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Abstract—The maximum likelihood (ML) detection for
multiple-input multiple-output (MIMO) system achieves the opti-
mal performances at the cost of high computational complexities,
while the linear detectors attain low complexities with degraded
performances. In this paper, we propose two low-complexity
detection schemes based on the minimum-mean-square-error
(MMSE) detection for MIMO systems. Using on the MMSE-
detected data as the starting point, the first scheme searches
the constellation subspace using the ML criterion. To further
reduce the complexity, the second scheme selects the constellation
subspace for search using the reformulated ML criterion. Sim-
ulation results show the substantial performance improvements
compared to the MMSE detection, with only slightly increased
complexities.

Index Terms—MIMO detection, maximum likelihood detec-
tion, Zero-Forcing, MMSE, wireless communication.

I. INTRODUCTION

The frequency spectrum is the scarce resource for wireless

communication systems and the rapid increase of wireless

applications has demanded the new techniques to achieve

higher spectral efficiency. The multiple-input multiple-output

(MIMO) system utilizes the spatial diversity to increase the

data rate and spectral efficiency. One of the major challenges

to design this system is the high complexity in data detection at

the receiver. The commonly practiced MIMO data detection is

to pursue the maximum likelihood (ML) criterion. Although

the ML detection offers the optimal solution, it encounters

difficulties in practical systems due to its high computational

complexity. This motivates various variations of the MIMO

detections to tradeoff between performances and complexities.

In the literature, there are various studies on optimal

and suboptimal MIMO detection techniques. The linear

equalization-based MIMO detection includes the zero-forcing

(ZF) and minimum-mean-square-error (MMSE) detection. The

main advantage of the linear detection is its low complex-

ity and simplicity for implementation. The performances of

the linear detectors degrade substantially compared with the

optimal ML detectors. Therefore, there exists variations of

linear MIMO detection to improve its performance [1]–[5].

Moreover, the sphere decoder (SD) and its variations achieves

optimal or near-ML performances with reduced complexity

than the exhaustive search. The conventional sphere decoder

has two categories : 1) the Fincke-Pohst sphere decoder [6],

[7] and 2) the Schnorr-Euchner sphere decoder [8]. Although
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the conventional SD efficiently reduces the complexity of the

ML detection and attains the ML performance [9], its com-

plexity and operations are probabilistic, which complicates the

implementations and offers unstable data throughput. Another

variation of the sphere decoder with the fixed complexity is

studied to avoid the probabilistic uncertainties of the con-

ventional sphere decoders [10], [11]. Certain detectors utilize

the statistical property to determine the radius that effectively

shrinks the search range of the sphere decoder [9], [12], [13].

In this paper, we propose a simple fixed-complexity MMSE-

based MIMO detection. The proposed approaches utilize ML

criterion with the MMSE detection as the starting point for

search. Based on the results of the MMSE detection, the

approach searches the limited range of constellation subspace.

Simulation results demonstrate significant performance im-

provements compared with the MMSE detection. The major

advantage of the proposed approach is to attain significant

performance improvements of MMSE detections while main-

taining the fixed and low computational complexities.

This paper is organized as follows. In section II, the signal

model and linear MIMO detectors are briefly described. The

proposed approaches based on the MMSE detection and their

computational complexities are elaborated in section III. In

section IV, simulation results are presented to verify the per-

formance improvements. Section V summarizes and concludes

this paper.

II. SIGNAL MODEL AND REVIEW OF MIMO DETECTION

TECHNIQUES

We consider the baseband flat fading MIMO channel model

with MT transmitting antennas and MR receiving antennas

(MR ≥ MT ) as

y = Hx + n (1)

where y, n ∈ C
MR , H ∈ C

MR×MT , x ∈ S
MT , C

denotes the set of complex numbers, and S denotes the set

of constellation points of modulations. The cardinality of S,

which is denoted as |S|, is countable finite. The MT × 1
transmitted and MR × 1 received symbol vector are x ,

[x1 . . . xMT
]T and y , [y1 . . . yMR

]T respectively, where [·]T

denotes vector transpose. We assume that the symbol vectors

x are uncorrelated random with zero mean and covariance

matrix σ2
xI, where I indicates the identity matrix. The additive

white Gaussian noise (AWGN) vectors n , [n1 . . . nMR
]T are

independent and identically distributed (i.i.d.) complex noise

with zero mean and covariance matrix σ2
nI. The complex-

valued channel matrix H has i.i.d. Gaussian entries with zero
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mean and unit variance and we assumed it is perfectly known

to the receiver.

The MIMO detection techniques related to this work are

briefly discussed in the following subsections. The maximum

likelihood (ML) detection achieves the optimal performances;

however, it suffers from the exponentially increasing compu-

tational complexity. Besides the ML critetion, the zero-forcing

(ZF) and minimum mean square error (MMSE) detections are

linear equalization-based methods. They are low-complexity

and simple to implement with degraded performances. This

motivates the major work in this paper focusing on improving

the performance of the linear equalization-based methods, at

the cost of slightly extra complexities.

A. Maximum Likelihood Detection

From (1), ML detection of a symbol vector can be written

as [14]

x̂ML = arg min
x∈SMT

||y − Hx||2 (2)

where ‖ ·‖ denotes the L2 norm of a vector. The ML criterion

is to obtain the solution satisfying (2) in the set SMT . The

major challenge is huge cardinality of SMT , i.e., |S|MT , that

increases exponentially with MT .

B. ZF Detection

The zero forcing (ZF) detection multiply the received sym-

bol vector y by an equalization matrix G, i.e. x̂ZF = GZF y.

The zero forcing equalization is derived from the Moore-

Penrose pseudo-inverse [15] of H,

GZF = (HH
H)−1

H
H (3)

where (·)−1, (·)H denote inverse matrix and hermitian trans-

pose, respectively. We assumed that MR ≥ MT . After equal-

ization, the transmitted symbol vector estimate x̂ZF of the ZF

detection is written as

x̂ZF = GZF y = (HH
H)−1

H
Hy = x + ñ (4)

where ñ = (HH
H)−1

H
Hn disturbs the transmitted symbol

vector x. From (4), the crosstalk of x generated by the channel

H in the received y is removed, while the Gaussian noise

ñ is colored noise. The performance of the ZF detection is

degraded because of the colored noise ñ.

C. MMSE Detection

The concept that the MMSE detection uses is to minimize

the mean square error E(‖Gy−x‖2), where E(·) denotes the

expectation of the random variable. The MMSE detection con-

siders the noise variance and reduces the noise enhancement

by using the minimum mean square error equalization matrix

obtained from [14]

GMMSE = (HH
H + (σ2

n/σ2
x)I)−1

H
H (5)

The transmitted symbol vector estimate x̂MMSE of the MMSE

detection is written as

x̂MMSE = GMMSE y = (HH
H + (σ2

n/σ2
x)I)−1

H
Hy (6)

The results of the ZF and MMSE detection, i.e., x̂ZF and

x̂ZF , are not necessarily the legal constellation points in S,

so they need to be rounded off to the closest constellation

point. The function of rounding off the raw detected data to

the closest point of the constellation point set S is denoted

as ⌈·⌉S. We name the operation of ⌈·⌉S as quantization. By

the quantization process, the quantized symbol vector x̃ZF ,

x̃MMSE are expressed as x̃ZF = ⌈x̂ZF ⌉S and x̃MMSE =
⌈x̂MMSE⌉S.

III. THE PROPOSED APPROACHES

The major advantage of the equalization-based detection is

its low computational complexity; however, their performances

are suboptimal. The motivation of this work is to improve

the performances of MMSE detector without introducing sub-

stantial computational complexities. The general observation

is that only few modulation symbols are erroneous in a erro-

neous MIMO symbol vector when using the MMSE detection.

This observation motivates this work to improve the MMSE

detection by searching the limited constellation subspace. The

details are described in the followings.

A. Subspace Search Based on MMSE Detection

We have the MT × 1 quantized symbol vector x̃MMSE ,

[x̃1
MMSE

. . . x̃MT

MMSE
]T , where the superscript denotes the

symbol index. The likelihood metric DMMSE can be ex-

pressed as DMMSE = ‖y − Hx̃MMSE‖2. Since the MMSE

detection x̃MMSE might be erroneous, there might exist

another symbol vector x̆MMSE such that its likelihood metric

satisfies ‖y − Hx̆MMSE‖2 ≤ DMMSE . If the symbol vector

x̆MMSE minimizes ‖y − Hx‖2, it is equivalent to the ML

detection, i.e., x̆ = x̂ML. The exhaustive search induces

the cost of high computational complexities because of large

number of the candidates in x. Therefore, the main idea of the

proposed approach is to limit the search subspace by using the

MMSE detection. Since there are only few erroneous symbol

entries in the event of MIMO symbol error, the proposed idea

is to search the M -dimensional space, where (M ≤ MT ),
and replace the erroneous symbol entry with the symbol

that performs better in terms of likelihood metric. In other

words, the proposed approach searches the M -dimensional

subspace and replace symbols with smaller likelihood metric.

This process is called as the MMSE M -correction. It is noted

that when M = MT , the MMSE M -correction is equivalent

to the ML detection.

In the case M = 1, the MMSE 1-correction searches and in-

tends to correct one symbol entry in the x̃MMSE . The MMSE

1-correction performs a one-dimensional search from 1st to

MT -th symbol locations in the x̃MMSE . When searching the

subspace of i-th symbol location, all legal candidates in S,

i.e., ∀xi
1c ∈ S, are tested to replace x̃i

MMSE
and form a

new symbol vector x̄1c , [x̃1
MMSE

. . . xi
1c . . . x̃MT

MMSE
]T . The

likelihood metric of x̄1c, i.e., D̄1c = ‖y − Hx̄1c‖
2, is then

computed and compared with DMMSE . If the likelihood met-

ric of x̄1c improves, i.e., smaller than DMMSE , the x̃MMSE

and DMMSE are updated with x̄1c and D̄1c, respectively. The
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similar process is generalized to MMSE M -correction, where

the M symbol locations in the x̃i

MMSE
are searched for better

likelihood metric. The steps of the MMSE M -correction are

described in the following:

Step 1): Calculate DMMSE = ‖y − Hx̃MMSE‖2.

Step 2): The number of possible M -combinations of an

MT -element set is
(

MT

M

)

. Perform the following

three steps for all the
(

MT

M

)

combinations of

possible symbol locations in x̃i

MMSE
.

Step 3): These M indices are denoted as

indi+1, . . . , indi+M , ∀m, n ∈ {i + 1, . . . , i +
M}, indm 6= indn. Select one M × 1 symbol

vector xMc , [x
indi+1

Mc
. . . x

indi+M

Mc
]T ∈ SM

where SM denotes the set of M -dimensions of

symbols. Replace x̃
indi+1

MMSE
, . . . , x̃

indi+M

MMSE

with x
indi+1

Mc
, . . . , x

indi+M

Mc
to form

a new symbol vector x̄Mc ,

[x̃1
MMSE

. . . x
indi+1

Mc
. . . x

indi+M

Mc
. . . x̃MT

MMSE
]T .

Step 4): Calculate D̄Mc = ‖y−Hx̄Mc‖
2, and if D̄Mc ≤

DMMSE , let DMMSE = D̄Mc and x̃MMSE =
x̄Mc.

Step 5): Select other symbol vector x′

Mc
to repeat step

3 and step 4 until all x′

Mc
∈ SM are tested.

Step 6): The final x̄Mc is the detected MIMO symbol

vector.

B. A Reduced-Complexity MMSE M -correction

In this section, we propose an approach to further reduce

the complexity of MMSE M -correction by effectively select-

ing the location of symbol entry in x̃MMSE for subspace

search. The MMSE M -correction conducts exhaustive search

within all candidate M -dimensional subspace of x̃MMSE .

The objective is to eliminate unnecessary subspace searches

by searching only the subspaces where the errors are more

likely to occur. In order to achieve this objective, the symbol

vector x̄Mc provided from the process of the MMSE M -

correction is reformulated as D̄Mc = ‖y − H(x̃MMSE +

∆x̄Mc)‖
2 where ∆x̄Mc = x̄Mc − x̃MMSE = [0 . . . (x

indi+1

Mc
−

x̃
indi+1

MMSE
) . . . (x

indi+M

Mc
− x̃

indi+M

MMSE
) . . . 0]T . This provides us

another perspective to develop a lower-complexity method

denoted as the reduced-complexity (RC) MMSE M -correction

which improves the MMSE detection performance with lower

complexity than MMSE M -correction.

To elaborate the proposed RC-MMSE M -correction, we in-

troduce the notion of deviation vector, denoted as ∆x̄RcMc =
[∆x̄1

RcMc
. . . ∆x̄MT

RcMc
]T . Conceptually, the ∆x̄RcMc is con-

sidered as the hypothetical deviation on x̃MMSE , and is used

to study the impact of deviation on the likelihood metric. The

impact of deviation on the likelihood metric is then used to

identify the subspaces where the improvement on likelihood

metric by searching is more likely to occur. The reformulated

likelihood metric is expressed as

D̄RcMc = ‖y − H(x̃MMSE + ∆x̄RcMc)‖
2

= ‖y − Hx̃MMSE‖2 + ‖H∆x̄RcMc‖
2

+2Re[(y − Hx̃MMSE)H(H∆x̄RcMc)], (7)

where Re[·] is the real part of a complex number. Since the

first and second terms of (7) are positive, the D̄RcMc can only

be possibly reduced through the third term. The third term can

be rearranged as

(y − Hx̃MMSE)H(H∆x̄RcMc)

= [(y − Hx̃MMSE)H
H]∆x̄RcMc

= A∆x̄RcMc (8)

where A = [(y − Hx̃MMSE)H
H] = [A1 . . . AMT

] is

a 1 × MT row vector. The magnitudes of elements in

the set {A1, . . . , AMT
} are computed, and the M largest

magnitudes and their corresponding indices are denoted as

indRc
1 , . . . , indRc

M
. These M indices, indRc

1 , . . . , indRc

M
, are

considered the entry indices of the M most possibly er-

roneous symbols. The reason we select indRc
1 , . . . , indRc

M

is that the M locations of x̃MMSE corresponding to the

largest magnitudes in A are more likely to decrease the

overall likelihood metric in (7). If the phases of deviation

vector ∆x̄RcMc is properly aligned with A, the value of

the 2Re[(y − Hx̃MMSE)H(H∆x̄RcMc)] in (7) is negative,

and then ∆D̄RcMc can possibly be reduced to be less than

DMMSE . Therefore, the search in the M subspaces corre-

sponding to the M elements of largest magnitudes in A are

more likely to improve the likelihood metric. By searching

subspaces indexed by the elements with M largest magnitudes

in A, the computational complexity of the RC-MMSE M -

correction can be reduced to be lower than the MMSE M -

correction. The steps of the RC-MMSE M -correction are

described as follows:

Step 1): Calculate (y − Hx̃MMSE)H
H = A.

Step 2): Compute the magnitude of each element of the

row vector A = [A1 . . . AMT
] and sort them in

a descending order.

Step 3): Select the first M elements for which indices

indRc
1 , . . . , indRc

M
are assigned.

Step 4): Select one M × 1 symbol vector xRcMc ,

[x
ind

Rc

1

RcMc
. . . x

ind
Rc

M

RcMc
]T ∈ SM where SM denotes

the set of M -dimensions of symbols. Replace

x̃
indi+1

MMSE
, . . . , x̃

indi+M

MMSE
with x

ind
Rc

1

RcMc
, . . . , x

ind
Rc

M

RcMc

to form a new symbol vector x̄RcMc ,

[x̃1
MMSE

. . . x
ind

Rc

1

RcMc
. . . x

ind
Rc

M

RcMc
. . . x̃MT

MMSE
]T .

Step 5): Calculate D̄RcMc = ‖y − Hx̄RcMc‖
2. If

D̄RcMc ≤ DMMSE , let DMMSE = D̄RcMc

and x̃MMSE = x̄RcMc.

Step 6): Select other symbol vector x′

RcMc
to repeat step

4 and step 5 until all x′

RcMc
∈ SM are tested.

Step 7): The final x̄RcMc is the detected MIMO symbol

vector.

C. Computational Complexity

The computational complexities are analyzed in this sec-

tion. Specifically, the computational complexity measured by

number of operations is calculated according to the following

principles: 1) One multiplication of a complex number is

equivalent to four real number multiplications and two real
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number additions; 2) One addition or subtraction of a complex

number is equivalent to two real number additions; 3) One

division of a complex number is equivalent to eight real

number multiplications and four real number additions; and

4) One addition, subtraction, multiplication, or division of a

real number is regarded as one computational operation.

From (2), the computational complexity C0 of ‖y − Hx‖2

is calculated as being 8M2
T

+ 8MT − 2. The computational

complexities of the ML detection, ZF detection, MMSE de-

tection, MMSE M -correction, and RC-MMSE M -correction

are specified and the detailed calculations are described as

follows:

a) ML detection: From (2), since the ML detection

searches through all possible symbol vectors to find

the one that minimizes ‖y − Hx‖2, its computational

complexity CML is calculated as being |S|MT (8M2
T

+
8MT − 2).

b) ZF detection: From (4), by using the Gauss-Jordan

Elimination algorithm to compute the matrix inversion,

its computational complexity CZF is calculated as

being (56/3)M3
T

+ 38M2
T

+ (28/3)MT .

c) MMSE detection: From (6), the Gauss-Jordan Elimi-

nation algorithm is used for the matrix inversion, its

computational complexity CMMSE is calculated as

being (56/3)M3
T

+ 40M2
T

+ (34/3)MT + 1.

d) MMSE M -correction: Since this method is based on

the MMSE detection, its computational complexity

CMc is the sum of the complexity from the MMSE de-

tection and the complexity from correction procedures,

which is calculated as being

CMMSE +

(

MT

M

)

(|S|M − 1)C0

= (56/3)M3
T + 40M2

T + (34/3)MT + 1

+

(

MT

M

)

(|S|M − 1)(8M2
T + 8MT − 2).

e) Reduced-complexity MMSE M -correction: Similar to

the MMSE M -correction, this method is based on the

MMSE detection and thus its computational complexity

CRcMc is given by

CMMSE + (|S|M − 1)C0

= (56/3)M3
T + 40M2

T + (34/3)MT + 1

+(|S|M − 1)(8M2
T + 8MT − 2).

IV. SIMULATION RESULTS

In this section, the simulation results are presented to

evaluate the performance and computational complexities. We

simulate symbol error rate (SER) and compute computational

operations shown in Sec. III-C. In terms of these two criteria,

the proposed approach and its variations are compared with the

ZF detection, the MMSE detection and the ML detection. It is

noticed that the performance of sphere decoder is equivalent

to the ML detection because the conventional edition of the

sphere decoder is used in our simulation. In other words, the
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Fig. 1. SER versus SNR performance of the proposed methods and linear
detectors using 4-QAM modulation with MIMO channel 8x8.
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Fig. 2. SER versus SNR performance of the proposed methods and linear
detectors using 8-QAM modulation with MIMO channel 12x12.

ML performance also represents the sphere decoder perfor-

mance in our cases. For SER, two cases are considered: 1)

4-QAM modulation in the 8x8 MIMO system, and 2) 8-QAM

modulation in the 12x12 MIMO system. For complexities, four

cases are considered: 1) 4-QAM modulation in the 4x4 MIMO

system, 2) 4-QAM modulation in the 8x8 MIMO system, 3) 4-

QAM modulation in the 12x12 MIMO system, and 4) 8-QAM

modulation in the 12x12 MIMO system. In the simulations,

the MIMO channel is generated using i.i.d. Gaussian random

variables and AWGN model is used. The SNR is defined as

γ = E[(Hs)H(Hs)]/E[nHn]. The abbreviations used in the

tables and figures are defined as follows.

1) ML, ZF, MMSE: They represent the ML , ZF, and

MMSE detection, respectively.

2) MMSE-1c, MMSE-2c: They represent the MMSE

M -correction with M = 1 and M = 2, respectively.

3) MMSE-Rc-1c1p, MMSE-Rc-1c2p: They represent

the RC-MMSE M -correction with M = 1 and M = 2,

respectively. It is noted the MMSE-Rc-1c2p deter-

mines two positions (indices) for correcting the er-
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TABLE I
NUMBERS OF COMPUTATIONAL OPERATIONS OF THE

PROPOSED METHODS AND LINEAR DETECTORS

Numbers of Computational Operations (unit: 10
4)

Modulation 4QAM 4QAM 4QAM 8QAM

Channel size 4x4 8x8 12x12 12x12

ML 4.14 3788 2.10× 10
6

8.59× 10
9

ZF 0.184 1.20 3.78 3.78
MMSE 0.188 1.22 3.82 3.82

MMSE-1c 0.38 2.60 8.32 14.32
MMSE-2c 1.65 25.5 127.57 523.57

MMSE-Rc-1c1p 0.27 1.39 4.19 4.69
MMSE-Rc-1c2p 0.29 1.57 4.57 5.57

roneous symbol entries, and uses each position to

execute MMSE-Rc-1c1p. Namely, it is equivalent to

MMSE-Rc-1c1p being performed twice.

A. Performance- SER versus SNR

In Fig. 1 and Fig. 2, we present the performance of

the MMSE M -correction and RC-MMSE M -correction with

M = 1 and 2, and compare the performances with the ZF

and MMSE detection for the 8x8 and 12x12 MIMO systems,

respectively. In Fig. 1, at SER=10−2, the proposed MMSE-

1c and MMSE-2c achieve 7 dB and 12 dB gain over the

MMSE detections, respectively. Although the performance

of the methods MMSE-Rc-1c1p and MMSE-Rc-1c2p de-

grades approximately 3 dB and 1 dB compared with MMSE-

1c, they still achieves 4 dB and 7dB gain over the MMSE

detection, respectively. In Fig. 2, we observe the similar

performance improvements as Fig. 1. The performances of

the MMSE-Rc-1c1p and MMSE-Rc-1c2p are very close

to the method MMSE-1c.

B. Comparison of Computational Complexity

According to the equations from Sec. III-C, the computa-

tional complexities of the methods are calculated and listed

for 4x4, 8x8, and 12x12 MIMO systems in Table I. From

Table I, the computational complexity of the ML detection is

much higher than other methods. We notice that the proposed

approaches MMSE-1c, MMSE-Rc-1c1p and MMSE-Rc-

1c2p cost the small amount of extra computational operations

over the MMSE detection, while achieving approximately 7

dB to 12 dB gains. From the algorithmic perspective, the

methods MMSE-1c, MMSE-Rc-1c1p and MMSE-Rc-

1c2p are of complexity O(M3
T
), while the method MMSE-2c

is of complexity O(M4
T
). The complexities are much lower

than the ML detection. The numerical results are shown in

Table I.

V. CONCLUSION

The improved MMSE-based detection scheme is proposed

in this paper. The proposed scheme achieves performance

improvements while maintaining the advantage of low com-

plexities in the MMSE detectors. The performance improves

significantly compared with the conventional linear MIMO de-

tections, including the ZF and MMSE detector. The proposed

MMSE M -correction scheme searches the M -dimensional

subspace, and therefore the extra complexity is limited. To

further reduce the complexity of MMSE M -correction scheme,

the RC-MMSE M -correction is proposed. The RC-MMSE

M -correction select the subspaces, which are more likely to

improve the likelihood metric, to conduct search. The subspace

selection in RC-MMSE M -correction scheme is based on

the reformulations of the likelihood metric. The performances

and complexities are analyzed and simulated. The results

show the performance improvements with only slight extra

computational complexities.
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