∗ → Nn for n ≥ 2 by

νNn(w) := (x1, . . . , xn) : ⇐⇒ νN(w) = 〈x1, . . . , xn〉.

Using the surjection νQ : N → Q defined by νQ(〈i, j, k〉) := i−j
k+1 , we define nota-

tions νQn :⊆ Σ∗ → Qn for n ≥ 1 (and use νQ := νQ1) by

νQn(w) := (q1, . . . , qn) :⇐⇒ qi = νQ(νNn(w)i) for i = 1, . . . , n.

Finally, for any alphabet Σ∗ we define νΣ∗ := idΣ∗ . Let now X and Y by any of
the spaces Σ∗, Nn, and Qm for some n,m ≥ 1. A function f :⊆ X → Y is called
computable if there is a Turing machine that, on input v ∈ Σ∗, never stops if v �∈
dom(fνX), and that stops after finitely many steps with some output w satisfying
νY (w) = fνX(v) if v ∈ dom(f). We will also use the notions “decidable” and
“computably enumerable” for subsets of Σ∗, Nn, and Qm in the usual sense; see
Section 5 for definitions.

3 Computable Real Numbers

For a long time, mathematics has been concerned with computation problems that
would nowadays be considered as computation problems over the real numbers. But
only in the twentieth century, a mathematical theory of algorithms, of computabil-
ity, and of complexity over the real numbers has been developed. Quite early in the
twentieth century, constructive mathematics was born. Results in constructive math-
ematics, e.g., by Brouwer [28, 29] and by Bishop and Bridges [8], certainly have
algorithmic content. But these constructive mathematical theories are based on cer-
tain logical principles, not on a formal computation model. The so-called “Russian
school of constructive analysis,” founded by Markov (see Šanin [85] or Kušner [59])
is closer to our approach. We will come back to it in Section 6. Perhaps the real start-
ing point of computable analysis was the landmark paper “On computable numbers,

A Tutorial on Computable Analysis 429

with an application to the Entscheidungsproblem” by Turing [102]. In this paper,
Turing asked which real numbers should be considered as computable and, in order
to answer this question, developed the theoretical computer model that subsequently
was called “Turing machine model” and has become the standard computation model
in computability theory and computational complexity theory. Turing defined the
computable real numbers as those real numbers that have a binary expansion that
can be computed by a Turing machine. We will formulate several equivalent condi-
tions.

Definition 3.1. A real number x is computable if it satisfies one (and then all) of the
conditions in the following theorem.

Theorem 3.2. For x ∈ R, the following conditions are equivalent:

1. There exists a Turing machine that outputs a binary expansion of x (without
input and without ever stopping).

2. There exists a computable sequence of rational numbers (qn)n∈N that converges
rapidly to x; i.e., |x− qi| < 2−i for all i.

3. There exists a computable sequence of rational shrinking intervals enclosing
only x; i.e., there exist two computable sequences (an)n∈N and (bn)n∈N of ratio-
nal numbers with a0 < · · · < an < an+1 < · · ·x · · · < bn+1 < bn < · · · < b0
and with limn→∞ an = x = limn→∞ bn.

4. {q ∈ Q | q < x} is a decidable set of rational numbers.

5. There exist an integer z ∈ Z and a decidable set A ⊆ N such that x = z + xA,
where xA :=

∑

i∈A

2−i−1.

6. x is rational (then it has a finite continued fraction expansion) or x has a com-
putable infinite continued fraction expansion, i.e., there exist an integer z ∈ Z
and a computable function f : N → N \ {0} such that

x = z +
1

f(0) + 1
f(1)+ 1

f(2)+···

.

Proof. We prove only that the first two notions are equivalent.

“1 ⇒ 2”: Let us assume that x has a binary expansion that can be computed by
a Turing machine. Then let qn be the rational number that one obtains when in this
binary expansion one replaces all digits from the (n+2)-th digit after the binary point
on by zeros. The sequence (qn)n∈N is a computable sequence of rational numbers
and converges rapidly to x.

“2 ⇒ 1”: If x happens to be of the form: integer divided by a power of two, then
it has a binary expansion in which only finitely many digits are different from zero.
Obviously, such a binary expansion can be computed by a Turing machine. Now,

430 Vasco Brattka, Peter Hertling, and Klaus Weihrauch

let us assume that x is not of this form. Then x has a uniquely determined binary
expansion. Let (qn)n∈N be a computable sequence of rational numbers converging
rapidly to x. We wish to show that one can compute the binary expansion of x. First,
let us determine the part of the binary expansion of x in front of the binary point.
Since x is not an integer, there is an i such that the interval [qi − 2−i, qi + 2−i] does
not contain an integer. By computing sufficiently many qi for i = 0, 1, 2, . . . we will
find such an i. Then the part of the binary expansion of qi in front of the binary point
is equal to the part of the binary expansion of x in front of the binary point. Now, let
us assume that we have computed the part of the binary expansion of x in front of
the binary point and, for some n ∈ N, also the first n digits after the binary point in
the binary expansion of x. We can determine whether the next digit is a 0 or a 1 in
a similar way as we determined the part of the binary expansion of x in front of the
binary point: since x is not of the form: integer divided by 2n+1, there is an i such
that the interval [qi − 2−i, qi + 2−i] does not contain an integer divided by 2n+1.
Then the binary expansions of x and of qi are identical up to the (n+1)-th digit after
the binary point. ��

The argument just given works as well for the decimal representation or the repre-
sentation with base b ≥ 2 instead of the binary representation. Thus we have for any
base b ≥ 2: a real number is computable if, and only if, its has a computable base b
expansion.

Remark 3.3. Note that it is easy to go from a computable binary expansion of a real
number x to a computable sequence of rational numbers converging rapidly to x. But
in the proof of the other direction we made a case distinction that is not a result of a
computation. Furthermore, the algorithm in the second case of this case distinction
might ask for a very good approximation (with precision much higher than 2−i)
of x in order to compute the i-th digit of the binary expansion of x. This shows
that the two underlying representations of real numbers used in the two conditions
above are quite different. Indeed, Turing himself noticed in a correction [103] to
the paper cited above [102] that the binary representation is fine for defining the
class of computable real numbers but unsuitable for performing computations on real
numbers. We will come back to this. In contrast, the representation of real numbers
by rapidly converging sequences of rational numbers is also suitable for performing
computations on real numbers, as we will see soon.

Theorem 3.4 (Rice [83]). The set of computable real numbers Rc forms a real alge-
braically closed field.

That means it is a subfield of the field R of real numbers, and it contains the real
zeros of any polynomial anx

n + · · · + a1x + a0 whose coefficients an, . . . , a1, a0

are computable real numbers.

Examples 3.5. 1. All rational numbers are computable real numbers. Even more,
all real algebraic numbers are computable.

2. Also π and e are computable real numbers.

A Tutorial on Computable Analysis 431

Remark 3.6. In the Russian school of constructive analysis, computability is defined
for functions mapping computable real numbers to computable real numbers; see
Šanin [85] or Kušner [59]. We shall mainly consider a different notion of computabil-
ity for functions mapping real numbers to real numbers. In Section 4 we will explain
the connection between these two notions and other notions of computability for real
number functions.

We list a few more properties of the set of computable real numbers.

Proposition 3.7. The set of computable real numbers is countably infinite.

Proof. It is clear that it is infinite since it contains all rational numbers. And it is
countable because for every computable real number, there exists a Turing machine
computing its binary expansion, and there are only countably many Turing machines.

��

Now it is natural to ask whether one can effectively list all computable real numbers.
This turns out to be impossible. In order to make this statement precise we need the
notion of a computable sequence of real numbers.

Definition 3.8. A sequence (xn)n∈N of real numbers is called computable if there
exists a computable sequence (qk)k∈N of rational numbers such that |xn − q〈n,i〉| <
2−i for all n, i ∈ N.

Obviously, any member of a computable sequence of real numbers is itself a com-
putable real number.

Proposition 3.9. No computable sequence of real numbers contains all computable
real numbers.

The proof goes by diagonalization; see, e.g., Weihrauch [106, p. 486].

Since there are uncountably many real numbers, by Proposition 3.7, there are un-
countably many noncomputable real numbers.

Proposition 3.10. The set of computable real numbers is not complete.

Proof. Any real number, also a noncomputable one, is the limit of a sequence of
rational numbers, hence, the limit of a sequence of computable real numbers. ��

Many noncomputable real numbers are an even limit of a computable sequence of
reals. Nevertheless, the set of computable real numbers is “computably complete” in
a certain sense, as we will see now.

432 Vasco Brattka, Peter Hertling, and Klaus Weihrauch

Definition 3.11. 1. If (rn)n∈N is a convergent sequence of real numbers with limit
x, and m : N → N is a function such that, for all i, n ∈ N, if i ≥ m(n)
then |x − ri| < 2−n, then we call m a modulus of convergence of the sequence
(rn)n∈N.

2. A sequence (rn)n∈N of real numbers converges computably if it has a com-
putable modulus of convergence.

Proposition 3.12. The limit of any computable sequence of real numbers that con-
verges computably is again a computable real number.

Proof. Let (rn)n∈N be a computable sequence of real numbers that converges com-
putably. Let m be a computable modulus of convergence, and let (qk)k∈N be a com-
putable sequence of rational numbers proving the computability of (rn)n∈N in the
sense of Definition 3.8. Then the sequence (pn)n∈N defined by pn := q〈m(n+1),n+1〉
is a computable sequence of rational numbers, and it converges rapidly to the limit
of (rn)n∈N. ��

We end this section by an excursion into the class of noncomputable real numbers.
Quite a lot of research has been going and is still going into various types of effectiv-
ity properties for real numbers that are more general than computability. We describe
some of them.

Definition 3.13. A real number x is left-computable (often called c.e.) if it satisfies
one and then all of the conditions in the following proposition. A real number x is
right-computable if −x is left-computable.

Proposition 3.14. For a real number x, the following conditions are equivalent.

1. There exists a computable, strictly increasing sequence of rational numbers with
limit x.

2. There exists a computable, nondecreasing sequence of rational numbers with
limit x.

3. The set {q ∈ Q | q < x} is a c.e. subset of Q.

Further characterizations of left-computable real numbers have been given by Calude
et al. [30, Theorem 4.1]. Right-computable real numbers can be characterized in a
similar way. The following lemma is obvious.

Lemma 3.15. A real number is computable if, and only if, it is left-computable and
right-computable.

Examples of left-computable but not computable real numbers can be constructed
easily as follows.

A Tutorial on Computable Analysis 433

Examples 3.16. 1. For A ⊆ N, let

xA :=
∑

i∈A

2−i−1.

This is a number in the interval [0, 1]. The number xA is computable if, and only
if, A is decidable. If A is c.e., then xA is left-computable. Hence, if A is c.e. but
not decidable, then xA is left-computable but not computable (Specker [96]).

2. It is interesting that there are left-computable real numbers in [0, 1] that are not
of the form xA with c.e. A ⊆ N. Indeed, if B ⊆ N is c.e. but not decidable,
then B ⊕ Bc := {2n | n ∈ B} ∪ {2n+ 1 | n �∈ B} is not c.e., but xB⊕Bc is
nevertheless left-computable (Jockusch 1969, unpublished; see Soare [95]).

Besides the left-computable real numbers and among many others, the following
classes of real numbers, defined by effectivity properties, have been studied:

• The strongly c.e. reals. These are the reals xA with c.e. A ⊆ N.

• The weakly computable reals; see Ambos-Spies et al. [2] and Zheng and Ret-
tinger [116]. These are the differences of left-computable reals. These real num-
bers form a field, which is the arithmetical closure of the left-computable reals.

• The computably approximable reals; see, e.g., Ho [52] and Barmpalias [5]. These
are the limits of computable and converging (but not necessarily computably
converging) sequences of rational numbers. These real numbers form a field as
well. This field is closed under application of computable real number functions
(computable real number functions will be defined soon).

• The Ω numbers defined by Chaitin [33] as the halting probabilities of universal
self-delimiting Turing machines. These real numbers can also be characterized
as those real numbers in [0, 1] that are left-computable and random, and also as
those left-computable real numbers in [0, 1] such that any computable, strictly in-
creasing sequence of rational numbers converging to such a number converges as
slowly as it is possible for a computable, strictly increasing sequence of rational
numbers; see Calude et al. [30] and Kučera and Slaman [60].

• The trivial reals; see Downey et al. [36]. A real in [0, 1] is trivial if the Kol-
mogorov complexity of the prefix of length l of its binary expansion differs at
most by a constant from the Kolmogorov complexity of a string of l zeros (or,
which is equivalent, from the Kolmogorov complexity of the prefix of length l of
the binary expansion of some computable real number).

One can also define a hierarchy of real numbers corresponding to the arithmetical hi-
erarchy of sets of natural numbers; see Zheng and Weihrauch [117]. For an overview
of many classes of real numbers, defined by effectivity properties, the reader is re-
ferred to Zheng [115]. Effective randomness notions for real numbers or infinite
binary sequences constitute an area of research of its own; the paper [66] by Miller
and Nies contains a list of open problems in that area and many references.

434 Vasco Brattka, Peter Hertling, and Klaus Weihrauch

Finally, for n ≥ 1, a point x ∈ Rn is computable, if each of its components is a
computable real number. Obviously, a point x ∈ Rn is computable if, and only if,
there is a computable sequence (qi)i∈N of rational points qi ∈ Qn rapidly converging
to x. Also Definitions 3.8 and 3.11 and Propositions 3.7, 3.9, 3.10, and 3.12 can be
generalized directly to points in Rn.

4 Computable Functions

Computable real numbers and the various kinds of weaker effectivity properties for
real numbers are certainly interesting and worth studying. But in most computational
problems over the real numbers, the task is not to compute some specific real number.
Instead, there is some input, often one or several real numbers, and one wishes to
compute some real number depending on this input. That is, given a vector x of real
numbers, one wishes to compute the value f(x) of some real number function f (of
course, there are also more complicated types of computational problems; we will
discuss them later on).

How can one compute a real number function f :⊆ Rn → R? We want to define
a precise computability notion that describes exactly the real number functions that
can be computed by a digital computer, except that at this moment we do not want
to worry about time or space constraints (later we shall consider also the question of
computational complexity). We use the Turing machine model as a model for digital
computers.

What does it mean to compute a real number function f :⊆ Rn → R in practice?
Since a real number contains an infinite amount of information, it is unrealistic to
expect that, given x, one can compute f(x) exactly in finitely many steps. Rather,
in numerical computations one aims at computing a “good” rational approximation
of f(x). We replace “good” by “arbitrarily good.” Furthermore, the computer should
not need x with infinite precision, but a “good” rational approximation should be
sufficient. Again, we will allow the computer to ask for “arbitrarily good” rational
approximations to x, i.e., approximations as good as it likes. Here is our first defini-
tion of computable real number functions.

Definition 4.1. A function f :⊆ Rn → R is computable if there is an oracle Turing
machine that, given any k ∈ N, may ask for arbitrarily good rational approximations
of the input x ∈ dom(f); i.e., it may ask finitely many questions of the kind “Give
me a vector p ∈ Qn of rational numbers with d(x, p) < 1/2i,” where the exponent i
may depend on the answers to the previous questions, and after finitely many steps,
it writes a rational number q on the output tape with |f(x)− q| < 2−k.

Here, the precision i of a request as above has to be written in binary form on a
special tape, the oracle tape, and the machine has to enter a special state, the query
state. Then the answer will be provided in one step on the oracle tape, with the tape
head on the field to the left of the answer.

A Tutorial on Computable Analysis 435

That means the input x ∈ Rn is given to the machine only through rational approxi-
mations that the machine has to request. One can obviously modify this idea slightly
without changing the computability notion by assuming that via some input tape(s)
the machine has access to a rapidly converging rational sequence with limit x.

Once one has done that, one might as well change the model even more by not asking
the machine to produce a rational approximation of precision 2−k to f(x), for any
given k ∈ N, but rather asking the machine to produce such approximations directly
for all k ∈ N, i.e., to ask the machine to produce a rapidly converging rational
sequence with limit f(x). This is slightly more elegant because in this notion the
additional input k does not appear anymore, and input and output are of the same
type (both are rapidly converging rational sequences).

Now we want to make this idea precise. We will directly formulate the basic defini-
tions more generally since they will be useful for defining computability for many
other kinds of objects than just real number functions.

Definition 4.2. A representation of a set X is a surjective function δ :⊆ Σω → X ,
where Σ is some alphabet. Then for any x ∈ X and any p ∈ Σω with δ(p) = x, the
sequence p is called a δ-name of x.

Example 4.3. The usual decimal representation can be defined precisely so that it is
a representation ρ10 :⊆ Σω → R in this sense, i.e., such that ρ10(1.414 . . .) =

√
2,

ρ10(3.141 . . .) = π, ρ10(−0.999 . . .) = −1. Similarly, one can define representa-
tions to any other base b ∈ N with b ≥ 2.

Definition 4.4. The Cauchy representation ρ :⊆ Σω → R of the real numbers is
a representation where a real number x is represented by a one-way infinite stream
of symbols if this one-way infinite stream encodes a sequence of rational numbers
converging rapidly to x:

ρ(w0#w1#w2# . . .) = x :⇐⇒ |x− νQ(wi)| < 2−i, for all i ∈ N.

Here, the alphabet Σ contains at least the symbols 0, 1,#.

Often, it is useful to consider names of objects that enumerate basic information
about the object.

Definition 4.5. We say that a p ∈ Σω enumerates a set A ⊆ N if it satisfies the
following two conditions:

1. if #w# is a substring of p, then w is either empty or the binary name of an
element of A,

2. for every element n ∈ A, the string #ν−1
N

(n)# is a substring of p.

By using notations as in Section 2, one can generalize this notion straightforwardly
to subsets A of Nn ×Qm.

436 Vasco Brattka, Peter Hertling, and Klaus Weihrauch

We use this idea in order to define two more representations of real numbers that we
will need later.

Definition 4.6. The representation ρ< :⊆ Σω → R is defined by

ρ<(p) = x :⇐⇒ p enumerates all q ∈ Q with q < x.

Analogously, the representation ρ> is defined.

How can one perform computations with one-way infinite streams of symbols? One
can feed the input stream(s) symbol by symbol into a Turing machine and demand
that the Turing machine produces the output stream symbol by symbol.

Definition 4.7. Let Σ be an alphabet. A function F :⊆ Σω → Σω is computable
if there exists a Turing machine that, given a p ∈ dom(F) as a stream on an input
tape, writes the output stream F (p) symbol by symbol, without ever stopping, on a
one-way output tape, and that, given a p ∈ Σω \ dom(F) does not write infinitely
many symbols on the output tape.

Remark 4.8. Note that we demand that the output tape is one way. This ensures that
output symbols that have already been written will never be erased or changed again.
With a two-way output tape it would be possible to erase or change already written
output symbols later again. But then any output symbol written after finitely many
steps might be false and would therefore be useless.

Definition 4.9. Let f :⊆ X → Y be a function and δX :⊆ Σω → X and δY :⊆
Σω → Y be representations. A function F :⊆ Σω → Σω is called a (δX , δY)-
realizer of f if

δY F (p) = fδX(p) for all p ∈ dom(fδX),

i.e., such that for any δX -name of some x ∈ dom(f), the value F (p) is a δY -name
of f(x). The function f is (δX , δY)-computable if a computable (δX , δY)-realizer
of f exists.

Remark 4.10. Note that we do not impose any condition on how the realizer F should
behave for input p �∈ dom(fδX). The motivation for this is that for any f that one
wishes to compute, one is usually interested more in computing f(x) for all valid
input values x than in characterizing the domain of definition of f . That is a differ-
ent problem, and it seems convenient to treat it separately. We have taken care of
the domain only in our definition of computable F on Σω, in Definition 4.7. Note
that according to our definition, any restriction of a (δX , δY)-computable function is
(δX , δY)-computable as well.

Since many real number functions that one wishes to compute expect as input not
one real number but two or more, we need a representation of Rk for k ≥ 2.

A Tutorial on Computable Analysis 437

Definition 4.11. 1. Let δ :⊆ Σω → X , δ′ :⊆ Σω → X ′ be representations of sets
X and X ′. Then the representation [δ, δ′] :⊆ Σω → X × Y is defined by

[δ, δ′]〈p, q〉 = (x, y) :⇐⇒ δ(p) = x and δ′(q) = y,

where for p, q ∈ Σω we define 〈p, q〉 := p(0)q(0)p(1)q(1)p(2)q(2) . . . ∈ Σω.

2. For k ≥ 1, the representation δk of Xk is defined recursively by δ1 := δ,
δk+1 := [δk, δ].

3. Sometimes we will also combine a notation ν :⊆ Σ∗ → X and a representation
δ :⊆ Σω → X ′ to a representation [ν, δ] :⊆ Σω → X ×X ′, defined by

[ν, δ](0a10a20 . . . an−10an1p) = (x, x′) :⇐⇒ ν(a1a2 . . . an−1an) = x

and δ(p) = x′.

The discussion after Definition 4.1 shows that one can characterize the computable
real number functions via the Cauchy representation ρ.

Lemma 4.12. A real number function f :⊆ Rk → R is computable in the sense of
Definition 4.1 if, and only if, it is (ρk, ρ)-computable.

Given the prominent role played by the decimal representation in daily life, it is nat-
ural to look at real number functions that are computable with respect to the decimal
representation. But something goes wrong with the decimal representation, as the
following observation shows.

Proposition 4.13. The function f : R → R, f(x) := 3 · x is not (ρ10, ρ10)-
computable.

Proof. For the sake of a contradiction, assume that there is a Turing machine that,
given a ρ10-name of an arbitrary real number x, produces a ρ10-name of 3 · x.
Let us feed 0.3333 . . . into the machine. Then the machine has to produce either
0.99999 . . . or 1.00000 Let us first assume that it produces 0.99999 The ma-
chine will write the first symbol (a zero) of this output after finitely many steps,
thus, after reading only finitely many symbols of the input, say, after reading at
most the prefix 0.3n, for some n ∈ N. But then the first output symbol of the ma-
chine on input 0.3n4444 . . . must be a zero as well although the numerical value of
3 · ρ10(0.3n4444 . . .) is greater than 1, which means that it does not have ρ10-name
starting with a zero. Contradiction! In the other case, when on input 0.3333 . . . the
machine produces 1.00000 . . ., one arrives at a similar contradiction. We can sum-
marize the argument as follows: it is impossible to determine even the first symbol of
a decimal name for the real number 1 = 3 · ρ10(0.33333 . . .) correctly after reading
only finitely many symbols of 0.33333 ��

438 Vasco Brattka, Peter Hertling, and Klaus Weihrauch

Thus, not even multiplication with 3 is computable with respect to the decimal rep-
resentation. Similarly one shows that also addition is not computable with respect to
the decimal representation. This shows that the decimal representation is not suitable
for computing real number functions. In fact, these negative statements are all due
to topological reasons. This will be discussed in Section 6. There we will also dis-
cuss other representations of real numbers than the decimal representation and the
Cauchy representation. Right now we stick to the computability notion for functions
introduced above that can be described as computability with respect to the Cauchy
representation (Lemma 4.12). This notion captures our intuition well that computa-
tions over the reals are approximative in nature and actually performed on rational
numbers.

Our computability notion has properties that one expects from a computability notion
for real number functions.

Theorem 4.14. The following functions are computable:

1. The arithmetical operations +,−, ·, / :⊆ R× R → R.

2. The absolute value function abs : R → R, x �→ |x|.

3. The functions min,max : R× R → R.

4. The constant functions R → R, x �→ c with computable value c ∈ R.

5. The projections pri : Rn → R, (x1, . . . , xn) �→ xi.

6. All polynomials p : Rn → R with computable coefficients.

7. The exponential function and the trigonometric functions exp, sin, cos : R → R.

8. The square root function
√
{x ∈ R | x ≥ 0} ⊆ R → R and the logarithm

function log : {x ∈ R | x > 0} ⊆ R → R.

Proof. We sketch the proof that addition f : R× R → R is computable. Given two
sequences (qn)n∈N and (rn)n∈N of rational numbers that rapidly converge to x and
y, respectively, we can compute the sequence (pn)n∈N of rational numbers defined
by pn := qn+1 + rn+1. This sequence converges rapidly to x+ y:

|x+ y − pn| ≤ |x− qn+1|+ |y − rn+1| < 2−n−1 + 2−n−1 = 2−n.

Since addition on rational number can be computed by Turing machines, it follows
that f is computable as well. ��

Remark 4.15. Addition requires only a uniform lookahead of one step that does not
depend on the input. For functions that are not uniformly continuous, such as multi-
plication, the “modulus of continuity” and thus the lookahead depend on the input.

Also more complicated functions such as the Gamma function or Riemann’s zeta
function are computable.

A Tutorial on Computable Analysis 439

Now we list some basic properties of computable real number functions:

• they map computable real numbers to computable real numbers,

• they also map computable sequences of real numbers to computable sequences
of real numbers,

• and they are closed under composition.

We can easily state these results more generally with respect to arbitrary representa-
tions of arbitrary representable sets.

Definition 4.16. 1. A sequence p ∈ Σω is computable if there is a Turing machine
that, given k ∈ N in binary form, produces the k-th symbol of p. It is equivalent
to demand that there is a Turing machine with a one-way output tape that, with-
out input and without ever stopping, writes p symbol by symbol on the output
tape.

2. Let δX :⊆ Σω → X be a representation of a set X . An element x ∈ X is
δX -computable if it possesses a computable δX -name.

Example 4.17. By Theorem 3.2, the following conditions are equivalent for a real
number x:

1. x is a computable real number,

2. x is a ρ10-computable real number,

3. x is a ρ-computable real number.

Proposition 4.18. If F :⊆ Σω → Σω is a computable function and p ∈ Σω is a
computable element in the domain of F , then F (p) is computable as well.

Proof. One simply has to combine a Turing machine computing p with a Turing
machine computing F in order to obtain a Turing machine computing F (p). ��

Corollary 4.19. Let X and Y be sets with representations δX and δY . If f :⊆ X →
Y is (δX , δY)-computable and x ∈ X is a δX -computable element in the domain of
f , then f(x) is δY -computable.

In particular, a computable real number function maps any computable real number
in its domain to a computable real number.

Everything that we just said about computable elements is also true for computable
sequences of elements. Computable functions preserve computability of sequences
as well.

Definition 4.20. 1. A sequence (s(n))n∈N of elements s(n) ∈ Σω is computable if
a Turing machine, given n, k ∈ N in binary form, produces the k-th symbol of

440 Vasco Brattka, Peter Hertling, and Klaus Weihrauch

s(n). It is equivalent to demand that there is a Turing machine with a one-way
output tape that, given n ∈ N in binary form, writes s(n) symbol by symbol on
the output tape.

2. Let δX :⊆ Σω → X be a representation of a set X . A sequence (xn)n∈N of
elements of X is δX -computable if there is a computable sequence of δX -names
for the xn.

Example 4.21. A sequence of real numbers is computable if, and only if, it is ρ-
computable.

Proposition 4.22. If F :⊆ Σω → Σω is a computable function and (s(n))n∈N ∈
(Σω)ω is a computable sequence of elements in the domain of F , then the sequence
(F (s(n)))n∈N is computable as well.

Proof. Similar to the proof of Proposition 4.18. ��

Corollary 4.23. Let X and Y be sets with representations δX and δY . If f :⊆ X →
Y is (δX , δY)-computable and (xn)n∈N ∈ X is a δX -computable sequence of ele-
ments in the domain of f , then (f(xn))n∈N is a δY -computable sequence.

In particular, a computable real number function maps any computable sequence
of real numbers in the domain of the function to a computable sequence of real
numbers.

Finally, the composition of computable functions is computable again.

Proposition 4.24. If F,G :⊆ Σω → Σω are computable, then their composition
G ◦ F :⊆ Σω → Σω is computable as well.

Proof. We combine Turing machines TG for G and TF for F in the following way.
TG uses the output tape of TF as input tape and TF receives p on its input tape. We
start TG. Whenever TG needs to read a symbol of F (p), we check whether TF has
already written this symbol. If not, we let TG pause and start TF and let it run until it
has written this symbol. Then we let it pause again and take up the computation of TG

again. And so on. Does this composition of machines compute the compositionG◦F
of the functions F and G? Almost. In fact, this composition of the two machines
might compute an extension of the composition G ◦ F . On input p ∈ dom(G ◦ F),
it correctly computes the value G ◦ F (p). But, when there is some input p ∈ Σω \
dom(F), where TF produces only finitely many output symbols, and TG happens to
need no more than these for producing some infinite output, then this composition of
machines produces some infinite output on input p although G ◦ F is not defined at
p. Therefore, we introduce the following modification of the composition of the two
machines described above: wheneverG is about to write the n-th output symbol, we
check whether F has already produced at least n symbols. If not, we let F run until
it has (if it never does, G will never write an n-th output symbol). This modified
machine indeed computes the function G ◦ F . ��

A Tutorial on Computable Analysis 441

Corollary 4.25. Let X,Y, Z be sets with representations δX , δY , δZ , respectively. If
f :⊆ X → Y is (δX , δY)-computable and g :⊆ Y → Z is (δY , δZ)-computable,
then g ◦ f is (δX , δZ)-computable.

In particular, the composition of computable real number functions is computable as
well.

Now we come to a very important property of computable real number functions:
they are continuous. In fact, they are exactly the real number functions that are effec-
tively continuous in the following sense. Here B(x, ε) := {y ∈ Rn | d(x, y) < ε} is
the open ball in Rn with midpoint x and radius ε, for x ∈ Rn and ε > 0. We define
a total numbering Bn of all open rational balls in Rn by

Bn(〈i1, . . . , in, j, k〉) := B
(

(νQ(i1), . . . , νQ(in)),
j + 1
k + 1

)
.

Definition 4.26. A function f :⊆ Rn → R is effectively continuous if there is a c.e.
subset S ⊆ N with the following two properties:

1. For any 〈i, j〉 ∈ S, f(Bn(i)) ⊆ B1(j).

2. For any x ∈ dom(f) and any ε > 0, there is some 〈i, j〉 ∈ S such that x ∈ Bn(i)
and such that the radius of B1(j) is at most as large as ε.

Theorem 4.27. A function f :⊆ Rn → R is computable if, and only if, it is effectively
continuous.

Proof. For simplicity, we consider only the case n = 1. First, assume that f is effec-
tively continuous. Then, given a ρ-name of some point x ∈ dom(f), one can, using
an enumeration of S, compute f(x) with arbitrary precision. Thus, f is computable.

Now, assume that f is computable. Then a Turing machine, given any k and given
any name p of any point x ∈ dom(f), computes a rational 2−k-approximation q of
f(x), i.e., a rational number q with f(x) ∈ B(q, 2−k). The machine does so after
reading at most a finite prefix of p having the form w0#w1#w2# . . . wl#. Then
U :=

⋂l
i=0 B(νQ(wi), 2−i) is an open neighborhood of x, and any point in this open

neighborhood has a ρ-name starting with this prefix. Thus, given a name starting with
w0#w1#w2# . . . wl# of any point in this neighborhood, the Turing machine will
produce the same output q. This implies f(U) ⊆ B(q, 2−k), and that means that f is
continuous. By systematically enumerating all prefixes of ρ-names of real numbers
and testing the Turing machine on them, one can construct a c.e. set S that shows
that f is even effectively continuous. ��

The fact that even a function as simple as the sign function

sign : R → R, sign(x) :=

{
0 if x < 0,

1 if x ≥ 0

442 Vasco Brattka, Peter Hertling, and Klaus Weihrauch

is not computable may seem counter-intuitive at first. But, if the input real number x
is given only through approximations (even arbitrarily good ones) and if x happens
to be equal to a point of discontinuity of the function, then the value of the function
can simply not be computed from the input. Of course, for example, the sign function
is computable in various weaker senses (e.g., lower semi-computable, a notion we
will define soon), which are also useful, and it is also a computable point in a certain
function space (this will be defined soon as well). Thus, it is simple in certain senses.
But in the numerical sense considered by us, it is definitely not computable.

It is interesting that continuity is a feature not only of this computability notion
but also of two other natural computability notions for real number functions that
can be defined via the Turing machine model. Both of them apply to functions that
are defined only on computable real numbers and that map computable real num-
bers to computable real numbers. In the following we list four computability notions
on real numbers or on computable real numbers and explain the relations between
them.

1. Computability for functions f :⊆ R → R, i.e., the computability notion for
real number functions that we have considered so far. It goes back to Grzegor-
czyk [41] and Lacombe [62].

2. Markov computability for functions f :⊆ Rc → Rc. If one calls a standard de-
scription of a Turing machine a program, and if the Turing machine computes
a ρ-name of a real number, then this description can be called a program for
this computable real number. A function f :⊆ Rc → Rc is Markov computable
if there exists a computable function mapping finite strings to finite strings that
maps any program for any x ∈ dom(f) to a program for f(x). This computabil-
ity notion has been considered in the Russian school of constructive analysis,
e.g., by Ceı̆tin [31], Šanin [85], and Kušner [59]. For a purely computability
theoretic presentation of many results in this direction, the reader is referred to
Aberth [1].

3. Sequential computability for functions f :⊆ Rc → Rc. A function f :⊆ Rc →
Rc is sequentially computable if it maps any computable sequence of real num-
bers in dom(f) to a computable sequence of real numbers. This notion has been
studied by Mazur [63].

4. Computable invariance for functions f :⊆ R → R. A function f :⊆ R → R is
computably invariant if it maps any computable real number in its domain to a
computable real number.

Now we explain the connections between these notions.

• First we observe that one can apply the computability notion for functions
f :⊆ R → R, of course, also to functions f :⊆ Rc → Rc and that this gives rise
to a fifth class of functions. We have already seen that any computable function
f :⊆ R → R is computably invariant. And it is clear that any restriction of a
computable real number function is a computable real number function as well.

A Tutorial on Computable Analysis 443

Thus, if f :⊆ R → R is computable, then its restriction f |Rc :⊆ Rc → Rc

is computable again. But, there exists a computable function g : Rc → Rc de-
fined on all computable real numbers which cannot be extended to a continuous
function defined on all real numbers; see Aberth [1].

• Now we compare computable functions f :⊆ Rc → Rc and Markov computable
functions f :⊆ Rc → Rc. It is easy to show that any computable function
f :⊆ Rc → Rc is Markov computable. The converse is not true in general;
see Slisenko [93] or Weihrauch [109, Example 9.6.5]. But it is an important fact
due to Ceı̆tin [31] that the converse is true for Markov computable functions
f :⊆ Rc → Rc with computably separable domain, i.e., a domain dom(f)
such that there exists a computable sequence (xn)n∈N of real numbers such that
{xn | n ∈ N} is a dense subset of dom(f). Related results were obtained by
Kreisel et al. [57] and by Moschovakis [70]. See Kušner [59] for a careful pre-
sentation and discussion of Ceı̆tin’s result and related results. In Theorem 4.27,
we observed that computability is equivalent to effective continuity. So, Ceı̆tin’s
result says that any Markov computable function f :⊆ Rc → Rc with a com-
putably separable domain is effectively continuous.

• Next, we compare Markov computable functions f :⊆ Rc → Rc and sequen-
tially computable functions f :⊆ Rc → Rc. It is clear that any Markov com-
putable function f :⊆ Rc → Rc is sequentially computable. The converse is not
true: there exists even a sequentially computable function defined on all com-
putable real numbers that is not Markov computable; see Hertling [49]. Nev-
ertheless, surprisingly, any sequentially computable function with computably
separable domain is continuous. This has already been observed by Mazur [63]
(for functions defined on an interval).

• Finally, we compare sequentially computable functions f :⊆ Rc → Rc and com-
putably invariant functions f :⊆ R → R. Trivially, any real number function that
maps any computable sequence of real numbers in its domain to a computable
sequence of real numbers is computably invariant. The converse is not true. For
example, the restriction of the sign function to the computable real numbers is a
total function from Rc to Rc and computably invariant but not continuous, hence,
not sequentially computably.

Functions considered in analysis that are not computable are often not computable
simply because they are discontinuous. But they may still be computably invari-
ant, like the sign function. It is often, not only for real number functions, but for
many other kinds of functions, an interesting task to show that some noncomputable
function is not even computably invariant, i.e., that there exists a computable input
element such that the output element is not computable. We will see some examples
of this later on.

444 Vasco Brattka, Peter Hertling, and Klaus Weihrauch

5 Computability Notions for Subsets of Euclidean Space

Over the natural numbers, not only computable functions are of fundamental im-
portance, but also effectivity notions for sets are important. The two most important
classes of subsets of Nn defined by computability conditions are certainly

1. the computable (or decidable or recursive) subsets,

2. and the computably enumerable (or recursively enumerable) subsets.

We have already learned about computable functions over the real numbers. In this
section we will see that there are natural computability notions for sets of real num-
bers that correspond to computable or to computably enumerable sets of natural num-
bers. Furthermore, these notions have a natural computational meaning, and they
generalize the notions for subsets of N.

Let us first consider the computable subsets. A subsetA ⊆ N is called computable or
decidable or recursive if its characteristic function χA : N → N, defined by

χA(n) :=

{
0 if n ∈ A,

1 if n �∈ A,

is computable. That means, a set A is decidable if a Turing machine, given a natural
number n, will after finitely many steps give the answer yes or no, saying whether n
is an element of A. Let us first try to translate this idea to subsets of Rn.

Definition 5.1. Let X be a set with a representation δX . Let us call a subset A ⊆ X
δX -decidable if the characteristic function χA : X → R, defined by

χA(x) :=

{
0 if x ∈ A,

1 if x �∈ A,

is (δX , ρ)-computable. The (ρn, ρ)-decidable subsets of Rn are called decidable.

Instead of considering the output values 0 and 1 as elements of R, one might as well
consider them as elements of N. That means, a set A ⊆ Rn is decidable if, and only
if, a Turing machine, given a ρn-name of a point x ∈ Rn, will after finitely many
steps give the answer yes or no, saying whether x is an element of A. Unfortunately,
only two trivial subsets of Rn are decidable in this sense.

Lemma 5.2. The only decidable subsets of Rn are ∅ and Rn.

Proof. The function χ∅ and χRn are constant functions with value 1 and value 0, re-
spectively, and obviously computable. The characteristic function of any other subset
of Rn is discontinuous and therefore not computable, according to Theorem 4.27.

��

A Tutorial on Computable Analysis 445

Thus, this notion of decidability is not very interesting. What is wrong here? Is in
the end our definition of computability of real number functions unsuitable? We saw
that it can be characterized as computability with respect to the representation ρ. Is
there perhaps a representation of the real numbers that is better suited for real num-
ber computations than ρ, perhaps a representation that would make basic nontrivial
subsets of Rn decidable, e.g., which would allow comparison of real numbers? This
is not the case.

Proposition 5.3. There is no representation δ :⊆ Σω → R of the real numbers such
that any of the tests =, <, ≤ is decidable with respect to δ, i.e., such that any of the
three following subsets of R2 is δ2-decidable:

{(x, y) ∈ R2 | x = y}, {(x, y) ∈ R2 | x < y}, {(x, y) ∈ R2 | x ≤ y}.

Proof. We give the proof for the equality test. Let us assume that there is a repre-
sentation δ such that the equality of two real numbers is decidable with respect to δ.
Now consider an arbitrary real number x and an arbitrary δ-name p for x. On input
〈p, p〉, after finitely many steps, the Turing machine will have written a prefix of a
ρ-name of 0 that cannot be a prefix of a ρ-name of 1. That means, the machine has
come to the conclusion “equal.” During these finitely many steps it can have read
only a finite prefix of its input. Let n be a number such that it has read at most the
first 2n symbols of its input 〈p, p〉. Then, for any input 〈p, q〉 such that q starts with
u := p(0)p(1) . . . p(n− 1), the machine would also come to the conclusion “equal.”
This implies that δ(q) = δ(p) = x for every δ-name q starting with the string u.
Since there are only countably many strings in Σ∗ and δ :⊆ Σω → R is surjective,
this implies that R is countable. Contradiction. ��

Thus, trying to change to another representation does not help. Therefore, we will
stick to our original notion of computability of real number functions and accept that
one cannot effectively make a discontinuous decision. This observation leads to the
question of whether, maybe, there is a useful “smooth” replacement for discontin-
uous decisions? Let us consider a nonempty closed subset A ⊆ Rn. The distance
function dA : Rn → R, defined by

dA(x) := inf
y∈A

d(x, y),

can be considered as a “smooth” version of the characteristic function of A.

Definition 5.4. We call a closed subset A ⊆ Rn computable or recursive if either
it is empty or dA is computable. We call an open subset U ⊆ Rn computable or
recursive if its complement (which is a closed set) is computable.

First, we notice that this notion is a generalization of the decidability notion for
subsets of Nn.

446 Vasco Brattka, Peter Hertling, and Klaus Weihrauch

Proposition 5.5. A subset A ⊆ Nn is decidable in the classical sense (as a subset of
Nn) if, and only if, it is computable when considered as a closed subset of Rn (under
the natural embedding Nn → Rn).

The proof is straightforward.

Examples 5.6. 1. The empty set ∅ and the full set Rn are computable closed sets
and computable open sets.

2. For any x ∈ Rn, the set {x} is computable if, and only if, x is a computable
point.

3. The equality relation and the≤-Relation are computable; i.e., the closed subsets
{(x, y) ∈ R2 | x = y} and {(x, y) ∈ R2 | x ≤ y} of R2 are computable.

4. The open ball B(x, ε) = {y ∈ Rn | d(x, y) < ε} and the closed ball B(x, ε) =
{y ∈ Rn | d(x, y) ≤ ε} are computable if x ∈ Rn is a computable point and
ε > 0 is a computable real number.

5. For a, b ∈ R with a ≤ b, the closed interval [a, b] is computable if, and only if, a
and b are computable real numbers. The same is true for the open interval (a, b).

6. For any total function f : Rn → R, the graph graph(f) := {(x1, . . . , xn, y) |
x1, . . . , xn, y ∈ R, y = f(x1, . . . , xn)} is a computable closed set if, and only
if, f is a computable function.

The computability notion for closed sets has a very intuitive meaning: the following
proposition can be interpreted as saying that a closed subset A ⊆ Rn is computable
if, and only if, one can plot pixel images of it with any desired precision. This con-
dition, i.e., the second condition in the following proposition, will be used later for
defining the computational complexity of a closed set. Here, computability on Z
can be reduced to computability on N via the bijection ν : N → Z, ν(2n) := n,
ν(2n+ 1) := −n− 1.

Proposition 5.7. For a closed set A ⊆ Rk, the following two conditions are equiva-
lent.

1. A is computable.

2. There exists a computable function f : N × Zk → N with range(f) ⊆ {0, 1}
and such that for all n ∈ N and z ∈ Zk

f(n, z) =

⎧
⎪⎨

⎪⎩

0 if dA(z
2n) < 2−n,

1 if dA(z
2n) > 2 · 2−n,

0 or 1 otherwise.

Now let us see whether we can find also a natural generalization of the notion of a
computably enumerable subset of Nn to subsets of Rn. We will see that there are

A Tutorial on Computable Analysis 447

even two natural generalizations, one for open subsets and one for closed subsets. As
is well known, a set A ⊆ N is called computably enumerable (short: c.e.) or recur-
sively enumerable if it satisfies one (and then both) of the following two equivalent
conditions:

1. there is a computable function f :⊆ N → N with dom(f) = A; i.e., a Turing
machine, given (a binary name of) some n ∈ N, stops after finitely many steps
if, and only if, n ∈ A,

2. A is empty or there is a total computable function f : N → N whose range is
equal to A.

A set A ⊆ N is called co-c.e. if its complement is c.e. Using the pairing function
〈·, ·〉, one can generalize these notions to subsets of Nk for k ≥ 2. And using νQ

from Section 2, one can translate it to subsets of Qm: we call a subset S ⊆ Qm c.e.
if the set {(n1, . . . , nm) ∈ Nm | (νQ(n1), . . . , νQ(nm)) ∈ S} is a c.e. subset of
Nm. The idea in the first characterization can be transferred directly to a represented
set.

Definition 5.8. Let X be a set with a representation δ :⊆ Σω → X . A set U ⊆ X is
called δ-c.e. if a Turing machine, given an arbitrary δ-name p of an arbitrary element
x ∈ X , halts after finitely many steps if, and only if, x ∈ U .

Applying the idea in the first characterization to real numbers leads to the first con-
dition in the following proposition, whereas the second condition above corresponds
to the second and third conditions in the proposition.

Proposition 5.9. Let U ⊆ Rn be open and A := Rn \U be its (closed) complement.
The following conditions are equivalent.

1. U is ρn-c.e.

2. U =
⋃

(q,ε)∈S B(q, ε) for some c.e. set S ⊆ Qn × Q+ (here Q+ := {q ∈ Q |
q > 0}).

3. The set {(q, ε) ∈ Qn ×Q+ | B(q, ε) ⊆ U} is computably enumerable.

4. A = f−1({0}) for some total computable function f : Rn → R.

5. The function χA : Rn → R is lower semicomputable; i.e., it is (ρn, ρ<)-
computable.

6. Either A = ∅ or the function dA : Rn → R is lower semicomputable.

Definition 5.10. Let U ⊆ Rn be open and A := Rn \U be its (closed) complement.
If one (and then all) of the conditions in the previous proposition are satisfied, then
U is called c.e. open and A is called co-c.e. closed.

448 Vasco Brattka, Peter Hertling, and Klaus Weihrauch

The third condition above can be understood as saying that we can enumerate “neg-
ative” information about the closed set A, namely all closed rational balls contained
in the complement of A. This corresponds to the following well-known topology on
the space of all closed subsets (see Beer [6] for hyperspace topologies).

Definition 5.11. The upper Fell topology on the space of all closed subsets of Rn is
the topology generated by the subbase consisting of all sets

{A ⊆ Rn | A is closed and A ∩K = ∅},

for compact sets K ⊆ Rn.

There is another natural generalization of computable enumerability to subsets of
Rn.

Proposition 5.12. Let A ⊆ Rn be closed. The following are equivalent.

1. The set {(q, ε) ∈ Qn ×Q+ | B(q, ε) ∩A �= ∅} is computably enumerable.

2. Either A is empty or there is a computable sequence (xi)i∈N of points xi ∈ Rn

such that A is the closure of the set {xi | i ∈ N}.

3. Either A is empty or the function dA : Rn → R is upper semicomputable; i.e.,
it is (ρn, ρ>)-computable.

Definition 5.13. Let A ⊆ R be closed. If one (and then all) of the conditions in
the previous proposition are satisfied, then A is called c.e. closed, and its (open)
complement is called co-c.e. open.

The first condition in the proposition can be understood as saying that we can enu-
merate “positive” information about the closed set A, namely all rational balls hav-
ing nonempty intersection with A. As above, this corresponds also to a well-known
topology on the space of all closed subsets.

Definition 5.14. The lower Fell topology on the space of all closed subsets of Rn is
the topology generated by the subbase consisting of all sets

{A ⊆ Rn | A is closed and A ∩ U �= ∅},

for open sets U ⊆ Rn.

Both of these two notions of computable enumerability for open or closed subsets of
Rn are generalizations of the corresponding notions for subsets of Nn.

Proposition 5.15. 1. A subset A ⊆ Nn is c.e. in the classical sense (as a subset
of Nn) if, and only if, it is c.e. closed when considered as a closed subset of Rn

(under the natural embedding Nn → Rn).

A Tutorial on Computable Analysis 449

2. A subset A ⊆ Nn is co-c.e. in the classical sense (as a subset of Nn) if, and
only if, it is co-c.e. closed when considered as a closed subset of Rn (under the
natural embedding Nn → Rn).

A subset of Nn is decidable if, and only if, it is c.e. and its complement is c.e. as
well. This generalizes to subsets of Rn as well.

Proposition 5.16. An open or closed subset of Rn is computable if, and only if, it is
c.e. and its complement is c.e. as well.

Proof. It suffices to prove this for closed sets. It follows from the fact that a real
number function is computable if, and only if, it is upper semicomputable and lower
semicomputable. Apply this to the function dA for some nonempty closed set A ⊆
Rn. ��

For any class of subsets of Rn, it is natural to ask whether it is closed under basic set
theoretic operations.

Proposition 5.17. Let A and B be closed subsets of Rn.

1. If A and B are co-c.e. closed, so are A ∪B and A ∩B.

2. If A and B are c.e. closed, so is A ∪B.

3. If A and B are computable, so is A ∪B.

Proof. 1. Let f, g : Rn → R be computable functions with A = f−1({0}) and
B = g−1({0}). Then A∪B = (f · g)−1({0}) and A∩B = (|f |+ |g|)−1({0}),
and f · g and |f |+ |g| are also computable functions.

2. Remember that a closed set is c.e. closed if, and only if, the set of all open
rational balls intersecting the set can be enumerated effectively. Now note that
any open (rational) ball intersects A ∪B if, and only if, it intersects at least one
of the two sets A and B.

3. This follows from the first two statements.

��

We illustrate a typical technique that is used in computable analysis. We encode
a c.e. but nondecidable set K ⊆ N into a subset of the reals in order to obtain a
counterexample.

Example 5.18. There are two computable closed sets A,B ⊆ R such that A ∩ B is
not even c.e. closed. Indeed, let h : N → N be a total computable function with
nondecidable range K := range(h). We define A :=

⋃∞
n=0An with

450 Vasco Brattka, Peter Hertling, and Klaus Weihrauch

An :=

{
[n− 1

2 , n] if n �∈ K,

[n− 1
2 , n− 2−k−2] if n ∈ K and k = min{i | h(i) = n}.

It is not hard to check that A is computable. Furthermore, we define B := N ⊆ R.
Then A ∩B = N \K . This is a closed, but not a c.e. closed, subset of R.

We conclude this section with an open problem. The famous Mandelbrot set M is a
subset of the complex plane C that can be defined as follows:

M = {c ∈ C | all numbers in the sequence (zi)i∈N of complex numbers

defined by z0 := 0 and zi+1 := z2
i + c satisfy |zi| ≤ 2}.

The Mandelbrot set is a closed subset of the complex plane contained in the circle
with radius 2 around the origin. In the following we identify C with R2. It is known
that the complement of the Mandelbrot set is c.e. open (Weihrauch [109, Exercise
5.1.32]) and that the boundary of the Mandelbrot set is c.e. closed (Hertling [50]).

Problem 5.19. 1. Is the Mandelbrot set computable?

2. Is the interior of the Mandelbrot set c.e. open?

The first question is equivalent to the question of whether the Mandelbrot set is c.e.
closed: compare Proposition 5.16. The second question is stronger than the first be-
cause of the following simple lemma.

Lemma 5.20. The closure of a c.e. open subset U ⊆ Rn is c.e. closed.

The famous hyperbolicity conjecture says that a certain subset of the interior of the
Mandelbrot set, the union of its so-called “hyperbolic components,” is actually equal
to the interior of the Mandelbrot set; compare, e.g., the introductory text [13] by
Branner. Since the union of the hyperbolic components is c.e. open (Hertling [50]),
one arrives at the following conclusion.

Proposition 5.21 (Hertling [50]). If the hyperbolicity conjecture is true, then the
answer to both questions in Problem 5.19 is yes.

6 Representations and Topological Considerations

We have introduced computability notions for real numbers, for real number func-
tions, and for sets of real numbers. We have seen that all these notions can be char-
acterized using Turing machines and the Cauchy representation. We have also seen
that the decimal representation is unsuitable for real number computations. But one

A Tutorial on Computable Analysis 451

can define many other representations of real numbers. Maybe some other represen-
tation is even more suitable for real number computations than the Cauchy repre-
sentation? In this section we will analyze representations more systematically. We
will compare various real number representations, and we will make some general
observations about representations that will be useful when in later sections we con-
sider computability on spaces that are “more complicated” than the space of real
numbers.

We will see soon that a good deal of the difficulties arising in the context of represen-
tations is of a topological nature. Indeed, already our first definition of computable
real number functions contained the idea of approximating the real value f(x) with
arbitrary precision. Approximation is a notion from topology. So, here topology en-
ters the stage, and we will see that it plays a very important role for computability
notions over the real numbers or other nondiscrete sets.

First, the set Σω, on which our Turing machines carry out the actual computations,
carries a natural topology, namely the usual product topology of the discrete topology
onΣ. Endowed with this topologyΣω is called Cantor space. A base of the topology
is the set of all sets wΣω := {p ∈ Σω | p starts withw} withw ∈ Σ∗. This topology
is also induced by the metric d on the Cantor space defined by

d(p, q) :=

{
0 if p = q,

2−min{n|p(n) �=q(n)} otherwise.

Thus, Σω is a separable metric space. In addition, it is complete and (if Σ is fi-
nite, which we always assume) compact. A function F :⊆ Σω → Σω is con-
tinuous if for any finite prefix w of F (p), there exists a finite prefix v of p such
that F (vΣω ∩ dom(F)) ⊆ wΣω, i.e., such that w is a prefix of F (q) for any
q ∈ vΣω ∩ dom(F). That means, any symbol of F (p) depends only on finitely
many symbols in p. An important observation is that any computable function
F :⊆ Σω → Σω is continuous.

Proposition 6.1. Any computable function F :⊆ Σω → Σω is continuous.

Proof. A Turing machine that computes F has to compute any finite prefix w of
F (p) for any p ∈ dom(F) within finitely many steps. But until then it can have
read only a finite prefix v of p. Then for any q ∈ dom(F) that starts with v as well,
the Turing machine will also produce w within the same number of steps. Since the
Turing machine has a one-way output tape, this implies that F (q) starts with w as
well. Hence, F (vΣω ∩ dom(F)) ⊆ wΣω. ��

Similarly as in Theorem 4.27 for computable real number functions, the computable
functionsF :⊆ Σω → Σω can be characterized as exactly the effectively continuous
functions F :⊆ Σω → Σω.

This proposition allows us to define the following purely topological weakening of
our relative computability notion defined in Definition 4.9.

452 Vasco Brattka, Peter Hertling, and Klaus Weihrauch

Definition 6.2. Let X and Y be sets with representations δX and δY . A function
f :⊆ X → Y is called (δX , δY)-continuous if a continuous (δX , δY)-realizer F of
f exists.

Often, a function that is not computable with respect to some representations is so
for purely topological reasons; that is, it is not continuous with respect to the rep-
resentations. This is for example the case for some real number functions that one
certainly wants to be able to compute but that are not computable with respect to the
decimal representation.

Example 6.3. We have seen that multiplication of real numbers by 3 is not (ρ10, ρ10)-
computable. A short look at the proof shows that this operation is not even (ρ10, ρ10)-
continuous.

By a similar argument one shows that also addition is not even continuous with
respect to the decimal representation. As mentioned, already Turing noticed in a
correction [103] to his paper [102] that the decimal (or binary) representation is un-
suitable for defining computability of real number functions. Turing suggested to use
a different representation instead. We have done that as well; namely, we have used
and will be using in the future the Cauchy representation, which is “equivalent” to
the representation suggested by Turing. Later we will consider other useful “equiva-
lent” representations of the set of real numbers. What does “equivalent” mean here?
As with relative computability and relative continuity, we define a computability-
theoretic and a topological version.

Definition 6.4. Let δ, δ′ :⊆ Σω → X be representations of some set X .

1. δ is reducible to δ′, written δ ≤ δ′, if there is a computable functionF :⊆ Σω →
Σω with δ(p) = δ′F (p) for all p ∈ dom(δ).

2. δ is equivalent to δ′, written δ ≡ δ′, if δ ≤ δ′ and δ′ ≤ δ.

If one asks F only to be continuous instead of computable, one obtains topological
variants of these notions: continuous reducibility, written ≤t, and continuous equiv-
alence, written ≡t.

Example 6.5. We can define a variant ρ′ of the Cauchy representation ρ of the real
numbers as follows:

ρ′(w0#w1#w2# . . .) = x :⇐⇒ limi→∞ νQ(wi) = x

and (∀i < j) |νQ(wi)− νQ(wj)| ≤ 2−i.

If w0#w1#w2# . . . is a ρ′-name of a real number x, then w1#w2# . . . is a ρ-name
of the same number, and vice versa. Thus, ρ and ρ′ are equivalent.

A Tutorial on Computable Analysis 453

The following lemma is easy to prove.

Lemma 6.6. 1. δ is reducible (continuously reducible) to δ′ if, and only if, the iden-
tity id→ X is (δ, δ′)-computable ((δ, δ′)-continuous).

2. (Continuous) reducibility is a reflexive and transitive relation on the representa-
tions of a fixed set X .

We have already met several representations of the real numbers: the decimal repre-
sentation ρ10 as well as the analogously defined representations ρb to any base b ≥ 2,
the Cauchy representation ρ, and the two representations ρ< and ρ>. Here is another
one.

Example 6.7. The naive Cauchy representation ρnC is defined like the Cauchy rep-
resentation with the difference that the sequence of rational numbers listed by a ρnC-
name of some real number x has to converge to x, but it does not need to converge
rapidly, not even computably.

We have also learned how to combine representations of spaces into a representation
of the product space. One can also combine different representations of a space into
one representation as follows.

Definition 6.8. Let δ, δ′ :⊆ Σω → X be representations of a set X . Then the repre-
sentation δ ∧ δ′ :⊆ Σω → X is defined by

(δ ∧ δ′)〈p, q〉 = x : ⇐⇒ δ(p) = x and δ′(q) = x.

That means, a δ∧δ′-name of an element x contains the information about x contained
in a δ-name for x and the information about x contained in a δ′-name for x.

In Figure 1 we describe the relationships between some real number representations.
We observe that the differences between the representations in this diagram are really
of a topological nature: whenever a representation in the diagram is not reducible to
another one, it is not even continuously reducible to it.

Of course, equivalent representations induce the same computability notions.

Lemma 6.9. Let γ, γ′ :⊆ Σω → X be representations with γ ≤ γ′.

1. Any γ-computable element of X is also γ′-computable.

2. Any γ-computable sequence in X is also γ′-computable.

3. Any γ′-c.e. subset U ⊆ X is also γ-c.e.

4. If, additionally, δ, δ′ :⊆ Σω → Y are representations with δ ≤ δ′, then any
(γ′, δ)-computable function f :⊆ X → Y is also (γ, δ′)-computable. The same
holds true with “continuous” instead of “computable.”

454 Vasco Brattka, Peter Hertling, and Klaus Weihrauch

Continued fraction representation

Characteristic functionsCharacteristic functions

Representation ρb for basis b

Cauchy representation ρ ≡ ρ< ∧ ρ>

EnumerationEnumeration

Naive Cauchy representation ρnC

of left cuts of right cuts

of right cutsof left cuts

ρ>ρ<

���

��� ���

���

���

��� ���

���

�

Fig. 1. Each arrow means ≤ and
≥t.

Proof. By Lemma 6.6 and by Corollary 4.19 for the first statement, by Corollary 4.23
for the second statement, and by Corollary 4.25 for the fourth statement. For the third
statement one combines a Turing machine computing a reduction from γ to γ′ with
a Turing machine proving that U is γ′-c.e. For the topological version of the fourth
statement, use that the composition of continuous functions is continuous as well.

��

Corollary 6.10. If γ, γ′ :⊆ Σω → X are equivalent representations, then

1. an element x ∈ X is γ-computable if, and only if, it is γ′-computable,

2. a sequence of elements of X is γ-computable if, and only if, it is γ′-computable,

3. a subset U ⊆ X is γ-c.e. if, and only if, it is γ′-c.e.

If additionally δ, δ′ :⊆ Σω → Y are equivalent representations, then

4. a function f :⊆ X → Y is (γ, δ)-computable if, and only if, it is (γ′, δ′)-
computable.

Also the topological version of the last statement holds true.

It is interesting that representations that are not equivalent may nevertheless define
the same class of computable elements: although the four lower representations in
Figure 1 are not equivalent to the Cauchy representation ρ, the real numbers that
are computable with respect to these representation are exactly the computable real
numbers, i.e., the ρ-computable real numbers. The ρ<-computable real numbers are
exactly the left-computable real numbers, the ρ>-computable real numbers are ex-
actly the right-computable real numbers, and the ρnC-computable real numbers are
exactly the computably approximable real numbers.

A Tutorial on Computable Analysis 455

In contrast, already for sequences the notion of computability with respect to a repre-
sentation is very sensitive with respect to the representation (Mostowski [72]), which
is similar to functions (Turing [103]).

That the equivalence class of the Cauchy representation is really the right choice
for defining computability over the real numbers can also be justified by the obser-
vation that it is the only equivalence class of representations with respect to which
certain elementary operations are computable that correspond to the structure of the
real numbers; see Hertling [48]. Very soon we will also characterize the continuous
equivalence class of the Cauchy representation in a natural way.

One may now ask whether this equivalence class contains some representations with
special properties, e.g., an injective or a total representation. But the different nature
of the spaces Σω and R implies that this is not the case.

Proposition 6.11. 1. No injective representation δ :⊆ Σω → R is continuously
equivalent to ρ.

2. No total representation δ : Σω → R is continuously equivalent to ρ (given that
Σ is finite).

In the following sections, we will consider computability on spaces “more compli-
cated” than the space of real numbers, e.g., on function spaces or spaces of subsets of
Euclidean space. We have already developed a machinery that allows us to introduce
approximative notions of computability on such spaces in a natural and simple way:
the machinery of representations and computability with respect to representations.
But for any given space and any computational task involving that space the question
arises of which representation to use. A natural requirement is that the representation
should fit with the topology on the space with respect to which we wish to perform
approximate computations. A very useful definition in this context is the following
one.

Definition 6.12. A representation δ of a topological space X is called admissible if
δ is continuous and δ′ ≤t δ holds true for any continuous representation of X .

Examples 6.13. 1. The Cauchy representation ρ of R is admissible with respect to
the usual Euclidean topology on R.

2. The representations ρ< and ρ> are admissible with respect to the lower and
upper Euclidean topology, respectively (these topologies are generated by the
intervals (x,∞) and (−∞, x), for x ∈ R, respectively).

We have already observed that any computable real number function is continuous.
In fact, one can show that a function f :⊆ R → R is continuous if, and only if, it
is (ρ, ρ)-continuous. This statement carries over to arbitrary admissible representa-
tions.

456 Vasco Brattka, Peter Hertling, and Klaus Weihrauch

Theorem 6.14 (Kreitz and Weihrauch [58] and Schröder [91]). Let (X, δX) and
(Y, δY) be admissibly represented topological spaces. Then a function f :⊆ X → Y
is (δX , δY)-continuous if, and only if, it is sequentially continuous.

A function f :⊆ X → Y between topological spaces is sequentially continuous if it
preserves convergence of sequences (in the domain of f). For T0-spaces with count-
able base, e.g., Rn with the Euclidean topology, sequential continuity is equivalent
to ordinary continuity. But in general it is a slightly weaker notion. The theorem
has been generalized by Schröder to so-called weak limit spaces [89]. Schröder’s re-
sults allow the definition of useful representations even for spaces that are not count-
ably based. This has turned out to be very useful, e.g., for defining computability on
spaces of generalized functions; see Zhong and Weihrauch [119]. Another interesting
generalization by Schröder are multi-representations; see [90].

We conclude this section by mentioning that there are very useful standard ways
for constructing new representations from given ones. We have seen this already for
the product of represented sets in Definition 4.11. If (X, δX) and (Y, δY) are spaces
with representations, then obviously the projection X × Y → X is ([δX , δY], δX)-
computable, and the projection X × Y → Y is ([δX , δY], δY)-computable. But one
can construct also a representation with natural properties for, e.g., the space of all
relatively continuous functions.

Proposition 6.15. Let (X, δX) and (Y, δY) be spaces with representations. There is
a representation [δX → δY] of the set of all total (δX , δY)-continuous functions
f : X → Y such that the following statements are true.

1. The function
(f, x) �→ f(x)

is ([[δX → δY], δX], δY)-computable (evaluation).

2. For any represented space (Z, δZ), any function f : Z ×X → Y is
([δZ , δX], δY)-computable if, and only if, the function

z �→ (x �→ f(z, x))

is (δZ , [δX → δY])-computable (type conversion).

A suitable representation [δX → δY] can be defined via a standard encoding of the
continuous functions h :⊆ Σω → Σω whose domains are effective Gδ-sets.

Lemma 6.16. The representation [ρn → ρ] is admissible with respect to the compact-
open topology.

The following result indicates that the class of so-called sequential T0-spaces with
admissible representations form a natural class for computability considerations.

A Tutorial on Computable Analysis 457

Theorem 6.17 (Schröder [91]). The category consisting of admissibly represented
sequential T0-spaces as objects and total continuous functions between them as mor-
phisms is cartesian closed.

7 Solvability of Some Problems Involving Sets and Functions

For many numerical problems the input is not a vector of real numbers, but rather
a real number function, e.g., for integration and zero finding. In order to compute
with functions as input, we have to feed some descriptions of them into the com-
puter. Therefore, we need a representation. Many function spaces and other spaces
on which one wishes to perform computations turn out to be computable metric
spaces.

Definition 7.1. A triple (X, d, α) is called a computable metric space, if

1. d : X ×X → R is a metric on X ,

2. α : N → X is a sequence such that the set {α(n) | n ∈ N} is dense in X ,

3. d ◦ (α× α) : N2 → R is a computable (double) sequence in R.

Definition 7.2. Let (X, d, α) be a computable metric space. Then we define the
Cauchy representation δX :⊆ Σω → X by

δX(01n0+101n1+101n2+1...) := lim
i→∞

α(ni)

for any sequence (ni)i∈N such that (α(ni))i∈N converges rapidly (and δX(p) is un-
defined for all other input sequences p ∈ Σω). We say that a sequence (xi)i∈N

converges rapidly, if d(xi, limn→∞ xn) < 2−i for all i.

Examples 7.3. 1. (Rn, d, αRn) with the Euclidean metric

d(x, y) :=

√√
√
√

n∑

i=1

|xi − yi|2

and the standard numbering αRn of Qn defined by

αRn(〈i1, . . . , in〉) := (νQ(i1), . . . , νQ(in))

is a computable metric space.

2. (C[0, 1], dC, αC) with the supremum metric

dC(f, g) := ||f − g|| := sup
x∈[0,1]

|f(x)− g(x)|

458 Vasco Brattka, Peter Hertling, and Klaus Weihrauch

and some standard numbering αC of Q[x], for instance, αC(〈k, 〈i0, . . . , ik〉〉) :=∑k
j=0 νQ(ij) · xj , is a computable metric space. Note that the Cauchy repre-

sentation δC[0,1] of C allows effective evaluation: the function (f, x) �→ f(x)
is ([δC[0,1], ρ

[0,1]], ρ)-computable (where ρ[0,1] is the restriction of ρ to names
of real numbers in [0, 1]). Even more, δC[0,1] is equivalent to the representation
[ρ[0,1] → ρ]. This implies that the computable points in this space are exactly the
computable functions f : [0, 1] → R. This is in fact an effective version of the
Weierstrass Approximation Theorem; compare Pour-El and Richards [80].

3. (K(X), dK, αK) with the set K(X) of nonempty compact subsets of a com-
putable metric space (X, d, α), with the Hausdorff metric

dK(A,B) := max
{

sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)
}
,

and with some standard numbering αK of the nonempty finite subsets of
range(α); e.g., αK(−1 +

∑
i∈E 2i) = {α(i) | i ∈ E}, for any finite nonempty

E ⊆ N, is a computable metric space. The computable points are exactly the
nonempty computable compact subsets A ⊆ X .

Proposition 7.4. Let X and Y be computable metric spaces with Cauchy represen-
tations δX and δY , respectively. Then a function f : X → Y is (δX , δY)-continuous
if, and only if, it is continuous in the ordinary sense.

Proof. It is clear that any computable metric space is a countably based T0-space. We
also note that the Cauchy representation of a computable metric space is admissible
with respect to the topology induced by the metric. The assertion follows now from
Theorem 6.14. ��

To give an example, we consider several versions of the problem to find a zero
of a continuous function. We remind the reader of the classic Intermediate Value
Theorem.

Proposition 7.5. For every continuous function f : [0, 1]→ R with f(0) · f(1) < 0,
there exists some x ∈ [0, 1] with f(x) = 0.

A number x with f(x) = 0 is called a zero of f . Is there an effective version of this
statement? Under what circumstances can one find a zero of a continuous function
f : [0, 1] → R with f(0) · f(1) < 0? First we are modest and restrict ourselves to
functions that have exactly one zero. Then we can compute it.

Theorem 7.6. The partial function on C[0, 1] that maps any f ∈ C[0, 1] with f(0) ·
f(1) < 0 and exactly one zero to its zero is (δC[0,1], ρ)-computable.

A Tutorial on Computable Analysis 459

Proof. Note that in the classical bisection method functions, values are compared
with 0. We have seen that such a comparison cannot be performed reliably in finite
time. Therefore, we use the trisection method, which is a stable variant of the clas-
sic bisection method. Assume that a δC[0,1]-name of a function as above is given.
Remember that using this δC[0,1]-name and given any ρ-name of a real number in
x ∈ [0, 1], we can compute f(x).

We start with a0 := 0 and d0 := 1. Now assume that we have computed two numbers
ai, di ∈ [0, 1] with di−ai = (2/3)i such that f(ai)·f(di) < 0 (this is true for i = 0).
In parallel we compute the two values

f(ai) · f
(
ai +

2
3
(di − ai)

)
and f

(
ai +

1
3
(di − ai)

)
· f(di)

with higher and higher precision until one of them turns out to be smaller than zero.
Note that at least one of them must be smaller than zero! If the first one for which
we verify this is the left one, we set ai+1 := ai, di+1 := ai + 2

3 (di − ai), and if it
is the right one, we set ai+1 := ai + 1

3 (di − ai), di+1 := di. In this way we obtain
a sequence of intervals [ai, di] of length (2/3)i converging to the unique zero of f .
This can easily be turned into a ρ-name of the zero. ��

For functions with more than one zero, things are not that easy.

Theorem 7.7. There is no continuous (and, hence, no (δC[0,1], ρ)-computable) func-
tion Z :⊆ C[0, 1]→ R with f(Z(f)) = 0 for all f ∈ {f ∈ C[0, 1] | f(0) · f(1) < 0,
and f has at most three zeros}.

The proof is quite simple and quite similar to the even slightly easier proof of
Theorem 7.10, given below. We omit it.

But for functions with not too many zeros, we can still compute some zero.

Theorem 7.8. There is a Turing machine which, given a δC[0,1]-name of some func-
tion f ∈ C with f(0) ·f(1) < 0 and such that f−1({0}) does not contain an interval,
computes a (ρ-name of a) zero of f .

Proof. First, we note that if f is such a function and a < d are numbers in [0, 1]
with f(a) · f(d) < 0, then for any n ∈ N there are rational numbers b and c with
a ≤ b < c ≤ d, with c− b ≤ 2−n, and with f(b) · f(c) < 0.

Let us assume that a δC[0,1]-name of such a function f is given. The algorithm works
similarly to the trisection algorithm: it starts with a0 := 0, d0 := 1, and once two
rational numbers ai and di with ai < di, with di−ai ≤ 2−i, and with f(ai)·f(di) <
0 are found, it searches for two rational numbers ai+1, di+1 with ai ≤ ai+1 <
di+1 ≤ di, with di+1 − ai+1 ≤ 2−i−1, and with f(ai+1) · f(di+1) < 0. ��

460 Vasco Brattka, Peter Hertling, and Klaus Weihrauch

Note that, due to Theorem 7.7, the zero found by a Turing machine as in Theorem 7.8
cannot depend only on the input function f . But it depends continuously on the
actual δC[0,1]-name given to the Turing machine. Hence, for some function f , the
algorithm will compute different zeros of f depending on the δC[0,1]-name of f given
to the algorithm. This can be expressed in the terminology of representation-based
computability using multi-valued functions. In the following, we call a relation f ⊆
X × Y a multi-valued function and write it as f :⊆ X ⇒ Y .

Definition 7.9. A multi-valued function is called (δX , δY)-computable, if there ex-
ists a computable function F :⊆ Σω → Σω such that

δY F (p) ∈ fδX(p)

for all p ∈ dom(fδ). Analogously, f is called (δX , δY)-continuous, if there exists a
continuous F with this property.

For example, a multi-valued function Z :⊆ C[0, 1]⇒ R can be defined by

dom(Z) := {f ∈ C[0, 1] | f(0) · f(1) < 0},

Z(f) := f−1({0}).

In this terminology, Theorem 7.8 can be expressed as follows: the restriction of Z to
the set

{f ∈ C[0, 1] | f(0) · f(1) < 0 and f−1({0}) does not contain an interval}

is (δC[0,1], ρ)-computable. In the general unrestricted case, one cannot even deter-
mine a zero in this weaker multi-valued sense.

Theorem 7.10. The multi-valued function Z defined above is not (δC[0,1], ρ)-conti-
nuous.

Proof. For the sake of a contradiction, let us assume that Z is (δC[0,1], ρ)-continuous.
Consider the continuous, piecewise linear function hy : [0, 1]→ R with breakpoints
(0,−1), (1/3, y), (2/3, y), (1, 1), for arbitrary y ∈ R. Given a ρ-name of y, we can
compute a δC[0,1]-name of hy . Thus, if Z were (δC[0,1], ρ)-continuous, then there
would also be a continuous function mapping any ρ-name of any y to a ρ-name of
a zero of hy . But in any neighborhood of a ρ-name of y = 0, there are names of
numbers y < 0 and of numbers y > 0. The unique zero of hy for y < 0 is greater
than 2/3, whereas the unique zero of hy for y > 0 is smaller than 1/3. Hence, given
a name of y = 0, a continuous function producing a name of a zero of hy would
have to produce a name of a number≥ 2/3 and at the same time a name of a number
≤ 1/3. Impossible! ��

All the results so far are uniform results in the sense that we asked what one can com-
pute if (a δC[0,1]-name of) a continuous function is given. The following statement is
a nonuniform result in the sense that we only ask whether a computable zero exists,
not whether we can compute it from some input data.

A Tutorial on Computable Analysis 461

Theorem 7.11. Every computable function f : [0, 1] → R with f(0) · f(1) < 0 has
a computable zero.

Proof. We distinguish two cases:

1. The set f−1({0}) does not contain an interval. Then, given a computable name
of f , an algorithm as in Theorem 7.8 will produce a computable name of a zero
of f . Hence, this zero is computable.

2. The set f−1({0}) contains an interval. Then it contains also a rational, hence,
computable number.

��

In general, by Corollary 4.19, if one has a positive uniform result, also the non-
uniform positive version holds true. But the previous two results show that the
nonuniform version may be true even if the corresponding uniform version is
false.

So far we looked at zero-finding for arbitrary continuous functions with a sign change
on the unit interval. Now let us look at the more specialized problem to compute
the zeros of a polynomial. By the Fundamental Theorem of Algebra, any polyno-
mial

p(z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0 ∈ C[z]

of degree n, i.e., with an �= 0, has exactly n complex zeros, when counted with
multiplicity. Can one compute them? In the following, for computation purposes, we
will always identify C with R2 and Cn with R2n and we define a representation of
C by ρC := ρ2. On first sight, the following well-known statement seems to say no.
For n ≥ 1, set

Pn := {(an, . . . , a0) ∈ Rn+1 | an �= 0 and p(z) := anz
n + · · ·+ a0 has

exactly n pairwise different zeros}.

Lemma 7.12. Fix some n ≥ 2. There is no continuous function Z : Pn → Cn such
that Z(p) contains all zeros of p, for any p ∈ Pn.

What does it mean? Let us fix some n ≥ 2. It means that even when restricted to
polynomials that have exactly n pairwise different zeros, the problem to find a vec-
tor of all zeros contains a discontinuity. By Proposition 7.4 this implies that “there is
no Turing machine which, given a p ∈ Pn, would produce a vector depending only
on p and containing the zeros of p.” But the statement in quotation marks should be
read very carefully: in the statement and in Lemma 7.12, we are saying that for each
polynomial p ∈ Pn, we wish to obtain a vector of zeros where the vector is deter-
mined by the polynomial. But a vector(!) of zeros contains actually more information
than what we are interested in: in addition to the information that complex numbers
are the zeros, in the vector the zeros are ordered! It turns out that this ordering is

462 Vasco Brattka, Peter Hertling, and Klaus Weihrauch

the only problem and the reason for the discontinuity and, hence, unsolvability of
this version of the problem. If we forget about the ordering, then the problem can be
solved, even for arbitrary polynomials.

Theorem 7.13 (Weyl [112]). There is a Turing machine which, given some n ≥ 1
and a ρn+1

C
-name of the coefficients of a polynomial

p(z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0 ∈ C[z] with an �= 0,

computes a ρn
C

-name of a vector in Cn containing all zeros of p with correct multi-
plicity.

For any fixed n ≥ 1, this can be expressed also as follows: the multi-valued func-
tion that associates with any polynomial of degree n all permutations of its n zeros
(counted with multiplicity) is computable. One could formulate this also without us-
ing the notion of a multi-valued function if instead of Cn as the output space one
uses the computable metric space Cn/Sn, where Sn is the group of permutations of
n elements; see Specker [97]. Note the difference to the negative statement above:
the algorithm described in Theorem 7.13 still computes a vector of zeros when given
a (standard description of a) polynomial, but the order in which the zeros appear in
the vector may depend on the description of the polynomial given to the algorithm.
It does not need to be the same for all descriptions of the polynomial (as it would
have to be for an algorithm computing a Z as in Lemma 7.12).

By Proposition 4.18, Theorem 7.13 implies that the zeros of any polynomial with
computable coefficients are computable again; compare Theorem 3.4. We conclude
this discussion with the remark that it is still an open problem to determine the
precise “degree of discontinuity” or “topological complexity” of functions Z as in
Lemma 7.12; compare Smale [94], and Vassiliev [104]. More on “degrees of discon-
tinuity” can be found in Hertling [44, 45, 46].

Now we wish to consider computational problems that receive not only numbers
and functions as input but also subsets of Rn. Therefore, we need representations of
subsets.

Definition 7.14. Let (X, d, α) be a computable metric space.

1. We define a representation ϑ of all open subsets of X by

ϑ(p) = U :⇐⇒ p enumerates a set A ⊆ N×Q+ such that

U =
⋃

(n,ε)∈A

B(α(n), ε).

2. We define three representations of the set A(X) := {A ⊆ X | A is closed} by

a) ψ>(p) = A :⇐⇒ ϑ(p) = X \A,

A Tutorial on Computable Analysis 463

b) ψ<(p) = A :⇐⇒ p enumerates all pairs (n, ε) ∈ N×Q+ with
A ∩ B(α(n), ε) �= ∅,

c) ψ= := ψ< ∧ ψ>.

Note that the ϑ-computable sets are exactly the c.e. open sets, that theψ>-computable
elements of A(Rn) are exactly the co-c.e. closed subsets of Rn, that the ψ<-
computable elements of A(Rn) are exactly the c.e. closed subsets of Rn, and that
the ψ=-computable elements of A(Rn) are exactly the computable closed subsets
of Rn. The characterizations of Propositions 5.9 and 5.12 can be generalized to the
case of (certain) computable metric spaces, and they even hold uniformly (Brattka
and Presser [21]). Proposition 5.17 can be formulated uniformly, which gives the first
two of the statements in the following lemma. The counterexample in Example 5.18
implies the noncomputability part of the third statement.

Lemma 7.15. 1. The union operator ∪ : A(X) × A(X) → A(X) is com-
putable with respect to ψ<, ψ>, and ψ=; i.e., for any ψ ∈ {ψ<, ψ>, ψ=}, it
is ([ψ, ψ], ψ)-computable.

2. The intersection operator ∩ : A(X) × A(X) → A(X) is computable with
respect to ψ>.

3. But the intersection operator ∩ is not computable with respect to ψ< or ψ=. It
is not even ([ψ=, ψ=], ψ<)-continuous.

The representations ψ>, ψ<, ψ= are admissible with respect to natural topologies on
A(X).

Lemma 7.16. The representation ψ< is admissible with respect to the lower Fell
topology, the representationψ> is admissible with respect to the upper Fell topology,
and the representation ψ= is admissible with respect to the Fell topology (which is
the topology generated by the lower and the upper Fell topology).

We use these representations in order to formulate an effective version of the Rie-
mann Mapping Theorem. For completeness sake, we remind the reader of its state-
ment. It says that for a subsetU of the complex plane C, the following two conditions
are equivalent:

1. U is a nonempty, proper, open, connected, and simply connected subset of C.

2. There exists a conformal function f : D → C with f(D) = U .

Here D := {z ∈ C : ||z|| < 1} is the open unit disk in the complex plane. We
identify C with R2 again, and we use the representation ρC = ρ2 for C.

Theorem 7.17 (Hertling [47]).

1. Given a [ρC → ρC]-name of a conformal mapping defined on D, one can com-
pute a ϑ-name of U := f(D) and a ψ<-name of the boundary of U .

464 Vasco Brattka, Peter Hertling, and Klaus Weihrauch

2. Given a ϑ-name of some nonempty, proper, open, connected, and simply con-
nected subset U of C, a ψ<-name of its boundary and a ρC-name of a point z0
in U , one can compute a [ρC → ρC]-name of the uniquely determined conformal
mapping f : D → C with f(D) = U , with f(0) = z0, and with f ′(0) > 0.

By looking at computable objects (see Corollary 4.19), one arrives at the following
nonuniform version.

Corollary 7.18 (Hertling [47]). For U ⊆ C the following are equivalent:

1. There exists a computable holomorphic bijection f : D → U .

2. U is a nonempty, proper, open, connected, simply connected subset of C that is
c.e. open and has a c.e. closed boundary ∂U .

Next, we formulate an effective version of the Baire Category Theorem. The classical
result can be stated as follows: if X is a complete metric space and (An)n∈N a
sequence of closed nowhere dense subsets of X , then X \

⋃
n∈N

An is nonempty;
i.e., it contains at least one point. In order to formulate the uniform version, we need
a representation of a sequence of closed sets.

Definition 7.19. Let (X, δ) be a represented set. Then by

δω(p) = (xn)n∈N :⇐⇒ for each n ∈ N, the sequence (i �→ p(〈n, i〉))
is a δ-name of xn,

one defines a natural representation of the space of all sequences (xn)n∈N of ele-
ments in X .

Theorem 7.20 (Brattka [15]). Let X be a complete computable metric space. The
multi-valued function that associates with any sequence (An)n∈N of closed nowhere
dense subsets An ⊆ X all sequences (xi)i∈N that are dense in X \

⋃∞
n=0An is

(ψω
>, δ

ω
X)-computable.

Corollary 7.21 (Yasugi et al. [114]). LetX be a complete computable metric space.
For any computable sequence (An)n∈N of co-c.e. closed nowhere dense subsets An

of X , there exists a computable sequence (xi)i∈N that is dense in X \
⋃∞

n=0An.

If X has no isolated points, then all singletons {x} are nowhere dense and we obtain
the following corollary, which is a generalization of Proposition 3.9.

Corollary 7.22 (Brattka [15]). If X is a complete computable metric space without
isolated points, then there is no computable sequence (xn)n∈N such that the set {xn |
n ∈ N} contains all computable points of X .

The following statement can be proved directly, but it can also be deduced from
Corollary 7.21.

A Tutorial on Computable Analysis 465

Corollary 7.23 (Brattka [15]). There exists a computable but nowhere differentiable
function f : [0, 1]→ R.

With the Intermediate Value Theorem we have seen a result that has a nonuniform
computable version but no general uniform computable version. The Riemann Map-
ping Theorem and the Baire Category Theorem both admit fully uniform computable
versions. The Brouwer Fixed Point Theorem is an example of a theorem that does
not even admit a nonuniform computable version. It states that any continuous func-
tion f : [0, 1]2 → [0, 1]2 possesses a fixed point. This statement does not hold true
computationally: there is the following surprising negative result.

Theorem 7.24 (Orevkov [78], Baigger [4]). There exists a computable function f :
[0, 1]2 → [0, 1]2 without a computable fixed point.

We conclude this section with another interesting result in the context of the Fixed
Point Theorem. Let us call a subset A ⊆ [0, 1]n fixable if there exists a computable
function f : [0, 1]n → [0, 1]n such that f(A) = A.

Theorem 7.25 (Miller [67]). Let A ⊆ [0, 1]n be a co-c.e. closed set. Then the fol-
lowing are equivalent:

1. A is fixable,

2. A contains a nonempty co-c.e. closed connected component,

3. A contains a nonempty co-c.e. closed connected subset,

4. f(A) contains a computable real for all computable f : [0, 1]n → R.

8 Computability of Linear Operators

Many problems in numerical analysis can be expressed by linear operators over
normed spaces or even Banach spaces.

We start our selection of observations concerning computability of linear operators
with several simple facts about linear (or affine) mappings on Euclidean spaces. The
first lemma is pretty obvious.

Lemma 8.1. Consider a matrix A ∈ Rm×n. The linear function mapping any vector
x ∈ Rn to A · x ∈ Rm is computable if, and only if, A is computable, i.e., if, and
only if, all coefficients of A are computable real numbers.

If A is invertible, then the range of this linear function is equal to Rm. Otherwise,
the problem to decide whether a given vector b ∈ Rm is in the range of this function
is discontinuous and therefore unsolvable. But even if one knows in advance that b
is in the range, computing a preimage is impossible in general, due to a well-known
discontinuity.

466 Vasco Brattka, Peter Hertling, and Klaus Weihrauch

Proposition 8.2. The multi-valued function that associates with a matrixA ∈ Rm×n

and a vector b ∈ range(x �→ Ax) ⊆ Rm all solutions x ∈ Rn of the equation
A · x = b is not (ρm(n+1), ρn)-continuous. This implies that no Turing machine,
given (a ρm·n-name of) A and (a ρm-name of) b, would compute (a ρn-name of) a
solution x to A · x = b.

This changes if one knows the dimension of the solution space.

Theorem 8.3 (Ziegler and Brattka [120]). Let A ∈ Rm×n be a matrix and b ∈ Rm

a vector, and let L := {x ∈ Rn | A · x = b} be the affine solution space of the
corresponding linear equation. If A and b are computable, then L is a computable
closed set. Given names with respect to ρ of some A and b such that L is not empty
and given the dimension d of L, we can even compute a ψ-name of L. This implies
that we can computably find a solution x ∈ L and in case d > 0 also a basis of the
homogeneous solution space {x ∈ Rn | A · x = 0}.

In fact, instead of a νN-name of the dimension, a ρ>-name of the dimension is suffi-
cient.

Now let us turn to linear operators over normed spaces. Many normed spaces used
in the practice of numerical computation are computable according to the following
definitions. In the following, F is either R or C, and for computation purposes, we
identify C with R2, and use αC := αR2 .

Definition 8.4. (X, || ||, e) is called a computable normed space, if

1. X is a linear space,

2. || || → R is a norm on X ,

3. the linear span of the sequence e : N → X is dense in X ,

4. (X, d, αe) with d(x, y) := ||x− y|| and αe〈k, 〈n0, . . . , nk〉〉 :=
∑k

i=0 αF(ni)ei

is a computable metric space.

Note that in any computable normed space, the point 0 is a computable point and
that vector space addition and scalar multiplication are automatically computable
operations.

In the following, whenever we say “computable” in connection with a computable
normed space X , we always mean computable with respect to the Cauchy represen-
tation δX of X .

Theorem 8.5. Let X,Y be computable normed spaces, let T : X → Y be a linear
operator, and let (sn)n∈N be a computable sequence inX whose linear span is dense
in X . Then the following are equivalent:

1. T : X → Y is computable,

A Tutorial on Computable Analysis 467

2. (T (sn))n∈N is a computable sequence and T is bounded,

3. T maps computable sequences to computable sequences and is bounded,

4. graph(T) is a computable closed subset of X × Y and T is bounded,

5. graph(T) is an c.e. closed subset of X × Y and T is bounded.

In case X and Y are even Banach spaces, one can omit boundedness in the last two
conditions, because it follows from the Closed Graph Theorem.

Examples 8.6. We use the norm ||f || := supx∈[0,1] |f(x)| on C[0, 1] and the norm
||f ||1 := ||f ||+ ||f ′|| on C1[0, 1].

1. The integration operator

I : C[0, 1]→ C[0, 1], f �→
(
x �→

∫ x

0

f(t) dt
)

is a linear computable operator.

2. The differentiation operator

d :⊆ C[0, 1]→ C[0, 1], f �→ f ′,

defined for continuously differentiable functions on [0, 1], is a linear unbounded
operator with a closed graph.

3. The differentiation operator

D : C1[0, 1]→ C[0, 1], f �→ f ′

is a computable linear operator. This is not surprising because a Cauchy name of
a function f ∈ C1[0, 1] contains already the information needed for computing
f ′.

4. The differentiation operator

D :⊆ C2[0, 1]→ C[0, 1], f �→ f ′

is computable if for the elements of C2[0, 1] one uses the representation δ defined
by

δ〈p, q〉 = f : ⇐⇒ δC[0,1](p) = f and ρ(q) > ||f ′′||.

Corollary 8.7. If a computable function f ∈ C[0, 1] has a continuous second deriva-
tive, then f ′ is computable as well.

We had remarked at the end of Section 4 that a noncomputable function may nev-
ertheless be computably invariant; i.e., map computable elements to computable
elements, and if it is not computably invariant, it can be a challenge to construct
a computable element of the domain that is mapped to a noncomputable element.
Pour-El and Richards [80] have shown a general result that shows that for linear
operators the situation is simpler.

468 Vasco Brattka, Peter Hertling, and Klaus Weihrauch

Theorem 8.8 (Pour-El and Richards [80]). LetX,Y be computable normed spaces,
let T : X → Y be a linear operator with closed graph, and let (sn)n∈N be a com-
putable sequence in X whose linear span is dense in X and such that (T (sn))n∈N

is a computable sequence in Y . Then T is unbounded if, and only if, there exists a
computable x ∈ X such that T (x) is noncomputable.

We have seen that there exists a computable nowhere differentiable function. The
result by Pour-El and Richards, applied to the differentiation operator in Exam-
ple 8.6.2, gives the following observation.

Corollary 8.9 (Myhill [76]). There exists a computable and continuously differen-
tiable function f : [0, 1]→ R whose derivative f ′ : [0, 1]→ R is not computable.

A striking application of the theorem by Pour-El and Richards is the following state-
ment concerning the three-dimensional wave equation.

Theorem 8.10 (Pour-El and Richards [79, 80]). There exists a computable function
f : R3 → R such that the unique solution u of the three-dimensional wave equation

{
utt = Δu

u(0, x) = f, ut(0, x) = 0, t ∈ R, x ∈ R3

has the following properties: the wave x �→ u(0, x) = f(x) at time 0 is computable,
but the wave x �→ u(1, x) at time 1 is not computable.

This result has led to a number of misinterpretations because it appears as if the wave
equation produces some noncomputability that emerges out of nothing. However, a
careful analysis of the result shows that the noncomputability in the counterexam-
ple is already hidden in the derivative of the initial condition, and hence, the exam-
ple can be considered as yet another instance of Corollary 8.9. The solvability of
the wave equation was analyzed further by Washihara [105] and by Weihrauch and
Zhong [111].

Theorem 8.11 (Weihrauch and Zhong [111]). The solution operator of the wave
equation S : Ck(R3)→ Ck−1(R4), f �→ u is computable.

Remark 8.12. Weihrauch and Zhong [111] proved also that the operator of wave
propagation is computable without any loss of the degree of differentiability if phys-
ically appropriate Sobolev spaces are used.

The next result deals with the Hahn–Banach Theorem.

Theorem 8.13 (Metakides and Nerode [64]). Let X be a finite-dimensional com-
putable Banach space with some c.e. closed linear subspace Y ⊆ X . For any com-
putable linear functional f : Y → R with computable norm ||f ||, there exists a
computable linear extension g : X → R with ||g|| = ||f ||.

A Tutorial on Computable Analysis 469

It follows from results of Metakides et al. [65] that this result cannot be extended to
infinite-dimensional spaces. However, it is worth mentioning that for normed spaces
X with strictly convex dual X ′, the norm-preserving extension of functionals is al-
ways unique, and in the unique case, the extension can always be computed (even
uniformly, that is given f one can compute a suitable g); see Brattka [18]. This class
of spaces with strictly convex dual includes, for instance, all Hilbert spaces.

Many results from functional analysis can be analyzed with respect to their compu-
tational content; see, e.g., Pour-El and Richards [80], Brattka and Dillhage [19], and
Brattka and Yoshikawa [22].

Often, a computational problem can be formulated as the problem to compute the
inverse of a given linear operator. This poses the question under which circumstances
the inverse of a linear operator can be computed. Let X,Y be Banach spaces, and let
T : X → Y be a linear operator. By Banach’s Inverse Mapping Theorem, any linear,
bijective, and bounded T has a bounded inverse T−1. If we can compute T , can we
compute T−1 as well? Interestingly, here we have a positive nonuniform answer but
a negative uniform answer.

Theorem 8.14 (Brattka [16]).

1. Let X,Y be Banach spaces, and let T : X → Y be a linear operator. If T is
bijective and computable, then T−1 is computable as well.

2. There exist Banach spaces X and Y such that the function that maps any bi-
jective linear operator T : X → Y to its inverse T−1 : Y → X is not
([δX → δY], [δY → δX])-continuous.

We conclude this section with an interesting application of the first, positive, state-
ment of the previous theorem to the theory of differential equations. Although the
first statement of the previous theorem is nonuniform, the following application is a
uniform statement. Here we represent Cn[0, 1] by the Cauchy representation for the
norm ||f ||n :=

∑n
i=0 ||f (i)|| that includes information on all the derivatives.

Theorem 8.15 (Brattka [16]). Let n ≥ 1, and let f0, . . . , fn : [0, 1] → R be com-
putable with fn �= 0. The solution operator L : C[0, 1]× Rn → Cn[0, 1] that maps
each (y, a0, . . . , an−1) ∈ C[0, 1]× Rn to the unique x ∈ Cn[0, 1] such that

n∑

i=0

fi(t)x(i)(t) = y(t) with x(j)(0) = aj for j = 0, . . . , n− 1,

is computable.

Proof. The following operator is linear and computable:

L−1 : Cn[0, 1]→ C[0, 1]× Rn, x �→
(∑n

i=0 fix
(i), x(0)(0), . . . , x(n−1)(0)

)
.

By the computable Inverse Mapping Theorem it follows that L is computable too.
��

470 Vasco Brattka, Peter Hertling, and Klaus Weihrauch

9 Degrees of Unsolvability

In this section we describe several approaches for classifying unsolvable computa-
tional problems over the real numbers. First, remember that computability of real
number functions can be expressed as effective continuity. We generalize this notion
using the Borel hierarchy. In the second approach one looks only at computable input
and uses the arithmetical hierarchy for the classification. Finally, we ask about Tur-
ing degrees of real number functions and look at a reducibility relation on functions
on computable metric spaces, which is introduced in a natural way using Cauchy
representations.

In Example 8.6 we have seen that the differentiation operator

d :⊆ C[0, 1]→ C[0, 1], f �→ f ′,

defined for continuously differentiable functions on [0, 1], is a linear unbounded op-
erator and therefore not computable. Can one characterize the degree of noncom-
putability of differentiation more precisely? In order to do this we remind the reader
of the (finite beginning of the) Borel hierarchy. In the following, X and Y are com-
putable metric spaces unless stated otherwise. Let Σ0

1(X) be the set of all open
subsets of X , and for k ≥ 1,

Π0
k(X) be the set of all complements of sets in Σ0

k(X),

Σ0
k+1(X) be the set of all countable unions of sets in Π0

k(X).

This hierarchy can be extended to transfinite levels. Here, we will consider only finite
levels. One can define representations of the finite levels of the Borel hierarchy in a
straightforward manner.

Definition 9.1. Let (X, d, α) be a computable metric space. For k ≥ 1, we define
representations δΣ0

k(X) of Σ0
k(X) and δΠ0

k(X) of Π0
k(X) as follows:

δΣ0
1(X)(p) :=

⋃

(i,ε)∈N×Q+ enumerated by p

B(α(i), ε),

δΣ0
k+1(X)(p) :=

∞⋃

i=0

δω
Π0

k(X)(p)(i),

δΠ0
k(X)(p) := X \ δΣ0

k(X)(p).

The representation δΣ0
1(X) is identical to the representation ϑ of open subsets as

defined earlier.

Definition 9.2. Let X,Y be computable metric spaces. A function f :⊆ X → Y is
Σ0

k-measurable if for any U ∈ Σ0
1(Y) there is a set V ∈ Σ0

k(X) with f−1(U) =
V ∩ dom(f). It is called effectively Σ0

k-measurable or Σ0
k-computable, if a Turing

machine, given a δΣ0
1(X)-name of such a U , computes a δΣ0

k(X)-name of such a V .

A Tutorial on Computable Analysis 471

Remark 9.3. 1. A function f :⊆ X → Y is Σ0
1-measurable if, and only if, it is

continuous.

2. In Theorem 4.27 we have seen that the computable real number functions are
exactly the real number functions that are effectively continuous in a certain
sense. Using this, one can easily show that they are exactly the Σ0

1-computable
real number functions. And this can easily be generalized to functions between
computable metric spaces: a function f :⊆ X → Y is computable (with respect
to the Cauchy representations) if, and only if, it is Σ0

1-computable.

3. The total Σ0
k-computable functions f : X → Y are in fact the Σ0

k-recursive
functions in the sense of Moschovakis [71]; see Brattka [17, page 24].

The following result is an extension of Theorem 6.14.

Theorem 9.4 (Brattka [17]). LetX,Y be computable metric spaces and k be a pos-
itive integer. Then a total function f : X → Y is Σ0

k-measurable (Σ0
k-computable)

if, and only if, there is a Σ0
k-measurable (Σ0

k-computable) function F :⊆ Σω → Σω

with fδX(p) = δY F (p) for all p ∈ dom(fδX).

Because of this result, it is reasonable to extend the definition of Σ0
k-computability

to arbitrary represented spaces as follows.

Definition 9.5. Let X,Y be sets with representations δX , δY , respectively. Then a
function f :⊆ X → Y is called Σ0

k-computable (with respect to (δX , δY)) if, and
only if, it has a Σ0

k-computable realizer.

Due to the previous theorem, this is a conservative extension of the concept of Σ0
k-

computability. With respect to a suitable reducibility relation, for each k ≥ 1, there
are complete problems in the class of Σ0

k-computable functions.

Definition 9.6. Consider two functions f :⊆ Σω → Σω and g :⊆ Σω → Σω. We
say that f is computably reducible to g, written f ≤c g, if there are computable
functions A :⊆ Σω ×Σω → Σω and B :⊆ Σω → Σω such that

f(p) = A(p, g(B(p)))

for all p ∈ dom(f).

A topological version of this reducibility relation, also on more general topolog-
ical spaces, has been studied by Hirsch [51], Weihrauch [108], and Hertling [44,
46].

Proposition 9.7 (Brattka [17]). For k ≥ 0, there exist functions Ck :⊆ Σω → Σω

such that any F :⊆ Σω → Σω is Σ0
k+1-computable if, and only if, F is computably

reducible to Ck.

472 Vasco Brattka, Peter Hertling, and Klaus Weihrauch

We wish to compare not only functions on Σω but on more general spaces. Trans-
ferring Definition 9.6 in a straightforward manner to functions f :⊆ X → Y and
g :⊆ U → V does not look very promising because then it becomes important
whether the spaces are connected. For example, in case X = R, and U = Σω,
there is no nontrivial continuous function B : X → U . Instead, we remember that
computations are performed on names.

Definition 9.8. Let X,Y, U, V be sets with representations δX , δY , δU , δV , respec-
tively, and let f :⊆ X → Y and g :⊆ U → V be functions. We say that f is
computably realizer reducible to g, written f ≤c g, if there are computable functions
A :⊆ Σω × Σω → Σω and B :⊆ Σω → Σω such that for any (δU , δV)-realizer G
of g, the function

p �→ A(p,G(B(p)))

is a (δX , δY)-realizer of f .

Definition 9.9. Let X,Y be sets with representations δX , δY , respectively. We say
that a function f :⊆ X → Y is Σ0

k-complete (with respect to (δX , δY)), if it is
Σ0

k-computable with respect to (δX , δY) and any other Σ0
k-computable function is

computably realizer reducible to it.

Note that the functions Ck whose existence is stated in Proposition 9.7 are Σ0
k+1-

complete. A linear operator satisfying the assumptions in Theorem 8.8 by Pour-El
and Richards is at least as difficult to compute as C1.

Theorem 9.10 (Brattka [14]). LetX,Y be computable Banach spaces, and let f :⊆
X → Y be a linear and unbounded operator with closed graph. Let (sn)n∈N be a
computable sequence in dom(f) whose linear span is dense in X (note that this
makes dom(f) a computable metric space), and let (f(sn))n∈N be a computable
sequence in Y . Then C1 ≤c f .

This can be used to prove that certain operators such as differentiation are Σ0
2-

complete. For nonlinear maps, other techniques are required (see for instance Brat-
tka [14] and Gherardi [40]).

Example 9.11. The following functions are examples of complete functions:

1. The differentiation d :⊆ C[0, 1]→ C[0, 1], f �→ f ′ is Σ0
2-complete.

2. The limit map lim :⊆ RN → R, (xn)n∈N �→ limn→∞ xn is Σ0
2-complete.

3. The boundary operation ∂ : A(Rn) → A(Rn), A �→ ∂A is Σ0
2-complete.

4. The derived set operator D : A(Rn)→ A(Rn), A �→ A′ is Σ0
3-complete.

Here we assume thatA(Rn) is represented by ψ.

A Tutorial on Computable Analysis 473

It is worth mentioning that any Σ0
k+1-complete map has the property that it maps

some computable input to someΔ0
k+1-computable output that is not Δ0

k-computable
(Brattka [17]). Here the light face classes Δ0

k+1 refer to the arithmetical hierarchy.
Applied to the differentiation operator d, it gives us yet another proof of Corol-
lary 8.9. Applied to the limit map, it yields a computably approximable real number
that is not computable and applied to the boundary operator it yields a computable
closed set whose boundary is not a computable closed set.

This brings us to the second approach for classifying unsolvable problems that we
wish to describe. It uses the arithmetical hierarchy. Cenzer and Remmel [32] con-
sider operators whose input are real number functions. They use a Gödel numbering
of computable real number functions and characterize the set of Gödel numbers of
computable input functions that are mapped by the operator to computable output.
If the operator is computable, this is of course a trivial question because we know
that computable operators are computably invariant; i.e., they map every computable
input to computable output. The question becomes interesting for noncomputable op-
erators. We define a Gödel numbering of the total computable functions f : Rn → R,
for each n ≥ 1. In the following definition, ϕ denotes a total standard numbering of
all computable functions F :⊆ N → N; i.e., (ϕi)i∈N is a list containing exactly
all computable functions F :⊆ N → N such that ϕ satisfies the utm property and
the smn property; compare any book on computability theory, e.g., Rogers [84] and
Weihrauch [106].

Definition 9.12. Fix some n ≥ 1. We write Fn
e = f if the c.e. set S := dom(ϕe)

describes a total effectively continuous function f : Rn → R as in Definition 4.26.
Furthermore, In := dom(Fn).

By Theorem 4.27, Fn is a numbering of all total computable functions f : Rn → R.
Actually, Cenzer and Remmel [32] used a slightly different numbering. But the two
numberings are equivalent, with the consequence that the following theorem holds
also for our numberingFn. The following theorem lists several results by Cenzer and
Remmel [32] related to computational problems that we considered earlier.

Theorem 9.13 (Cenzer and Remmel [32]). The following sets are Σ0
3-complete.

1. The set of all e ∈ I1 such that F 1
e is differentiable and the derivative is com-

putable.

2. The set of all e ∈ I2 such that the differential equation y′(x) = F 2
e (x, y(x))

with initial condition y(0) = 0 has a computable solution on the interval [−δ, δ],
for some δ > 0.

3. The set of all e ∈ I3 such that the wave equation

uxx + uyy + uzz − utt = 0

with initial conditions ut(x, y, z, 0) = 0 and u(x, y, z, 0) = F 3
i (x, y, z) has a

computable solution.

474 Vasco Brattka, Peter Hertling, and Klaus Weihrauch

We note that Cenzer and Remmel also found natural Π0
3 -complete problems and

Σ0
4 -complete problems over the real numbers [32].

Finally, we describe work by Miller [68] concerning degrees of uncomputability of
real number functions and functions over computable metric spaces. A large part of
classic computability theory deals with Turing reducibility and Turing degrees. Thus,
in the context of computable analysis, it is natural to try to characterize the degree of
uncomputability of a real number function by asking for its Turing degree. Let X be
a computable metric space with Cauchy representation δX . It is natural to define the
Turing degree degT (x) of an element x ∈ X by

degT (x) := min{degT (p) | δX(p) = x}.

Indeed, for X := R and any real number x ∈ R, the Turing degree degT (x) is
well defined and coincides with the Turing degree of the fractional part of the bi-
nary expansion of x. But this approach does not work well anymore for real number
functions.

Theorem 9.14 (Miller [68]). Consider X := C[0, 1]. There exists some f ∈ X such
that degT (f) is not well defined; i.e., there is no Cauchy name for f with minimal
Turing degree.

So, another approach is needed. Turing reducibility is defined for subsets of N or
for their characteristic sequences: a sequence p ∈ {0, 1}ω is Turing reducible to
a sequence q ∈ {0, 1}ω if there is a computable function F :⊆ Σω → Σω with
F (q) = p. By using Cauchy representations, one can translate this reducibility to
elements of computable metric spaces.

Definition 9.15. Let X and Y be computable metric spaces. An element x ∈ X is
representation reducible to an element y ∈ Y if there is a computable (i.e., (δX , δY)-
computable) function f :⊆ Y → X with f(y) = x.

This relation is clearly reflexive and transitive. Let us call the equivalence classes
of elements of computable metric spaces under this reducibility relation continuous
degrees.

Proposition 9.16 (Miller [68]). Every continuous degree contains a real-analytic
function.

Theorem 9.17 (Miller [68]). There is a natural, nontrivial embedding from the Tur-
ing degrees into the continuous degrees and a natural, nontrivial embedding from
the continuous degrees into the enumeration degrees.

A Tutorial on Computable Analysis 475

10 Computational Complexity of Real Numbers and Real
Number Functions

In the previous section we discussed unsolvable computational problems over the
real numbers. In this and the following section, we turn in the other direction: we an-
alyze the computational complexity of solvable problems. The two most important
complexity measures in classical complexity theory are time complexity and space
complexity. We will restrict ourselves to time complexity. We wish to classify com-
putational problems over the real numbers according to the time one needs in order
to solve them. We measure the time by counting the steps of a Turing machine. In
classic complexity theory, discrete problems are considered, and the time complexity
is usually analyzed in dependence of the input size of the concrete instance of the
computational problem. Often, this input size corresponds quite well to the input di-
mension of the concrete instance of the problem. But for continuous problems whose
output is real-valued, another parameter turns out to be at least as important in the
practice of numerical analysis: the desired precision of the output value. In fact, for
a single real number, this is the only parameter on which the time can depend. And
for any fixed real number function, the dimension is fixed as well. This has the con-
sequence that the time complexity of computable real numbers and computable real
number functions is usually analyzed as a function of the desired output precision.
In the following definition, we use a standard binary notation νD of the set

D := {z/2n | z ∈ Z, n ∈ N}

of dyadic rational numbers, defined by

νD(a−k . . . a0 · a1a2 . . . an) :=
n∑

i=−k

ai · 2−i and

νD(−a−k . . . a0 · a1a2 . . . an) := −
n∑

i=−k

ai · 2−i,

where k, n ∈ N, ai ∈ {0, 1}, and a−k = 0 ⇒ k = 0. Such a string a−k . . . a0 ·
a1a2 . . . an or −a−k . . . a0 · a1a2 . . . an with n digits after the binary point will be
called a binary name of precision n of the corresponding dyadic rational number. Our
first definition of the time complexity of computable real numbers and computable
real number functions is in analogy to our first definition of computable real number
functions (Definition 4.1).

Definition 10.1. Let t : N → N be a total function.

1. A real number x is precision-computable in time O(t), if there are a constant c
and a Turing machine that, given any n ∈ N in binary notation, computes within
c · t(n)+ c steps a binary name of precision n of a dyadic rational number q with
|x− q| < 2−n.

476 Vasco Brattka, Peter Hertling, and Klaus Weihrauch

2. Consider a compact set K ⊆ Rk. A function f :⊆ Rk → R with K ⊆ dom(f)
is precision-computable in timeO(t) onK if there are a constant c and an oracle
Turing machine that, given any n ∈ N in binary notation, may ask for arbitrarily
good dyadic approximations of the input x ∈ K; i.e., it may ask finitely many
questions of the kind “Give me a k-vector of binary names with precision i of the
components of a dyadic vector r ∈ Dk with maxl=1,...,k |xl−rl| < 1/2i,” where
the exponent i may depend on the answers to the previous questions, and after
at most c · t(n) + c steps, it stops, having written onto the output tape a binary
name with precision n of a dyadic rational number q with |f(x)− q| < 2−k.

Here, the precision i of a request as above has to be written in binary form on
a special tape, the oracle tape, and the machine has to enter a special state, the
query state. Then the answer will be provided in one step on the oracle tape, with
the tape head on the field to the left of the answer. For reading the answer, the
Turing machine will need time as for any usual reading operation on any other
tape.

We consider here only functions on compact sets because for arbitrarily large input
numbers, one may need arbitrarily much time just to read the digits in front of the
binary point. Then in general, one will be unable to give any bound on the time
needed even for computing the result with precision 1.

We had characterized computability of real number functions not only by an oracle
approach as in Definition 4.1 but also via the Cauchy representation and equivalent
representations. And we had seen that both approaches were equivalent. Can one say
the same also for the time complexity of real number functions and of real numbers?
One would say that a real number x is computable in time t : N → N with respect to
a representation δ of R if a Turing machine computes a δ-name p for x in time t(n);
i.e., without ever stopping it writes p onto the output tape and it needs at most t(n)
steps for writing the first n symbols of p. Using the Cauchy representation is not a
good idea because for any rational number one can easily construct arbitrarily long
νQ-names. This has the consequence that for any computable real number x, there is
a Cauchy name for x computable in linear time. Thus, a definition of time complexity
of real numbers via the Cauchy representation does not make any sense. One could
“repair” the Cauchy representation ρ by using names of the form w0#w1#w2# . . .,
where each wi is not a νQ-name of a rational number but a binary name of precision
i of a dyadic rational number. But such a name would be quite wasteful because
information that is contained already in wi for some i will be repeated in all wj with
j > i. The following representation is a much more elegant way of representing real
numbers. It is defined just like the usual binary representation except that besides the
digits 0 and 1 also a digit 1, standing for −1, can be used. Avizienis [3] studied it in
the context of computer arithmetic. This representation as well as similar “redundant
number representations” have turned out to be very important in computer arithmetic;
see, e.g., Muller [73].

A Tutorial on Computable Analysis 477

Definition 10.2. The signed digit representation ρsd :⊆ Σω → R is defined by

ρsd(anan−1 . . . a0 � a−1a−2 . . .) :=
−∞∑

i=n

ai · 2i

for all sequences with ai ∈ {1, 0, 1} and n ≥ −1, and with the additional properties
that an �= 0, if n ≥ 0 and anan−1 �∈ {11, 11}, if n ≥ 1, where we interpret 1 as −1.

As in the binary representation, the number of digits after the binary point of any pre-
fix of a name of a real number corresponds directly to the precision by which this pre-
fix already describes the real number. But, in contrast to the binary representation, the
signed digit representation is redundant in a symmetric way. If w is a prefix of a ρsd-
name, then ρsd(wΣω) is a closed interval, ρsd(w1Σω) is the left half of ρsd(wΣω),
ρsd(w0Σω) covers the two middle quarters of ρsd(wΣω), and ρsd(w1Σω) is the
right half of ρsd(wΣω). If additionallyw contains the binary point and n digits after
the binary point, then the interval ρsd(wΣω) has length 2 · 2−n.

Proposition 10.3. The signed digit representation ρsd is equivalent to the Cauchy
representation of the real numbers.

Definition 10.4. Let t : N → N be a total function. A real number x is computable in
time O(t) if there are a constant c and a Turing machine that, without ever stopping,
produces a ρsd-name of x and, after c · t(n) + c steps, has written at least the prefix
containing n digits after the binary point.

Before we compare this definition with the previous definition of “precision-
computability in time O(t),” we explain how one can define the time complexity
of real number functions via the signed digit representation. As we will see soon, it
is useful not only to count the steps needed by a Turing machine but also to count
how many digits of the input the machine needs in order to compute the first n output
symbols.

Definition 10.5. Let t : N → N and l : N → N be total functions. Consider a
compact set K ⊆ Rk. A function f :⊆ Rk → R with K ⊆ dom(f) is computable in
timeO(t) with input lookahead l on K if a Turing machine with k input tapes, given
ρsd-names p1, . . . , pk of the k components of any x ∈ K , does the following:

1. without ever stopping it computes a ρsd-name q of F (x),

2. after c · t(n) + c steps it has written at least the prefix of q containing n symbols
after the binary point,

3. until it has written this prefix of q, for any i ∈ {1, . . . , k}, it has read at most the
first l(n) symbols after the binary point of pi.

478 Vasco Brattka, Peter Hertling, and Klaus Weihrauch

Lemma 10.6. For any co-c.e. closed, compact K ⊆ Rk and any computable f :
K → R there exist computable t, l : N → N such that f is computable in time O(t)
and with input lookahead l.

Remark 10.7. In order to be able to speak about a uniform time bound for the func-
tion, we consider the function only on a compact set. For a function with, e.g., do-
main R =

⋃∞
i=1[−i, i], one can consider the time complexity of f on [−i, i] for each

positive i and then use i as an additional parameter that corresponds to the “size” of
the input.

Now let us compare the two definitions of time complexity of real numbers and
real number functions that we have formulated. A real number x or a real number
function f :⊆ Rk → R on a compact set K ⊆ dom(f) is precision-computable in
time O(t) (see Definition 10.1) if it is computable in time O(t) (see Definition 10.4
and Definition 10.5). In general, the converse does not need to be true. But it is true
for so-called regular time bounds.

Definition 10.8. A total function t : N → N is regular if it is nondecreasing and
there exist constants N, c > 0 such that t(N) > 0 and

2 · t(n) ≤ t(2n) ≤ c · t(n)

for all n > N .

A regular function grows polynomially and at least linearly. Any function obtained
by multiplying nk for some k ≥ 1 by a power of logarithms or multiple logarithms
is regular. For the practice of computing, the regular functions are presumably the
most important time bounds.

Proposition 10.9. Let t : N → N be regular. A real number x or a real number
function f : K → R for some compact set K ⊆ Rk is precision-computable in time
O(t) if, and only if, it is computable in time O(t).

Proof. We sketch the proof for the case of real numbers.

First, let us assume that x is a real number computable in time O(t). Then a Turing
machine Msd produces a signed-digit name of x in time O(t). Given some n in
binary notation, one can simulate Msd until it has computed a signed digit name of
x up to n+ 2 digits after the binary point. This prefix describes a dyadic number q1
with denominator 2−n−2. Then one computes a dyadic number q2 with denominator
2−n as close as possible to q1 and writes its binary name with precision n onto the
output tape. All this takes time O(t(n + 2) + n) ⊆ O(t(n)). Thus, x is precision
computable in time O(t).

Now, let us assume that x is precision computable in time O(t). Let Mprec be a
Turing machine which, given an n in binary form, computes a dyadic rational q with

A Tutorial on Computable Analysis 479

precision n and with |x − q| < 2−n. In order to produce a signed digit name of x,
one can proceed as follows. One can simulate Mprec repeatedly with input 2i for
i = 0, 1, 2, 3, . . . and, after each simulation, use the new dyadic approximation of
x in order to improve the previously computed prefix of a signed digit name of x.
In fact, the number of computed digits after the decimal point doubles after each
simulation. In order to compute the first n digits after the binary point, the new
machine will need aboutO(

∑�log2(n)�
i=0 t(2i)) time. It is easy to verify that regularity

of t implies that O(t) is an upper bound for this term. ��

The following two statements are in analogy to Theorem 3.4 for computable real
numbers. Let M(n) := n · log2(n) · log2(log2(n)) be the time bound for the
Schönhage–Strassen algorithm for multiplying two natural numbers given by binary
words of length n.

Theorem 10.10 (Müller [74]). Let t be a regular function with M ∈ O(t). The set
of real numbers computable in time O(t) forms a real algebraically closed field.

Corollary 10.11 (Ko and Friedman [56, 55]). The set of polynomial time com-
putable real numbers forms a real algebraically closed field.

In particular, the zeros of a polynomial whose coefficients can be computed fast,
e.g., in polynomial time, can be computed fast as well, e.g., in polynomial time.
The problem to find fast algorithms for computing the zeros of polynomials has re-
ceived a lot of attention; see Neff and Reif [77]. Also numbers like π and e are
polynomial time computable. The time complexity of π has been analyzed in great
detail. Finding even faster algorithms for computing π as well as actually comput-
ing π with precision as high as possible is still a challenge; see, e.g., Borwein and
Borwein [12].

Remark 10.12. We have seen in Section 3 that for defining the set of computable real
numbers, the decimal (or binary) representation is as good as the Cauchy represen-
tation and therefore as good as the signed digit representation. But the set of real
numbers with polynomial time computable decimal name (or with polynomial time
computable binary name) is a proper subset of the set of polynomial time computable
real numbers, and it is not even closed under addition; see Ko [55].

Now we turn to functions.

Theorem 10.13 (Brent [26], Schröder [87, 88]). For each of the following functions
f :⊆ Rm → R and domains K ⊆ Rm, there exists a Turing machine M which,
computes f in time O(t) with input lookahead l:

480 Vasco Brattka, Peter Hertling, and Klaus Weihrauch

function domain time lookahead
f(x1, . . . , xm) K O(t(n)) l(n)
−x1 R n n
x1 + x2 [−1, 1]× [−1, 1] n n+ c
x1 · x2 [−1, 1]× [−1, 1]M(n) 2n+ c
x1 · x2 [−1, 1]× [−1, 1]M(n) · log2(n) n+ c
1/x1 [7/8, 2] M(n) 2n+ c
1/x1 [7/8, 2] M(n) · log2(n) n+ c
exp, sin, cos [−1, 1] M(n) · log2(n) n+ c

A machine computing a real function f may read more digits from the input ρsd-
name p than necessary to define the result with precision 2−n. Let Dep(p)(n) be the
smallest number m such that m digits after the binary point suffice to define n digits
after the binary point of a ρsd-name of fρsd(p). Call a machine k-input-optimal, if
for any input name p it reads at most the first Dep(p)(n) + k digits after the point
for writing the first n digits after the point of the result. For some functions there is
a trade-off between input information and computation time.

Theorem 10.14 (Weihrauch [107]). There exists a real number function f : [0, 1]→
R with the following properties:

1. The function f can be computed in time O(n) with input lookahead 4n.

2. For any k, the function f can be computed by a k-input-optimal machine in
polynomial time if, and only if, P = NP.

If the input is itself the result of some (expensive) computation, it is desirable to use
as few input digits as possible. However, as we have just seen, this might increase the
computation time substantially. In case of a composition of functions, for optimizing
the total computation time, one has to balance input lookahead and time complexity
of the second function in an appropriate way.

We have seen that if f : [0, 1] → R is computable and has a continuous second
derivative, then f ′ is computable as well (Corollary 8.7). In fact, the condition that the
function has a continous second derivative can be replaced by the weaker condition
that the derivative is Lipschitz continuous; see Pour-El and Richards [80].

Theorem 10.15 (Müller [75]). Let t be a regular function with M ∈ O(t). If f :
[0, 1] → R is a function that is computable in time O(t) and that has a Lipschitz
continuous derivative, then the derivative f ′ is also computable in time O(t).

We conclude this section with a comment on the complexity of real number functions
as it is defined in the real random access machine model, most notably by Blum et al.
[11]. In this model, one assumes that a computer can process real numbers with in-
finite precision, and that each comparison and arithmetic operation takes one step.
This is certainly not realistic. On the other hand, the idea to consider real numbers as

A Tutorial on Computable Analysis 481

entities on which one can operate directly without having to refer to names or repre-
sentations looks attractive. Brattka and Hertling [20] have shown that one can express
the computability and polynomial time complexity notion for real number functions
as defined in this section also via a real random access machine model. This model is
a natural generalization of the random access machine model for computations over
the natural numbers with logarithmic cost measure.

11 Computational Complexity of Sets and Operators over the
Real Numbers

So far we have discussed the time complexity of real numbers and of real number
functions. The next step would be to define the time complexity of subsets of Rk.
Before we do that, let us look from a more general perspective at the problem to
define time complexity for arbitrary mathematical objects that one might wish to
compute in computations over the real numbers. We had observed that the Cauchy
representation was unsuitable even for defining the time complexity of real numbers.
Why did we come to that conclusion? Well, for defining the time complexity of a
real number one would certainly take a name with “minimal time complexity.” The
problem with the Cauchy representation is that for any real number there are too
many Cauchy names and such a minimum does not exist. A sufficient condition on
a representation δ of a set X would be that for each x ∈ X , the fiber δ−1(x) should
be compact. Since we wish to have uniform time bounds even for all objects in a
compact set, e.g., for all real numbers in a closed, finite interval, it makes sense to
demand more: that for any compact set K ⊆ X the set δ−1(K) is compact as well.
Let us call a representation δ of a topological space X proper if for each compact
K ⊆ X the set δ−1(K) is compact.

Proposition 11.1. The signed-digit representation is a proper representation of the
real numbers equivalent to the Cauchy representation ρ. In particular, it is admissi-
ble.

Schröder [86, 92] has characterized the spaces that possess admissible representa-
tions that have compact fibers or are even proper. Weihrauch [110] has continued
this study and has shown how one can introduce in a natural way computational
complexity on computable metric spaces. Labhalla, Lombardi, and Moutai [61] sug-
gested other approaches for defining computational complexity on computable met-
ric spaces.

Now let us introduce time complexity of compact subsets of Euclidean spaces. The
metric space of compact subsets of R (we consider the Hausdorff metric) possesses
proper admissible representations. A name in such a representation should in addi-
tion have the property that prefixes of increasing length should describe the set with
increasing precision, e.g., by describing the set with a sequence of “pixels.” A prob-
lem with such a name is that in order to describe the set with precision 2−n one will

482 Vasco Brattka, Peter Hertling, and Klaus Weihrauch

in general need an exponential number of “pixels.” Thus, simply writing down such a
prefix requires exponential time. This does not look very natural. The problem seems
to be that a name of a set describes the set as a whole. Often one may be happy to be
able to describe some details of the set with high precision. This idea is realized in
the following definition of “local time complexity” of a compact set, as defined by
Rettinger and Weihrauch [82].

Definition 11.2. A compact set K ⊆ [0, 1]2 is called (locally) computable in time
O(t), for some total function t : N → N if there exists a function f : ({0, 1}∗)3 →
{0, 1}∗ computable in timeO(t) and defined on all triples (0n, ν−1

N
(i), ν−1

N
(j)) with

n ∈ N, i, j ∈ {0, . . . , 2n} and with

f(0n, ν−1
N

(i), ν−1
N

(j)) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if dK(i
2n ,

j
2n) < 2−n,

0 if dK(i
2n ,

j
2n) > 2 · 2−n,

0 or 1 otherwise.

This definition realizes the idea that being able to compute a compact subset of R2

means being able to plot it with any desired precision, as in Proposition 5.7. Given
a screen of print area of fixed resolution, say with k pixels, it requires O(k · t(n))
time to print a set K ⊆ R2 with (local) time complexity t and a zoom factor 2n.
This definition can be generalized straightforwardly to compact subsets of Rm for
any m ≥ 1.

Remark 11.3. Chou and Ko [34] (see also [54, 55]) have defined and analyzed sev-
eral other notions of computational complexity of two-dimensional regions. For ex-
ample, they call a subset K ⊆ R2 polynomial-time approximable, resp. polynomial-
time recognizable, if a Turing machine, given a point x ∈ R2, decides whether x is
in K within polynomial time and makes errors only on a subset of R2 of measure at
most 2−n, resp. makes errors only for points of distance at most 2−n from the bound-
ary of K . If a Turing machine of this kind never errs for points in K , then they call
the set K strongly polynomial-time approximable, resp. strongly polynomial-time
recognizable. If a set is locally computable in polynomial time, then it is strongly
polynomial-time recognizable, but the converse is true if, and only if, P = NP
(Braverman [23]).

We had characterized the nonempty, closed, computable subsets of Rk also as those
nonempty closed subsets that have a computable distance function. It looks natural
to ask for the time complexity of the distance function of a compact subset of Rk.
The following result clarifies the relation between the notion in Definition 11.2 and
the time complexity of the distance function.

Theorem 11.4 (Braverman [23]). Let K ⊆ Rn be a nonempty compact subset.

1. If the distance function dK : Rn → R ofK is polynomial-time computable, then
K is polynomial-time computable.

A Tutorial on Computable Analysis 483

2. If n = 1, then the converse holds.

3. If n > 1, then the converse holds if, and only if, P = NP.

Remark 11.5. A similar result for strongly polynomial-time recognizable sets with
strongly polynomial-time recognizable complement and for the distance to the
boundary of the set has been shown by Chou and Ko [35].

In view of the intuitively appealing meaning of the time complexity of compact sets
as in Definition 11.2, we will stick to that definition.

Very interesting compact subsets of Euclidean spaces are fractal sets, in particular
the Julia sets. For computability and complexity considerations, we will identify C
with R2.

Definition 11.6. Let f : C → C be a polynomial function of degree≥ 2.

• A point z ∈ C is called a periodic point of f , if there exists a p ∈ N such that
fp(z) = z.

• A periodic point z ∈ C of f is called repelling, if |(fp)′(z)| > 1.

• The Julia set J(f) of f is the closure of the set of repelling periodic points of f .

• A point z ∈ C is called critical, if f ′(z) = 0.

• The function f is called hyperbolic, if J(f) is disjoint from the closure of the
orbits

⋃
z critical

⋃∞
n=0 f

n(z).

In 1998 Zhong [118] showed that a Turing machine, given the coefficients of a hy-
perbolic polynomial f , computes the Julia set J(f) of f ; i.e., given in addition a
point z ∈ C and a number k ∈ N, it computes the distance of z from J(f) with pre-
cision 2−k, or it computes a function for K := J(f) as described in Definition 11.2.
Rettinger and Weihrauch [82] looked at the time complexity of Julia sets and showed
the following first result.

Theorem 11.7 (Rettinger and Weihrauch [82]). There is a Turing machine which,
given a signed-digit name of a c ∈ C with |c| < 1

4 , computes in timeO(n2 ·M(n)) ⊆
O(n3 · logn · log logn) a function f as in Definition 11.2 for the Julia set of the
quadratic polynomial z �→ z2 + c.

This result was generalized and strengthened in 2004 independently by Braver-
man [24] and Rettinger [81] to hyperbolic polynomial and hyperbolic rational func-
tions, respectively, with the time boundO(n·M(n)). Since then, Binder, Braverman,
and Yampolsky have obtained a series of positive and negative results concerning
computability and polynomial time computability of Julia sets; see [7] and the refer-
ences therein.

484 Vasco Brattka, Peter Hertling, and Klaus Weihrauch

Now we come to the time complexity of numerical operators, e.g., of type

F : C[0, 1]→ C[0, 1]

such as integration or differentiation. It is difficult to define a uniform notion of com-
plexity for such operators because C[0, 1] is not locally compact, and therefore, there
is no obvious way to define a uniform notion of complexity (not even parameter-
ized over N as we had suggested to do it for functions on Rk; see Remark 10.7).
But one can study the complexity of such operators restricted to compact subspaces
K ⊆ C[0, 1]. In fact, this is often done in numerical analysis, although often only
in an algebraic computation model; see Traub et al. [99]. It is likely that for many
numerically stable problems over function spaces, the time complexity in the Turing
machine model will not be very different from the “arithmetic” complexity in an al-
gebraic computation model; see Woźniakowski [113]. But a thorough study of the
time complexity in the sense of Weihrauch [110] or Labhalla et al. [61] of higher
type numerical operators in the Turing machine model seems to be missing.

There is a different approach, due to Ko and Friedman, see e.g. [56], and covered by
Ko’s book [55]: if F is a numerical operator receiving real number functions as input,
one can study the time complexity of F (f) for polynomial time computable input f .
This approach leads to the insight that the complexity of many numerical problems
can be characterized by discrete complexity classes or, the other way around, to the
insight that many famous open problems concerning discrete complexity classes can
be found to be hidden in numerical problems. We formulate only three results and
refer the reader to Ko [55] for many more results and many open problems in this
context.

Theorem 11.8 (Friedman [39]). The following two statements are equivalent:

1. P = NP.

2. For each polynomial-time computable f : [0, 1] → R, the maximum function
g : [0, 1]→ R, defined by

g(x) := max{f(y) : 0 ≤ y ≤ x}

for all x ∈ [0, 1], is polynomial-time computable.

Proof (Sketch of Proof). The direction “1.=⇒2.” of the proof is based on the idea
that

z ≤ g(x) ⇐⇒ (∃y ∈ [0, x]) z ≤ f(y).

Using the Polynomial-Time Projection Theorem, this is (approximately) decidable
in polynomial time if P = NP. By a binary search over z, one can determine g(x)
in polynomial time. ��

A Tutorial on Computable Analysis 485

Theorem 11.9 (Friedman [39]). The following two statements are equivalent:

1. FP = #P.

2. For each polynomial-time computable f : [0, 1] → R, the integral function
g : [0, 1]→ R, defined by

g(x) :=
∫ x

0

f(t) dt

for all x ∈ [0, 1], is polynomial-time computable.

Here #P denotes the class of functions that count the number of accepting compu-
tations of a nondeterministic polynomial-time Turing machine.

Proof (Sketch of Proof). For the proof of “1.=⇒2.” one can guess a number of points
(t, y) with 0 ≤ t ≤ x and then count those with y ≤ f(t) to get an approximation
for the integral g(x) (in case f is positive). ��

Theorem 11.10 (Ko [53]). For the following three statements, the implications 1 ⇒
2 and 2⇒ 3 hold true.

1. P = PSPACE.

2. For each polynomial-time computable f : [0, 1]× [−1, 1]→ R that satisfies the
Lipschitz condition

|f(x, z1)− f(x, z2)| ≤ L · |z1 − z2|

for some L > 0, the unique solution y : [0, 1]→ R of the differential equation

y′(x) = f(x, y(x)), y(0) = 0

is polynomial-time computable.

3. FP = #P.

Acknowledgments

The first author has been supported by the National Research Foundation of South
Africa. The second author has been supported by the German Research Council
(DFG).

References

1. O. Aberth. Computable Analysis. McGraw-Hill, New York, 1980.

486 Vasco Brattka, Peter Hertling, and Klaus Weihrauch

2. K. Ambos-Spies, K. Weihrauch, and X. Zheng. Weakly computable real numbers. Jour-
nal of Complexity, 16(4):676–690, 2000.

3. A. Avizienis. Signed-digit number representations for fast parallel arithmetic. IRE
Transactions on Electronic Computers, 10:389–400, 1961.

4. G. Baigger. Die Nichtkonstruktivität des Brouwerschen Fixpunktsatzes. Arch. Math.
Logik Grundlag., 25:183–188, 1985.

5. G. Barmpalias. The approximation structure of a computably approximable real. The
Journal of Symbolic Logic, 68(3):885–922, 2003.

6. G. Beer. Topologies on Closed and Closed Convex Sets, volume 268 of Mathematics
and Its Applications. Kluwer Academic, Dordrecht, 1993.

7. I. Binder, M. Braverman, and M. Yampolsky. On computational complexity of Siegel
Julia sets. Comm. Math. Phys., 264(2):317–334, 2006.

8. E. Bishop and D. S. Bridges. Constructive Analysis, volume 279 of Grundlehren der
Mathematischen Wissenschaften. Springer, Berlin, 1985.

9. J. Blanck. Domain representations of topological spaces. Theoretical Computer Science,
247:229–255, 2000.

10. L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and Real Computation.
Springer, New York, 1998.

11. L. Blum, M. Shub, and S. Smale. On a theory of computation and complexity over the
real numbers: NP -completeness, recursive functions and universal machines. Bulletin
of the American Mathematical Society, 21(1):1–46, 1989.

12. J. M. Borwein and P. B. Borwein. Pi and the AGM. John Wiley & Sons, New York,
1987.

13. B. Branner. The Mandelbrot set. In R. L. Devaney and L. Keen, editors, Chaos and
Fractals. The Mathematics Behind the Computer Graphics, volume 39 of Proceedings
of Symposia in Applied Mathematics, pages 75–105, Providence, Rhode Island, 1989.
American Mathematical Society, 1989.

14. V. Brattka. Computable invariance. Theoretical Computer Science, 210:3–20, 1999.
15. V. Brattka. Computable versions of Baire’s category theorem. In J. Sgall, A. Pultr,

and P. Kolman, editors, Mathematical Foundations of Computer Science 2001, volume
2136 of Lecture Notes in Computer Science, pages 224–235, Berlin, 2001. Springer.
26th International Symposium, MFCS 2001, Mariánské Lázně, Czech Republic, August
27–31, 2001.

16. V. Brattka. The inversion problem for computable linear operators. In H. Alt and
M. Habib, editors, STACS 2003, volume 2607 of Lecture Notes in Computer Science,
pages 391–402, Berlin, 2003. Springer. 20th Annual Symposium on Theoretical As-
pects of Computer Science, Berlin, Germany, February 27–March 1, 2003.

17. V. Brattka. Effective Borel measurability and reducibility of functions. Mathematical
Logic Quarterly, 51(1):19–44, 2005.

18. V. Brattka. On the Borel complexity of Hahn-Banach extensions. In V. Brattka,
L. Staiger, and K. Weihrauch, editors, Proceedings of the 6th Workshop on Computabil-
ity and Complexity in Analysis, volume 120 of Electronic Notes in Theoretical Computer
Science, pages 3–16, Amsterdam, 2005. Elsevier. 6th International Workshop, CCA
2004, Wittenberg, Germany, August 16–20, 2004.

19. V. Brattka and R. Dillhage. On computable compact operators on Banach spaces. In
D. Cenzer, R. Dillhage, T. Grubba, and K. Weihrauch, editors, Proceedings of the Third
International Conference on Computability and Complexity in Analysis, volume 167 of
Electronic Notes in Theoretical Computer Science, Amsterdam, 2007. Elsevier. CCA
2006, Gainesville, Florida, November 1–5, 2006.

A Tutorial on Computable Analysis 487

20. V. Brattka and P. Hertling. Feasible real random access machines. Journal of Complexity,
14(4):490–526, 1998.

21. V. Brattka and G. Presser. Computability on subsets of metric spaces. Theoretical
Computer Science, 305:43–76, 2003.

22. V. Brattka and A. Yoshikawa. Towards computability of elliptic boundary value prob-
lems in variational formulation. Journal of Complexity, 22(6):858–880, 2006.

23. M. Braverman. Computational Complexity of Euclidean Sets: Hyperbolic Julia Sets are
Poly-Time Computable. Master thesis, Department of Computer Science, University of
Toronto, 2004.

24. M. Braverman. Hyperbolic Julia sets are poly-time computable. In V. Brattka, L. Staiger,
and K. Weihrauch, editors, Proceedings of the 6th Workshop on Computability and Com-
plexity in Analysis, volume 120 of Electronic Notes in Theoretical Computer Science,
pages 17–30, Amsterdam, 2005. Elsevier. 6th International Workshop, CCA 2004, Wit-
tenberg, Germany, August 16–20, 2004.

25. M. Braverman and S. Cook. Computing over the reals: Foundations for scientific com-
puting. Notices of the AMS, 53(3):318–329, 2006.

26. R. Brent. Fast multiple-precision evaluation of elementary functions. Journal of the
Association for Computing Machinery, 23(2):242–251, 1976.

27. D. Bridges and F. Richman. Varieties of Constructive Mathematics, volume 97 of Lon-
don Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge,
1987.

28. L. Brouwer. Collected Works, Vol. 1, Philosophy and Foundations of Mathematics.
North-Holland, Amsterdam, 1975. Heyting, A. (ed).

29. L. Brouwer. Collected Works, Vol. 2, Geometry, Analysis, Topology and Mechanics.
North-Holland, Amsterdam, 1976. Freudenthal, H. (ed).

30. C. S. Calude, P. H. Hertling, B. Khoussainov, and Y. Wang. Recursively enumerable
reals and Chaitin ω numbers. Theoretical Computer Science, 255:125–149, 2001.

31. G. Ceı̆tin. Algorithmic operators in constructive metric spaces. Tr. Mat. Inst. Steklov,
67:295–361, 1962. (in Russian, English trans. in AMS Trans. 64, 1967).

32. D. Cenzer and J. B. Remmel. Index sets for computable differential equations. Mathe-
matical Logic Quarterly, 50(4,5):329–344, 2004.

33. G. J. Chaitin. A theory of program size formally identical to information theory. Journal
of the Association for Computing Machinery, 22:329–340, 1975.

34. A. Chou and K.-I. Ko. Computational complexity of two-dimensional regions. SIAM
Journal on Computing, 24:923–947, 1995.

35. A. W. Chou and K.-I. Ko. The computational complexity of distance functions of two-
dimensional domains. Theoretical Computer Science, 337:360–369, 2005.

36. R. G. Downey, D. R. Hirschfeldt, A. Nies, and F. Stephan. Trivial reals. In R. Downey,
D. Decheng, T. S. Ping, Q. Y. Hui, and M. Yasugi, editors, Proceedings of the 7th and 8th
Asian Logic Conferences, pages 63–102, Singapore, 2003. World Scientific. 7th Con-
ference: Hsi-Tou, Taiwan, June 6–10, 1999; 8th Conference: Chongqing, China, August
29–September 2, 2002.

37. A. Edalat. Domains for computation in mathematics, physics and exact real arithmetic.
Bulletin of Symbolic Logic, 3(4):401–452, 1997.

38. M. H. Escardó. PCF extended with real numbers. In K.-I. Ko and K. Weihrauch, editors,
Computability and Complexity in Analysis, volume 190 of Informatik Berichte, pages
11–24. FernUniversität Hagen, Sept. 1995. CCA Workshop, Hagen, August 19–20,
1995.

39. H. Friedman. On the computational complexity of maximization and integration. Ad-
vances in Mathematics, 53:80–98, 1984.

488 Vasco Brattka, Peter Hertling, and Klaus Weihrauch

40. G. Gherardi. Effective Borel degrees of some topological functions. Mathematical Logic
Quarterly, 52(6):625–642, 2006.

41. A. Grzegorczyk. On the definitions of computable real continuous functions. Funda-
menta Mathematicae, 44:61–71, 1957.

42. J. Hauck. Berechenbare reelle Funktionen. Zeitschrift für Mathematische Logik und
Grundlagen der Mathematik, 19:121–140, 1973.

43. J. Hauck. Konstruktive Darstellungen reeller Zahlen und Folgen. Zeitschrift für Mathe-
matische Logik und Grundlagen der Mathematik, 24:365–374, 1978.

44. P. Hertling. A topological complexity hierarchy of functions with finite range. Tech-
nical Report 223, Centre de recerca matematica, Institut d’estudis catalans, Barcelona,
Barcelona, Oct. 1993. Workshop on Continuous Algorithms and Complexity, Barcelona,
October, 1993.

45. P. Hertling. Topological complexity with continuous operations. Journal of Complexity,
12:315–338, 1996.

46. P. Hertling. Unstetigkeitsgrade von Funktionen in der effektiven Analysis. PhD thesis,
Fachbereich Informatik, FernUniversität Hagen, 1996.

47. P. Hertling. An effective Riemann Mapping Theorem. Theoretical Computer Science,
219:225–265, 1999.

48. P. Hertling. A real number structure that is effectively categorical. Mathematical Logic
Quarterly, 45(2):147–182, 1999.

49. P. Hertling. A Banach-Mazur computable but not Markov computable function on the
computable real numbers. Annals of Pure and Applied Logic, 132(2-3):227–246, 2005.

50. P. Hertling. Is the Mandelbrot set computable? Mathematical Logic Quarterly, 51(1):5–
18, 2005.

51. M. D. Hirsch. Applications of topology to lower bound estimates in computer science.
In From Topology to Computation: Proceedings of the Smalefest, Berkeley, CA, 1990,
pages 395–418, New York, 1993. Springer.

52. C.-K. Ho. Relatively recursive reals and real functions. Theoretical Computer Science,
210(1):99–120, 1999.

53. K.-I. Ko. On the computational complexity of ordinary differential equations. Inform.
Contr., 58:157–194, 1983.

54. K.-I. Ko. Approximation to measurable functions and its relation to probabilistic com-
putation. Annals of Pure and Applied Logic, 30:173–200, 1986.

55. K.-I. Ko. Complexity Theory of Real Functions. Progress in Theoretical Computer
Science. Birkhäuser, Boston, 1991.

56. K.-I. Ko and H. Friedman. Computational complexity of real functions. Theoretical
Computer Science, 20:323–352, 1982.

57. G. Kreisel, D. Lacombe, and J. Shoenfield. Partial recursive functionals and effective op-
erations. In A. Heyting, editor, Constructivity in Mathematics, Studies in Logic and the
Foundations of Mathematics, pages 290–297, Amsterdam, 1959. North-Holland. Proc.
Colloq., Amsterdam, Aug. 26–31, 1957.

58. C. Kreitz and K. Weihrauch. Theory of representations. Theoretical Computer Science,
38:35–53, 1985.

59. B. A. Kušner. Lectures on Constructive Mathematical Analysis, volume 60 of Trans-
lations of Mathematical Monographs. American Mathematical Society, Providence,
Rhode Island, 1984.

60. A. Kučera and T. A. Slaman. Randomness and recursive enumerability. SIAM J. Com-
put., 31(1):199–211, 2001.

A Tutorial on Computable Analysis 489

61. S. Labhalla, H. Lombardi, and E. Moutai. Espaces métriques rationnellement présentés
et complexité, le cas de l’espace des fonctions réelles uniformément continues sur un
intervalle compact. Theoretical Computer Science, 250:265–332, 2001.

62. D. Lacombe. Extension de la notion de fonction récursive aux fonctions d’une ou
plusieurs variables réelles III. Comptes Rendus Académie des Sciences Paris, 241:151–
153, 1955. Théorie des fonctions.

63. S. Mazur. Computable Analysis, volume 33. Razprawy Matematyczne, Warsaw, 1963.
64. G. Metakides and A. Nerode. The introduction of non-recursive methods into mathemat-

ics. In A. Troelstra and D. v. Dalen, editors, The L.E.J. Brouwer Centenary Symposium,
volume 110 of Studies in Logic and the foundations of mathematics, pages 319–335,
Amsterdam, 1982. North-Holland. Proceedings of the conference held in Noordwijker-
hout, June 8–13, 1981.

65. G. Metakides, A. Nerode, and R. Shore. Recursive limits on the Hahn-Banach theorem.
In M. Rosenblatt, editor, Errett Bishop: Reflections on Him and His Research, volume 39
of Contemporary Mathematics, pages 85–91, Providence, Rhode Island, 1985. Ameri-
can Mathematical Society. Proceedings of the memorial meeting for Errett Bishop,
University of California, San Diego, September 24, 1983.

66. J. Miller and A. Nies. Randomness and computability: Open questions. Bull. Symb.
Logic, 12(3):390–410, 2006.

67. J. S. Miller. Pi-0-1 Classes in Computable Analysis and Topology. PhD thesis, Cornell
University, Ithaca, New York, 2002.

68. J. S. Miller. Degrees of unsolvability of continuous functions. The Journal of Symbolic
Logic, 69(2):555–584, 2004.

69. R. E. Moore. Interval Analysis. Prentice Hall, Englewood Cliffs, New Jersey, 1966.
70. Y. N. Moschovakis. Recursive metric spaces. Fundamenta Mathematicae, 55:215–238,

1964.
71. Y. N. Moschovakis. Descriptive Set Theory, volume 100 of Studies in Logic and the

Foundations of Mathematics. North-Holland, Amsterdam, 1980.
72. A. Mostowski. On computable sequences. Fundamenta Mathematicae, 44:37–51, 1957.
73. J. M. Muller. Elementary Functions. Birkhäuser, Boston, 2nd edition, 2006.
74. N. T. Müller. Subpolynomial complexity classes of real functions and real numbers. In

L. Kott, editor, Proceedings of the 13th International Colloquium on Automata, Lan-
guages, and Programming, volume 226 of Lecture Notes in Computer Science, pages
284–293, Berlin, 1986. Springer.

75. N. T. Müller. Polynomial time computation of Taylor series. In Proceedings of the 22th
JAIIO - Panel’93, Part 2, pages 259–281, 1993. Buenos Aires, 1993.

76. J. Myhill. A recursive function defined on a compact interval and having a continuous
derivative that is not recursive. Michigan Math. J., 18:97–98, 1971.

77. C. A. Neff and J. H. Reif. An efficient algorithm for the complex roots problem. Journal
of Complexity, 12:81–115, 1996.

78. V. Orevkov. A constructive mappping of the square onto itself displacing every construc-
tive point (Russian). Doklady Akademii Nauk, 152:55–58, 1963. Translated in: Soviet
Math. - Dokl., 4 (1963) 1253–1256.

79. M. B. Pour-El and J. I. Richards. The wave equation with computable inital data such
that its unique solution is not computable. Advances in Math., 39:215–239, 1981.

80. M. B. Pour-El and J. I. Richards. Computability in Analysis and Physics. Perspectives
in Mathematical Logic. Springer, Berlin, 1989.

81. R. Rettinger. A fast algorithm for Julia sets of hyperbolic rational functions. In V. Brat-
tka, L. Staiger, and K. Weihrauch, editors, Proceedings of the 6th Workshop on Com-
putability and Complexity in Analysis, volume 120 of Electronic Notes in Theoretical

490 Vasco Brattka, Peter Hertling, and Klaus Weihrauch

Computer Science, pages 145–157, Amsterdam, 2005. Elsevier. 6th International Work-
shop, CCA 2004, Wittenberg, Germany, August 16–20, 2004.

82. R. Rettinger and K. Weihrauch. The computational complexity of some Julia sets. In
M. X. Goemans, editor, Proceedings of the 35th Annual ACM Symposium on Theory of
Computing, pages 177–185, New York, 2003. ACM Press. San Diego, California, June
9–11, 2003.

83. H. Rice. Recursive real numbers. Proc. Amer. Math. Soc., 5:784–791, 1954.
84. H. Rogers. Theory of Recursive Functions and Effective Computability. McGraw-Hill,

New York, 1967.
85. N. Šanin. Constructive Real Numbers and Constructive Function Spaces, volume 21

of Translations of Mathematical Monographs. American Mathematical Society, Provi-
dence, 1968.

86. M. Schröder. Topological spaces allowing type 2 complexity theory. In K.-I. Ko and
K. Weihrauch, editors, Computability and Complexity in Analysis, volume 190 of In-
formatik Berichte, pages 41–53. FernUniversität Hagen, 1995. CCA Workshop, Hagen,
August 19–20, 1995.

87. M. Schröder. Fast online multiplication of real numbers. In R. Reischuk and M. Morvan,
editors, STACS 97, volume 1200 of Lecture Notes in Computer Science, pages 81–92,
Berlin, 1997. Springer. 14th Annual Symposium on Theoretical Aspects of Computer
Science, Lübeck, Germany, February 27–March 1, 1997.

88. M. Schröder. Online computations of differentiable functions. Theoretical Computer
Science, 219:331–345, 1999.

89. M. Schröder. Admissible representations of limit spaces. In J. Blanck, V. Brattka, and
P. Hertling, editors, Computability and Complexity in Analysis, volume 2064 of Lecture
Notes in Computer Science, pages 273–295, Berlin, 2001. Springer. 4th International
Workshop, CCA 2000, Swansea, UK, September 2000.

90. M. Schröder. Effectivity in spaces with admissible multirepresentations. Mathematical
Logic Quarterly, 48(Suppl. 1):78–90, 2002.

91. M. Schröder. Extended admissibility. Theoretical Computer Science, 284(2):519–538,
2002.

92. M. Schröder. Spaces allowing type-2 complexity theory revisited. Mathematical Logic
Quarterly, 50(4,5):443–459, 2004.

93. A. Slisenko. Examples of a nondiscontinuous but not continuous constructive operator
in a metric space. Trudy Mat. Inst. Steklov, 72:524–532, 1964. (in Russian, English
trans. in AMS Trans. 100, 1972).

94. S. Smale. On the topology of algorithms, I. Journal of Complexity, 3:81–89, 1987.
95. R. Soare. Cohesive sets and recursively enumerable Dedekind cuts. Pacific J. Math.,

31:215–231, 1969.
96. E. Specker. Nicht konstruktiv beweisbare Sätze der Analysis. The Journal of Symbolic

Logic, 14(3):145–158, 1949.
97. E. Specker. The fundamental theorem of algebra in recursive analysis. In B. Dejon and

P. Henrici, editors, Constructive Aspects of the Fundamental Theorem of Algebra, pages
321–329, London, 1969. Wiley-Interscience.

98. V. Stoltenberg-Hansen, I. Lindström, and E. Griffor. Mathematical Theory of Domains,
volume 22 of Cambrige Tracts in Theoretical Computer Science. Cambridge University
Press, Cambridge, 1994.

99. J. F. Traub, G. Wasilkowski, and H. Woźniakowski. Information-Based Complexity.
Computer Science and Scientific Computing. Academic Press, New York, 1988.

A Tutorial on Computable Analysis 491

100. A. Troelstra and D. v. Dalen. Constructivism in Mathematics, Volume 1, volume 121
of Studies in Logic and the Foundations of Mathematics. North-Holland, Amsterdam,
1988.

101. A. Troelstra and D. v. Dalen. Constructivism in Mathematics, Volume 2, volume 123
of Studies in Logic and the Foundations of Mathematics. North-Holland, Amsterdam,
1988.

102. A. M. Turing. On computable numbers, with an application to the “Entscheidungsprob-
lem”. Proceedings of the London Mathematical Society, 42(2):230–265, 1936.

103. A. M. Turing. On computable numbers, with an application to the “Entscheidungsprob-
lem”. A correction. Proceedings of the London Mathematical Society, 43(2):544–546,
1937.

104. V. Vassiliev. Cohomology of braid groups and the complexity of algorithms. Funkt-
sional. Anal. i Prilozhen., 22(3):15 – 24, 1989. Englische Übers. in Functional. Anal.
Appl., 22:182–190, 1989.

105. M. Washihara. Computability and Fréchet spaces. Mathematica Japonica, 42(1):1–13,
1995.

106. K. Weihrauch. Computability, volume 9 of EATCS Monographs on Theoretical Com-
puter Science. Springer, Berlin, 1987.

107. K. Weihrauch. On the complexity of online computations of real functions. Journal of
Complexity, 7:380–394, 1991.

108. K. Weihrauch. The TTE-interpretation of three hierarchies of omniscience principles.
Informatik Berichte 130, FernUniversität Hagen, Hagen, Sept. 1992.

109. K. Weihrauch. Computable Analysis. Springer, Berlin, 2000.
110. K. Weihrauch. Computational complexity on computable metric spaces. Mathematical

Logic Quarterly, 49(1):3–21, 2003.
111. K. Weihrauch and N. Zhong. Is wave propagation computable or can wave computers

beat the Turing machine? Proceedings of the London Mathematical Society, 85(2):312–
332, 2002.

112. H. Weyl. Randbemerkungen zu Hauptproblemen der Mathematik. Math. Zeitschrift,
20:131–150, 1924.

113. H. Woźniakowski. Why does information-based complexity use the real number model?
Theoretical Computer Science, 219:451–465, 1999.

114. M. Yasugi, T. Mori, and Y. Tsujii. Effective properties of sets and functions in metric
spaces with computability structure. Theoretical Computer Science, 219:467–486, 1999.

115. X. Zheng. Recursive approximability of real numbers. Mathematical Logic Quarterly,
48(Suppl. 1):131–156, 2002.

116. X. Zheng and R. Rettinger. Weak computability and representation of reals. Mathemat-
ical Logic Quarterly, 50(4,5):431–442, 2004.

117. X. Zheng and K. Weihrauch. The arithmetical hierarchy of real numbers. Mathematical
Logic Quarterly, 47(1):51–65, 2001.

118. N. Zhong. Recursively enumerable subsets of Rq in two computing models: Blum-
Shub-Smale machine and Turing machine. Theoretical Computer Science, 197:79–94,
1998.

119. N. Zhong and K. Weihrauch. Computability theory of generalized functions. Journal of
the Association for Computing Machinery, 50(4):469–505, 2003.

120. M. Ziegler and V. Brattka. Computability in linear algebra. Theoretical Computer Sci-
ence, 326(1–3):187–211, 2004.

A Continuous Derivative for Real-Valued
Functions

Abbas Edalat

Department of Computing, Imperial College London, London, UK
ae@doc.ic.ac.uk

Summary. We develop a notion of derivative of a real-valued function on a Banach space,
called the L-derivative, which is constructed by introducing a generalization of Lipschitz con-
stant of a map. As with the Clarke gradient, the values of the L-derivative of a function are
nonempty, weak,* compact, and convex subsets of the dual of the Banach space. The L-
derivative, however, is shown to be upper semicontinuous, a result that is not known to hold for
the Clarke gradient. We also formulate the notion of primitive maps dual to the L-derivative,
an extension of Fundamental Theorem of Calculus for the L-derivative, and a domain for com-
putation of real-valued functions on a Banach space with a corresponding notion of effectivity.
For real-valued functions on finite-dimensional Euclidean spaces, the L-derivative can be ob-
tained within an effectively given continuous domain. We also show that in finite dimensions
the L-derivative and the Clarke gradient coincide, thus providing a computable representation
for the latter in this case.

This paper is dedicated to the historical memory of Sharaf al-din Tusi (d. 1213), the
Iranian mathematician who was the first to use the derivative systematically to solve
for roots of cubic polynomials and find their maxima.

1 Introduction

The notion of derivative of functions has been the key fundamental concept in the ad-
vent and development of differential calculus and is at the basis of some of the most
crucial branches of mathematics, including ordinary and partial differential equa-
tions, dynamical systems, mathematical physics, differential geometry, and differen-
tial topology. These comprise what is often referred to as continuous mathematics,
one of the two main branches of mathematics, with discrete mathematics as the other
distinguished branch.

The first systematic use of the derivative of functions was undertaken by the Iranian
mathematician Sharaf al-din Tusi (d. 1213) who introduced a technique, which is
algebraically equivalent to what we now call the Ruffini–Horner method, for finding

494 Abbas Edalat

the roots of cubic polynomials by an iterative process using the derivative of the
polynomial [14]. Although he never put a name to it in Arabic, which like Latin later
on in Europe was the language of scholarship in the Muslim world, he also used
the derivative to find the maxima of polynomials, which until recently historians
of mathematics had attributed to the 16th century French mathematician François
Viète [15, 19]. Sharaf al-din Tusi who died only six years before the cataclysmic
Mongol invasion of Iran in 1219 is now considered to be the forerunner of algebraic
geometry.

Nearly two centuries after the ground-breaking work of Newton and Leibniz on the
foundation of differential calculus in the 17th century, modern mathematical analysis
was born with the introduction of the mathematical limit by Cauchy in the nineteenth
century, which provided a precise notion for the existence of the derivative of a func-
tion at a point. This led to new and surprising results about the derivative. In 1872,
based on what was by then a rigorous mathematical framework, Weierstrass con-
structed a continuous function that was nowhere differentiable.

In the early 20th century, the French mathematicians Gâteaux and Fréchet extended
the notion of derivative in two distinct ways to functions of infinite-dimensional Ba-
nach spaces. These higher dimensional derivatives have now applications in quantum
field theory, but like the classical derivative of a real-valued function of a single vari-
able, they may not exist and when they do exist they may not give rise to continuous
functions. For a comprehensive modern account of the various notions of derivative
in topological linear spaces see [27].

In the 1980s, Frank Clarke, motivated by problems in non-smooth analysis and con-
trol theory, introduced the notion of a generalized gradient of a function, which
is now named after him [4]. Clarke’s gradient of a locally Lipschitz real-valued
function on a Banach space always exists and is a set-valued function: on finite-
dimensional Euclidean spaces, it takes nonempty compact and convex subsets of
the Euclidean space as its values and the gradient is upper semicontinuous. On an
infinite-dimensional Banach space, the Clarke gradient is a nonempty, weak* com-
pact, and convex subset of the dual of the Banach space. It is however not known
if Clarke’s gradient is also upper semicontinuous on infinite-dimensional Banach
spaces [3].

A few decades earlier, following the seminal work of Alan Turing [24, 25] and the ad-
vent of computer science in the 1930s, computable analysis took shape in the 1950s
with the work of Grzegorczyk [17, 18]. A fundamental thesis established in the sub-
ject is that a computable function is necessarily a continuous function [21, 26]. In-
deed, if a function is to be computed at a real number, which is given as the limit of
a sequence of rational numbers, then the continuity of the function is required to be
able to compute the value of the function as the limit of its values at the elements of
the sequence.

Since the derivative of functions plays a fundamental role in mathematics, one
would expect a real interest in a notion of a derivative that is always continuous

A Continuous Derivative for Real-Valued Functions 495

in computability theory. However, surprisingly, no attempt was made to develop a
continuous derivative for functions and the work of Clarke went unnoticed by re-
searchers in computable analysis, who have only worked with the classical derivative
of functions.

A new approach to differential calculus based on mathematical structures in com-
puter science, called domains [6, 2, 16], was introduced in [9, 10] first for real-valued
functions of a real variable and then for multivariable functions. The motivation here
has arisen from computer science and computable analysis to formulate and use, in
particular, a notion of continuous derivative for functions.

In the domain-theoretic framework, a continuous derivative for functions, a corre-
sponding notion of primitive maps, an extension of fundamental theorem of calcu-
lus, and a domain for differentiable functions have been developed. These have led
to data types for presenting differentiable functions and solving ordinary differential
equations [7, 11], a constructive version of the inverse and implicit function theo-
rems [12], and a denotational semantics for hybrid systems [13].

The concept of a derivative of a real-valued function that was developed in [10]
depends, somewhat unsatisfactorily, on the choice of the coordinate system used. In
fact, the value of the derivative of a locally Lipschitz real valued function on a finite
Euclidean space turns out to be the smallest hyperrectangle, with edges parallel to
the given coordinate axes, containing Clarke’s gradient.

In this paper, inspired by the above domain-theoretic framework, we introduce a
coordinate free approach to develop the notion of the L-derivative of a real-valued
function on a Banach space; it is constructed by formulating a generalized Lipschitz
property of functions. The local generalized Lipschitz properties of the function,
which provide finitary information about the rate of growth of the function in local
neighbourhoods, are used to define the L-derivative of the function globally. Like
the Clarke gradient, the values of the L-derivative are nonempty, weak* compact and
convex subsets of the dual of the Banach space.

The L-derivative, developed here from the local to the global and from the discrete to
the continuum, is shown to be upper semicontinuous for real-valued locally Lipschitz
functions on any Banach space, a result that is not known for the Clarke gradient as
we have already mentioned above.

For aC1 function, i.e., one with a continuous Fréchet derivative, the L-derivative and
the Fréchet derivative coincide. More generally, when the function fails to be C1,
the L-derivative contains the Clarke gradient, and also the Gâteaux and the Fréchet
derivatives, whenever the latter two exist.

The L-derivative gives rise to an extension of the Fundamental Theorem of Calculus.
The class of functions from the Banach space into the collection of nonempty, weak*
compact and convex subsets of the dual of the Banach space, which are generated by
step functions, is dual via the L-derivative to families of real-valued, locally Lipschitz
functions on the Banach space. The L-derivative is also employed to construct a

496 Abbas Edalat

domain of computation for real-valued functions on Banach spaces that carries an
effective structure when the space is separable. These results extend those for finite
dimensions in [9, 10].

For functions on finite Euclidean spaces, the L-derivative is an element of a countably
based continuous domain that can be given an effective structure that characterizes
computable functions with computable L-derivatives. Any continuous function and
its L-derivative can be obtained as the supremum of an increasing sequence of pairs
of finitary and consistent information about the function and its L-derivative.

Although they are defined using very different techniques, we show here that in finite
dimensions the Clarke gradient and the L-derivative coincide. Thus, in finite dimen-
sions, the construction of the L-derivative provides a new computable representation
for the Clarke gradient.

1.1 Background definitions

For the remainder of this section we will present the basic background definitions of
the various notions of derivative that we will need in this paper.

Let X and Y be Banach spaces, and let U ⊂ X be an open subset. We recall that the
(one sided) directional derivative of f : U → Y at x ∈ U in the direction v ∈ X
is

F ′(x; v) = lim
t↓0

f(x+ tv)− f(x)
t

,

if the limit exists. If the above directional derivative exists for all v ∈ X , then
D(f)(x) → Y with D(f)(x)(v) := F ′(x; v) is the Gâteaux derivative of f at x
if D(f)(x) is a bounded linear map [27, 20].

The Fréchet derivative [27] of a map f : U → Y at x ∈ U , when it exists, is a
bounded linear map T : X → Y with

lim
‖x−y‖→0

‖f(x)− f(y)− T (x− y)‖
‖x− y‖ = 0.

The linear map T is denoted by f ′(x). When the Fréchet derivative exists at x, so
does the Gâteaux derivative and they are equal. However, the Fréchet derivative at
x can fail to exist even if the Gâteaux derivative exists at x and is a bounded linear
map.

From now on we will assume that Y = R. We next aim to define the generalized
(Clarke) gradient of a function [4, Chapter two] and explain its properties. Let f :
U → R be Lipschitz near x ∈ U and v ∈ X . The generalized directional derivative
of f at x in the direction of v is

f◦(x; v) = lim sup
y→x t↓0

f(y + tv)− f(y)
t

.

A Continuous Derivative for Real-Valued Functions 497

Let us denote by X∗ the dual of X , i.e., the set of real-valued continuous linear
functions on X . Unless otherwise stated, we will consider X∗ with its weak* topol-
ogy. Recall that the weak* topology is the weakest topology on X∗ in which for any
x ∈ X the map f �→ f(x)∗ → R is continuous.

The generalized gradient of f at x, denoted by ∂f(x), is the subset of X∗ given
by

{A ∈ X∗ : f◦(x; v) ≥ A(v) for all v ∈ X}.

It is shown in [4, page 27] that

• ∂f(x) is a nonempty, convex, weak* compact subset of X∗.

• For v ∈ X , we have

f◦(x; v) = max{A(v) : A ∈ ∂f(x)}.

There is an alternative characterization of the generalized gradient when X is finite
dimensional, say X = Rn. In this case, by Rademacher’s theorem [5, p 148], a lo-
cally Lipschitz map f : U → R is Fréchet differentiable almost everywhere with
respect to the Lebesgue measure. If Ωf is the nullset where f fails to be differen-
tiable, then

∂f(x) = Co{lim f ′(xi) : xi → x, xi /∈ Ωf}, (1)

where Co(S) is the convex hull of a subset S ⊂ Rn [4, page 63]. The above ex-
pression is interpreted as follows. Consider all sequences (xi)i≥0, with xi /∈ Ωf , for
i ≥ 0, which converge to x such that the limit f ′(xi) exists. Then the generalized
gradient is the convex hull of all such limits. Note that, in the above definition, since
f is locally Lipschitz at x, it is differentiable almost everywhere in a neighbourhood
of x and thus there are plenty of sequences (xm)m≥0 such that limm→∞ xm = x
and limm→∞ f ′(xm) exist.

Recall that for a Hausdorff space Z , we can define three topologies on the set of
nonempty compact subsets of Z as follows. The upper topology has as a base the
collection of subsets of the form �O = {C : C ⊆ O}, whereas the lower topology
has as a subbase the collection of subsets of the form �O = {C : C ∩ O �= ∅},
where O ⊂ Z is an open subset. The Vietoris topology is the refinement of the upper
and lower topologies and is Hausdorff, and when Z is a metric space, it is equiv-
alent to the topology induced by the Hausdorff metric dh defined by dh(A,B) =
max(d(A,B), d(B,A)), where for compact sets C and D, d(C,D) is the infimum
of positive numbers δ such that C is contained in the δ-parallel body of D defined as
Dδ = {x ∈ Z | ∃y ∈ D. d(x, y) ≤ δ}; see [23, page 737]. We write U(Z), L(Z),
and V(Z), respectively, for the three topological spaces or hyperspaces, called re-
spectively the upper space, the lower space, and the Vietoris space of Z , obtained
by considering, respectively, the upper topology, the lower topology, and the Vietoris
topology on the set of nonempty compact subsets of Z . The upper space and the
lower space are non-Hausdorff.

498 Abbas Edalat

In finite dimensions, the Clarke gradient is upper semicontinuous; i.e., it is continu-
ous with respect to the upper topology on the space of the nonempty compact subsets
of Rn. It is not known if a similar result holds in infinite dimensions [3], i.e., if the
Clarke gradient is continuous with respect to the upper topology on the space of
non-empty weak* compact subsets of X∗.

ForX = Rn, we let∇f denote the classical gradient of f , when it exists; i.e.,

(∇f)i(x) =
∂f

∂xi

= limx′
i→xi

f(x1, . . . , xi, . . . , xn)− f(x1, . . . , x
′
i, . . . , xn)

xi − x′i
,

for 1 ≤ i ≤ n. Recall that, in finite dimensions, if the (Fréchet) derivative exists at a
point, then the gradient also exists at that point and is the same linear map.

We also recall that for a function f : U → R, where U is an open subset of Rn,
Dini’s lower and upper partial derivatives, for 1 ≤ i ≤ n, are defined, respectively,
as

(∇f)l
i(x) = lim inf

x′
i→xi

f(x1, . . . , xi, . . . , xn)− f(x1, . . . , x
′
i, . . . , xn)

xi − x′i
, (2)

(∇f)u
i (x) = lim sup

x′
i→xi

f(x1, . . . , xi, . . . , xn)− f(x1, . . . , x
′
i, . . . , xn)

xi − x′i
. (3)

Note that the Dini’s lower and upper partial derivatives always exist as extended real
numbers.

2 Some properties related to the dual of a Banach space

Let X be a Banach space. For an open subset U ⊂ X , let U → R be the set of all
continuous functions of type U → R with respect to the norm topology on X . For
x ∈ X and f ∈ X∗, we write f(x) for the real number obtained by the action of f
on x and x(f) for the same real number when x is considered as a linear functional
on X∗.

The operator norm on X∗ extends pointwise to an interval valued map on the weak*
compact subsets ofX∗. Note that a weak* compact subset is bounded with respect to
the operator norm. If b is a nonempty, weak* compact and convex subset of X∗, then
‖b‖ = {‖λ‖ : λ ∈ b} with ‖b‖ = [‖b‖−, ‖b‖+] is a compact real interval. In particu-
lar, for X = R, if b ⊂ R is a compact interval, then so is |b| = {|r| : r ∈ b}.

We will consider the extension of the action of bounded linear operators on X (i.e.,
the mapping X∗ × X → R given by (f, x) �→ f(x)) to the three hyperspaces

A Continuous Derivative for Real-Valued Functions 499

to obtain three maps EU : U(X∗) × X → U(R), EL : L(X∗) × X → L(R),
and EV : V(X∗) × X → V(R), which are defined with respect to the differ-
ent three topologies but have the same action given by (b, x) �→ {f(x) : f ∈ b}.
We write b(x) = {f(x) : f ∈ b}, which is a compact subset as b is weak*
compact.

Proposition 2.1 The three maps EU , EL, and EV are each continuous separately
in their two arguments with respect to the norm topology on X .

Proof. To prove the continuity of the three maps when the second argument is fixed,
let x ∈ X . It is sufficient to show that, for any open set I ⊂ R, the preimage of �I
is open in U(X∗) and the preimage of �I is open in L(X∗). First we prove that the
preimage of �I is open in U(X∗). Let b be a nonempty, weak* compact subset of
X∗ with b(x) ⊂ I . Let ε > 0 be such that (b(x))ε ⊂ I . For any f ∈ b, the weak*
open set O(x, f, ε) = {g ∈ X∗ : |f(x) − g(x)| < ε} gives an open neighbourhood
of f . Put O(x, ε) =

⋃
f∈b O(x, f, ε). Then, we have b ⊂ O(x, ε). If c is a weak*

compact set with c ⊂ O(x, ε), then by compactness, there exists a finite number of
functions fi ∈ b (i = 1, . . . , n) such that c ⊂

⋃
1≤i≤n O(x, fi, ε). Then for any

g ∈ c, there exists i ∈ {1, . . . , n} such that fi ∈ b with |fi(x) − g(x)| < ε and
thus g(x) ∈ I . It follows that c(x) ⊂ I , and therefore, the preimage of �I is open in
U(X∗). Next we consider the preimage of �I . Let b be a nonempty, weak* compact
subset ofX∗ with b(x)∩I �= ∅. Let f ∈ bwith f(x) ∈ I take any ε > 0 such that the
ε open ball centred at f(x) is contained in I . Then, b ∩ O(x, f, ε) �= ∅, and for any
weak* compact subset c ofX∗ with c∩O(x, f, ε) �= ∅, we have c(x)∩I �= ∅, which
shows that the preimage of �I is open in L(X∗). Finally, we prove the continuity
of the three maps when the first argument b, say, is fixed. Let b(x) ∈ O where O
is either �I and �I for any open subset I ⊂ R. Since any weak* compact subset
of X∗ is bounded with respect the operator norm, ‖b‖ ≤ K for some K > 0.
Hence, for any given ε > 0 and any f ∈ b, the relation ‖x − y‖ < ε/K implies
|f(x) − f(y)| ≤ ‖f‖‖x− y‖ ≤ Kε/K = ε. From this property, the result follows
easily.

As usual, we consider the upper space U(Z) of any Hausdorff space Z partially
ordered with reverse inclusion so that U(Z) becomes a dcpo; we also include in this
dcpo a least element represented by Z . Thus, the map x �→ {x} : Z → U(Z) is a
topological embedding onto the set of maximal elements of U(Z). We identify the
input and output of this embedding and write {x} simply as x.

We also recall that the Scott topology on any dcpo has as open sets those setsO which
are upper sets (that is x ∈ O and x # y implies y ∈ O) and that are inaccessible by
directed sets; i.e., if supi∈I ai ∈ O for a directed set (ai)i∈I , then there exists i ∈ I
such that ai ∈ O [22]. A function f : D → E of dcpo’s D and E is continuous
with respect to the Scott topologies on D and E iff it is monotone (x # y implies
f(x) # f(y)) and preserves the lubs of directed subsets; i.e., for any directed set
(ai)i∈I in D, we have supi∈I f(ai) = f(supi∈I ai).

500 Abbas Edalat

We then have the following:

Proposition 2.2 [6, Propositions 3.1(iii) and 3.3]

(i) For any Hausdorff space Z , the Scott topology on U(Z) refines the upper topol-
ogy.

(ii) If Z is locally compact, then U(Z) is a continuous dcpo, on which the Scott
topology and the upper topology coincide.

Consider the poset, denoted by C(X∗), consisting of X∗ and its nonempty, weak*
compact and convex subsets partially ordered by reverse inclusion so that it has the
least element⊥ = X∗. Note that C(X∗) is a bounded complete dcpo and a sub-dcpo
of the upper space U(X∗) of X∗.

When X = R, we consider the sub-dcpo of U(R) denoted by IR of all nonempty
compact intervals of R ordered by reverse inclusion; it is a countably based bounded
complete continuous domain. We now restrict the first component of G in Proposi-
tion 2.1 to convex subsets so that the range of G will become nonempty compact
intervals. Restricting to continuity with respect to the Scott topology, Proposition 2.1
reduces to:

Corollary 2.3 The map G : C(X∗) × X → IR is continuous separately in its
two arguments with respect to the Scott topology on C(X∗) and IR and the norm
topology on X . In particular, for any directed set bi ∈ C(X∗), i ∈ I , and v ∈ X ,
we have

⋂
i∈I(bi(v)) = (

⋂
i∈I bi)(v).

The following result plays a crucial role in the construction of the L-derivative.

Theorem 2.4 Let S and T be disjoint nonempty convex subsets of the dual X∗ of a
Banach space X such that, with respect to the weak* topology, S is closed and T is
compact. Then there exists a hyperplane in X∗ induced by an element of X which
separates S and T ; i.e., there exist x ∈ X and c ∈ R such that x(f) < c for f ∈ S
and x(f) > c for f ∈ T .

Proof. Since S and T are disjoint closed sets, for each λ ∈ T , there exist ε > 0
and a finite number of elements x1, . . . xn ∈ X such that the open neighbourhood
of λ defined by {α : |xj(α) − xj(λ)| < ε for 1 ≤ j ≤ n} is disjoint from S.
By compactness of T we can find a finite number of functionals, say, λi ∈ X∗

(1 ≤ i ≤ m) and elements xi1, xi2, . . . xini ∈ X and εi > 0 for 1 ≤ i ≤ m such
that the open subsets

Ni = {α : |xij(α)− xij(λi)| < εi, for 1 ≤ j ≤ ni},

for 1 ≤ i ≤ m, are disjoint from S and cover T . Define Φ : X∗ → Rn1+n2+···+nm

by

α �→

(x11(α), . . . , x1n1 (α); . . . ;xi1(α), . . . , xini(α); . . . ;xm1(α), . . . , xmnm(α)).

A Continuous Derivative for Real-Valued Functions 501

Then Φ(S) and Φ(T) are convex subsets of Rn1+n2+··· ,+nm and Φ(T) is compact.
Let Pi : Rn1 × · · · ×Rni × · · · ×Rnm → Rni be the projection onto Rni . Note that
Φ(T) is contained in the open subset of Rn1+···+nm given by the intersection of the
m infinite open strips Rn1 ×Rn2 × · · · ×Rni−1 ×Ri ×Rni+1 × · · · ×Rnm , where

Ri = {z : ‖z − Pi(Φ(xi)‖ < εi},

with ‖v‖ being the max norm of v ∈ Rni . Therefore, Φ(T) is disjoint from the clo-
sure of Φ(S). Note that for any two disjoint convex subsets of Rk, with one closed
and the other compact, a hyperplane in Rk separates them (the normal to such a hy-
perplane is given by the line through two boundary points of the sets, which give the
closest distance of the two sets). Thus, is a hyperplane

∑
1≤i≤m

∑
1≤j≤ni

cijzij = c

in Rn1+n2+···+nm , for some real numbers c, cij ∈ R (1 ≤ i ≤ m and 1 ≤ j ≤ ni),
separates Φ(T) from the closure of Φ(S). Let x =

∑
1≤i≤m

∑
1≤j≤ni

cijxij ∈ X .
It follows that the hyperplane x(α) = c, where α ∈ X∗, separates S and T
in X∗.

3 Ties of functions

The local differential property of a function is formalized in our framework by the
notion of an interval Lipschitz constant. Assume U ⊂ X is an open subset of a
Banach space X .

Definition 3.1 Let f be a real-valued function with domain dom(f) ⊂ U . We say
that f : dom(f) → R has an interval Lipschitz constant b ∈ C(X∗) in a convex
open subset a ⊂ dom(f) if for all x, y ∈ a, we have b(x − y) # f(x) − f(y). The
single tie δ(a, b) of a with b is the collection of all real-valued partial functions f on
U with a ⊂ dom(f) ⊂ U , which have an interval Lipschitz constant b in a. We call
a the domain of the single tie.

Since a single tie provides a local Lipschitz property for a family of functions, it is
sufficient in Definition 3.1 to restrict the domain of a single tie to a convex open
subset. As an example, if X = R2 and b is the compact rectangle b1 × b2 (with
compact intervals b1, b2 ⊂ R), the information relation above reduces to

b1(x1 − y1) + b2(x2 − y2) # f(x) − f(y).

Lemma 3.2 For b ∈ C(X∗) and z ∈ X , we have |b(z)|+ ≤ ‖b‖+‖z‖.

Proof. We have |b(z)|+ = |{f(z) : f ∈ b}|+ = {|f(z)| : f ∈ b}+ ≤ {‖f‖ : f ∈
b}+‖z‖ = ‖b‖+‖z‖.
Proposition 3.3 If f ∈ δ(a, b) for a �= ∅ and b �= ⊥, then f : a → R is Lipschitz:
for all x, y ∈ a we have |f(x)− f(y| ≤ ‖b‖+‖x− y‖.

Proof. Suppose f ∈ δ(a, b) and x, y ∈ a. It follows from f(x) − f(y) 5 b(x − y)
that |f(x)− f(y)| ≤ ‖b‖+‖x− y‖.

502 Abbas Edalat

For any topological space Z and any bounded complete dcpo D with bottom ⊥,
let Z → D be the bounded complete dcpo of Scott continuous functions from Z
to D. The domain of f : Z → D is defined as dom(f) = {x : f(x) �= ⊥}. In
particular, for any open subset a ⊂ Z and any non-bottom b ∈ D, the single step
function a↘ b : Z → D, with (a↘ b)(x) = b if x ∈ a and (a↘ b)(x) = ⊥ if
x /∈ a, is Scott continuous and has domain a. A step function is then the supremum
of any finite set of consistent single step functions. In the sequel, we consider the
dcpo U → C(X∗) of Scott continuous functions with U ⊂ X equipped with its the
norm topology.

The following proposition justifies our definition of the interval Lipschitz constant.
Let a be a convex open subset of X .

Proposition 3.4 If f : a→ R is C1(a), i.e., f is Fréchet differentiable and f ′ : a→
X∗ is continuous, then the following three conditions are equivalent: (i) f ∈ δ(a, b),
(ii) ∀z ∈ a. f ′(z) ∈ b, and (iii) a↘ b # f ′.

Proof. (i) ⇒ (ii). Suppose, for the sake of a contradiction, that for some z ∈ a, we
have L := f ′(z) /∈ b. By Theorem 2.4, there exists a unit vector s ∈ X and c ∈ R
such that (s(L))+ < c and (s(b))− > c. From f ∈ δ(a, b), we obtain for sufficiently
small h that f(z+hs)−f(z)

h ∈ s(b). But by Fréchet differentiability at z, we have

lim
h→0

∣
∣
∣∣
f(z + hs)− f(z)

h
− s(L)

∣
∣
∣∣ = 0,

which is a contradiction.

(ii) ⇒ (i). Assume x, y ∈ a. Then, since the convex set a contains the straight line
from x to y, by the mean value theorem, there exists z ∈ a such that f(x)− f(y) =
f ′(z)(x− y) ∈ b(x− y).

(iii) ⇐⇒ (ii). Obvious.

Note that the convexity of the domain of a single tie is crucial in establishing the
equivalence in Proposition 3.4.

We will now show that ties have a dual property in relation to step functions of type
U → C(X∗).

Proposition 3.5 Suppose a �= ∅ and b �= ⊥. We have δ(a, b) ⊇ δ(c, d) iff c ⊇ a and
b # d.

Proof. The “if” part follows easily from the definition of δ(a, b). To show the “only
if” part, we take any f ∈ δ(c, d) such that dom(f) = c. Then, since f ∈ δ(a, b), we
have a ⊂ dom(f) = c. On the other hand if b # d does not hold, take γ ∈ d \ b and
consider the function f : c→ R with f(x) = γ(x). Then, f ∈ δ(c, d) \ δ(a, b).
Corollary 3.6 Suppose a, c �= ∅ and b, d �= ⊥. We have δ(a, b) = δ(c, d) ⇐⇒ a =
c & b = d. Furthermore δ(a, b) ⊇ δ(c, d) iff a↘ b # c↘ d.

A Continuous Derivative for Real-Valued Functions 503

For the rest of this section, we assume we are in an infinite-dimensional Banach space
or in the finite-dimensional space Rn with n ≥ 2. The case n = 1 is completely
covered in [9].

Definition 3.7 A tie of partial real-valued functions on U is any intersection Δ =⋂
i∈I δ(ai, bi), for an arbitrary indexing set I . The domain of a nonempty tie Δ is

defined as dom(Δ) =
⋃

i∈I{ai | bi �= ⊥}.

If a nonempty tie is given by the intersection of a finite number of single ties, then
it gives us a family of functions with a finite set of consistent differential proper-
ties. Generally, a nonempty tie gives a family of functions with a consistent set of
differential properties.

Similar to Proposition 3.3, we have the following result. Recall that a function f :
U → R defined on the open set U ⊆ X is locally Lipschitz if it is Lipschitz in a
neighbourhood of any point in U .

Proposition 3.8 If Δ is a tie and f ∈ Δ, then f is locally Lipschitz on dom(Δ).

Proof. Let x ∈ dom(Δ). Then there exists a tie δ(a, b) with x ∈ a and f ∈ Δ ⊆
δ(a, b), and the result follows from Proposition 3.3.

We now collect some fundamental properties of ties, which we will use later. The
next proposition, whose proof uses Theorem 2.4, is the key technical result for the
development of our theory.

Proposition 3.9 For any indexing set I , the family of step functions (ai ↘ bi)i∈I is
consistent if

⋂
i∈I δ(ai, bi) �= ∅.

Proof. Suppose f ∈
⋂

i∈I δ(ai, bi). We will show that every finite subfamily of
(ai ↘ bi)i∈I is consistent, from which the result follows as C(X∗) is bounded com-
plete. It suffices to prove that for any finite subset J ⊆ I , we have

⋂
j∈J bj �= ∅

if
⋂

j∈J aj �= ∅. This we will show by induction on the cardinality |J | of J . For
|J | = 1, there is nothing to prove. Suppose now |J | > 1 and

⋂
j∈J aj �= ∅. Let

k ∈ J . Then by the inductive hypothesis
⋂

j∈J\{k} bj �= ∅. If
⋂

j∈J bj = ∅, then by
Theorem 2.4 there exists a vector z ∈ X and c ∈ R such that the disjoint, nonempty
compact convex sets

⋂
j∈J\{k} bj and bk are on the opposite sides of the affine space

{λ : z(λ) = c}. Take elements x, y ∈
⋂

j∈J aj such that x − y = lz for some
l > 0. It follows that the two intervals (

⋂
j∈J\{k} bj)(x − y) and bk(x − y) are

disjoint. But by our assumption that f ∈
⋂

i∈I δ(ai, bi) ⊆
⋂

j∈J δ(aj , bj), we have
bk(x − y) # f(x) − f(y) and bj(x − y) # f(x) − f(y) for j �= k, which implies
(
⋂

j∈J\{k} bj)(x− y) # f(x)− f(y), a contradiction.

Corollary 3.10 The family (ai ↘ bi)i∈I is consistent if for any finite subfamily J ⊆
I , we have

⋂
i∈J δ(ai, bi) �= ∅.

Proposition 3.11 If a↘ b # supi∈I ai ↘ bi, then δ(a, b) ⊇
⋂

i∈I δ(ai, bi).

504 Abbas Edalat

Proof. Let b #
⋂

ai⊇a bi, and assume f ∈
⋂

i∈I δ(ai, bi). Let x, y ∈ a. For each
i ∈ I with ai ⊇ a, we have

bi(x− y) # f(x)− f(y).

Therefore, we get

b(x− y) #
⋂

ai⊇a

bi(x− y) # f(x)− f(y),

as required.

Corollary 3.12 If supi∈I ai ↘ bi # supi∈J ai ↘ bi, then

⋂

i∈I

δ(ai, bi) ⊇
⋂

i∈J

δ(ai, bi).

Let (T(U),⊇) be the partial order of ties of U → X ordered by reverse inclu-
sion.

Proposition 3.13 (T(U) \ {∅},⊇) is a dcpo.

Proof. Suppose (Δj)j∈J is a directed set in (T(U) \ {∅} with respect to the partial
order ⊇; i.e., Δj1 ∩ Δj2 �= ∅ for j1, j2 ∈ J . Let Δj =

⋂
i∈Ij

δ(ai, bi), where we
assume Ij1 ∩ Ij2 = ∅ for j1 �= j2. Consider the collection (δ(ai, bi))i∈⋃ j∈J Ij

.
By Corollary 3.10, it suffices to show that any finite subfamily of this collec-
tion has a nonempty intersection. Suppose it ∈

⋃
j∈J Ij for 1 ≤ t ≤ n. Then

δ(ait , bit) ∈ Δjt for some jt ∈ J (1 ≤ t ≤ n). By assumption
⋂

1≤t≤n Δjt �= ∅.
Hence,

⋂
1≤t≤n δ(ait , bit) ⊇

⋂
1≤t≤n Δjt �= ∅.

For any topological space Z and any bounded complete dcpo D, let Z →s D be the
subset of Z → D consisting of Scott continuous functions that are supremums of
step functions; i.e., f = supi∈I ai ↘ bi for a family (ai ↘ bi)i∈I of step functions
with ai an open subset of Z and bi ∈ D. We note that Z → D is bounded, com-
plete, continuous dcpo iff the lattice of open subsets of Z is continuous [16]. Thus,
Z →s D is the whole function space Z → D iff the lattice of open subsets of Z is
continuous.

ConsiderU →s C(X∗). Since any open set a ⊂ X is the union of open balls, we can
assume without loss of generality that the open subsets ai (i ∈ I) in the expression
for f above are convex. It is easy to check that U →s C(X∗) is a dcpo.

We now show that, for any Banach space X , the set of maximal elements of U →s

C(X∗) contains the set of functions of type U → X∗, which are continuous with
respect to the norm topology on U and X∗. Recall that a metric space is separable if
it has a countable dense subset.

A Continuous Derivative for Real-Valued Functions 505

Proposition 3.14 (i) If f : U → X∗ is continuous with respect to the norm topolo-
gies on U and X∗, then f ∈ U →s C(X∗). Moreover, if X is separable with
a countable dense subset P ⊂ X , then f is the lub of single step functions of
the form a↘ b, where a is an open ball centred at a point of P with ratio-
nal radius, whereas b is a closed ball centred at a point of P with a rational
radius.

(ii) If f : U → R is continuous with respect to the norm topology on U , then f ∈
U →s IR. Moreover, if X is separable with a countable dense subset P ⊂ X ,
then f is the lub of single step functions of the form a↘ b, where a is an open
ball centred at a point of P with rational radius, whereas b is a rational compact
interval.

Proof. (i) By continuity of f , for x ∈ U and an open ball Bε(f(x)) of radius ε
around f(x), there exists an open neighbourhood a of x such that f [a] ⊂ Bε(f(x)).
Since the closed ball Bε(f(x)) is weak* compact by Alaoglu’s theorem, it follows
that a↘ Bε(f(x)) # f . Since ε > 0 is arbitrary and

⋂
ε>0Bε(f(x)) = f(x), we

conclude that f is the supremum of step functions below it. It is easy to check that
the second statement also holds.

(ii) This is proved similar to (i).

We are finally in a position to define the L-primitives of a Scott continuous function;
in fact now we can do more and define

Definition 3.15 The L-primitive map
∫

: (U →s C(X∗)) → T(U) is defined by

∫
f =

⋂

a↘ b�f

δ(a, b).

We call
∫
f the L-primitives of f . The following result depends crucially on the fact

that the domain of the L-primitive map is defined to be U →s C(X∗) rather than the
bigger function space U → C(X∗).

Proposition 3.16 If f = supi∈I ai ↘ bi, then
∫
f =

⋂
δ(ai, bi).

Proof. This follows easily from Corollary 3.12.

The above property leads us to believe that U →s C(X∗), respectively, Z → D,
may have wider applications in Banach space theory, respectively, abstract domain
theory, beyond this paper.

Proposition 3.17 The L-primitive map is continuous and onto the set of nonempty
tie.

Proof. Clearly the primitive map is monotone. Let (gi)i∈I be a directed set in U →s

C(X∗) with gi = supj∈Ii
aj ↘ bj . Then,

506 Abbas Edalat
∫

sup
i∈I

gi =
∫

sup
i∈I

sup
j∈Ii

aj ↘ bj

=
⋂

i∈I

⋂

j∈Ii

δ(aj , bj) =
⋂

i∈I

∫
gi = sup

i∈I

∫
gi.

By Proposition 3.9, any nonempty tie is the L-primitive of some element.

If X = Rn, for n ≥ 2 or if X is infinite dimensional, the L-primitive map will have
the empty tie in its range, a situation that does not occur for n = 1. This is similar to
the situation in classical analysis in which a continuous vector field in Rn for n > 1
may not be an exact differential.

Example 3.18 Let g ∈ R2 → C(R2) be the maximal function given by g(x, y) =
(g1(x, y), g2(x, y)) with g1(x, y) = 1 and g2(x, y) = x. Then ∂g1

∂y = 0 �= 1 = ∂g2
∂x ,

and it will follow as in classical analysis that
∫
g = ∅.

4 The L-derivative

Given a Scott continuous function f : U → R, the relation f ∈ δ(a, b) provides,
as we have seen, finitary information about the local interval Lipschitz properties
of f . By collecting all such local information, we obtain the complete differential
properties of f , namely its L-derivative.

Definition 4.1 The L-derivative of a continuous function f : U → R is the map

Lf : U → C(X∗),

given by
Lf = sup

f∈δ(a,b)

a↘ b.

Theorem 4.2 (i) The L-derivative is well defined and Scott continuous.

(ii) If f ∈ C1(U), then Lf = f ′.

(iii)f ∈ δ(a, b) iff a↘ b # Lf .

Proof. (i) Let the indexing set I be defined by i ∈ I ⇐⇒ f ∈ δ(ai, bi). Then⋂
i∈I δ(ai, bi) �= ∅. Hence, (ai ↘ bi)i∈I is consistent by Proposition 3.9. Therefore,

Lf = supi∈I ai ↘ bi is well defined and is Scott continuous.

(ii) By Proposition 3.4, f ∈ δ(a, b) ⇐⇒ a↘ b # f ′. Hence,

f ′ 5 sup
f∈δ(a,b)

a↘ b.

To show equality, let z ∈ U and put L := f ′(z). By the continuity of the Fréchet
derivative f ′ : U → X∗ at z, for each integer n > 0, there exists an open ball a ⊂ U

A Continuous Derivative for Real-Valued Functions 507

with z ∈ a such that f ′(x) ∈ B1/n(L) for x ∈ a, where Br(L) is the open ball of

radius r and centre L ∈ X∗. By Proposition 3.4, we have f ′ 5 Lf 5 a↘ B1/n(L),
where Br(L) is the closed ball centred at L with radius r, which is convex and
weak* compact by Alaoglu’s Theorem. Since

⋂
n≥0B1/n(L) = f ′(z), we conclude

that f ′ = Lf .

(iii) Obvious.

Since the Scott topology refines the upper topology on C(X∗), we also obtain

Corollary 4.3 The L-derivative of any continuous function X → R is upper
semicontinuous.
We now obtain the generalization of Theorem 4.2(iii) to ties, which provides a duality
between the L-derivative and the L-primitives and can be considered as a general
version of the Fundamental Theorem of Calculus.

Theorem 4.4 (Fundamental Theorem of Calculus) For any g ∈ U →s C(X∗),

f ∈
∫
g ⇐⇒ g # Lf.

Proof. Let g ∈ U →s C(X∗). Then by Theorem 4.2(iii):

f ∈
∫
g ⇐⇒ f ∈

⋂

a↘ b�g

δ(a, b)

⇐⇒ a↘ b # Lf if a↘ b # g ⇐⇒ g # Lf.

We will now show that the Gâteaux derivative, if it exists, is always in the L-
derivative.

Lemma 4.5 For any locally Lipschitz map f : U → R and any x, v ∈ X , we have

(Lf(x))(v) =
⋂
{b(v) : f ∈ δ(a, b), x ∈ a}.

Proof. This follows immediately from Corollary 2.3.

Lemma 4.6 Let U ⊂ X , x ∈ U , and f : U → R be locally Lipschitz. Then, for any
v ∈ X .

lim sup
y→x t↓0

f(y + tv)− f(y)
t

≤ (Lf(v))+,

lim inf
y→x t↓0

f(y + tv)− f(y)
t

≥ (Lf(v))−.

508 Abbas Edalat

Proof. If f ∈ δ(a, b) with x ∈ a, then for y sufficiently close to x and t > 0
sufficiently small, we have f(y + tv)− f(y) ∈ tb(v) and thus

lim sup
y→x t↓0

f(y + tv)− f(y)
t

≤ (b(v))+,

which implies

lim sup
y→x t↓0

f(y + tv)− f(y)
t

≤ inf{(b(v))+ : f ∈ δ(a, b), x ∈ a}.

Since Lf(x) =
⋂
{b : f ∈ δ(a, b), x ∈ a}, the proof of the first inequality follows

from Lemma 4.5. The second inequality is proved in a similar way.
Corollary 4.7 The Gâteaux derivative of f at x, when it exists, belongs to the
L-derivative. Similarly for the Fréchet derivative.
In order to obtain the next corollary we first need the following characterization of
the generalized gradient.

Lemma 4.8 For any locally Lipschitz function f , we have A ∈ ∂f(x) iff for all
v ∈ X ,

lim inf
y→x t↓0

f(y + tv)− f(y)
t

≤ A(v) ≤ lim sup
y→x t↓0

f(y + tv)− f(y)
t

.

Proof. The “if” part follows by definition. For the “only if” part, the second inequal-
ity is just the definition of the generalized gradient. For the first inequality, assume
A ∈ ∂f(x) and v ∈ X . Then, by the definition of the generalized gradient, with v
replaced by −v, we have

−A(v) ≤ lim sup
y→x t↓0

f(y − tv)− f(y)
t

or

A(v) ≥ lim inf
y→x t↓0

−f(y − tv) + f(y)
t

.

Setting z = y − tv, the latter inequality reduces to

A(v) ≥ lim inf
z→x t↓0

f(z + tv)− f(z)
t

,

as required.
Corollary 4.9 The generalized (Clarke) gradient is contained in the L-derivative.

Proof. This follows from Lemma 4.6 and Lemma 4.8.

We do not know if the L-derivative and the Clarke gradient coincide on an infinite-
dimensional Banach space. We do know, however, that in finite dimensions, they are
the same, as we will show in Section 8.

A Continuous Derivative for Real-Valued Functions 509

5 Domain for Lipschitz functions

We will construct a domain for locally Lipschitz functions and for C1(U). The idea
is to use step functions in U →s IR to represent the function and step functions
in U → C(X∗) to represent the differential properties of the function. Note that
a continuous partial function f of type U → R, as we have considered in defin-
ing ties of functions in Section 3, can be regarded as an element f̂ of U →s IR
with f̂(x) = f(x) if f(x) is defined and f̂(x) = ⊥ = R; otherwise, we al-
ways identify f and f̂ . Furthermore, a function f ∈ U → IR is given by a pair
of, respectively, lower and upper semicontinuous functions f−, f+ : U → R with
f(x) = [f−(x), f+(x)].

Consider the consistency relation

Cons ⊂ (U →s IR)× (U →s C(X∗)),

defined by (f, g) ∈ Cons if ↑f ∩
∫
g �= ∅. For a consistent (f, g), we think of f as

the function part or the function approximation and g as the derivative part or the
derivative approximation. We will show that the consistency relation is Scott closed.
The proofs of the rest of results in this section are essentially as in [9] for the case
of X = R. We will present them here for a general Banach space X for the sake of
completeness.

Proposition 5.1 Let g ∈ U →s C(X∗) and (fi)i∈I be a nonempty family of func-
tions fi : dom(g) → R with fi ∈

∫
g for all i ∈ I . If h1 = infi∈I fi is real-valued,

then h1 ∈
∫
g. Similarly, if h2 = supi∈I fi is real-valued, then h2 ∈

∫
g.

Proof. Suppose h1 is real-valued. Let a↘ b # g. We have fi(x)−fi(y) ∈ b(x−y)
for all i ∈ I . Thus, (b(x−y))− ≤ fi(x)−fi(y) ≤ (b(x−y))+. Thus, infi∈I fi(x) ≤
fi(y)+(b(x−y))+. Taking infimum again, we obtain infi∈I fi(x) ≤ infi∈I fi(y)+
(b(x − y))+, and hence, h1(x) − h1(y) ≤ (b(x − y))+. Similarly, (b(x − y))− ≤
h1(x) − h1(y), and the result follows. The case of h2 is similar.

LetR[0, 1] be the set of partial maps of [0, 1] into the extended real line. Consider the
two dcpo’s (R[0, 1],≤) and (R[0, 1],≥). Define the maps s : (U →s IR)× (U →s

C(X∗))→ (R,≤) and t : (U →s IR)× (U →s C(X∗)→ (R,≥) by

s : (f, g) �→ inf{h : dom(g) → R |h ∈
∫
g & h ≥ f−},

t : (f, g) �→ sup{h : dom(g) → R |h ∈
∫
g & h ≤ f+}.

We use the convention that the infimum and the supremum of the empty set are ∞
and −∞, respectively. Note that given a connected component A of dom(g) with
A ∩ dom(f) = ∅; then s(f, g)(x) = −∞ and t(s, f)(x) = ∞ for x ∈ A. In words,
s(f, g) is the least primitive map of g that is greater than the lower part of f , whereas
t(f, g) is greatest primitive map of g less than the upper part of f .

510 Abbas Edalat

Proposition 5.2 The following are equivalent:

(i) (f, g) ∈ Cons.

(ii) s(f, g) ≤ t(f, g).

(iii) There exists a locally Lipschitz function h : dom(g) → R with g # Lh and
f # h on dom(g).

Proof. If dom(f) ∩ dom(g) = ∅, then the three statements hold trivially. So assume
in the following proof that dom(f) ∩ dom(g) �= ∅.

(ii) ⇒ (i). Suppose s(f, g) ≤ t(f, g). Then, s(f, g) ∈ ↑f ∩
∫
g and hence (f, g) ∈

Cons.

(i) ⇒ (ii). Suppose (f, g) ∈ Cons. Assume h ∈ ↑f ∩
∫
g. Then, the induced map

h : dom(g)→ R satisfies h ∈
∫
g. Hence, f− ≤ h ≤ f+ and thus s(f, g) ≤ t(f, g).

(ii)⇒ (iii). Suppose s(f, g) ≤ t(f, g). Put h = s(f, g).

(iii)⇒ (ii). We have s(f, g) ≤ h ≤ t(f, g).

Moreover, s and t are well behaved:

Proposition 5.3 The maps s and t are Scott continuous.

Proof. Consider the map s. If f1 # f2 and g1 # g2, then we have
∫
g1 ⊇

∫
g2

and f−1 ≤ f−2 and it follows that s(f1, g1) ≤ s(f2, g2). Let {(fi, gi)}i∈I be a di-
rected set, and put f = supi∈I fi and g = supi∈I gi. To show the continuity of
s, we need to show that supi∈Is(fi, gi) ≥ s(f, g) on any connected component of
dom(g) =

⋃
i∈I dom(gi). Take any such connected component A ⊆ dom(g). If

A ∩ dom(f) = ∅, then s(f, g) = −∞ on A and the result follows. Assume that
A ∩ dom(f) �= ∅; i.e., domfi0 ∩ domgi0 �= ∅ for some i0 ∈ I . If s(fi, gi) = ∞ on
A ∩ dom(gi) for some i ≥ i0, then supi∈Is(fi, gi) = ∞ on A and the result fol-
lows again. Otherwise, assume without loss of generality that −∞ < s(fi, gi) <∞
on A ∩ dom(gi) for all i ∈ I . Then from (s(fi, gi))�A∈

∫
gi, it follows that ∀i ≥

j. (s(fi, gi))�A∈
∫
gj , and hence, by Proposition 5.1, (supi∈I(s(fi, gi)�A)) ∈

∫
gj .

Thus (supi∈I s(fi, gi))�A∈ supj

∫
gj =

∫
sup gj . On the other hand, s(fi, gi) ≥ f−i

on A implies supi∈I s(fi, gi) ≥ f−i on A and hence supi∈I s(fi, gi) ≥ f− on A.
This shows that s is continuous. Similarly t is continuous.

This enables us to deduce:

Corollary 5.4 The relation Cons is Scott closed.

Proof. Let (fi, gi)i∈I ⊂ (U →s IR)×(U →s CRn) be a directed set with (fi, gi) ∈
Cons for all i ∈ I . Then, by Proposition 5.2, s(fi, gi) ≤ t(fi, gi) for all i ∈ I . Hence,
s(f, g) = supi∈I s(fi, gi) ≤ infi∈I t(fi, gi) = t(f, g).

A Continuous Derivative for Real-Valued Functions 511

We can now sum up the situation for a consistent pair of function and derivative
information.

Corollary 5.5 Let (f, g) ∈ Cons. Then in each connected component A of the do-
main of definition of g that intersects the domain of definition of f , there exist two
locally Lipschitz functions s : A→ R and t : A→ R such that s, t ∈ ↑f ∩

∫
g, and

for each u ∈ ↑f ∩
∫
g, we have with s(x) ≤ u(x) ≤ t(x) for all x ∈ A.

We now can define a basic construct of this paper:

Definition 5.6 Define

D1(U) = {(f, g) ∈ (U →s IR)× (U →s C(X∗)) : (f, g) ∈ Cons}.

From Corollary 5.4, we obtain

Corollary 5.7 The poset D1(U) is a bounded complete dcpo.

Proposition 5.8 For any f ∈ (U → R), the element (f,Lf) is a maximal element
of D1(U).

Proof. By Corollary 4.4, we have f ∈
∫
Lf , and thus, (f,Lf) ∈ D1U . We now

show that (f,Lf) is maximal. If Lf # g and (f, g) ∈ D1U , then we have f ∈
∫
g,

which implies g # Lf ; i.e., g = Lf and (f,Lf) is maximal.

For a locally Lipschitz function f : U → R, the L-derivative satisfies Lf(x) �= ⊥
for all x ∈ U , whereas for a piecewise C1 function f , we further have the property
that Lf(x) is maximal except for a finite set of points.

6 L-derivative in finite dimensions

Assume X = Rn and U ⊂ Rn is an open subset. Then we can identify X∗ = X =
Rn. Moreover C(Rn) and U → C(Rn) are both countably based bounded complete
continuous dcpo’s with U →s C(Rn) = U → C(Rn).

In the finite-dimensional case, we can deduce the following proposition, which re-
lates the L-derivative to its classical counterpart. For any compact subset c ⊂ Rn,
we denote its diameter by w(c). For a nonempty compact interval c = [c−, c+] ⊂ R,
we thus have w(c) = c+ − c−. The following result generalizes Theorem 4.2(i) in
finite dimensions; we do not know whether it can be extended to infinite-dimensional
Banach spaces.

Proposition 6.1 If Lf(y) ∈ C(Rn) is maximal for some y ∈ U , then the Fréchet
derivative of f exists at y and f ′(y) = Lf(y).

512 Abbas Edalat

Proof. Put c := Lf(y) =
⋂
{b | y ∈ a & f ∈ δ(a, b)}. Let ε > 0 be given. Take

a↘ b # Lf with y ∈ a and w(b) < ε. Note that b # c and there exists δ > 0 such
that ‖x− y‖ < δ implies x ∈ a. We have b(x− y) # f(x) − f(y) for x ∈ a, and

w(b(x− y)) ≤ w(b)|x − y| ≤ ε|x− y|.

Since b(x− y) # c(x− y), we obtain |f(x)− f(y)− c(x− y)| ≤ ε|x− y| and the
result follows by the definition of Fréchet derivative.

We can now obtain the following result in finite dimensions, which is simply the
classical version of the Fundamental Theorem of Calculus.

Corollary 6.2 Suppose g : U → R is a continuous function. Then f ∈
∫
g implies

that f ′ exists in U and we have Lf = f ′ = g.

Proof. By Theorem 4.4, g # Lf , and thus, Lf = g since g is maximal. By
Proposition 6.1, we also obtain Lf = f ′.

We now consider a given Cartesian coordinate system denoted say by e with ba-
sis (e1, . . . , en). Let Qe(Rn) be the collection of all n-dimensional compact hyper-
rectangles with edges parallel with ei’s and define the rectangular L-derivative with
respect to e as

(Lf)e = sup{a↘ b : f ∈ δ(a, b) & b ∈ Qe(Rn)}.

It immediately follows from the definition that (Lf)e(y), at each point y ∈ U , is an
n-dimensional compact hyper-rectangle with edges parallel to the basis vectors ei.
Moreover, if E denotes the collection of all Cartesian coordinate systems in Rn, we
have

Proposition 6.3 For each point y ∈ U , we have

Lf(y) =
⋂

e∈E

(Lf)e(y).

For b ∈ Qe(Rn), i.e., b = b1× . . .× bn, the relation b(x− y) # f(x)− f(y), which
defines the single tie δ(a, b), can be computed in the coordinate system e simply as∑n

j=1 bj(xj − yj) # f(x)− f(y). Furthermore, if xj = yj for all j �= i, the relation
reduces to bi(xi − yi) # f(x)− f(y). This suggests a characterization of (Lf)e(y)
in terms of Dini’s derivatives; in fact, we can deduce the following result.

Proposition 6.4 The components of the rectangular L-derivative with respect to the
basis e are given by

(Lf)e
i (x) =

[
lim inf

y→x
(∇f)l

i(y), lim sup
y→x

(∇f)u
i (y)

]
,

when the two limits are finite for all i = 1, . . . , n and Lf(x) = ⊥ otherwise.

A Continuous Derivative for Real-Valued Functions 513

Proof. If f ∈ δ(a, b) for some a ⊆ U with x ∈ a and b = [b1−, b1+] × · · · ×
[bn−, bn+], then bi

− ≤ (∇f)l
i(y) ≤ (∇f)u

i (y) ≤ bi
+ for y ∈ a, and thus, bi

− ≤
lim infy→x(∇f)l

i(y) ≤ lim supy→x(∇f)u
i (y) ≤ bi

+. It follows that
[
lim inf

y→x
(∇f)l

i(y), lim sup
y→x

(∇f)u
i (y)

]
⊆ (Lf)e

i (x).

On the other hand, if lim infy→x(∇f)l
i(y) and lim supy→x(∇f)u

i (y) are finite for
all i = 1, . . . , n, then for any ε > 0, there exists an open a ⊆ U containing x such
that, for all y ∈ a and all i = 1, . . . , n,

Ki(x, ε) := lim inf
y→x

(∇f)l
i(y)− ε < (∇f)l

i(y),

Li(x, ε) := lim sup
y→x

(∇f)u
i (y) + ε > (∇f)u

i (y).

Let c be the interior of a hypercube containing xwith c ⊂ a, and fix iwith 1 ≤ i ≤ n.
By the first inequality above, we can cover c with a finite number of open hyper-
rectangles such that for any pair of points y ≥ z in each hyper-rectangle with yj = zj

for j �= i and yi ≥ zi, we have Ki(x, ε)(yi − zi) ≤ f(y)− f(z). It thus follows, by
adding a finite number of inequalities one for each open hyper-rectangle, that for all
y, z ∈ cwith yj = zj for j �= i and yi ≥ zi, we haveKi(x, ε)(yi−zi) ≤ f(y)−f(z),
and similarly, by using the second inequality above, f(y)−f(z) ≤ Li(x, ε)(yi−zi).
Thus, for all y, z ∈ c with yj = zj for j �= i, we have bi(yi − zi) # f(y) − f(z),
where bi = [Ki(x, ε), Li(x, ε)]. For any pair y, z ∈ c, consider the n + 1 points
y = p0, p1, p2, . . . pn−1, pn = z, such that pi

i = zi and pi
j = yj for j �= i. Therefore,

f(y)− f(z)

= (f(p0)− f(p1)) + (f(p1)− f(p2)) + . . .+ (f(pi) + f(pi+1))

+ · · · (f(pn)− f(pn+1)) 5
n∑

i=1

bi(yi − zi).

It follows that f ∈ δ(c, b). Since ε > 0 is arbitrary, we conclude that
[
lim inf

y→x
(∇f)l

i(y), lim sup
y→x

(∇f)u
i (y)

]
⊇ (Lf)e

i (x).

The domain-theoretic derivative developed in [10] is indeed (Lf)e, the rectangular
L-derivative with respect to a given coordinate axis e. We do not know whether there
is an analogue of the above Proposition for infinite-dimensional separable Hilbert
spaces.

7 Computability

Let Z be a topological space with a countable basis M of its open subsets and D a
bounded complete dcpo with a countable subset E ⊂ D. Let (fi)i≥0 be an effective

514 Abbas Edalat

enumeration of the class of step functions ofZ → D made from single step functions
a↘ b, where a ∈ M and b ∈ E. We say f ∈ U →s D is computable with respect
to this enumeration if there exists a total recursive function φ : N → N such that
(fφ(n))n≥0 is an increasing sequence with f = supn≥0 fφ(n).

When, in addition, Z is locally compact and D is a countably based continuous
dcpo, then Z → D is a countably based bounded complete continuous dcpo, which
can be given an effective structure. In this case, we obtain the same class of com-
putable elements with any effective change of a countable basis of D. In general,
however, the computable elements will depend on the enumeration of the countable
subset E.

Suppose now thatX is a separable Banach space, with a countable dense set P ⊂ X .
Then the collection of open balls centred at points of P with rational radii provides a
countable basis of the norm topology on X . We use the rational compact intervals as
a countable basis of IR and the collection of closed balls ofX∗ with centres at points
P with rational radii as a countable subset of C(X∗) to generate two countable sets,
S1 and S2 say, of step functions for the two dcpo’s U →s IR and U →s C(X∗). We
then obtain an enumeration (fi)i≥0 of S1 and an enumeration (gi)i≥0 of S2.

By Proposition 3.14, we know that any continuous function f : U → R and any
function g : U → C(X∗) continuous with respect to the norm topology on X and
X∗, is the supremum of step functions in S1 and S2, respectively. We say that f is
computable with respect to the enumeration (fi)i≥0, respectively, g is computable
with respect to (gi)i≥0, if f considered as an element of U → IR, respectively, g
considered as an element of U → C(X∗), is computable with respect to the enumer-
ation.

We then use an oracle to decide whether (fi, gj) ∈ Cons for i, j ≥ 0, which enables
us to construct an enumeration (hi)i≥0 of a countable set, S3 say, of step functions
ofD1(U), where hi = (fp(i), gq(i)) for i ≥ 0 with p, q : N → N total recursive func-
tions. By Proposition 3.14, we know that if f : U → R is Fréchet differentiable, then
(f, f ′) is the lub of step functions in S3. We thus say that f and its Fréchet derivative
f ′ are computable with respect to (hi)i≥0 if (f, f ′) considered as a maximal element
of D1(U) is computable with respect to this enumeration.

As we will see in the next section, whenX is finite dimensional,D1(U) can be given
an effective structure with respect to which Cons is decidable, obviating the need for
an oracle.

7.1 An effectively given domain for Lipschitz functions

In the finite-dimensional case, X = Rn, the countably based bounded complete con-
tinuous dcpo’s U → IR and U → C(Rn) each have a canonical basis, respectively,
made from single step functions a↘ b, where a is an open ball with a rational radius

A Continuous Derivative for Real-Valued Functions 515

centred at a point in U with rational coordinates and b is a rational compact inter-
val, respectively, a convex compact polyhedra in Rn with vertices having rational
coordinates.

In [10], it is shown that, when the rectangular L-derivative (Lf)e with respect to a
given coordinate axis e is used, the corresponding consistency predicate Conse, de-
fined on (U → IR) × (U → IRn) by (f, g) ∈ Conse if there exists h : U → R
such that f # h and g # (Lh)e is decidable on the basis elements. The proof of
decidability is fairly simple for n = 1 with an algorithm to test consistency, which
is linear in the total number of single step functions in the function and derivative
parts [7]. In higher dimensions, the existing proof of decidability in [10] is long and
the algorithm to test consistency is super-exponential. First, one checks, by a gen-
eralization of Green’s theorem, if

∫ e
g �= ∅ where

∫ e is the primitive map dual
to the rectangular L-derivative with respect to e; i.e., f ∈

∫ e
g if g # (Lf)e.

If the test for integrability of g is positive, then one checks if se(f, g) ≤ te(f, g)
where se and te are defined as s and t in Section 5 except that

∫ e is used in their
definitions.

The technique for proving the decidability of Conse on basis elements can be ex-
tended to prove that Cons is also decidable on basis elements of D1(U). Since the
proof and the corresponding algorithm to test consistency is very long, they will be
presented elsewhere.

Using the decidability of Cons on basis elements, we can provide an effective
structure for D1(U). In particular this will characterize real-valued functions on
U ⊂ Rn that are computable and have a computable L-derivative as pairs (f,Lf)
for which there exists a total recursive function φ : N → N with (f,Lf) =
supi≥0(fp(φ(i)), gq(φ(i))) in the notation of Section 7.

If f : U → R is Cm−1 for some open subset U ⊂ Rn, i.e., if it has continuous
Fréchet derivatives f (d) of order d with 1 ≤ d ≤ m − 1, then the L-derivative of
components of f (m−1) exists. One can extend the construction of D1(U) to higher
derivatives and build a domain Dm(U) for representing and approximating a func-
tion together with its m − 1 Fréchet derivatives and its mth L-derivative Lf (m−1).
The basis of this domain will consist of m + 1 step functions representing approxi-
mations to the function, its first m − 1 Fréchet derivatives and its mth L-derivative.
We will discuss the question of decidability of consistency for basis elements of this
domain in the final section.

8 Relation with generalized gradient

Recall that by Rademacher’s theorem [5, p 148], a function f : U → R that is Lips-
chitz in an open neighbourhood of U ⊂ Rn is differentiable almost everywhere with
respect to the n-dimensional Lebesgue measure in that neighbourhood. Let Ωf ⊆ U
denote the set of points, where f is not differentiable.

516 Abbas Edalat

We now establish the equality of the L-derivative and the generalized gradient in
finite dimensions..

Theorem 8.1 For any function f : U → R, the rectangular L-derivative with re-
spect to a given Cartesian coordinate system, at a point where the function is locally
Lipschitz, is the smallest hyper-rectangle with sides parallel to the coordinate planes
that contains the generalized gradient at that point.

Proof. Fix a Cartesian coordinate system e. By Corollary 4.9 and Proposition 6.3,
we already know that

∂f(x) ⊆ (Lf(x))e. (4)

We show that (Lf(x))e is the smallest hyper-rectangle with sides parallel to the
coordinate planes, which contains ∂f(x). Assume ε > 0 is given, 1 ≤ i ≤ n, and let
B ⊂ Rn be the unit closed ball centred at the origin. For 1 ≤ i ≤ n, let πi : Rn → R
be the projection to the i coordinate axis and consider the pointwise extension of πi

to compact subsets of Rn. From Equation 1, we have

(πi(∂f(x)))+ = lim sup{(∇f)i(y) : y → x, y /∈ Ωf}.

Thus, there exists δ > 0 such that for all y ∈ x + δB, we have (∇f)i(y) ≤
(πi(∂f(x)))+ + ε. Consider the line segment Ly = {y + tei : 0 < t < δ/2},
where ei is the unit vector in the direction of the ith coordinate axis. Since Ωf has a
zero n-dimensional Lebesgue measure in x + δB, it follows from Fubini’s theorem
that for almost all y ∈ x + δ

2B, the line segment Ly meets Ωf in a set of zero
one-dimensional Lebesgue measure. If y is such a point and 0 < t < δ/2, we obtain

f(y + tei)− f(y) =
∫ t

0

(∇f)i(y + sei) ds,

since, by Rademacher’s theorem [5, p 148], f ′ exists almost everywhere on Ly. On
the other hand, (∇f)i(y + sei) ≤ (πi(∂f(x)))+ + ε, since ‖y + sei − x‖ < δ for
0 < s < t. Thus,

f(y + tei)− f(y) ≤ t(πi(∂f(x)))+ + ε). (5)

Equation (5) holds for almost all y within δ/2 of x and for all t ∈ (0, δ/2). Since f ,
being Lipschitz, is continuous, it follows that Equation (5) holds for all y within δ/2
of x and for all t ∈ (0, δ/2). Thus, (∇f)u

i (y) ≤ (πi(∂f(x)))+ + ε for all y within
δ/2 of x, and using Proposition 6.4, we conclude that

((Lf(x))e
i)

+ = lim sup
y→x

(∇f)u
i (y) ≤ (πi(∂f(x)))+. (6)

Similarly,

((Lf(x))e
i)
− = lim inf

y→x
(∇f)l

i(y)

≥ lim inf{(∇f)i(y) : y → x, y /∈ Ωf} = (πi(∂f(x)))−. (7)

A Continuous Derivative for Real-Valued Functions 517

Comparing Equations (6) and (7) with Equation (4), it follows that ∂f(x) touches all
the 2n sides of the hyper-rectangle (Lf(x))e and the proof is complete.

Corollary 8.2 For any locally Lipschitz map f : U → R, the L-derivative and the
Clarke gradient are equal: Lf = ∂f .
Thus, in finite dimensions, the L-derivative gives a new representation for the Clarke
gradient and the construction of an effectively given domain for locally Lipschitz
functions provides a new computational framework for its applications. We note
that the proof of Theorem 8.1 uses Proposition 6.4, for which we do not know any
infinite-dimensional analogue.

9 Further work and open problems

As pointed out, it remains an open question whether the L-derivative coincides
with the Clarke gradient on infinite-dimensional Banach spaces. It is also un-
known whether the Clarke gradient is upper semicontinuous in infinite dimensions,
a property that holds for the L-derivative as we have shown in this paper. On
the other hand, it will be interesting to see whether the L-derivative can be ex-
tended to functions from a Banach space to a finite-dimensional Banach space,
for example, to the complex plane, a case which has applications in quantum field
theory.

There are quite a few unsolved problems in finite dimensions. For n = 1, the algo-
rithm for testing consistency of basis elements in D1(U) is linear as already men-
tioned. For D2(U), consistency on basis elements is decidable, but the present al-
gorithm to test it is super-exponential in the total number of single step functions
for the three approximations of the function part, the derivative part and the second
derivative part [1]. Decidability of consistency forDm(U) whenm > 2 is unknown.
For n = 2, consistency on basis elements for D1(U) is decidable, but the algorithm
to test it in [10] is super-exponential. The complexity of the consistency test in this
case is unknown as is the question of decidability of consistency of basis elements
for Dm(U) when m > 1.

Based on the domain-theoretic framework for differential calculus, one can embark
on the task of constructing a domain for orientable Euclidean manifolds, which
would extend the set-theoretic model for computational geometry and solid mod-
elling presented in [8] to the piecewise smooth setting.

Acknowledgement

I would like to thank André Lieutier and Dirk Pattinson for reading and checking
various parts of this work.

518 Abbas Edalat

References

1. S. Abolfathbeigi and M. Mahmoudi. Consistency for approximating twice different func-
tions, 2003. Manuscript in Persian, Department of Mathematical Sciences, Sharif Uni-
versity of Techonology, Tehran, Iran.

2. S. Abramsky and A. Jung. Domain theory. In S. Abramsky, D. M. Gabbay, and T. S. E.
Maibaum, editors, Handbook of Logic in Computer Science, volume 3. Clarendon Press,
1994.

3. F. H. Clarke. Private communications. Summer 2005.
4. F. H. Clarke. Optimization and Nonsmooth Analysis. Wiley, 1983.
5. F. H. Clarke, Yu. S. Ledyaev, R. J. Stern, and P. R. Wolenski. Nonsmooth Analysis and

Control Theory. Springer, 1998.
6. A. Edalat. Dynamical systems, measures and fractals via domain theory. Information and

Computation, 120(1):32–48, 1995.
7. A. Edalat, M. Krznarić, and A. Lieutier. Domain-theoretic solution of dif-

ferential equations (scalar fields). In Proceedings of MFPS XIX, volume 83
of Electronic Notes in Theoretical Computer Science, 2003. Full paper in
www.doc.ic.ac.uk/~ae/papers/scalar.ps.

8. A. Edalat and A. Lieutier. Foundation of a computable solid modelling. Theoretical
Computer Science, 284(2):319–345, 2002.

9. A. Edalat and A. Lieutier. Domain theory and differential calculus (Functions of one
variable). Mathematical Structures in Computer Science, 14(6):771–802, 2004.

10. A. Edalat, A. Lieutier, and D. Pattinson. A computational model for multi-variable differ-
ential calculus. In V. Sassone, editor, Proc. FoSSaCS 2005, volume 3441, pages 505–519,
2005.

11. A. Edalat and D. Pattinson. A domain-theoretic account of {P}icard’s theorem. LMS
Journal of Computation and Mathematics, 10:83–118, 2007.

12. A. Edalat and D. Pattinson. Inverse and implicit functions in domain theory. In P. Panan-
gaden, editor, Proc. 20th IEEE Symposium on Logic in Computer Science (LICS 2005),
pages 417–426, 2005.

13. A. Edalat and D. Pattinson. Denotational semantics of hybrid automata. In L. Aceto and
A. Ingofsdottir, editors, Proc. FoSSaCS 2006, volume 3921, pages 231–245, 2006.

14. N. Fars. Aspects analytiques dans la mathematique de shraf al-din al-tusi. Historia Sc.,
5(1), 1995.

15. N. Fars. Le calcul du maximum et la ‘derive’ selon shraf al-din al-tusi. Arabic Sci. Philos.,
5(2):219–237, 1995.

16. G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, and D. S. Scott. Con-
tinuous Lattices and Domains. Cambridge University Press, 2003.

17. A. Grzegorczyk. Computable functionals. Fund. Math., 42:168–202, 1955.
18. A. Grzegorczyk. On the definition of computable real continuous functions. Fund. Math.,

44:61–71, 1957.
19. J. P. Hogendijk. Shraf al-din al-Tusi on the number of positive roots of cubic equations.

Fund. Math., 16(1):69–85, 1989.
20. K. Lau and C. Weil. Differentiability via directional derivatives. Proceedings of American

Mathematical Society, 70(1):11–17, 1978.
21. M. B. Pour-El and J. I. Richards. Computability in Analysis and Physics. Springer-Verlag,

1988.
22. D. S. Scott. Outline of a mathematical theory of computation. In 4th Annual Princeton

Conference on Information Sciences and Systems, pages 169–176, 1970.

A Continuous Derivative for Real-Valued Functions 519

23. M. B. Smyth. Topology. In S. Abramsky, D. Gabbay, and T. S. E. Maibaum, editors,
Handbook of Logic in Computer Science, chapter 5. Oxford University Press, 1992.

24. A. Turing. On computable numbers with an application to the Entscheidungsproblem.
Proc. London Mathematical Soc., 42:230–265, 1936.

25. A. Turing. On computable numbers with an application to the Entscheidungsproblem.
Proc. London Mathematical Soc., 43:544–546, 1937.

26. K. Weihrauch. Computable Analysis (An Introduction). Springer, 2000.
27. S. Yamamuro. Differential calculus in Topological Linear Spaces, volume 374 of Lecture

Notes in Mathematics. Springer-Verlag, 1970.

Infinite Time Computable Model Theory

Joel David Hamkins∗1, Russell Miller2, Daniel Seabold3, and Steve Warner4

1 The College of Staten Island of The City University of New York, Mathematics, Staten
Island, NY 10314, U.S.A.
and
The Graduate Center of The City University of New York, Ph.D. Program in Mathematics,
New York, NY 10016, U.S.A.
jhamkins@gc.cuny.edu, http://jdh.hamkins.org

2 Queens College of The City University of New York, Mathematics, Flushing, New York
11367, U.S.A.
and
The Graduate Center of The City University of New York, Ph.D. Program in Computer
Science, New York, NY 10016, U.S.A.
Russell.Miller@qc.cuny.edu

3 Department of Mathematics, Hofstra University, Hempstead, NY 11549-1030, U.S.A.
matdes@hofstra.edu

4 Department of Mathematics, Hofstra University, Hempstead, NY 11549-1030, U.S.A.
matsjw@hofstra.edu

Summary. We introduce infinite time computable model theory, the computable model
theory arising with infinite time Turing machines, which provide infinitary notions of com-
putability for structures built on the reals R. Much of the finite time theory generalizes to the
infinite time context, but several fundamental questions, including the infinite time computable
analog of the Completeness Theorem, turn out to be independent of ZFC.

1 Introduction

Computable model theory is model theory with a view to the computability of the
structures and theories that arise (for a standard reference, see [2]). Infinite time
computable model theory, which we introduce here, carries out this program with
the infinitary notions of computability provided by infinite time Turing machines.

∗MSC: 03D60; 03D45; 03C57; 03E15. Keywords: infinite time Turing machines, com-
putable model theory. The research of the first two authors has been supported in part by
grants from the Research Foundation of CUNY, and the first author is additionally thank-
ful to the Institute for Logic, Language and Computation and the NWO (Bezoekersbeurs
B62-612) for supporting his summer 2005 stay at Universiteit van Amsterdam.

522 Joel David Hamkins, Russell Miller, Daniel Seabold, and Steve Warner

The motivation for a broader context is that, although finite time computable model
theory is necessarily limited to countable models and theories, the infinitary context
naturally allows for uncountable models and theories, while retaining the compu-
tational nature of the undertaking. Many constructions generalize from finite time
computable model theory, with structures built on N, to the infinitary theory, with
structures built on R. In this article, we introduce the basic theory and consider the
infinitary analogs of the completeness theorem, the Löwenheim–Skolem Theorem,
Myhill’s theorem, and others. It turns out that, when stated in their fully general in-
finitary forms, several of these fundamental questions are independent of ZFC. The
analysis makes use of techniques from both computability theory and set theory. This
article follows up [4].

1.1 Infinite time Turing machines

The definitive introduction to infinite time Turing machines appears in [5], but let us
quickly describe how they work. The

input:

scratch:

output:

start

1

0

0

1

0

0

1

0

0

0

0

0

1

0

0

0

0

0

· · ·

· · ·

· · ·

hardware of an infinite time Turing machine is identical to a classical (three tape)
Turing machine, with a head reading and writing 0s and 1s on the one-way infinite
tapes, following the instructions of a finite program with finitely many states. Com-
putation begins with the input on the input tape and the head on the left-most cell
in the start state. Successor steps of computation are determined by the program in
exactly the classic manner. At any limit ordinal stage, as a matter of definition, the
machine resets the head to the left-most cell, assumes the limit state, and updates the
tape so that every cell exhibits the lim sup of the previous values displayed in that
cell. This is equivalent to using the limit value, if the value displayed by the cell has
stabilized, and otherwise 1. Computation ceases only when the halt state is explicitly
obtained, and in this case, the output is whatever is written on the output tape. (If the
head falls off the tape, no output is given.) If p is a program, it computes a function
ϕp, defined by ϕp(x) = y if and only if on input x the computation determined by p
leads to output y. The natural context here for input and output is the Cantor space
ω2 of all infinite binary sequences, which we will denote by R and refer to as the set
of reals. A (partial) function f ... R → R is infinite time computable if it is ϕp for
some program p. Binary and n-ary functions can be equivalently modeled either by
adding additional input tapes or by viewing a single real as the interleaving of the
digits of n many reals. A set A ⊆ R is infinite time decidable if its characteristic
function is infinite time computable. The set A is infinite time semi-decidable if the

Infinite Time Computable Model Theory 523

function 1 � A with domain A and constant value 1 is computable. In this article, we
will freely use the terms computable and decidable to mean infinite time computable
and infinite time decidable, although we will sometimes specify “infinite time” for
clarity. When referring to the classical notions of computability, we will always say
“finite time computable” and “finite time decidable.” We regard the natural numbers
N as coded in R by identifying n with the binary sequence consisting of n ones
followed by zeros. A real is writable if it is ϕp(0) for some program p. A real is
accidentally writable if it appears on one of the tapes during any computation ϕp(0).
A real is eventually writable if it appears on the output tape of a (not necessarily
halting) computation ϕp(0), and from some point on in that computation, it is never
changed. An ordinal α is clockable if there is a computation ϕp(0) moving to the
halt state exactly on the αth computational step.

The growing body of literature on infinite time Turing machines includes [5], [13],
[12], [7], [11], [6], [3], [8], [1], [4], [14], and [10].

1.2 Basic definitions

The main idea will be that a computable model is one whose underlying set is decid-
able and whose functions and relations are uniformly computable. In order to make
this precise, let us first be more specific about our syntax and how it is represented.
A language consists of a collection of function, relation, and constant symbols, with
each function and relation symbol assigned a finite arity. In addition, every language
has the logical connective symbols ∧, ∨, ¬,→,↔, parentheses, the equality symbol
=, quantifiers ∀, ∃, variable symbols v0, v1, and so on. In finite time computable
model theory, in order to bring these syntactic objects into the realm of computabil-
ity, one views each symbol in the (countable) language as being represented by a
particular natural number, its Gödel code, so that the various syntactic objects—such
as terms, formulas, and sentences—are simply finite sequences of these codes, which
can in turn be coded with a single natural number.

Infinite time computable model theory, however, offers the possibility of uncount-
able computable models. And because we will want to consider the elementary or
atomic diagrams of such models, the possibility of uncountable languages is un-
avoidable. Clearly, we cannot expect to code such languages using Gödel codes only
in N. Therefore, we work in a more general context, where the symbols of a lan-
guage are represented with Gödel codes in R, rather than N. This conforms with the
philosophy of infinite time computability, where the fundamental inputs and outputs
of computations are real numbers. A computable presentation of a language L is the
assignment of a Gödel code �s� to every function, relation, and constant symbol s in
the language, in such a way that the set of such codes for symbols in L is decidable,
and there are computable functions telling us, given any �s�, what kind of symbol s
is and, when it is a function or relation symbol, what arity it has. We assume that the
basic logical symbols (logical connectives, = symbol, parentheses, variable symbols,
quantifiers) have simple Gödel codes in N.

524 Joel David Hamkins, Russell Miller, Daniel Seabold, and Steve Warner

Given the Gödel codes of the underlying symbols, one develops the Gödel coding
of all the usual syntactic notions. For example, a term τ is a particular kind of finite
sequence of function, constant, and variable symbols, and we may assign the Gödel
code �τ� via the usual manner of coding finite sequences of reals with reals. Similarly,
any formula ϕ in the language is a finite sequence of symbols from the language,
and we can assign it a natural Gödel code. We assume that the Gödel coding of the
language is undertaken in such a way that we can unambiguously determine whether
a given Gödel code is the code of a formula or an individual symbol, and what kind;
that from the Gödel code of a formula or term we can compute the Gödel codes of the
subformulas and subterms; and that the Gödel codes are uniquely readable. For any
computable presentation L, it follows that all the elementary syntactic notions are
computable from the Gödel codes, such as finding the inductive construction history
of a formula or term or determining whether a given occurrence of a variable in a
formula is free.

Definition 1 In the infinite time context, a computable model is a structure A =
〈A, fA, RA, cA〉f,R,c∈L in a language L, with a fixed computable presentation of
L, such that the underlying set A ⊆ R of the model is decidable and the functions,
relations, and constants of A are uniformly computable from their input and the
Gödel codes of their symbols. A structure has a computable presentation if it is
isomorphic to a computable model.

A simple recursive argument shows that the value of any term τ(�a) is uniformly
computable from its Gödel code �τ� and the input �a. It follows that one can com-
pute the truth in A of any given atomic formula. Specifically, the atomic diagram of
A is the set Δ0(A) = {ϕ[�a] | ϕ atomic,�a ∈ A<ω,A |= ϕ[�a] }, and if A is a com-
putable model, then we can decide, on input �ϕ� and �a, whether ϕ[�a] ∈ Δ0(A). More
generally, we define:

Definition 2 A model A is (infinite time) decidable if the full elementary diagram
of the structure Δ(A) = {ϕ[�a] | A |= ϕ[�a] } is infinite time decidable.

We caution the reader that in the infinite time context, a decidable model might not
be computable (see Corollary 10). This is a consequence of the phenomenon in in-
finite time computability that a function can have a decidable graph without being a
computable function. The classical algorithm to compute a function from its graph
relies on having an effective enumeration of the possible values of the function, but in
the infinite time context, we have no effective method to enumerate R. For a purely
relational model, with no function or constant symbols in the language, however,
this phenomenon is avoided and the model is computable if and only if its atomic
diagram is decidable.

Another departure from the classic theory is that every computable model A with
underlying set contained in N is decidable. The point is that the infinite time algo-
rithm can systematically check the truth of any first-order statement ϕ in A, given
the Gödel code �ϕ�, by inductively applying the Tarski definition of truth. If ϕ has
the form ∃xψ(x), then the algorithm simply checks the truth of all ψ(n) for n ∈ A.

Infinite Time Computable Model Theory 525

More generally, if an infinite time Turing machine has the capacity for a complete
search through the domain of a structure—for example if the domain consisted of a
writable set of writable reals—then we will be able effectively to carry out the Tarski
definition of truth. So one might want to regard such a situation as a special or triv-
ial case in infinite time computable model theory. We refer to such a structure as a
writable structure; a formal definition appears on page 533.

A theory (meaning any set of sentences in a fixed language) is computably axiom-
atizable if there is a theory T0, having the same consequences as T , such that the
set of Gödel codes { �ϕ� | ϕ ∈ T0 } is decidable. A theory T is decidable if the set
of Gödel codes of its consequences { �ϕ� | T - ϕ } is decidable. If the underlying
language is coded in N, then every computably axiomatizable theory is decidable,
because an infinite time algorithm is easily able to search through all proofs. More
generally, if an algorithm can write a real listing all the Gödel codes of symbols in
the language, then it can systematically generate the Gödel codes of all sentences in
that language, determine which are axioms in T0, and then generate a list of all pos-
sible proofs. This shows that any theory with a writable set of axioms has a writable
set of theorems.

1.3 Coding with reals

We would like to view our algorithms as engaging with arbitrary countable objects,
such as countable ordinals or theories, even though formally the machines treat only
infinite binary sequences. So let us introduce a method of coding. We regard any real
x ∈ R as coding a relation � on N by i � j if and only if the 〈i, j〉th bit of x is 1,
using a bijective pairing function 〈·, ·〉 on N. For every countable ordinal α, there is
such a relation � on N with 〈α,<〉 ∼= 〈A,�〉, where A is the field of �. The set WO
consists of the reals x coding such well-ordered relations �, and we refer to these as
the reals coding ordinals. This is well known to be a complete Π1

1 set of reals. One
of the early results of [5] showing the power of infinite time Turing machines is that
this set is decidable. We sketch the proof because the method will be useful for other
purposes here.

Theorem 3 ([5, Theorem 2.2]) WO is infinite time decidable.

Proof. Given a real x, we first check whether x codes a linear order �, by systemati-
cally checking all instances of transitivity, reflexivity, trichotomy, and anti-symmetry,
in ω many steps of computation. Assuming � is a linear order, we next attempt to
find the �-least element in the field of the relation. This can be done by placing a cur-
rent guess for the least element on the scratch tape and by searching for a �-smaller
element. When such a better guess is found, the algorithm overwrites it on the scratch
tape and flashes a special flag on and then off. At the next limit stage, if the flag is
on, then the guess was changed infinitely many times, and so the real is rejected,
because it does not code a well order. If the flag is off at a limit, then the guesses
stabilized on the current �-least element, which now appears on the scratch tape.

526 Joel David Hamkins, Russell Miller, Daniel Seabold, and Steve Warner

Next, the algorithm erases all mention of this element from the field of the relation
coded on the input tape and then continues to find (and subsequently erase) the next
least element, and so on. The algorithm should detect limits of limit stages, so that
the scratch tape and the flag can be accordingly reset. Eventually, the well-ordered
initial segment of � is erased from the field of the relation coded on the input tape.
By detecting when the tape is empty, the algorithm can know whether the original
real coded a well order. If not, the algorithm will detect the ill-founded part of it and
will reject it at that stage. ��

Since WO is a complete Π1
1 set, any Π1

1 question reduces to a question about WO,
and so we obtain:

Corollary 4 Any Π1
1 set is infinite time decidable. Hence, any Σ1

1 set is also decid-
able.

Any real x can be viewed as the code of an ω-sequence of reals 〈(x)n | n < ω〉 by
(x)n(m) = x(〈n,m〉). Thus, if we are also given a real z coding a relation � on N
of order type α, then any β < α is represented by some n with respect to �, and we
may view x as coding via z an α-sequence 〈xβ | β < α〉 of reals. The real xβ is
(x)n, where n is the βth element with respect to �.

More generally, any hereditarily countable set a can be coded with a real as follows.
Suppose b is any countable transitive set containing a as an element, such as the
transitive closure TC({a}), and let E be a relation on a subset A ⊆ N such that
there is an isomorphism π : 〈A,E〉 ∼= 〈b,∈〉. Since this isomorphism π must be the
Mostowski collapse of E, the set a is determined by E and the natural number n
such that π(n) = a. We view the pair 〈n,E〉, coded by a real, as representing the set
a. Of course, a set a generally has many different codes. In analogy with WO, let us
define HC to be the set of such reals coding hereditarily countable sets in this way.
Given two such codes x and y, define x ≡ y if x and y are codes for the same set,
and x ∈∗ y if the set coded by x is an element of the set coded by y.

Theorem 5 The structure 〈HC,∈∗,≡〉 is infinite time computable but not infinite
time decidable.

Proof. The elements of HC are precisely the reals coding pairs 〈n,E〉, where E is a
well-founded relation on some A ⊆ N, where A is the field of E, the natural number
n is in A, and the structure 〈A,E〉 satisfies extensionality. Thus, the set HC is Π1

1

definable and, hence, decidable. The relation x ≡ y is satisfied, where x = 〈n,E〉
and y = 〈n′, E′〉 if and only if there is an isomorphism from the part of the field of
E below n to the field of E′ below n′. This is a Σ1

1 property in the codes and, hence,
decidable. Similarly, the relation x ∈∗ y simply asserts that there is some m in the
field of E′ such that 〈n,E〉 ≡ 〈m,E′〉, which is also Σ1

1 and, hence, decidable. The
structure is not infinite time decidable since the halting problem 0� is expressible in
this language. ��

Infinite Time Computable Model Theory 527

The quotient structure HC /≡, under the induced relation∈∗, is of course isomorphic
to the transitive collection Hω1 of hereditarily countable sets.

Theorem 6 The satisfaction relation for hereditarily countable sets 〈b,∈〉 |= ϕ[�a] is
infinite time decidable, given any code 〈n,E〉 ∈ HC for b, the Gödel code �ϕ�, and
the code �n of �a with respect to E.

Proof. This is simply an instance of the earlier remark we made, that when an al-
gorithm has access to the entire domain of a structure, it can carry out the Tarski
definition of truth. In this case, the code for b effectively provides the structure 〈b,∈〉
as a subset of N. Alternatively, one could simply observe that the satisfaction relation
has complexity Δ1

1 and is therefore decidable. ��

The constructible hierarchy of Gödel is the transfinite hierarchy of sets Lα, defined
by L0 = ∅; Lα+1 is the collection of definable subsets of Lα; for limit ordinals,
Lη =

⋃
α<η Lα. The constructible universe L is the proper class

⋃
α Lα, and Gödel

proved that 〈L,∈〉 is a (class) model of ZFC + GCH and much more.

Theorem 7

1. There is an infinite time algorithm such that on input, a code for Lα for some
countable ordinal α writes a code of Lα+1.

2. There is an infinite time algorithm such that on input, a code of a countable
ordinal α writes a code of Lα.

Proof. Given a code of Lα, one divides the tape into infinitely many copies of N,
systematically considering each definition and each parameter, and by repeated ap-
plications of Theorem 6, one can write down codes for each of the definable subsets.
This produces a code for Lα+1. Given a code for α, one views N as an α-sequence
of copies of N. On each copy of N, the algorithm may iteratively apply the previous
method to produce codes for the successive new elements of Lβ for each β ≤ α.

��

The next theorem asserts that there is a real c such that an infinite time Turing ma-
chine can recognize whether a given real is c, but no algorithm can produce c on its
own. This is like a person who is able to recognize a particular song, a lost melody,
when someone else sings it, but who is unable to sing it on his or her own. The idea
of the proof leads to the concept of L-codes for sets and ordinals, of which we will
make extensive use later.

Lost Melody Theorem 8 ([5]) There is a real c such that {c} is infinite time decid-
able but c is not writable.

Proof. We sketch the proof from [5]. Results there show that every infinite time Tur-
ing machine computation either halts or repeats by some countable stage. Let β be
the supremum of the stages by which all computations of the form ϕp(0) have either

528 Joel David Hamkins, Russell Miller, Daniel Seabold, and Steve Warner

halted or repeated. (Welch proved in [13] that β = Σ, the supremum of the acci-
dentally writable ordinals.) The structure Lβ is able to carry out all the computations
ϕp(0) for any length up to β, and so the defining property of β is expressible in Lβ .
One can use the defining property of β to show that there is a map from ω unbounded
in β that is a definable subset of Lβ . This map is therefore an element of Lβ+1, and
consequently, β is countable in Lβ+1. So there is some L-least real c ∈ Lβ+1 coding
a relation of order type β. This is the real we seek.

Notice that {c} is decidable, because if we are given any candidate real c′, we can
check that it codes an ordinal β′, and if so, we can write down a code for Lβ′+1,
and check whether Lβ′+1 satisfies that β′ is the supremum of the repeat points for
all computations ϕp(0). This will be true if and only if β′ = β. Next, we check that
c′ is the least real in Lβ′+1 = Lβ+1 coding β′ = β. This will be true if and only if
c′ = c. So we can decide whether any given real is c.

Finally, c is not writable, because β is necessarily larger than every clockable ordinal
and, hence, larger than every writable ordinal. So β is not coded by any writable real.

��

Corollary 9 There is a function f that is not infinite time computable, but whose
graph is infinite time decidable.

Proof. Let f(x) = c be the constant function with value c, the lost melody real.
Since {c} is decidable, we can decide the graph of f , which consists of all pairs
(x, y) for which y = c. But f is not computable, since c �= ϕp(0) for every program
p. ��

Corollary 10 There is an infinite time decidable model that is not infinite time com-
putable.

Proof. Let A = 〈R, f〉, where f(x) = c is the constant function with value c,
given by the Lost Melody Theorem, and �f� ∈ N. This is not a computable model,
because the function f is not computable. Nevertheless, we will show that the el-
ementary diagram of A is decidable. First, we consider the atomic diagram. We
can use f(f(x)) = f(x) to reduce the complexity of terms and then observe that
f(x) = f(y) is always true and f(x) = y amounts to y = c, which is decidable. So
any atomic assertion is decidable. To decide the full elementary diagram, we observe
that it admits the effective elimination of quantifiers down to Boolean combinations
of assertions of the form x = c and x = y (plus true and false). The quantifier case
essentially amounts to observing that ∃x (x = c & x �= y) is equivalent to y �= c
and ∃x (x �= c & x �= y) is simply true. So A is decidable, but not computable,
concluding the proof.

This Corollary can also be proved by using a language with a single constant symbol
0, with �0� ∈ N. The structure B = 〈R, c〉, interpreting 0 as the Lost Melody real c,
is not a computable model because the value of the constant is not computable from
its Gödel code. But the structure B is simply an infinite model with a distinguished

Infinite Time Computable Model Theory 529

constant, which admits the elimination of quantifiers, and since one can decide all
statements of the form x = c, it follows that B has a decidable theory. ��

The idea of the Lost Melody Theorem provides a method of coding countable ordi-
nals in L with unique codes. Specifically, for any α < ωL

1 , let β be least above α
such that β is countable in Lβ+1, and let c be the L-least real in Lβ+1 coding a rela-
tion � on N with order type β. The ordinal α is represented by some natural number
n with respect to �, and so we will define 〈n, c〉 to be the L-code of α. Note that
every ordinal α that is countable in L has exactly one L-code, since α determines β,
which determines c, which determines �, which determines n. Since the L-code of
α is also a code of α in the sense of HC, we can computably determine by Theorem
5 whether α < β, given L-codes for α and β. And just as with HC in this case, we
can computably construct the isomorphism from the field of the relation coding α
to the appropriate initial segment of the field of the relation coding β, and find the
particular natural number representing α with respect to the code for β.

Lemma 11 The set of L-codes for countable ordinals is infinite time decidable.

Proof. Given a real coding a pair 〈n, c〉, we can determine whether c is the code of
a relation � on N that is a well order of some order type β. If so, we can construct a
code for Lβ+1 and check that Lβ+1 satisfies that β is countable and that the L-least
real coding a relation of order type β is c. Finally, we can check that Lβ+1 thinks
that β is least such that it satisfies that α, the ordinal coded by n with respect to �,
is countable. If all these tests are passed, then the pair 〈n, c〉 is the L-code of α. ��

More generally, we have L-codes for any set that is hereditarily countable in L.
Specifically, suppose that a is any set that is hereditarily countable in L. Let β be least
such that a ∈ Lβ and β is countable inLβ+1. It follows thatLβ is countable inLβ+1,
so there is some L-least real c coding a relation E such that 〈N, E〉 ∼= 〈Lβ ,∈〉. The
set a is represented by some natural number n with respect to E, and the L-code of a
is the pair 〈n, c〉. Let LC be the set of such L-codes for hereditarily countable sets in
L. Since these are also codes for sets in the sense of HC, it follows by Theorem 5 that
we may computably decide the relation ∈∗ on the codes induced by the ∈ relation on
the sets coded.

Theorem 12 The structure 〈LωL
1
,∈〉 has an infinite time computable presentation

as 〈LC,∈∗〉.

Proof. The set LωL
1

is precisely HCL, the sets that are hereditarily countable in L,
and this is isomorphic to 〈LC,∈∗〉 via the L-codes. The ∈∗ relation is decidable on
the L-codes, just as in Theorem 5. And the set of L-codes LC is decidable just as in
Lemma 11. ��

Similarly, using the L-codes for ordinals, we see that the structure 〈ωL
1 , <〉 has an

infinite time computable presentation.

530 Joel David Hamkins, Russell Miller, Daniel Seabold, and Steve Warner

2 Arithmetic on the real line

As a straightforward example of an infinite time computable structure, we consider
the most prominent uncountable structure in mathematics, the real line under arith-
metic.

Lemma 13 The standard structure R of the real line under addition, multiplica-
tion, subtraction, division, and the order relation < is infinite time computably pre-
sentable.

We use “the real line” to describe this structure and refer to its elements as “points,”
because elsewhere in this paper we use the term “real number” to refer to elements
of 2ω. Also, since division by zero is usually undefined, let us regard it as a function
on the computable domainR× (R− {0}).

Proof. It is straightforward to identify points x on the real line uniquely with binary
sequences C ∈ 2ω such that C(2n) = 0 for infinitely many n and C(2n + 1) = 0
for all but finitely many n and C �= 〈1000 · · · 〉. The element C corresponds to the
real point

(−1)C(0)

(∞∑

n=0

2n · C(2n+ 1) +
∞∑

n=1

C(2n)
2n

)

,

and C is called the presentation of this real point. (The condition C �= 〈1000 · · · 〉
rules out the second presentation of the point 0 as −0.) The domain of our structure
R is the set of all presentations of real points and is decidable in infinite time, since
each of the conditions can be checked in ω many steps. Also, it is easy to give a
process for deciding (in infinite time) whether two given domain elements are equal,
and if not, which is larger under <.

Of course, all of the usual arithmetic operations on these representations, such as
sum, difference, product, and quotient, have complexity (much less than) Δ1

1 in the
input, and therefore, by Corollary 4, these are all infinite time computable operations.
Nevertheless, for illustration let us show in moderate detail how to compute the sum
C′′ of two presentations C and C′ of positive real points. First, in ω many steps, we
find the greatest k > 0 such that C(2k) = C′(2k), or else we establish that there are
infinitely many such k. Then we have two cases. If there is a greatest k, then beyond
the k-th bit, C and C′ complement each other perfectly, and there are only finitely
many bits left to add. Otherwise, there are infinitely many k with C(2k) = C′(2k),
and we build the sum from the inside, by always searching for the next greater bit
k with C(2k) = C ′(2k) and computing C′′ up to that bit. (The point is that when
C(2k) = C′(2k), we know right away whether we need to “carry” a 1 from C′′(2k)
when calculatingC′′(2k−2), even without knowingC′′(2k) itself yet.) This defines
the entire sequence C ′′. Note that if the representation of the sum happens to have
C′′(2k) = 1 for a tail segment, then one must switch to the preferred representation
by changing these bits to 0 and performing an additional carry.

Infinite Time Computable Model Theory 531

Notice that each of the two cases could be carried out in finite time computability,
producing each bitC′′(n) in finitely many steps, assuming that one was given oracles
presenting C and C′. Infinite time is required only to decide which of the two cases
to use and (in the first case) to find the greatest k.

Addition of two negative real points can be defined using the above algorithm con-
jugated by the negation map x �→ −x, which is immediately seen to be computable.
To get addition of a positive to a negative, we define subtraction of a positive real C′

from another one C > C′, by taking finite approximations of the difference, adding
them to C′, and checking whether each finite approximation yields a sum > C or
≤ C.

It is tempting to bypass the discussion for subtraction by saying that the difference
C − C′ should be that domain element D such that C′ + D = C, since we have
already given a method of computing the sum of positive domain elements. How-
ever, this does not suffice to prove computability, and indeed it illustrates a funda-
mental difference between the contexts of finite and infinite time: in infinite time
computability, we may no longer have such effective search procedures. Without an
infinite-time-computable enumeration of the domain ofR, there is no guarantee that
we would ever find the element D described above, even though it must lie some-
where in the domain ofR. Therefore, it is necessary to computeD directly in infinite
time, rather than searching for a D that satisfies C ′ +D = C. Decidability of sub-
traction as a ternary relation (that is, decidability of the statement C−C′ = D) does
follow from decidability of the addition relation, which follows from computability
of addition as a function, but computability of subtraction is stronger.

For multiplication of positive domain elements C and C′, we simply multiply C by
each individual bit ofC′ (for instance, if C′(2n) = 1, then the product ofC with that
bit maps each bit of C n places to the right) and add the results together, one by one,
in ω2 many steps. Clearly each bit on the output tape does converge to a limit, since
C(2n+1) = 0 for all but finitely many n, and the final output is the product ofC and
C′. This extends easily to the case of non-positive domain elements, so multiplication
is computable. Finally, for division, we can check whether the divisor is the real point
0, and if not, we define it using the multiplication function, just as subtraction was
defined using addition. Thus division is indeed a computable function on the domain
R× (R− {0}). ��

One can expand the real field R to include all the usual functions of analysis: ex,√
x, lnx, sinx, and so on. Since (the bit values of) these functions have complexity

below Δ1
1, they are all infinite time computable by Corollary 4.

Let us turn now to the subfieldRw, consisting of those real points having a writable
presentation. It is clear from the algorithms given in the proof of Lemma 13 thatRw

is a substructure of the real lineR. Moreover, we have the following lemma.

Lemma 14 In the infinite time context, the ordered field Rw is computably pre-
sentable, and more generally, the ordered field RX

w of those real points that have

532 Joel David Hamkins, Russell Miller, Daniel Seabold, and Steve Warner

presentations writable using any oracle X ⊆ R is X-computably presentable. In
each presentation, there is a computable (resp. X-computable) function from do-
main elements to the binary expansions of the real points they represent.

Proof. The main difficulty is in getting the domain of our presentation of Rw to be
decidable. For our domain S, we take the set of pairs 〈e, c〉 ∈ ω×{c}, where c is the
Lost Melody real of Theorem 8, the eth infinite time program outputs a presentation
of a real point, and no e′ < e is the index of a program outputting the same point.
This is indeed a decidable domain: given any pair, we first check whether the second
element is c (since the set {c} is decidable), and, if so, use c to check the remaining
conditions, which we can now do because c codes an ordinal α so large that every
program that halts at all must halt by stage α, as seen in the proof of Theorem 8.

Given any two elements 〈e, c〉 and 〈e′, c〉 of S, we need to compute their sum, prod-
uct, difference, and quotient and to compute the relation <. For each of the four
operations, the proof of Lemma 13 gives a program Pe0 that writes a presentation of
the resulting real point, with e0 being infinite time computable uniformly in e and
e′. So the result of the operation is the element 〈e1, c〉, where e1 is the least index
of a program that outputs a presentation of the same real point as e0. We were given
c itself, of course, as part of the points 〈e, c〉 and 〈e′, c〉, and with c it is simple to
find the least such e1. Thus each operation is computable on the domain S. The final
claim is clear, since an element of S contains an algorithm for writing out a presen-
tation of the corresponding real point, which in turn quickly yields every digit of the
binary expansion of that point. From this, the relation < on S is easily computed.

For RX
w , one simply relativizes the entire proof (including the choice of the Lost

Melody real) to the oracle X . ��

Lemma 14 shows how the infinite time computable model theory differs from its fi-
nite time analog. Although we have proved that the ordered fieldRw of infinite time
computable reals (i.e., the writable reals) has an infinite time computable presenta-
tion, the corresponding fact in finite time is not true, for the finite time computable
reals have no finite time computable presentation.

Proposition 15 Let Rw be the ordered field of infinite time computable real points,
and let Rf be the ordered subfield of finite time computable real points. Then nei-
ther Rw nor Rf is finite time computably presentable (in domain N), but both are
computably presentable in infinite time.

Since the rational ordered field Q embeds uniquely and densely into R, it follows
that every ordered subfield F of R, such as Rw or Rf , embeds uniquely into our
presentation ofR. We show next that this unique embedding is computable.

Lemma 16 If F is any computable presentation of an ordered subfield of R, then
the unique embedding of F intoR is computable.

Proof. Given any x ∈ F, we may use the computable functions of F to systematically
compute the F-representations of the rationals m

2n , and we make comparisons of these

Infinite Time Computable Model Theory 533

rationals with x using the order of F. This allows us to know the binary representation
of x and, therefore, the representation of x in our presentation of R. Thus, we have
computed the unique embedding of F into our presentation ofR. ��

Proof of Proposition 15. An infinite time computable presentation ofRw was shown
above to exist, and Rf is an infinite time computable subset of the domain, since
infinite time Turing machines can easily simulate finite time ones.

If F were a finite time computable presentation ofRf , then given any element x ∈ F,
we could compute the n-th digit of the binary expansion of the real point corre-
sponding to F, in finite time and uniformly in x and n. If F ∼= Rf , this would give
a simultaneous uniform finite time computation of all finite time computable sets,
which of course is impossible. If F ∼= Rw, then it would give a simultaneous uni-
form finite time computation of all infinite time writable reals, which again is easy to
diagonalize against. This completes the proof of Proposition 15.
We note that the same diagonalization against finite time computable presentations
of all finite time computable sets can be used to show that there is no infinite time
writable presentation of all infinite time writable reals. Therefore we ask how it is
that Rw is infinite time computably presentable. The answer is that although the
domain of the presentation of Rw is a countable decidable set, it is not the image of
ω under any infinite time computable function. The use of the Lost Melody real c in
the domain ofRw makes this clear, and indeed, without using c or a similar element,
we could not decide in infinite time which programs output infinite time computable
reals.

A concise statement of the foregoing argument is to say that there is no writable pre-
sentation of Rw, even though there is a computable presentation. A writable struc-
ture is an infinite time computable structureA such that there exists a single writable
real r ∈ 2ω whose first row r[0] codes the entire atomic diagram of A and whose
remaining rows name all elements of the domain of A. That is,

r[0] = {�ϕ� : ϕ ∈ Da(A)},

dom(A) = {r[n] : n ∈ ω − {0}}.

(An equivalent definition requires that r[n] �= r[m] whenever 0 < n < m < 1 + |A|,
and r[m] = 0 if m > |A|.) We assume for these purposes that the language of AA is
also coded into ω, with 2n− 1 coding the constant symbol for the element named as
r[n]. Thus we have a computable enumeration of the elements ofA, from which it is
immediate that the complete diagram ofA is infinite time decidable. Since they allow
computable searches of the entire domain, writable structures behave something like
an analog to the finite structures in the classical theory.

Let us conclude this section with a brief generalization. LetRa be the structure of the
real points having an accidentally writable presentation, and similarly, letRe consist
of those having an eventually writable presentation.

534 Joel David Hamkins, Russell Miller, Daniel Seabold, and Steve Warner

Theorem 17 Rf ≺ Rw ≺ Re ≺ Ra ≺ R.

Proof. The point is that each of these structures is a real closed ordered field. Before
explaining this, let us first iron out a wrinkle with Ra. In order to see even that this
structure is closed under addition, it is useful to know that the set of accidentally
writable reals is closed under pairing. To see this, consider the algorithm that sim-
ulates all programs on input 0, and for each accidentally writable real x observed
during this master simulation, the algorithm starts another master simulation that
produces all accidentally writable reals y that appear before the first appearance of
x. Then, for each such y, our main algorithm writes a real coding the pair 〈x, y〉
on the scratch tape. This algorithm shows that if x and y are accidentally writable,
then the pair 〈x, y〉 is also accidentally writable. Using this and the observations of
Lemma 13, it now follows thatRa is a field.

Each of the fields is closed under square roots for its positive elements, since the dig-
its of the square root can be systematically computed. Also, for any odd degree poly-
nomial, one can use successive approximations (for example, by Newton’s method)
to find a computable root. Since the theory of real closed fields is model complete,
the theorem now follows. ��

One can naturally extend this theorem by oracles and have a rich lattice of relatively
computable subfields of R. Each of the extensions in the theorem is strict, by [5,
Theorem 6.15], and it follows that each is a transcendental extension of the previous.
Finally, we observe that Rw can have no writable transcendence basis over Q or
Rf , since then we would be able to produce a writable list of all writable reals,
which we have observed is impossible by a simple diagonalization. Similarly, Re

has no eventually writable transcendence basis overRw andRa has no accidentally
writable transcendence basis overRe.

3 The infinite time computable Completeness Theorem

The Completeness Theorem asserts that every consistent theory has a model. The
finite time effective version of this asserts that any finite time decidable theory has a
finite time decidable model. And in the infinite time context, at least for languages
coded in N, this proof goes through without any hitch. In fact, the infinitary context
gives a slightly stronger result:

Theorem 18 In the infinite time context, if T is a consistent theory in a computable
language coded in N and T has a computable axiomatization, then T has a decidable
computable model. In fact, such a theory has a model coded by a writable real.

Proof. The point is that the classical Henkin construction is effective for infinite time
Turing machines. Note that if T has a computable axiomatization in a language coded
in N, then it is actually decidable, since the infinite time Turing machines can search

Infinite Time Computable Model Theory 535

through all proofs in ω steps. We may assume that there is an infinite supply of new
constant symbols, by temporarily rearranging the Gödel codes of the symbols in the
original language if necessary. Enumerate the sentences in the expanded language as
〈σn | n ∈ N〉, and build a complete, consistent Henkin theory in the usual manner:
at stage n, we add σn, if this is consistent with what we have already added to T ,
or else ¬σn, if it is not. Since T is decidable, this is computable. In addition, if
σn has the form ∃xϕ(x) and we added it to the theory, then we also add ϕ(c) for
the first new constant symbol c that has not yet been considered. The result of this
construction is a complete consistent Henkin theory T̄ extending T . The theory T̄
is decidable, because for any σ, the infinite time algorithm can run the construction
until σ is considered, and answer accordingly as it was added to T̄ or not. As usual,
we may use the Henkin constants to build a model of T . Specifically, let c ≡ d
if T̄ - c = d, and define the R([�c]) ⇐⇒ T̄ - R(�c) and f([�c]) = [d] ⇐⇒
T̄ - f(�c) = d. The classical induction shows that the resulting structure MT̄ of
equivalence classes satisfies ϕ([�c]) if and only if T̄ - ϕ(�c), so this is a model of T .
Finally, for any constant symbol d, one may compute the (numerically) least element
of [d] by simply testing each of the smaller constants c to determine whether c ≡
d. Thus, by replacing each equivalence class with its least member, we construct a
computable presentation of MT̄ . Since the underlying set of this model is contained
in N, an algorithm can write down the entire structure as a writable real. ��

Many theories, including some very powerful theories, have infinite time computable
axiomatizations, and so this result provides numerous interesting decidable models.
For example, the theory of true arithmetic TA = Th(〈N,+, ·, 0, 1, <〉) is infinite
time decidable, because arithmetic truth is infinite time decidable, and so the theory
TA+{n < c | n ∈ N } is a computable axiomatization of the theory of the nonstan-
dard models of true arithmetic. Similar observations establish:

Corollary 19 There are infinite time, decidable, computable, nonstandard models
of the theories PA, TA, ZFC, ZFC + large cardinals, and so on, provided that these
theories are consistent.

The infinite time realm, therefore, lies considerably beyond the computable models
of the finite time theory. What is more, as we have emphasized, the infinite time con-
text allows for uncountable computable models and uncountable languages, which
cannot be coded in N. So Theorem 18 does not tell the full story. In the general con-
text, where languages are coded in the reals, we ask whether the full infinite time
analog of the Completeness Theorem holds:

Question 20 Does every consistent infinite time decidable theory have an infinite
time decidable model? Does every such theory have an infinite time computable
model?

One of the convenient features of the classical theory, when working with a language
coded in N, is that one can enumerate the function, relation, and constant symbols
of the language s0, s1, . . . in such a way that from any symbol sn, one can recon-
struct the list 〈sm | m ≤ n〉 of prior symbols. This is a triviality in the context of

536 Joel David Hamkins, Russell Miller, Daniel Seabold, and Steve Warner

computable languages coded in N, because we simply enumerate the symbols in the
order of their Gödel codes. Given any such code, one simply tests all the smaller
natural numbers in turn to discover the list of prior codes for symbols. But in the
uncountable context, a computable representation of a language may not have this
feature. Let us therefore define that a computable representation L of a language is
computably well presented if there is an enumeration 〈sα | α < δ〉 of all of the
function, relation, and constant symbols of the language, for some δ ≤ ω1, such
that from any �sα�, we can (uniformly, in infinite time) compute a code for the se-
quence 〈�sβ� | β ≤ α〉 of prior symbols. In this case, we can prove the infinite time
computable analog of the Completeness Theorem.

Theorem 21 Every consistent infinite time decidable theory in a computably well-
presented language has an infinite time decidable model in this language.

We begin with a few preliminary lemmas. Let us say that a computable presentation
L of a language admits a computably stratified enumeration of formulas if there is
an enumeration of all L-formulas 〈ϕα | α ≤ δ〉, for some δ ≤ ω1, such that from
the Gödel code �ϕα�, one can (uniformly in infinite time) compute a real coding the
sequence 〈�ϕβ� | β ≤ α〉 of Gödel codes of the prior formulas.

Lemma 21.1 If a language L is computably well presented, then it admits a com-
putably stratified enumeration of formulas.

Proof. Suppose that a language L is computably well presented by the enumeration
〈sα | α ≤ δ〉. Given a well-ordered list of function, relation, and constant symbols,
one can systematically produce a list of all formulas in that language, as follows.
The first ω many formulas are those not using any of the symbols; the next ω many
formulas are those using the first symbol only; the next ω many formulas use the sec-
ond symbol and possibly the first. There is a (finite time) computable list of countably
many first-order formula templates, with holes for the function, constant, and relation
symbols, and the actual formulas are obtained by plugging codes for actual function,
relation, and constant symbols (of the appropriate arity) into those holes. From the
presentation of the symbols, we systematically generate a list of all finite sequences
of the symbols, and from these and the templates, one can generate the list of all
formulas. We therefore generate the formulas in blocks of length ω, and all formulas
in the αth block are required to use the symbol sα and may use earlier symbols. This
defines the enumeration of the formulas 〈ϕα | α ≤ γ〉.

Given any formula �ϕ�, we can inspect it for the symbols s that appear in it, and from
each �s�, we can generate the corresponding list of prior symbols 〈�sβ� | β ≤ α〉,
where s = sα. By comparing the lengths of these sequences, we can tell which
symbol was the last to appear in the enumeration of L. For this maximal α, we know
that ϕ appears in the αth block of formulas. From the list of symbols 〈�sβ� | β ≤ α〉,
we can regenerate the list of formulas up to and including the αth block of formulas,
thereby producing the prior list of formulas 〈�ϕξ� | ξ ≤ η〉, where ϕ = ϕη. ��

Infinite Time Computable Model Theory 537

A fundamental construction of first-order logic is to expand a language by adding
infinitely many new constant symbols. In the context of computable model theory,
whether finite or infinite time, if the presentation of a language L already uses all
the available Gödel codes, then one is forced to consider translations of the language
in order to free up space in the Gödel codes to represent the expanded language.
For example, even in the finite time context, if one has a model in a language with
infinitely many constant symbols, and the Gödel codes of the symbols already use
up all of N, then in order to add constants to the language, one seems forced to
use a translation of the language. A given language can have many different com-
putable presentations, and in general these may not be computably equivalent. For
two presentations of the language, there may be no computable method of translat-
ing symbols or formulas from one representation to the other. (And this phenomenon
occurs already in the finite time context.) In the infinite time context, where we repre-
sent symbols with real numbers, this phenomenon can occur even in finite languages,
since the Gödel codes for a symbol may be reals that are incomparable in the infi-
nite time Turing degrees. If we have two computable presentations L and L′ of a
language, and it happens that there is a computable function mapping every L′ code
for a symbol to the L code for the same symbol, then we will say that L′ is a com-
putable translation of L. In such a case, syntactic questions about L′ can be reduced
computably to syntactic questions aboutL. This relation is not necessarily symmetric
(because in the infinite time context, a function can be computable without its inverse
being computable). If both languages are computable translations of each other, we
say that the languages are computably isomorphic translations.

Lemma 21.2 If a language L is well-presented computably, then there is a com-
putably isomorphic translation of it to a well-presented language L0, preserving the
order of the enumeration of symbols, and a well-presented expansion L1 of L0 con-
taining ω many new constant symbols cns for every symbol s of L, such that from �s�
and n, one can uniformly compute �cns� and conversely.

Proof. For each symbol s of L, let its code in L0 be obtained by simply adding a 0
to the front of �s� in L. For L1, the code of the constant symbol cns is obtained by
adding n+1 many 1s plus 0 to the front of �s� in L. Thus, from �s� inL, we can easily
compute every �cns� and �s� inL1 and vice versa. So it is clear thatL0 is a computably
isomorphic translation of the language L. The enumeration of the symbols of L1

simply replaces each symbol s of L with the block of symbols s, c0s, c1s, and so on.
From any of these symbols, we can reconstruct the prior list of symbols in L, and
from those symbols, we can reconstruct the corresponding constant symbols, so as
to generate the prior list of symbols in L1. ��

Proof of Theorem 21. We carry out the proof of Theorem 18 in this more gen-
eral context. Suppose that T is a computably axiomatized consistent theory in the
well-presented language L. Let L′ be the well-presented language of Lemma 21.2,
with infinitely many new constant symbols for each symbol of L. Because it is
well presented, this expanded language has a computably stratified enumeration

538 Joel David Hamkins, Russell Miller, Daniel Seabold, and Steve Warner

〈�ϕα� | α < δ〉 of formulas. We assume that this language is enumerated in the
manner of Lemma 21.1, in blocks of length ω containing all formulas with a given
symbol and earlier symbols. Because we arranged that every symbol s of L gives
rise to an infinite list of new constant symbols cns , we may arrange that from any
�ϕα�, we may compute uniformly the code of a distinct new constant symbol c not
appearing in any earlier ϕβ .

We now recursively build the theory T̄ in stages: at stage α, if ϕα is a sentence,
then we add it to T̄ if this remains consistent; otherwise we add ¬ϕα. In addition, if
ϕα is a sentence of the form ∃xψ(x) and we had added it to T̄ , then we also add a
sentence of the form ψ(c), where c is the distinct new constant symbol that has not
yet appeared in any earlier formula. The usual model theoretic arguments show that
T̄ is a complete, consistent Henkin theory extending T .

We argue that T̄ is decidable. Given any L′ formula ϕα, we may use the computable
stratification to write down a code of 〈�ϕβ� | β ≤ α〉. From this, we may com-
putably reconstruct T̄ up to stage α. The question of whether to add ϕβ or ¬ϕβ

at stage β reduces to a question about whether the theory constructed up to stage
β proves ¬ϕβ . But since the algorithm has a real coding the theory constructed up
to stage β, it can enumerate computably all finite combinations of the formulas it
is committed to adding to T , and check whether T proves that any of those finite
combinations of formulas proves ¬ϕβ . This is a decidable question, since T is de-
cidable and we may translate computably between the languages L and L′. Thus, T̄
is computable.

Next, we build a decidable model of T̄ . Define the equivalence relation c ≡ d ⇐⇒
T̄ - c = d, and from each equivalence class [c], select the constant cnsα

such that
the pair 〈α, n〉 is lexicographically least, where sα is the αth symbol in the original
presentation of L. The set of such least constants is decidable, because from any
constant cnsα

we may construct the list of prior symbols, and therefore the ω-blocks
of the symbols in L′, and therefore all the corresponding formulas ϕβ containing
only those symbols. By reconstructing the theory T̄ up to that point, we can tell
whether T̄ proves cnsα

= cmsξ
, for any ξ < α. So the set of such least representatives

is decidable. We may now impose the usual structure on these representatives, to get
a decidable model of T̄ . Since we have a computable isomorphism of L′ with L, it is
no problem to translate between the two languages, and so we may use the original
language presentationLwhen imposing this structure, resulting in a decidable model
of T in the original language L, as desired.
Theorem 22 If V = L, then every consistent infinite time decidable theory has an
infinite time decidable model, in a computable translation of the language.

Proof. The first step is to translate to a computably well-presented language.

Lemma 22.1 If V = L, then every computably presented language has a com-
putable translation to a computably well-presented language.

Infinite Time Computable Model Theory 539

Proof. Assume V = L, and suppose that L is a computably presented language.
Let S ⊆ R be the corresponding computable set of Gödel codes for the function,
relation, and constant symbols of L. Let 〈sα | α < δ〉 be the enumeration of the
elements of S in order type δ ≤ ω1, using the canonical L-ordering of RL. For each
α < δ, let γα be the smallest countable ordinal above α such that Lγα satisfies “ω1

exists” and sβ exists for every β ≤ α. By this latter assertion, we mean that for every
β ≤ α, the structure Lγα computes that S has at least β many elements in the L-
order. Notice that because it satisfies “ω1 exists,” this structure correctly computes all
infinite time computations for input reals that it has. Therefore, it correctly computes
S ∩ Lγα , which has 〈sβ | β ≤ α〉 as an initial segment in the L order. In particular,
〈sβ | β ≤ α〉 ∈ Lγα . Let tα be the L-code of the pair 〈α, γα〉. We will use tα to
represent the symbol coded by sα in L. Denote this new translation of the language
by L′.

First, we observe that the set { tα | α ≤ δ } is decidable. Given any real t, we can
check if it is the L-code of a pair of ordinals 〈α, γ〉 and, if so, whether γ is least such
that Lγ satisfies “ω1 exists” and sβ exists for every β ≤ α. If so, then we accept t.
Necessarily, in this case t = tα. These questions are all decidable, because we know
how to recognize an L-code for a pair of ordinals, and given the code of an ordinal
γ, we can construct a code of Lγ and then check the truth of any statement in that
structure by Theorem 6.

What is more, from tα we can construct all earlier tβ for β ≤ α, because with an
L-code for γ, we can look for the least γ′ ≤ γ such that Lγ′ satisfies “ω1 exists” and
sξ exists for all ξ ≤ β. Thus, our new language is computably well presented via
L′. Finally, L′ is a computable translation of L because from tα we can compute sα.

��

We remark that the translation from L to L′, although perhaps not a computably
isomorphic translation, is nevertheless relatively mild. Specifically, from sα and any
code for a sufficiently large ordinal, one can compute tα. In this sense, the two rep-
resentations of the language are close.

We now complete the proof of Theorem 22. Assume V = L, and suppose that T is a
consistent decidable theory in a language L. (By testing whether certain tautologies
are well formed, it follows that the language itself is computable.) By Lemma 22.1,
there is a computable translation of L to a well-presented language L′. Let T ′ be the
corresponding translation of T into this translated language. Note that T ′ remains
decidable in L′, because the question T ′ - σ′ computably reduces to a question of
the form T - σ, which is decidable. By Theorem 21, the theory T ′ has a decidable
model, as desired. ��

So it is at least consistent with ZFC that the infinite time computable Completeness
Theorem holds, if one allows computable translations of the language, and in this
sense, one may consistently hold a positive answer to Question 20. Does this set-
tle the matter? No, for we will now turn to negative instances of the Completeness

540 Joel David Hamkins, Russell Miller, Daniel Seabold, and Steve Warner

Theorem. The fact is that in some models of set theory, there are consistent decidable
theories having no decidable model, and so the infinitary computable Completeness
Theorem is actually independent of ZFC.

Theorem 23 It is relatively consistent with ZFC that there is an infinite time decid-
able theory, in a computably presented language, having no infinite time computable
or decidable model in any translation of the language (computable or not).

This theorem relies on the following fact from descriptive set theory. For a proof, see
[9, Theorem 25.23].

Lemma 23.1 (Mansfield–Solovay) If A ⊆ R is Σ1
2 and A �⊆ L, then A contains a

perfect subset.

The crucial consequence for us will be:

Lemma 23.2 If ωL
1 is countable and the CH fails, then there are no Σ1

2 sets of
size ω1. Hence, under these hypotheses, there are also no decidable sets or semi-
decidable sets of size ω1.

Proof. Every decidable or semi-decidable set A ⊆ R is Δ1
2 and, hence, Σ1

2 . If ωL
1

is countable and A ⊆ L, then A is countable. If A �⊆ L, then by Lemma 23.1, it
contains a perfect subset and, hence, has cardinality 2ω. Under ¬CH, this excludes
the possibility that A has cardinality ω1. ��

Proof of Theorem 23. Suppose that ωL
1 is countable and the CH fails. An elemen-

tary forcing argument shows that this hypothesis is relatively consistent with ZFC.
Lemma 23.2 now shows that there are no Σ1

2 sets of size ω1. Consider the follow-
ing theory, in the language with a constant cx for every x ∈ WO (for simplicity, let
�cx� = x), a binary relation ≡ and a function symbol f . The theory T is the atomic
diagram of the structure 〈WO,≡〉, where ≡ is the relation of coding the same ordi-
nal, together with the axiom asserting that f is a choice function on the equivalence
classes. That is, T contains all the atomic facts that are true about the constants cx
for x ∈ WO, plus the assertions “x ≡ f(x)” and “x ≡ y =⇒ f(x) = f(y).” This
theory is computably axiomatizable, because≡ is a decidable relation on WO. So as
a set of sentences, the axioms of T are decidable.

But actually, the theory T is fully decidable. First, we observe that it admits elim-
ination of quantifiers. The point is that T is essentially similar to the theory of an
equivalence relation with infinitely many equivalence classes, all infinite. Note that
the theory T implies f(f(x)) = f(x), and x ≡ f(y) is the same as x ≡ y. Also,
x = f(y) is equivalent to x = f(x) & x ≡ y. By combining these reductions with
the usual induction, it suffices to eliminate quantifiers from assertions of the form
∃xx ≡ y & x �≡ z & x = f(x) and ∃xx ≡ y & x �≡ z & x �= f(x). But these
are both equivalent to y �≡ z, since in the former case one may use x = f(y), and
in the latter case some x equivalent to y, other than f(y). This inductive reduction
provides a computable method of finding, for any given formula, a quantifier-free
formula that is equivalent to it under T . The point now is that any quantifier-free

Infinite Time Computable Model Theory 541

sentence is a Boolean combination of assertions about the constants cx of the form
cx ≡ cy , cx = cz , and f(cx) = cy . The first two of these are computable, since
they are equivalent to x ≡ y and x = z, respectively. The assertion f(cx) = cy
is false if x �≡ y, which is computable, and otherwise it is not settled by T , since
there are models of T where f(cx) is any desired cy with y ≡ x. For any finite list
of constants cy , it is consistent that f(cx) is equal to any of them (at most one of
them), provided x ≡ y, or none of them. Because of this, we can decide computably
whether T proves any given quantifier-free assertion in the language of T . So T is
decidable.

Finally, suppose toward contradiction that T has a computable or decidable model
M = 〈A,≡M , fM , cMx 〉x∈WO. In this case, both the graph of f and the relation
z = cMx are decidable, and so the set { f(cMx) | x ∈WO } has complexity Σ1

2 .
But this set also has cardinality ω1, contradicting Lemma 23.2. So T can have
no computable or decidable model under these set theoretic hypotheses. Since the
set theoretic hypotheses are relatively consistent with ZFC, it is relatively consis-
tent with ZFC that there is an infinite time decidable theory with no computable or
decidable model.
With Theorems 22 and 23, we have now established the following:

Theorem 24 The infinite time computable Completeness Theorem is independent of
ZFC.

For this theorem, we take the infinite time computable Completeness Theorem to be
the following assertion: every consistent decidable theory in a computably presented
language has a decidable model in a computable translation of the language.

4 The infinite time computable Löwenheim–Skolem Theorem

The classic Löwenheim–Skolem Theorem has two parts: the upward theorem asserts
that every infinite model has arbitrarily large elementary extensions, in every cardi-
nality at least as large as the original model and the language; the downward theorem
asserts that every infinite model has elementary substructures of every smaller infi-
nite cardinality at least as large as the language. Here, of course, we are interested in
the infinite time computable analogs of these assertions, which concern computable
or decidable models.

Question 25 Does every infinite time decidable model have an infinite time decid-
able elementary extension of size continuum?

Question 26 Does every infinite time decidable infinite model (in a language coded
in N, say) have a countable infinite time decidable elementary substructure?

These questions have many close variants, depending, for example, on whether the
models are decidable or computable, and on whether the languages or models are

542 Joel David Hamkins, Russell Miller, Daniel Seabold, and Steve Warner

well presented. One could ask in Question 25 merely for a proper elementary ex-
tension, or for an uncountable extension, rather than for one of size continuum, and
in Question 26, merely for a proper elementary substructure rather than for a count-
able one (when the original model is uncountable). We regard all such variations as
infinite time computable analogs of the Löwenheim–Skolem Theorem.

If the Continuum Hypothesis fails badly, then it is too much to ask for computable
models of every cardinality between ω and 2ω. To be sure, this is clearly impossible if
the continuum is too large (if 2ω ≥ ℵω1), for in this case there would be uncountably
many such intermediate cardinalities but only countably many decidable models.
More importantly, however, Lemma 23.1 shows that there can be no decidable sets of
cardinality strictly between ωL

1 and 2ω. Thus, the possible cardinalities of decidable
sets of reals are finite, countable, ωL

1 , and 2ω.

We do not know the full answers to either of the questions above, although we do
know the answers to some of the variants. For the upward version, if a model is well
presented, then we can find an infinite time decidable proper elementary extension
(see Theorem 27); if V = L, then we can arrange this extension to be uncountable
(see Theorem 28). So it is consistent that the upward Löwenheim–Skolem Theorem
holds. For the downward version, if an uncountable decidable model is well pre-
sented, then we can always find a countable decidable elementary substructure (see
Theorem 29); but if one broadens Question 26 to the case of computable models,
rather than decidable models, then we have a strong negative answer, for there is a
computable structure on R having no computable proper elementary substructures
(see Theorem 30).

In analogy with well-presented languages, let us define that an infinite time com-
putable model A = 〈A, · · · 〉 is well presented if the language of its elementary
diagram is well presented. This means that there is an enumeration 〈sα | α < δ〉, for
some δ ≤ ω1, including every Gödel code for a symbol in the language and every
element of A, such that from sα one can compute a code for 〈sβ | β ≤ α〉. The
models produced in the computable Completeness Theorem 21, for example, have
this property.

Theorem 27 If A is a well-presented infinite time decidable infinite model, then A
has a proper elementary extension with an infinite time decidable presentation.

Proof. Let T be the elementary diagram of A, in a well-presented language. Let L′
be the language of T together with new constants, as in Lemma 21.2. Let T ′ be the
theory T together with the assertion that these new constants are not equal to each
other or to the original constants. Since T is decidable, it is easy to see that T ′ is
decidable, since any question about whether T ′ proves an assertion about the new
constants can be decided by replacing them with variables and the assumption that
those variables are not equal. Thus, by Theorem 21, there is an infinite time decidable
model of T ′. Such a model provides a decidable presentation of a proper elementary
extension of A. ��

Infinite Time Computable Model Theory 543

Theorem 28 If V = L, then every infinite time decidable infinite model A ele-
mentarily embeds into an infinite time decidable model of size the continuum, in a
computable translation of the language.

Proof. Assume V = L, and suppose that A is an infinite time decidable infinite
model. We may assume, by taking a computably isomorphic copy of the language
that all the Gödel codes of symbols and elements in A begin with the digit 0. So
there are continuum many additional codes, beginning with 1, that we use as the
Gödel codes of new constant symbols. If T is the elementary diagram of A, then
let T ′ be T together with the assertion that these new constants are not equal. The
theory T ′ is decidable, because any question about whether T ′ proves an assertion
reduces to a question about whether T proves an assertion about some new arbitrary
but unequal elements. This can be decided by replacing those new constant symbols
with variable symbols plus the assertion that they are distinct. Thus, by Theorem 22,
there is a decidable model A′ |= T ′. The model A′ has size continuum because of
the continuum many new constants we added, and A embeds elementarily into A′
because A′ satisfies the elementary diagram of A. ��

We note that the graph of the elementary embedding of A into A′ is infinite time
decidable, because from the code of a symbol in the expanded language, one can
compute the code of the corresponding symbol in the original language. There seems
little reason to expect in general that this embedding should be a computable func-
tion, and it cannot be if the original presentation was not well presented.

Let us turn now to the infinite time computable analogs of the downward
Löwenheim–Skolem Theorem.

Theorem 29 If A is an uncountable, well-presented infinite time decidable model
in a language coded by a writable real, then there is an infinite time decidable,
countable elementary substructure B ≺ A.

Proof. The idea is to effectively verify the Tarski–Vaught criterion on the short-
est initial elementary cut of the well-presented enumeration of A. So, suppose that
〈aα | α < ω1〉 is the well-presented enumeration of the underlying set of A. By
classic methods, there is a closed unbounded set of countable initial segments of
this enumeration that form elementary substructures of A. Let β be least such that
B = { aα | α < β } forms an elementary substructure B ≺ A. Thus, β is least such
that the set { aα | α < β } satisfies the Tarski–Vaught criterion in A. We will argue
that B is infinite time decidable as a set. Given any aξ, we can generate the sequence
〈aα | α < ξ〉 and for each ξ′ ≤ ξ we can check whether { aα | α < ξ′ } satisfies
the Tarski–Vaught criterion in A. To check this, we use the writable real coding the
language to generate a list of all formulas ϕ in the language. For every such formula
ϕ and every finite sequence aα0 , . . . , aαn with each αi < ξ′, we use the decidability
of A to inquire whether ∃xϕ(x, aα0 , . . . , aαn) is true in A. If so, then we check
that there is some α < ξ′ with ϕ(aα, aα0 , . . . , aαn) true in A. These checks will all

544 Joel David Hamkins, Russell Miller, Daniel Seabold, and Steve Warner

be satisfied if and only if { aα | α < ξ′ } satisfies the Tarski–Vaught criterion. Con-
sequently, if such a ξ′ exists with ξ′ ≤ ξ, then by the minimality of β, it must be
that β ≤ ξ′, and so aξ is not in B. If no such ξ′ exists up to ξ, then ξ < β and so
aξ ∈ B. Therefore, as a set, B is decidable. The corresponding model B is therefore
a decidable model and a countable elementary substructure of A, as desired. ��

Finally, we have a strong violation to the infinite time computable downward
Löwenheim–Skolem Theorem, when it comes to computable models. For infinite
time Turing machines, a computation snapshot is a real coding the complete descrip-
tion of a machine configuration, namely, the program that the machine is running,
the head position, the state, and the contents of the cells.

Theorem 30 There is an infinite time computable structure with underlying set R
having no infinite time computable proper elementary substructure.

Proof. Define the relation Up(x, y) if y codes the computation sequence of program
p on input x showing it to have been accepted. That is, y codes a well-ordered se-
quence of computation snapshots 〈yα | α ≤ β〉, such that (i) the first snapshot y0 is
the starting configuration of the computation of program p on input x; (ii) successor
snapshots yα+1 are updated correctly from the prior snapshot yα and the operation
of p; (iii) limit snapshots yξ correctly show the head on the left-most cell in the limit
state, with the tape updated correctly from the prior tape values in 〈yα | α < ξ〉;
and lastly, (iv) the final snapshot yβ shows that the computation halted and accepted
the input. This is a computable property of 〈p, x, y〉, since one can computably ver-
ify that y codes such a well-ordered sequence of snapshots by counting through the
underlying order of y and systematically checking each of the requirements. So the
structureR = 〈R, Up〉p∈N is a computable structure. (One could reduce this to a fi-
nite language with a trinary predicate U(p, x, y), by regarding programs as reals and
ensuring that the programs are necessarily in any elementary substructure.)

Suppose that there is a computable proper elementary substructure A ≺ R. Let p0

be a program deciding the underlying set A ofA. Since every real a ∈ A is accepted
by p0, there will be a real y in R coding the computation sequence and witnessing
Up0(a, y). Thus, A |= ∀a ∃y Up0(a, y). By elementarity A ≺ R, we conclude that
R also satisfies this assertion. So every real is accepted by p0. Thus, A = R and the
substructure is not a proper substructure after all. ��

Since this model is only infinite time computable and not infinite time decidable (the
halting problem 0� is expressible in the Σ1 diagram), the following question remains
open:

Question 31 Is there an infinite time decidable model with underlying set R having
no proper infinite time computable elementary substructure?

Such a model would be a very strong counterexample to the infinite time computable
downward Löwenheim–Skolem Theorem.

Infinite Time Computable Model Theory 545

5 Computable quotient presentations

Recall from Definition 1 that a structure has an infinite time computable presentation
if it is isomorphic to an infinite time computable structure. Weakening this concept
slightly, let us define that a structure A has an infinite time computable quotient
presentation if there is an infinite time computable structure B = 〈B, . . .〉 and an
infinite time computable equivalence relation ≡ on B such that A is isomorphic to
the quotient structure B/≡. In particular, ≡ should be a congruence relation on B,
meaning that the functions and relations of B are well defined on the ≡-equivalence
classes [b]≡ for b ∈ B, while the quotient structure B/≡ consists precisely of these
equivalence classes with the induced functions and relations.

Every computable structure, of course, has a computable quotient presentation, using
the equivalence relation of identity. Other more elaborate and interesting quotient
presentations involve nontrivial equivalence relations. The difference between the
two kinds of presentation has to do with the two possibilities in first-order logic
of treating = as a logical symbol, insisting that it be interpreted as identity in a
model, or treating it axiomatically, so that it can be interpreted merely as an equiva-
lence relation. The natural question here, of course, is whether the two notions coin-
cide.

Question 32 Does every structure with an infinite time computable quotient presen-
tation have an infinite time computable presentation?

This is certainly true in the context of finite time computability, because one can build
a computable presentation by using the least element of each equivalence class. More
generally, for the same reason, it is true in the infinite time context for structures hav-
ing a quotient presentation whose underlying set is contained in the natural numbers.
Specifically, if A = 〈A, . . . ,≡〉 is computable and A ⊆ N, where ≡ is a congru-
ence on A, then A/≡ has a computable presentation. This is because the function
s, mapping every n ∈ A to the least element s(n) in the equivalence class of n, is
computable. To compute s(n), one may simply try out all the smaller values in turn
to discover the least representative. It follows that the set B = { s(n) | n ∈ A } is
a computable choice set for the collection of equivalence classes. For any relation
symbol R in the language of A, we may now naturally define RB(�n) ⇐⇒ RA(�n);
and for any function symbol f we define fB(�n) = s(fA(�n)). These are clearly com-
putable functions and relations, and since ≡ is a congruence, it follows that A/≡ is
isomorphic to B, as desired. This argument shows more generally that if a struc-
ture has a computable quotient presentation 〈A, . . . ,≡〉, and there is a computable
function s mapping every element to a representative for its equivalence class, then
the quotient structure A/≡ has a computable presentation. (Note: the range of such
a computable choice function will be decidable, because it is precisely the collec-
tion of x in the original structure for which s(x) = x.) Such a function s is like a
computable choice function on the equivalence classes.

In the general infinite time context, of course, one does not expect necessarily to
be able to effectively compute representatives from each equivalence class. In fact,

546 Joel David Hamkins, Russell Miller, Daniel Seabold, and Steve Warner

we will show that the answer to Question 32 is independent of ZFC. In order to
illustrate the ideas, let us begin with the simple example of the uncountable well
order 〈ω1, <〉.

Theorem 33

1. The uncountable well-ordered structure 〈ω1, <〉 has an infinite time computable
quotient presentation.

2. It is relatively consistent with ZFC that 〈ω1, <〉 has no infinite time computable
presentation.

Proof. For the first claim, observe that the structure 〈WO, <,≡〉 is an infinite time
computable quotient presentation of 〈ω1, <〉. For any x ∈ WO, the equivalence class
[x]≡ is exactly the set of reals coding the same ordinal as x, and so 〈WO, <〉/≡ is
isomorphic to 〈ω1, <〉, as desired.

For the second claim, observe that by forcing, one may easily collapse ωL
1 and add

sufficient Cohen generic reals, so that in the forcing extension V [G] we have that ωL
1

is countable and the CH fails. By Lemma 23.2, therefore, the model V [G] has no
computable structures of size ω1. In particular, in V [G] the structure 〈ω1, <〉 has no
computable presentation, as desired. ��

Thus, it is consistent that the answer to Question 32 is negative. We turn now to the
possibility of a positive answer. Let us begin with a positive answer for the specific
structure 〈ω1, <〉.

Theorem 34 If ω1 = ωL
1 (a consequence of V = L), then the structure 〈ω1, <〉 has

an infinite time computable presentation.

Proof. We already observed after Theorem 12 that 〈ωL
1 , <〉 has a computable

presentation using the L-codes for ordinals. ��

It seems likely that one does not really need the failure of CH in the proof of
Theorem 33, and we suspect that the particular structure 〈ω1, <〉 has a computable
presentation if and only if ω1 = ωL

1 . That is, we suspect that the converse of Theorem
34 also holds.

Corollary 35 The question of whether the structure 〈ω1, <〉 has an infinite time
computable presentation is independent of ZFC.

Proof. On the one hand, by Theorem 33 it is relatively consistent that 〈ω1, <〉 has
no computable presentation. On the other hand, if V = L or merely ωL

1 = ω1, then
〈ω1, <〉 has a computable presentation. ��

Rather than studying just one structure, however, let us now turn to the possibility
of a full positive solution to Question 32. Under V = L, one has a full affirmative
answer.

Infinite Time Computable Model Theory 547

Theorem 36 If V = L, then every structure with an infinite time computable quo-
tient presentation has an infinite time computable presentation.

Proof. Assume V = L, and suppose that A = 〈A, . . . ,≡〉 is a computable struc-
ture, where ≡ is a congruence with respect to the rest of the structure. We would
like to show that A/≡ has a computable presentation. Our argument will be guided
by the idea of building a computable presentation of A/≡ by selecting the L-least
representatives of each equivalence class. We will not, however, be able to do ex-
actly this, because we may not be able to recognize that a given real is the L-least
representative of its equivalence class. Instead, we will attach an escort y to every
such L-least representative x of an equivalence class [x], where y codes an ordinal
sufficiently large to allow us computably to verify that x is the L-least representative
of its equivalence class. We will then build the computable presentation out of these
escorted pairs 〈x, y〉.

First, for simplicity, consider the case thatA is a relational structure. Let B be the set
of pairs 〈x, y〉 such that y is anL-code for the least ordinalα such that x is an element
of Lα and Lα satisfies that x is in A, that “ω1 exists,” and that x is the L-least real
that is equivalent to x. The assertions about membership in A or equivalence can be
expressed in Lα using the programs that compute these relations. Note that because
Lα |= “ω1 exists,” all the computations for reals in Lα either halt or repeat before α,
and so Lα has access to the full, correct computations for the reals in Lα.

We claim that B is decidable. First, the set of L-codes is decidable. Next, given that
y is the L-code of an ordinal α, we can by Theorem 7 compute a code for the whole
structureLα, and so questions of satisfaction in this structure will be decidable. Next,
we can check that x is an element of Lα, and that Lα satisfies all those other prop-
erties, as desired. Checking that α is least with those properties amounts to checking
that Lα thinks there is no β having an L-code that works.

Next, observe that if 〈x, y〉 ∈ B, then x really is the L-least representative of [x] in
A. The reason is that if z ≡ x and z precedes x in the L order, then z would be in
Lα also, where y codes α, and so Lα would know that z precedes x. And it is correct
about whether z ≡ x, since it has the computation checking this. The point is that
Lα can see x and all its L predecessors, and it knows whether they are equivalent.
So Lα will be correct about whether x is the L-least representative of [x].

Finally, we put a structure on B as follows. For a relation symbol R, let
RB(〈x0, y0〉, . . . , 〈xn, yn〉) hold if and only if RA(x0, . . . , xn), which is com-
putable. For each a ∈ A, there is an L-least representative x in [a], and a least
ordinal α large enough so that x is in Lα and Lα satisfies all those tests. If y is the
L-code of α, then 〈x, y〉 will be in B. By mapping [a] to 〈x, y〉, it is clear that A/≡
is isomorphic to B, providing a computable presentation.

When the language has function symbols, we define fB(〈x0, y0〉, . . . , 〈xn, yn〉) =
〈x, y〉, where x is the L-least member of fA(x0, . . . , xn) and y is the L-code for
which 〈x, y〉 ∈ B. The point now is that since fA(x0, . . . , xn) is the result of a

548 Joel David Hamkins, Russell Miller, Daniel Seabold, and Steve Warner

computation in Lα, where α is the largest of the ordinals arising from y0, . . . , yn,
with the structure Lα, we will be able to find the L-least member x of the corre-
sponding equivalence class and the L-code y putting 〈x, y〉 into B. Thus, we will be
able to compute this information from 〈x0, y0〉, . . . , 〈xn, yn〉, and so fB is a com-
putable function. Once again A/≡ is isomorphic to B, as desired. �

The argument does not fully use the hypothesis that V = L, but rather only that A ⊆
L, since in this case we might as well live inside L. In particular, any structure that
has a computable quotient presentation using only writable reals or even accidentally
writable reals has a computable presentation.

Corollary 37 The answer to Question 32 is independent of ZFC.

Proof. By Theorem 33, it is relatively consistent that there is a structure with a com-
putable quotient presentation but no computable presentation. On the other hand, by
Theorem 36, it is also relatively consistent that every structure with a computable
quotient presentation has a computable presentation. ��

Another way to express what the argument shows is the following. Let us say that a
function f ... R → R is semi-computable if its graph is semi-decidable.

Theorem 38 If V = L and ≡ is an infinite time computable equivalence relation
on a decidable set, then there is a semi-computable function f such that x ≡ y if
and only if f(x) = f(y). Succinctly, every computable equivalence relation on a
decidable set reduces to equality via a semi-computable function.

Proof. Suppose ≡ is an infinite time decidable equivalence relation on RL. Let
f(u) = 〈x, y〉 where x is the L-least member of the equivalence class [u]≡ and y is
theL-code of the least α such that x ∈ Lα |= “ω1 exists.” The relation f(u) = 〈x, y〉
is decidable, since given u and 〈x, y〉, we can computably verify that u ≡ x and that
y is the L-code of an ordinal α; if so, we can compute a code for Lα, and from this
code we can check whether α is least such that x ∈ Lα |= “ω1 exists” and x is the L-
least member of its equivalence class. The structure Lα is correct about this because
it has all the earlier reals in the L-order and it has the full computations determining
whether they are equivalent to x. So f is semi-computable. Finally, notice that u ≡ v
if and only if f(u) = f(v), since the value of f depended only on the equivalence
classes [u] = [v]. ��

This observation opens up a number of natural questions for further analysis. One
naturally wants to consider computable reductions, for example, rather than semi-
computable reductions. What is the nature of the resulting reducibility hierarchy?
To what extent does it share the features of the hierarchy of Borel equivalence re-
lations under Borel reducibility? For starters, can one show that there is no com-
putable reduction of the relation E0 (eventual equality of two binary strings) to
equality?

Infinite Time Computable Model Theory 549

On a different topic, Theorem 36 will allow us to show that a positive answer to the
following question is consistent with ZFC.

Question 39 Does every infinite time decidable structure have an infinite time com-
putable presentation?

Although this question remains open, we offer two partial solutions. First, we show
in Theorem 40 that when the language is particularly simple, the answer is affirma-
tive. Second, we show in Theorem 41 that a fully general affirmative answer, for all
languages, is consistent with ZFC. We do not know whether a negative answer is
consistent with ZFC.

Theorem 40 In a purely relational language, or in a language with only relation
symbols plus one unary function symbol, every infinite time decidable model has an
infinite time computable presentation.

Proof. In a purely relational language, every decidable structure is already com-
putable. So let us suppose thatA is an infinite time decidable structure in a language
with relation symbols plus one unary function symbol f . We assume that the lan-
guage is computably presented, so that {�f�} is decidable. For each a ∈ A, let
a∗ be the real coding the list 〈a, �f�, f(a), f2(a), f3(a), . . .〉. Let A∗ be the set of
all such a∗. This is an infinite time decidable set, because if we are given a real
x coding 〈x0, x1, x2, . . .〉, we can check whether x0 ∈ A using the fact that the
underlying set of A is decidable; we can check whether x1 = �f� using the deci-
sion algorithm for the language, and after this, we can check whether x2 = f(x0),
x3 = f(x2), and so on, using the decidability of A. So we can check whether
x = a∗ for some a. Next, we put a structure on A∗. For each relation symbol
U of A, define U on A∗ by U(a∗1, . . . , a

∗
n) if and only if U(a1, . . . , an). This is

computable because a is computable from a∗. Next, define fA
∗
(a∗) = (f(a))∗ =

〈f(a), �f�, f2(a), f3(a), f4(a), . . .〉. The point is that this is computable from a∗,
since a∗ lists all this information directly. So the structure A∗ is computable (and
decidable). Since a �→ a∗ is clearly an isomorphism, this proves the theorem. ��

If the language involves countably many unary function symbols and there is a
writable real listing the Gödel codes of these function symbols, then a similar con-
struction, using a∗ = ⊕{ τ(a) | τ is a term }, would provide a computable pre-
sentation. This idea, however, does not seem to work with binary function sym-
bols.

Theorem 41 It is relatively consistent with ZFC that all infinite time decidable
structures are infinite time computably presentable. Thus, it is consistent with ZFC
that the answer to Question 39 is yes.

Proof. Suppose thatA is an infinite time decidable structure. Augment the language
by adding a constant symbol for every element ofA, and letA∗ be the set of all terms
in this expanded language. The function symbols have their obvious interpretations

550 Joel David Hamkins, Russell Miller, Daniel Seabold, and Steve Warner

and are computable; the relations have their natural interpretations and are decid-
able (since A is decidable). Define t1 ≡ t2 if A |= t1 = t2. This is a computable
equivalence relation, because A is decidable. Since A∗/≡ is isomorphic to A, we
have provided an infinite time computable quotient presentation for A. By Theorem
36, it is relatively consistent with ZFC that all such structures have a computable
presentation. ��

We note that in Theorem 41, the computable presentation may involve a computable
translation of the language.

6 The infinite time analog of Schröder–Cantor–Bernstein–Myhill

In this section, we prove the infinite time computable analogs of the Schröder–
Cantor–Bernstein Theorem and the Myhill’s Theorem. With the appropriate hypothe-
ses, as in Theorems 46 and 47, the proofs go through with a classic argument. But
let us first discuss the need for careful hypotheses. The usual proofs of the My-
hills Theorem and the Cantor–Schröder–Bernstein Theorem involve iteratively ap-
plying the functions in a zigzag pattern between the two sets. And one of the useful
properties of computable injective functions in the classic finite time context is that
their corresponding inverse functions are also automatically computable: to compute
f−1(b), one simply searches the domain for an a such that f(a) = b. Unfortu-
nately, this method does not work in the infinite time context, where we generally
have no ability to enumerate effectively the domain, and indeed, there are infinite
time one-way computable functions f , meaning that f is computable but f−1 is not
computable. An easy example of such a function is provided by the Lost Melody
Theorem 8, where we have a real c such that {c} is decidable, but c is not writable.
It follows that the function c �→ 1 on the singleton domain {c} is computable, but
its inverse is not. Building on this, we can provide a decidable counterexample to a
direct infinitary computable analog of the Myhills Theorem.

Theorem 42 In the infinite time context, there are decidable setsA andB with com-
putable total injections f : R → R and g : R → R such that x ∈ B ⇐⇒ f(x) ∈ A
and x ∈ A ⇐⇒ g(x) ∈ B, but there is no computable bijection h : A→ B.

Proof. LetA = N andB = N∪{c}, where c is the real of the Lost Melody Theorem.
Define f(c) = 0, f(n) = n + 1 for n ∈ N and otherwise f(x) = x. Clearly, f is a
computable total injection and x ∈ B ⇐⇒ f(x) ∈ A. To help define g, for any real
x (infinite binary sequence), let x∗ be the real obtained by omitting the first digit,
and let x∗(n) be the real obtained by omitting the first n digits. Now let g(c) = c∗

and more generally g(c∗(n)) = c∗(n+1), and otherwise g(x) = x. This function g
is clearly total and injective, and it is computable because given any x, we can by
adding various finite binary strings to the front of x determine whether x = c∗(n) for
some n and thereby compute g(x). Since c is not periodic, we have c /∈ ran(g) and

Infinite Time Computable Model Theory 551

x ∈ A ⇐⇒ g(x) ∈ B. Finally, there can be no computable onto map from A to B,
since c is not the output of any computable function with natural number input. ��

In this example, the function f � B is actually a computable bijection in the converse
direction, from B to A, but this does not contradict the theorem because f−1 is not
computable from A to B, since it maps 0 to c. What we really want in the infinitary
context is not merely a computable bijection from A to B, but rather a computable
bijection whose inverse is also computable, so that the relation is symmetric. The
next example shows that we cannot achieve this even when we have computable
bijections in both directions.

Theorem 43 In the infinite time context, there are decidable setsA andB with com-
putable bijections f : A −→ B and g : B −→ A, for which there is no computable
bijection h : A −→ B whose inverse h−1 is also computable.

To construct A and B, we first generalize the Lost Melody Theorem by recursively
building a sequence of reals that can each be recognized, but not written, by an
infinite time Turing machine using the preceding reals of the sequence.

Lemma 43.1 There exists a sequence 〈dk | k ∈ ω〉 of reals such that

1. for each k, the real dk is not writable from 〈di | i < k〉 and

2. there is an infinite time program that, for any z and any k, can decide on input
〈d0, d1, . . . , dk−1, z〉 whether z = dk.

Proof. The repeat-point of a computation is the least ordinal stage by which the
computation either halts or enters a repeating loop from which it never emerges. For
each k ≥ 0, let δk be the supremum of the repeat-points of all computations of the
form ϕp(〈di | i < k〉). Note that δk is countable in L. Let βk be the smallest ordinal
greater than δk such that Lβk+1 |= “βk is countable.” Finally, let dk be the L-least
real coding βk. The real dk is not writable on input 〈di | i < k〉, for if it were, then
we could solve the halting problem relative to 〈di | i < k〉 by writing dk and using it
to check whether any given program halts within βk steps on input 〈di | i < k〉. Next,
on input 〈d0, d1, . . . , dk−1, z〉, let us explain how to determine whether z = dk. We
first check whether z codes an ordinal α, and if so, we simulate every computation
ϕp(〈di | i < k〉) for α many steps. By inspecting these computations, we can verify
that they all halt or repeat by stage α and thereby verify that α ≥ δk. By Theorem 7,
we can now write down a real coding Lα+1 and verify that z is the L-least code for
α in Lα+1. If all these tests are passed, then z = dk. ��

Proof of Theorem 43. We use the sequence 〈dk | k ∈ ω〉 to construct a bi-infinite
sequence 〈ck | k ∈ Z〉 as follows: for k > 0, let ck be a real coding 〈di | i < k〉
in the usual manner, and for k ≤ 0, let ck = k. Let A = {c2k | k ∈ Z} and
B = {c2k+1 | k ∈ Z}, and define bijections f : A → B by f : c2k �→ c2k−1 and
g : B → A by f : c2k+1 �→ c2k. It follows immediately from the definition of ck
that f and g are computable.

552 Joel David Hamkins, Russell Miller, Daniel Seabold, and Steve Warner

We next show that A is decidable. Given a real z, we first verify that either z is an
even integer less than or equal to zero, in which case we accept it immediately, or else
it codes a sequence 〈z0, . . . zn−1〉 of even length, in which case we use the lemma
iteratively to verify that zi = di for each i < n. Since the real z is an element of A if
and only if it passes this test, A is decidable. Similarly, B is decidable.

We conclude by showing that if h : A −→ B is a bijection, then h and h−1 cannot
both be computable. From clause (1) of the lemma and the definition of cn, it follows
that for positive n, cn cannot be written by any machine on input ck if k < n. Thus,
if h is computable, then h(c2) must equal ck for some k < 2. But then h−1(ck) = c2
so h−1 is not computable.
Corollary 44 In the infinite time context, there are decidable sets A and B and a
computable permutation π : R → R such that π "A = B and π "B = A, but there
is no computable bijection h : A→ B for which h−1 is also computable.

Proof. Let A and B be as in the proof of Theorem 43. Since A and B are disjoint,
the function π = f ∪ g ∪ id, where we use the identity function outside A ∪ B, is
a permutation of R. Since f and g are computable and A and B are decidable, it
follows that π is computable. Since π"A = f "A = B and π"B = g"B = A, the
proof is completed by mentioning that Theorem 43 shows that there is no computable
bijection from A to B whose inverse is also computable. ��

If one assumes merely that the inverses of the injections are computable, then this is
insufficient to get a computable bijection:

Theorem 45 In the infinite time context, there are semi-decidable sets A and B
with computable injections f : A → B and g : B → A whose inverses are also
computable, such that there is no computable bijection h : A→ B.

Proof. In fact, there will be no computable surjection from A to B. Let A = N
be the set of all natural numbers, and let B = 0� = { p | ϕp(0) ↓ } be the infinite
time halting problem. Define an injective function f : A → B by setting f(n) to
be the nth program on a decidable list of obviously halting programs (such as the
program with n states and all transitions leading immediately to the halt state). The
function f is clearly computable, and by design its inverse is also computable and
ran(f) is decidable. Conversely, construing programs as natural numbers, the inclu-
sion map g : B → A is a computable injection whose inverse is also computable,
since dom(g−1) = 0� is semi-decidable. So we have defined the required com-
putable injections. Suppose now that h : A → B is a computable surjection of N to
0�. In this case, an infinite time computable function could systematically compute
all the values h(0), h(1), and so on, and thereby write 0� on the tape. This contradicts
the fact that 0� is not a writable real. So there can be no such computable bijection
from A to B. ��

In the classical finite time context, of course, there is a computable bijection between
N and 0′ (or any infinite c.e. set), mapping each n to the nth element appearing in

Infinite Time Computable Model Theory 553

the canonical enumeration of it. This idea does not work in the infinitary context,
however, because the infinitary halting problem 0� is not computably enumerated in
order type ω, but rather in the order type λ of the clockable ordinals. And λ is not a
writable ordinal, so there is no way to effectively produce a real coding it.

Finally, with the right hypotheses, we prove the positive results, starting with the
effective content of the Cantor–Schröder–Bernstein Theorem.

Theorem 46 In the infinite time context, suppose that A and B are semi-decidable
sets, with computable injections f : A → B and g : B → A, whose inverses are
computable and whose ranges are decidable. Then there is a computable bijection
h : A→ B whose inverse is computable.

Proof. Let A0 be the set of a such that there is some finite zigzag pre-image
(g−1f−1)kg−1(a) /∈ ran(f) for k ∈ N. Our hypotheses ensure that this set is infinite
time decidable, since we can systematically check all the corresponding pre-images
to see that when and if they stop it was because they landed outside ran(f) inB. The
usual proof of the Cantor–Schröder–Bernstein Theorem now shows that the function
h = (g−1 � A0) ∪ (f � A \ A0) is a bijection between A and B. Note that h
is computable because g−1 and f are each computable, A0 is decidable, and A is
semi-decidable. To see that h−1 is computable, let B0 = g−1A0 and observe that
h−1 = (g � B0) ∪ (f−1 � B \ B0). Since these components are each computable,
h−1 is computable and the proof is complete. ��

We may drop the assumption that A and B are semi-decidable if we make the
move to total functions, as in the classical Myhill Theorem. Define that a set of
reals A is reducible to another set B by the function f : R → R if x ∈ A ⇐⇒
f(x) ∈ B.

Theorem 47 In the infinite time context, suppose thatA andB are reducible to each
other by computable one-to-one total functions f and g, whose inverses are com-
putable and whose ranges are decidable. Then there is a computable permutation
π : R → R with π−1 also computable and π "A = B.

Proof. As in Theorem 46, let A0 be the set of a such that some finite zigzag pre-
image (g−1f−1)kg−1(a) /∈ ran(f) for k ∈ N, and again this is decidable. Let
π = (g−1 � A0) ∪ (f � R \ A0). The usual Cantor–Schröder–Bernstein argument
shows that this is a permutation of R. As above, both π and π−1 are computable.
Finally, we have both x ∈ A ⇐⇒ π(x) ∈ B and x ∈ B ⇐⇒ π(x) ∈ A, since
π(x) is either f(x) or g−1(x), both of which have the desired properties. It follows
that π "A = B and the proof is complete. ��

554 Joel David Hamkins, Russell Miller, Daniel Seabold, and Steve Warner

7 Some infinite time computable transitive models of set theory

Because the power of the machines are connected intimately with well-orders and
countable ordinals, it is not surprising that there are many interesting models of a set
theoretic nature. We have already seen that the hereditarily countable sets have an
infinite time computable quotient presentation 〈HC,∈,≡〉. In addition, we have pro-
vided infinite time computable presentations of the model 〈LωL

1
,∈〉 and of 〈Lα,∈〉,

given a real coding α. In this section we will show, however, that depending on the
set theoretic background, one can transcend these, by actually producing infinite time
decidable presentations of transitive models of ZFC, or even ZFC plus large cardi-
nals. Each of these presentations, however, will involve a somewhat strange manner
of coding information into the individual elements of the model or into the language,
even while the model and language technically remains computable. We begin by
proving that the task is impossible without such subterfuge.

Theorem 48 There is no infinite time computable presentation of a transitive model
of ZFC with underlying set N and Gödel codes of the language entirely in N.

Proof. The operation of an infinite time Turing machine is absolute to any transitive
model of ZFC containing the input. Thus, all transitive models of ZFC agree on the
elements of the halting problem 0�. If M = 〈N, E〉 is a computable presentation of
such a model, then there is some natural number k representing 0� in M. Assuming
that �∈� is writable, then we can computably determine for each natural number p the
element kp representing it inM. In this case, we could compute 0� = { p | kp E k },
contradicting the fact that 0� is not computable. ��

Of course, this argument uses much less than ZFC. It shows that there can be no
computable presentation, using underlying set N and writable presentation of the
language, of a transitive model computing 0� correctly. For example, it would be
enough if the model satisfied “ω1 exists,” or even less, that every infinite time Turing
computation either halted or reached its repeat point.

Despite Theorem 48, however, computable models and languages are not in general
limited to the domain N, and in this general setting we can actually find computable
presentations of transitive, well-founded models of ZFC.

Theorem 49 If there is a transitive model of ZFC, then the smallest transitive model
of ZFC has an infinite time decidable computable presentation.

Proof. If there is a transitive model of ZFC, then there is one satisfying V = L.
A Löwenheim–Skolem argument, followed by the Mostowski collapse, shows that
there must be a countable such model, and any such model will be Lα for some
countable ordinal α. By minimizing α, we see in this case that there is a smallest
transitive model Lα |= ZFC. Let c be the L-code for this minimal α. Note that
{ c } is decidable, since on input x, we can check whether it is an L-code for an
ordinal ξ such that Lξ |= ZFC and, if so, whether ξ is the smallest such ordinal.

Infinite Time Computable Model Theory 555

If so, it must be that ξ = α and x = c. From c, we may compute a relation E
on N such that 〈Lα,∈〉 ∼= 〈N, E〉. Let M be the collection of pairs 〈c, n〉, where
n ∈ N. This is a decidable set, because { c } is decidable. The idea is that 〈c, n〉
represents the set coded by n with respect to E. Define 〈c, n〉 Ē 〈c,m〉 if n E
m. This is a computable relation, because E is c-computable and {c} is decidable.
Clearly, 〈M, Ē〉 is isomorphic to 〈N, E〉, which is isomorphic to 〈Lα,∈〉. So we have
a computable presentation of 〈Lα,∈〉.

Let us point out that this presentation is nearly decidable, in that we can decide
M |= ϕ[x1, . . . , xn] on input �ϕ�, x1, . . . , xn, provided n ≥ 1. Specifically, from
x1, we can compute the real c, and from c, we can enumerate effectively the whole
structure 〈M,E〉. Having done so, we can compute whether M |= ϕ[x1, . . . , xn]
according to the Tarskian definition of truth. This method makes fundamental use of
the information c that is present in any of the parameters, so it does not help us to
decide whether a given sentence holds in M, if we are not given such a parameter.

To make the model fully decidable, therefore, we assume �∈� = c. Since {c} is
decidable, this language remains decidable (although no longer enumerable in any
nice sense). The point now is that if we are given a sentence σ, and the symbol
∈ appears in it, then we can compute the real c from �∈� and thereby once again
enumerate effectively the whole structure M, allowing us to compute whether σ
holds. If ∈ does not occur in σ, then σ is an assertion in the language of equality,
which either holds or fails in all infinite models, and we can determine computably
this in ω + 1 many steps. ��

If one allows �∈� = c, then one can actually take the underlying set of M to be N,
since if one has already coded c into the language, there is no additional need to code
c into the individual elements of M. In this case, one has a decidable presentation
of the form 〈N, E〉. We caution in this case that the relation E is not computable
but only computable relative to c. This does not prevent the model from being a
computable model, however, since in order to be a computable model, the relations
need only be computable from their Gödel codes. This may be considered to be a
quirk in the definition of computable model, but in order to allow for uncountable
languages, we cannot insist that the relations of a computable model are individually
computable but rather only computable from their Gödel codes.

Similar arguments establish:

Theorem 50 If there is a transitive model of ZFC with an inaccessible cardinal (or
a Mahlo cardinal or ω2 many weakly compact cardinals, etc.), then the smallest such
model has an infinite time decidable presentation.

Proof. If there is a transitive model of ZFC plus any of these large cardinal hypothe-
ses, then there is one satisfying V = L. Hence, as argued in Theorem 48, the theory
holds in some countable Lα. By using the L-code c of the minimal such model, we
can build a decidable presentation as above. ��

556 Joel David Hamkins, Russell Miller, Daniel Seabold, and Steve Warner

If one wants to consider set theoretic theories inconsistent with V = L, then a bit
more care is needed.

Theorem 51 If there is a transitive model of ZFC, then there is a transitive model of
ZFC + ¬CH with an infinite time decidable computable presentation.

Proof. Let Lα be the minimal transitive model of ZFC. This is a countable transitive
model, and so there is an L-least set G in L such thatG is Lα-generic for the forcing
Add(ω, ω2)Lα . Thus, Lα[G] |= ZFC + ¬CH. The set G appears in some countable
Lβ , where α < β < ω1. Let d be the L-code of the pair 〈α, β〉. Thus, { d } is
decidable, because given any real z, we can check whether z is an L-code for a
pair 〈α′, β′〉 such that Lα′ is the smallest model of ZFC and β′ is smallest such
that Lβ′ has an Lα′-generic filter G for Add(ω, ω2)Lα′ . Using the real d, we can
compute a relation E on N such that 〈Lα[G],∈〉 ∼= 〈N, E〉. Let N be the set of pairs
〈d, n〉 where n ∈ N, and define 〈d, n〉 Ē 〈d,m〉 if n E m. Again, this structure is
computable, and it is isomorphic to 〈Lα[G],∈〉, as desired. By taking �∈� = d, the
model is decidable as in Theorem 49. ��

Clearly this method is very flexible; it provides decidable presentations of transitive
models of any theory having a transitive model in L.

8 Future directions

We close this paper by mentioning a number of topics for future research.

Infinitary languages Lω1,ω. In the context of infinite time computable model theory,
it is very natural to consider infinitary languages, which are still easily coded into
the reals. With any writable structure or for a structure whose domain we can search,
one can still compute the Tarskian satisfaction relation. What other examples and
phenomenon exist here?

Infinite time computable equivalence relation theory. The idea is to investigate the
analog of the theory of Borel equivalence relations under Borel reducibility. Here,
one wants to consider infinite time computable reductions. Some of these issues are
present already in our analysis of the computable quotient presentation problem in
Section 5 and particularly Theorem 38. How much of the structure of Borel equiva-
lence relations translates to the infinite time computable context?

Infinite time computable cardinalities. The computable cardinalities are the equiva-
lence classes of the decidable sets by the computable equinumerousity relation. What
is the structure of the computable cardinalities?

Infinite time computable Löwenheim–Skolem theorems. Although Theorem 28 shows
that the infinite time computable upward Löwenheim–Skolem Theorem holds in
L, our analysis leaves open the question of whether it is consistent with ZFC that

Infinite Time Computable Model Theory 557

there could be a decidable countable model having no size continuum decidable ele-
mentary extension. If so, the infinite time, computable, upward Löwenheim–Skolem
Theorem will be independent of ZFC. In addition, our analysis does not fully settle
the infinite time, computable, downward Löwenheim–Skolem Theorem.

References

1. Vinay Deolalikar, Joel David Hamkins, and Ralf-Dieter Schindler. P
= NP∩ co-NP for
infinite time turing machines. Journal of Logic and Computation, 15(5):577–592, 2005.

2. Yuri L. Ershov, Sergey S. Goncharov, Anil Nerode, and Jeffrey B. Remmel, editors.
Handbook of Recursive Mathematics, Volume 1: Recursive Model Theory, volume 138
of Studies in Logic and the Foundations of Mathematics. Elsevier, 1998.

3. Joel David Hamkins. Infinite time turing machines. Minds and Machines, 12(4):521–
539, 2002. (special issue devoted to hypercomputation).

4. Joel David Hamkins. Infinitary computability with infinite time Turing machines. In
Barry S. Cooper and Benedikt Löwe, editors, New Computational Paradigms, volume
3526 of LNCS, Amsterdam, June 8-12 2005. CiE, Springer-Verlag.

5. Joel David Hamkins and Andy Lewis. Infinite time Turing machines. J. Symbolic Logic,
65(2):567–604, 2000.

6. Joel David Hamkins and Andy Lewis. Post’s problem for supertasks has both positive
and negative solutions. Archive for Mathematical Logic, 41(6):507–523, 2002.

7. Joel David Hamkins and Daniel Seabold. Infinite time Turing machines with only one
tape. Mathematical Logic Quarterly, 47(2):271–287, 2001.

8. Joel David Hamkins and Philip Welch. P f
= NP f for almost all f . Mathematical
Logic Quarterly, 49(5):536–540, 2003.

9. Thomas Jech. Set Theory. Springer Monographs in Mathematics, 3rd edition, 2003.
10. Peter Koepke. Turing computations on ordinals. Bulletin of Symbolic Logic, 11(3):377–

397, 2005.
11. Benedikt Löwe. Revision sequences and computers with an infinite amount of time.

Logic Comput., 11(1):25–40, 2001.
12. Philip Welch. Eventually infinite time Turing machine degrees: Infinite time decidable

reals. Journal of Symbolic Logic, 65(3):1193–1203, 2000.
13. Philip Welch. The lengths of infinite time Turing machine computations. Bulletin of the

London Mathematical Society, 32(2):129–136, 2000.
14. Philip Welch. The transfinite action of 1 tape Turing machines. In Barry S. Cooper

and Benedikt Löwe, editors, New Computational Paradigms, volume 3526 of LNCS,
Amsterdam, June 8-12 2005. CiE, Springer-Verlag.

Index

Badaev, Serikzhan, 19
Bournez, Olivier, 383
Brattka, Vasco, 424
Buss, Samuel R., 213

Campagnolo, Manuel L., 383

Edalat, Abbas, 492

Goncharov, Sergey, 19

Hamkins, Joel David, 520
Hertling, Peter, 424
Hodges, Andrew, 3

Kohlenbach, Ulrich , 223

Matiyasevich, Yuri, 59
Mayordomo, Elvira, 259
Miller, Russell, 520

Normann, Dag, 119

Păun, Gheorghe, 343
Pardubská Dana, 195

Rathjen, Michael, 286
Rozenberg, Grzegorz, 372

Schwichtenberg, Helmut, 313
Seabold, Daniel, 520
Sieg, Wilfried, 139
Stoltenberg-Hansen, Viggo, 153

Tucker, John V., 153

van Benthem, Johan, 35

Warner, Steve, 520
Weihrauch, Klaus, 424
Wiedermann, Jiří, 195

	cover-image-large.jpg
	front-matter.pdf
	fulltext.pdf
	fulltext_001.pdf
	fulltext_002.pdf
	fulltext_003.pdf
	fulltext_004.pdf
	fulltext_005.pdf
	fulltext_006.pdf
	fulltext_007.pdf
	fulltext_008.pdf
	fulltext_009.pdf
	fulltext_010.pdf
	fulltext_011.pdf
	fulltext_012.pdf
	fulltext_013.pdf
	fulltext_014.pdf
	fulltext_015.pdf
	fulltext_016.pdf
	fulltext_017.pdf
	fulltext_018.pdf
	fulltext_019.pdf
	back-matter.pdf

