
Proceedings of the 35th Hawaii International Conference on System Sciences - 2002

Proceedings o
0-7695-1435-9
ProcessNFL: A Language for Describing Non-Functional Properties

Nelson S. Rosa and Paulo R. F. Cunha
Centro de Informática

Universidade Federal de Pernambuco
Av. Prof. Luiz Freire, s/n

50732-970 Recife, Pernambuco - Brazil
nsr@cin.ufpe.br, prfc@cin.ufpe.br

George R. R. Justo
Centre for Parallel Computing

University of Westminster
115 New Cavendish Street,
London, UK - W1M 8JS
justog@cpc.wmin.ac.uk
Abstract

Non-functional requirements (NFRs) are rarely taken in
account in most software development. There are some rea-
sons that can help us to understand why these requirements
are not explicitly dealt with: their complexity, NFRs are
usually stated only informally, their high abstraction level
and the rare support of languages, methodologies and tools.
In this scenario, we concentrate on defining a language,
namely ProcessNFL, that expresses NFRs during the soft-
ware development. This language has been designed to con-
sider specific characteristics of NFRs like their correlations
and conflicts. In order to illustrate our language, we de-
scribe NFRs of software radios and the NFRs performance
and security, which are usually present in the software re-
quirements specifications.

1 Introduction

Functional requirements define what a software is ex-
pected to do. Non-functional requirements (NFRs1) define
how the software operates or how the functionality is exhib-
ited [4]. Functional requirements have typically localised
effects, i.e., they affect only the part of software addressing
the functionality defined by the requirement. On the other
hand, NFRs specify global constraints that must be satisfied
by the software, e.g., performance, fault-tolerance, avail-
ability and security.

During the software development, functional require-
ments are usually incorporated into the software artefacts
step by step. At the end of the process, all functional re-
quirements must have been implemented in such way that
the software completely satisfies the requirements defined

1Also referred to quality-attributes requirements [2], non-business re-
quirements, goals [17], softgoals [18], QoS parameters [1], QoS require-
ments [12, 14], software quality factors [10], ilities[8] and afunctional
qualities [6].
1

0-7695-1435-9/02
f the 35th Annual Hawaii International Conference on System Sciences (HICSS-35�02)
/02 $17.00 © 2002 IEEE
at the early stages. NFRs, however, are not implemented in
the same way as the functional ones. They are usually satis-
fied in a certain degree, or satisficed [17], as a consequence
of design decisions taken to implement the software’s func-
tionality.

NFRs are rarely considered when software systems are
built, especially in the early stages of the software develop-
ment. There are some reasons that can help us to understand
why these requirements are not explicitly dealt with: NFRs
are usually very abstract and stated only informally, e.g.,
“the system must have a satisfactory performance” and “the
component is secure” are common descriptions of NFRs;
NFRs are rarely supported by languages, methodologies
and tools; NFRs are more complex to deal with; NFRs are
difficult to be effectively carried out during the software de-
velopment; it is not trivial to verify whether the final prod-
uct satisfies or not a specific non-functional property, i.e.,
it is difficult to validate them in the final product; very of-
ten NFRs conflict and compete with each other, e.g., avail-
ability and performance; NFRs commonly concern environ-
ment builders instead of application programmers; and the
separation of functional and non-functional requirements is
not easily defined.

In spite of these difficulties, the necessity of dealing ex-
plicitly with NFRs is apparent [5, 17, 22]. Firstly, there
is an increasing demand for fault-tolerant, multimedia and
real-time applications, in which NFRs play a critical role
and their satisfaction are mandatory. Secondly, as a kind
of requirement, it is natural their integration into the soft-
ware development. Thirdly, interactions among functional
and non-functional requirements are so strong in most cases
that NFRs cannot be satisfied just as a consequence of de-
sign decisions taken to satisfy the functional requirements.
Finally, an explicit treatment of NFRs enables us to predict
some quality properties of the final product in a more rea-
sonable and reliable way [22].

In order to address the problem of explicitly treating
NFRs, two approaches have been traditionally adopted:
$17.00 (c) 2002 IEEE 1

Proceedings of the 35th Hawaii International Conference on System Sciences - 2002

Proceedings o
0-7695-1435-
process-oriented and product-oriented [17]. In the first
approach, NFRs are viewed as effective elements in the
software development as they are considered together with
functional requirements to guide the construction of the
software. In the product-oriented approach, NFRs are de-
termined in the final product in which they are explicitly
stated. In this approach, NFRs are measured and used to
compare quality attributes of the software.

Most approaches proposed are product-oriented and con-
centrate on defining notations that can be used to express
NFRs of the final product. Notations based on logic systems
such as first-order logic [13], temporal logic [25] and pred-
icate logic [23] express NFRs as predicates. A further strat-
egy for describing NFRs is proposed by [9], in which a no-
tation called NoFun is specially designed for this purpose.
Other approaches are defined in Aspect-oriented languages
[14], Pragma language [7] and a more formal one based on
Z [21]. In relation to the process-oriented approaches, the
NFR Framework has given a significant contribution [5]. It
adopts a graphical notation for representing NFRs, their de-
compositions and correlations.

General issues, however, must be observed in the men-
tioned proposals. Firstly, most approaches act on an isolated
way, e.g., notations for describing non-functional properties
are designed, but they are not integrated with the functional
requirements. Secondly, in a few cases in which the inte-
gration is proposed, it is accomplished in a very weak way,
in the sense that the integration happens only at the end of
the software development. Thirdly, notations based on logic
systems demand a lot of effort by developers who have not a
strong logic background. Finally, there is a unique process-
oriented approach, but its graphical notation is not suitable
to be integrated with notations used to describe functional
requirements.

On this scenario, we present the language ProcessNFL

for describing non-functional properties. Unlike most men-
tioned notations, this language follows the process-oriented
approach as strategy for treating with NFRs. ProcessNFL

has been designed with special skills in order to support par-
ticular characteristics of NFRs such as their strong corre-
lations, often conflicts and non-direct implementation na-
ture. Additionally, ProcessNFL has ability for explicitly
modelling the relationships between NFRs and the imple-
mentation elements that affect them. In order to carry out
this task, the language has been defined around basic ab-
stractions that represent our comprehension of NFRs and
implementation elements, together with their relationships.

This paper is organised as following: Section 2 presents
our view on how to reason about NFRs. Section 3 presents
ProcessNFL in details. Following section, Section 4,
presents the ProcessNFL description of performance and
security and non-functional properties of software radios.
Finally, last section presents the conclusions and some di-
0-7695-1435-9/02 $
f the 35th Annual Hawaii International Conference on System Sciences (HICSS-35�02)

9/02 $17.00 © 2002 IEEE
rections for future work.

2 Basic Principles

An initial step towards the definition of a notation for
describing non-functional properties is to explain how to
reason about them. Unlike functional requirements, which
are usually “realised” through algorithms and data struc-
tures, non-functional ones lack of elements that can rep-
resent, implement and structure them. Therefore, our first
step is the definition of abstractions, namely NF-Attribute,
NF-Property and NF-Action, used to model non-functional
issues. Additionally, as important as understanding the role
of individual abstractions for representing non-functional
properties, a key point to be taken in account is the relation-
ship between them. As mentioned before, non-functional
properties are usually in conflict and their correlations are
particular characteristics to be considered in the modelling.

Next subsections present details of the mentioned non-
functional abstractions and how they are related.

2.1 Non-Functional Attributes

Non-functional attributes (NF-Attributes) model non-
functional characteristics that can be precisely measured
like performance; non-functional features that cannot be
quantified, but may be defined as required in the final prod-
uct in a certain level like security and availability; and any
non-functional aspect that must be simply present (without
measure or level), like the transaction properties atomicity,
consistency, isolation and durability. According to this dis-
tinctive nature of NF-Attributes, we have categorised them
into ones precisely measured (Class 1), ones stated through
levels (Class 2) and ones just present (Class 3) in the final
product.

Another key characteristic of NF-Attributes is the pos-
sibility of decomposing them. A NF-Attribute is usually
decomposed into primitive NF-Attributes that are more de-
tailed or closer to implementation elements. The decompo-
sition serves to differentiate NF-Attributes referred to sim-
ple or composite. A simple NF-Attribute is not decom-
posed, while a composite one is broken up into more prim-
itives NF-Attributes. For a composite NF-Attribute, its
primitive components participate in three different ways in
order to compose the NF-Attribute:

� all primitive attributes are necessary in the definition
of the NF-Attribute;

� at least one (any) primitive attribute is necessary in the
definition of the NF-Attribute; and

� exactly one primitive attribute is necessary in the defi-
nition of the NF-Attribute.
17.00 (c) 2002 IEEE 2

Proceedings of the 35th Hawaii International Conference on System Sciences - 2002

Proceedings o
0-7695-1435-9
The degree of decomposition of a NF-Attribute usually de-
pends on both the acquired knowledge about the application
domain and the NF-Attribute itself. For example, a real-
time system is expected to demand performance character-
istics in a more detailed manner than most common appli-
cations, as it is a key non-functional property to be con-
sidered. Another example is a safety-critical application,
in which security aspects must be extensively known and
decomposed in order to be effectively achieved in the final
product.

Finally, as there are a great number of NF-Attributes and
their enormous variety, we have decided to focus on those
related to runtime issues. For example, performance, avail-
ability and security are mainly related to a running soft-
ware system, rather than issues of its development (non-
runtime quality attributes [6]) such as reusability, testability
and modifiability. The decision of selecting runtime proper-
ties has been motivated by some facts: most of them are in-
cluded in the software requirement specification [11]; they
are more visible to user’s application instead of developers;
their satisfaction have been increasing in most WEB appli-
cations; they are critical factors for the proper functioning of
real-time and safety-critical systems; and they are directly
affected by functional requirements.

2.2 Non-Functional Actions

A Non-Functional Action (NF-Action) models either any
software aspect or any hardware characteristic that affect
the NF-Attributes introduced in the previous section. Soft-
ware aspects mean design decisions, algorithms, data struc-
tures and so on. Hardware characteristics concern com-
puter resources available for running the software system.
For example, the NF-Attribute performance is decomposed
into two additional more primitive NF-Attributes, namely
space_performance and time_performance. An algorithm
(software aspect) used to compress data has a direct influ-
ence on performance, meanwhile the size of main memory
and secondary storage capacity (hardware characteristics)
are also important factors to be considered to achieve a good
performance.

An important issue to be taken in account in the previous
definition of NF-Action is the meaning of the statement “a
NF-Action affects a NF-Attribute”. A more precise consid-
eration of “affects” reveals that it refers to both “realise” or
have an “effect over” a non-functional aspect. By realising,
the NF-Action acts in order to implement/operationalise the
NF-Attribute. In relation to “effect over”, it refers to have
an influence over, i.e., a NF-Action whose effect over any
NF-Attribute cannot be neglected.

The effect of a NF-Action over NF-Attributes is either
against or in favour of them. For instance, good per-
formance is not directly implemented, but there are NF-
0-7695-1435-9/02
f the 35th Annual Hawaii International Conference on System Sciences (HICSS-35�02)
/02 $17.00 © 2002 IEEE
Actions that affect (or have an effect over) the performance
and may be implemented in order to achieve it. Unlike per-
formance, security is not simply affected by encryption al-
gorithms or authorisation access, but it is actually imple-
mented by them.

Another basic issue about NF-Actions is the notion of
“correlation”. Correlation refers to the fact that a NF-Action
implementing or affecting a NF-Attribute may also have
an effect over other NF-Attributes. For example, the NF-
Action encryption algorithm implements elements of the
NF-Attribute security. Furthermore, this NF-Action also in-
terferes in the NF-Attribute performance, as it is necessary
to spend time with the execution of the encryption algo-
rithm. According to our approach, the NF-Attributes per-
formance and security are correlated.

Finally, as mentioned in Section 1, it is very often con-
flicts between non-functional properties. Conflicts appear
as the result of correlations between NF-Attributes. For ex-
ample, if a NF-Action has an in favour effect over perfor-
mance, but it also has an against effect over another NF-
Attribute, may it be implemented or not? The previous ex-
ample presents a typical conflict of the NF-Attributes per-
formance and security. We treat this kind of situation by
allowing the assignment of priorities to NF-Attributes. The
assignment of priorities is shown in the next section.

2.3 Non-Functional Properties

A Non-Functional Property (NF-Property) models con-
straints over NF-Attributes. Constraints impose conditions
on what is required in the implementation of the software,
in relation to a certain NF-Attribute. In practical terms, the
constraint defines a subset of NF-Actions that must be actu-
ally implemented in order to satisfy the NF-Property. For
example, the NF-Property good performance expresses a
constraint over the NF-Attribute performance (“be good”).
In this particular case, only NF-Actions that contribute to
achieve a good performance must be taken in account.

The constraint is defined in terms of “levels”, depending
on the class of the NF-Attribute. NF-Properties defined over
NF-Attributes of Class 1 and Class 2 (see Section 2.1) are
expressed in terms of the following level of constraints:

� a “strong constraint” defines that every NF-Action that
implements a NF-Attribute and every NF-Action that
affects in favour of the NF-Attribute must be consid-
ered and none NF-Action that affects against the NF-
Attribute must be realised;

� a “medium constraint” states that every NF-Action that
implements the NF-Attribute and every NF-Action that
affects in favour of the NF-Attribute also must be con-
sidered; and
$17.00 (c) 2002 IEEE 3

Proceedings of the 35th Hawaii International Conference on System Sciences - 2002

Proceedings o
0-7695-1435-
priority

priority

R1
R3

A1

affects

realises

constrains

correlation

decomposition

realisesrealises

realises

affects affects

P1

constrains constrains

A

R2

A2

NF−Properties

NF−Attributes

NF−Actions

B

B1 B2

B21

Figure 1. Non-Functional Abstractions

� a “low constraint” defines that every NF-Action that
implements the NF-Attribute must be realised.

For NF-Attributes that belong to Class 3, the NF-Property
definition consists simply of defining the presence or not of
the NF-Attribute. For example, the NF-Attribute atomicity
(Class 3) is not defined in a certain level, but the necessity
of the atomicity is the constraint itself.

As mentioned in Section 2.2, conflicts are treated with
the assignment of priorities to the NF-Attributes in the
definition of NF-Properties. Three level of priorities are
considered, namely high, medium and low. These pri-
orities are defined in the NF-Property, together the con-
straints mentioned previously. For example, let the NF-
Property good_performance_secure that constrains the NF-
Attributes performance and security, it is also necessary to
assign priorities in order to decide which NF-Actions must
be considered to achieve the good_performance_secure.
This is necessary, as performance and security are corre-
lated and have a conflict.

Figure 1 shows a generic example of relationships be-
tween NF-Attributes, NF-Actions and NF-Properties. The
NF-Property P1 constrains the NF-Attribute A, which is de-
composed into the NF-Attributes A1 and A2. Three NF-
Actions are related to these NF-Attributes, R1, R2 and R3.
R1 and R2 realise the NF-Attribute A1, while R3 one only
affects A2 and B21. According to our definition of corre-
lation, the NF-Attributes A2 and B21 are correlated. Ad-
0-7695-1435-9/02
f the 35th Annual Hawaii International Conference on System Sciences (HICSS-35�02)

9/02 $17.00 © 2002 IEEE
ditionally, it is obligatory the implementation of the NF-
Actions R1 and R2, while R3 is realised according to the
constraint imposed on A and its priority.

3 ProcessNFL Language

As stated previously, our approach adopts the strategy in
which non-functional properties are treated during different
steps of the software development. The traditional approach
of defining a language to be used only when the software is
already built, product-oriented approach, is obviously not
useful in the software development. Product-oriented lan-
guages are suitable for precisely describing NF-Property,
e.g., typical descriptions of the NF-Attribute performance
state that a number such as 10 transactions/second repre-
sents it. However, in the initial steps of the development,
this precise number is not available, because the software is
not running yet. At this stage, what is necessary is to de-
fine which NF-Actions must be realised in order to achieve
a certain NF-Property.

Some design principles have been followed in order to
define ProcessNFL:

� Declarative Language: ProcessNFL is a declarative
language able to describe non-functional properties at
different levels of abstractions;

� Usability: the language has a simple structure made
up of templates, which are used to describe the non-
functional abstractions NF-Attribute, NF-Action and
NF-Property. These generic templates enable us to de-
scribe runtime non-functional properties in a similar
way, despite their distinctive nature;

� First-class entities: NF-Attributes, NF-Actions and
NF-Properties are considered first-class entities in
ProcessNFL;

� Integration with functional requirements: the inte-
gration with the functional part is explicitly placed in
the NF-Action template, which serves for treating im-
plementation issues. This template may be used both
to explore functional characteristics of the software
that affect a NF-Attribute and specific implementation
elements, which are placed in the implementation for
achieving a non-functional characteristic; and

� NF-Actions like components: following the idea of
effectively integrating non-functional properties into
the software development, NF-Actions may be thought
as software architecture components [19, 24].

Next subsections present the ProcessNFL’s templates.
$17.00 (c) 2002 IEEE 4

Proceedings of the 35th Hawaii International Conference on System Sciences - 2002

Proceedings
0-7695-1435-
3.1 NF-Attribute Template

The non-functional abstraction NF-Attribute is de-
scribed through two clauses grouped in a template as
defined in the following:

attribute attributeId1 extends attributeId2;
{

primitives primitiveAttributes;
contribution kindOfContribution;

}

The NF-Attribute attributeId1 extends the NF-
Attribute attributeId2. ProcessNFL defines a generic NF-
Attribute, namely NFR, which is extended by all other
NF-Attributes. The notion of extending is defined in order
to enable us to create an hierarchy of NF-Attributes. The
clause primitives contains the set of primitive attributes
that contributes to attributeId1, e.g., the NF-Attribute per-
formance is traditionally decomposed into the primitive
NF-Attributes time_performance and space_performance.
A simple NF-Attribute (see Section 2.1) has the set
of primitiveAttributes empty (represented by none in
ProcessNFL), while a composite NF-Attribute is decom-
posed into one or more primitive attributes.

The contribution (kindOfContribution) of primitive
attributes to attributeId1 is expressed through the clause
contribution. Four different kind of contributions are con-
sidered in ProcessNFL:

� all: attributeId1 is completely defined by composing
all its primitive attributes;

� one+: attributeId1 may be completely defined by
one or more of its primitive attributes;

� oneX: attributeId1 is completely defined by exactly
one (any) of its attributes; and

� none: attributeId1 is already completely defined,
i.e., it is a simple NF-Attribute.

From our approach on how to describe a NF-Attribute, a ba-
sic rule is implicit: two composite NF-Attributes have not
primitive NF-Attributes in common. It means that a prim-
itive attribute only participates in the definition of a NF-
Attribute.

3.2 NF-Action Template

A NF-Action (see Section 2.2) is defined in ProcessNFL

through the template showing in the following

action actionId;
{

0-7695-1435-9/02 $
of the 35th Annual Hawaii International Conference on System Sciences (HICSS-35�02)
9/02 $17.00 © 2002 IEEE
affected setOfAffectedAttributes;
implemented setOfImplementedAttributes;
effect

attributeId1 [kindOfEffect];
...
attributeIdn [kindOfEffect];

}

The clause affected defines which NF-Attributes
(setOfAffectedAttributes) are affected by the imple-
mentation (or realisation) of actionId. The second
clause, implemented, contains the set of NF-Attributes
(setOfImplementedAttributes) directly implemented
by actionId. Finally, the last clause, effect, defines how
the implementation of actionId affects individual NF-
Attributes belonging to setOfAffectedAttributes. For
each affected NF-Attribute is defined the kind of effect
(kindOfEffect): +1, +2, +3 and -1. The first three de-
grees are used to model an in favour effect, in which +3
is stronger than +2 that is stronger than +1. The degree -1
is only used to define an against effect of actionId over the
NF-Attribute.

Three basic facts emerges from our treatment of NF-
Actions:

� A NF-Action either implements or affects a NF-
Attribute: if an attributeIdi is implemented by
actionId, the attribute is not affected by the same
actionId. In a similar way, if an attributeIdj is af-
fected by actionId, it cannot be implemented by the
same actionId;

� A NF-Action either implements or affects at least one
NF-Attribute: actionId is defined in ProcessNFL only
if it affects a NF-attribute; and

� A NF-Action only affects or implements simple NF-
Attributes: composite attributes are not directly af-
fected by actionId.

3.3 NF-Property Template

The last template describes the abstraction NF-Property
(see Section 2.3). This template put together elements
defined in the attribute and action templates. It is defined
as depicted in the following

property propertyId;
{

constraints
attributeId1 [kindOfConstraint];
...
attributeIdn [kindOfConstraint];

priorities
17.00 (c) 2002 IEEE 5

Proceedings of the 35th Hawaii International Conference on System Sciences - 2002

Proceedings of
0-7695-1435-9
attributeId1 [kindOfPriority];
...
attributeIdn [kindOfPriority];

}

A propertyId is defined by setting constraints (clause
constraints) over individual NF-attributes attributeId1,
..., attributeIdn. ProcessNFL defines four different kind
of constraints (kindOfConstraint) imposed to individual
NF-Attributes: weak, light, strong and present (see Sec-
tion 2.3). Additionally, the template allows the assignment
of priorities to each NF-Attribute (clause priorities). Three
different levels of priority (kindOfPriority) are defined in
the language: low, medium and high. As the names sug-
gest, high priority is higher than medium and medium is
higher than low.

A typical ProcessNFL specification contains the defini-
tion of one or more NF-Attributes, one or more NF-Actions
and one NF-Property:

attribute attributeId1 extends attributeId2;
...

attribute attributeId3 extends attributeId4;
...

action actionId1;
...

action actionId2;
...

action actionId3;
...

property propertyId;
...

4 Examples

This section presents how ProcessNFL is used to de-
scribe non-functional properties. An initial example ex-
presses the two well known non-functional properties se-
curity and performance through the definition of the NF-
Property good_performance_secure. The second example
concentrates on the description of non-functional properties
of software radios [3, 15].

4.1 Performance and Security

This example was firstly specified through the graphical
notation of the NFR Framework [5]. According to our
approach, performance is a composite NF-Attribute
defined in terms of two primitives non-functional at-
tributes: space_performance and time_performance. These
NF-Attributes have a oneX contribution, expressing that
performance may be defined either considering NF-Actions
related to space_performance or time_performance. Both
0-7695-1435-9/02
 the 35th Annual Hawaii International Conference on System Sciences (HICSS-35�02)
/02 $17.00 © 2002 IEEE
space_performance and time_performance are simple
NF-Attributes, as they have not been decomposed into
more primitive NF-Attributes.

attribute performance extends NFR;
{

primitives space_performance,time_performance;
contribution oneX;

}

attribute space_performance extends performance;
{

primitives none;
contribution none;

}

attribute time_performance extends performance;
{

primitives none;
contribution none;

}

In terms of security, it is made up of three primitive
NF-Attributes: integrity, confidentiality and availability.
All of them are necessary in the decomposition of security
(contribution all). In a similar way as performance, security
also has only one level of decomposition, as its primitive
attributes are simple NF-Attributes.

attribute security extends NFR;
{

primitives integrity,confidentiality,availability;
contribution all;

}

attribute integrity extends security;
{

primitives none;
contribution none;

}

attribute confidentiality extends security;
{

primitives none;
contribution none;

}

attribute availability extends security;
{

primitives none;
contribution none;

}

$17.00 (c) 2002 IEEE 6

Proceedings of the 35th Hawaii International Conference on System Sciences - 2002

Proceedings
0-7695-143
There are two different sets of NF-Actions, one related to
performance issues and others referring to security. As per-
formance is a NF-Attribute not directly implemented, NF-
Actions only affect it. These NF-Actions are useIndexing
and useCompressedFormat. UseCompressedFormat affects
the NF-Attributes space_performance (in favour, +3) and
time_performance (against, -1). The against effect of useC-
ompressedFormat over time_performance is consequence
of the time spent to compress data. In relation to useIndex-
ing, it has an in favour effect (+3) over time_performance.

It is worth noting that time_performance and
space_performance are correlated, as they have the
NF-Action useCompressedFormat affecting both of them.
Additionally, there is also a conflict between them,
because useCompressedFormat has an opposite effect
over space_performance (in favour, +3) in relation to
time_performance (against, -1).

action useCompressedFormat;
{

affected space_performance,time_performance;
implemented none;
effect

space_performance [+3];
time_performance [-1];

}

action useIndexing;
{

affected space_performance;
implemented none;
effect

time_performance [+3];
}

Security has a different nature from performance, as
the NF-Actions related to it have the role of directly
implementing security issues. NF-Actions that may be im-
plemented to obtain a secure system are all of them related
to the NF-Attribute confidentiality: validateAccessAgain-
stEligibilityRules, identifyUser, usePIN, compareSignature
and requireAdditionalId.

action validateAccessAgainstEligibilityRules;
{

affected time_performance;
implemented confidentiality;
effect time_performance [-1];

}

action identifyUser;
{

affected none;
0-7695-1435-9/02
 of the 35th Annual Hawaii International Conference on System Sciences (HICSS-35�02)

5-9/02 $17.00 © 2002 IEEE
implemented confidentiality;
effect none;

}

action usePIN;
{

affected none;
implemented confidentiality;
effect none;

}

action compareSignature;
{

affected none;
implemented confidentiality;
effect none;

}

action requireAdditionalId;
{

affected none;
implemented confidentiality;
effect none;

}

It is worth observing that the NF-Attributes confidential-
ity and response_time are also correlated, as the NF-Action
validateAccessAgainstEligibilityRules affects both of them.
In a similar way, there is also a conflict between them.
The conflict appears because validateAccessAgainstEligi-
bilityRules implements confidentiality, while has an against
(-1) effect over response_time.

Finally, the NF-Property good_performance_secure, as
mentioned before, is a constraint over performance and
security. We assume that the constraint imposed to security
is stronger than ones imposed to performance, as the kind
of constraint (kindOfConstraint) is strong and medium,
respectively. Additionally, the priority assigned to security
(high) is higher than one associated to performance (low).
It means that NF-Actions assigned to security are imple-
mented preferable to ones related to performance.

property good_performance_secure;
{

constraints
performance [medium];
security [strong];

priorities
performance [low];
security [high];

}

 $17.00 (c) 2002 IEEE 7

Proceedings of the 35th Hawaii International Conference on System Sciences - 2002

Proceeding
0-7695-143
4.2 Non-Functional Properties of Software Ra-
dios

In this example, we illustrate how ProcessNFL may used
to describe non-functional properties of software radios.
Software radio [3, 15] is a term used to refer to the con-
vergence of today’s digital radio and software technologies.
The key point of this convergence comes from the fact that
communication technologies continue its rapid transition
from analogue to digital. As a consequence of this transi-
tion, more functions of contemporary radio systems are im-
plemented in software - leading toward the software radio
(SR)2 . As functions are defined in software (e.g., in JAVA),
issues of the “traditional” software development like the
treatment of non-functional properties also must be taken
in account in the context of software radios.

Non-functional properties of software radios are related
to processing, memory capacity, real-time performance and
power consumption. In particular, the necessity for real-
time performance (performance) is a critical property for
the proper functioning of software radios.

Performance is defined through the demand of three
main resources, namely I/O bandwidth, memory and pro-
cessing capacity [16]. Hence, according to our approach,
the NF-Attribute performance is made up of more
primitive NF-Attributes, namely processing_capacity,
IO_bandwidth_capacity and memory_capapcity . All
of them are necessary in the definition of performance

attribute performance extends NFR;
{

primitives
processing_capacity;
io_bandwidth_capacity,
memory_capapcity;

contribution all;
}

For simplicity and lack of space, we concentrate on
the NF-Attribute processing_capapcity. It is defined in
terms of the IF3 processing (if_processing_capacity),
baseband processing (baseband_processing_capacity),
bitstream processing (bistream_processing_capacity),
source processing (source_processing_capacity) and
overhead processing (overhead_processing_capacity)

attribute processing_capapcity extends performance;
{

primitives

2The terms adaptive terminal [20], software defined radio (SDR), re-
configurable radio systems and networks and cognitive radios are used to
refer to software radio.

3Intermediate Frequency.
0-7695-1435-9/02
s of the 35th Annual Hawaii International Conference on System Sciences (HICSS-35�02)
5-9/02 $17.00 © 2002 IEEE
if_processing_capacity,
baseband_processing_capacity,
bitstream_processing_capacity,
source_processing_capacity,
overhead_processing_capacity;

contribution all;
}

First primitive NF-Attribute of processing_capapcity,
if_processing_capacity, is defined in terms of the
bandwidth of the accessed service band (bw_accessed),
per-point complexity of the service band isolation filter
(g_isolation) and the complexity of subscriber channel-
isolation filters (g_subscriber)

attribute if_processing_capacity extends
processing_capacity;

{
primitives bw_accessed,g_isolation,g_subscriber;
contribution all;

}

Second primitive NF-Attribute,
baseband_processing_capacity, is defined in terms
of the bandwidth of a single channel (w_channel), com-
plexity of modulation processing and filtering (g_profil),
processing of demodulation (g_modulation)

attribute baseband_processing_capacity extends
processing_capacity;

{
primitives w_channel; g_profil; g_modulation;
contribution all;

}

Third NF-Attribute, bitstream_processing_capacity,
is defined through the composition of the data rate of the
bitstream (b_datarate), code rate (code_rate) and the per-
point complexity of bitstream processing (g_bitstream)

attribute bitstream_processing_capacity extends
processing_capacity;

{
primitives b_datarate; code_rate; g_bitstream;
contribution all;

}

Finally, last two primitive NF-
Attributes, source_processing_capacity and
overhead_processing_capacity, are simple NF-
Attributes.

Using the decomposition and definition of the NF-
Attribute performance proposed above, the NF-Property
 $17.00 (c) 2002 IEEE 8

Proceedings of the 35th Hawaii International Conference on System Sciences - 2002

Proceedings o
0-7695-1435-9
real_time_performance is defined as follows

property real_time_performance;
constraints

io_bandwidth_capacity [strong];
memory_capacity [strong];
processing_capacity [strong];

priorities
io_bandwidth_capacity [low];
memory_capacity [medium];
processing_capacity [high];

}
According to this description, all NF-Attributes impose

strong constraints over the NF-Attribute performance,
while processing_capacity has the highest priority. It
means that NF-Actions that implement of affect the NF-
Attribute processing_capacity are considered priorities to
be implemented.

5 Conclusion and Future Work

This paper has presented the ProcessNFL language
for describing non-functional properties during the soft-
ware development. Non-functional properties are expressed
through three abstractions, NF-Attributes, NF-Properties
and NF-Actions. These abstractions are described through
templates in ProcessNFL. In addition to concentrate on
the description of individual abstractions, the language also
makes explicit the relationships between them. Essentially,
ProcessNFL treats non-functional properties defining how
to express them at a high abstract level (NF-Attributes),
how to express constraints over them (NF-Properties) and
how design decisions/hardware aspects (NF-Actions) must
be considered in order to achieve the constraint imposed
over NF-Attributes.

Benefits of our approach comes from the simplicity of
the language, the possibility for describing non-functional
properties in different level of abstractions (through their
decomposition) and the way how to face the complexity
of treating non-functional properties, i.e., through a set of
well defined abstractions. Additionally, ProcessNFL can
be adopted to communicate non-functional properties in a
more precise way, while also may be used to create a cata-
logue of non-functional properties.

Obviously, this proposal does not resolve all the prob-
lems related to the description of non-functional properties.
This is a very complex task that comprises essentially a
stronger formalisation task, a better understanding of spe-
cific properties and further studies about the distinctive na-
ture of the non-functional properties themselves. However,
ProcessNFL is an effective step towards the explicit treat-
ment of this kind of property, as the language enable us to
understand in a more clear way how to reason about them.
0-7695-1435-9/02 $
f the 35th Annual Hawaii International Conference on System Sciences (HICSS-35�02)
/02 $17.00 © 2002 IEEE
Additionally, the proposed language is easier to be used if
compared with logical notations and enable a more concrete
view of non-functional properties and their correlations.

As the treatment of non-functional properties is only in
the beginning, additional points have to be investigated.
Firstly, a formal semantics has to be defined for the lan-
guage, which enable us to verify properties of the non-
functional properties, e.g., absence of conflicts. Secondly,
the notation have to be used to describe further properties.
Finally, the language must actually be integrated with cur-
rent languages and methodologies, e.g., the implementation
of a NF-Action may be written in a common programming
language.

References

[1] L. Blair and G. Blair. Composition in Multi-Paradigm Spec-
ification Techniques. In FMOODS’99, Florence, Italy, Feb.
1999.

[2] B. Boehm and H. In. Identifying Quality Requirements Con-
flicts. IEEE Software, 13(2):25–35, Mar. 1996.

[3] E. Buracchini. The Software Radio Concept. IEEE Commu-
nication Magazine, 38(9):138–143, Sept. 2000.

[4] L. Chung. Representation and Utilization of Non-functional
Requirements for Information System Design. In 3rd Inter-
national Conference on Advanced Information System Engi-
neering - CAiSE’91, Trondheim, Norway, May 1991.

[5] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos. Non-
functional Requirements in Software Engineering. Kluwer
Academic Publishers, 1999.

[6] P. C. Clements. Coming Attractions in Software Architec-
ture. Technical Report CMU/SEI-96-TR-008, Software En-
gineering Institute, Carnegie Mellon University, Jan. 1996.

[7] R. E. Filman. Achieving Ilities. In Workshop on Compo-
sitional Software Architectures, Monterey, California, USA,
Jan. 1998.

[8] R. E. Filman. Injecting Ilities. In Aspect-Oriented Program-
ming Workshop, ICSE’98, Kyoton, Japan, Apr. 1998.

[9] X. Franch. The Convenience for a Notation to Express
Non-functional Characteristics of Software Components.
In Foundations of Component-based Systems Workshop
(FoCBS), pages 101–109, Zurich, Switzerland, Sept. 1997.

[10] A. K. Ghose. Managing Requirements Evolution: Formal
Support for Functional and Non-functional Requirements.
In International Workshop on the Principles of Software
Evolution (IWPSE’99), Fukuoka, Japan, July 1999.

[11] IEEE/ANSI. 830-1998 Recommended Practice for Software
Requirements Specifications, 1998.

[12] V. Issarny and C. Bidan. Aster: A Framework for Sound
Customization of Distributed Runtime Systems. In 16th In-
ternational Conference on Distributed Computing Systems,
pages 586–593, Hong Kong, May 1996.

[13] V. Issarny, C. Bidan, and T. Saridakis. Achieving Middle-
ware Customization in a Configuration-based Development
Environment: Experience with the Aster Prototype. In 4th
International Conference on Configurable Distributed Sys-
tems, pages 207–214, Annapolis, Maryland, USA, 1998.
17.00 (c) 2002 IEEE 9

Proceedings of the 35th Hawaii International Conference on System Sciences - 2002

Proceedings
0-7695-1435
[14] J. P. Loyall, D. E. Bakken, R. E. Schants, J. A. Zinky,
D. A. Karr, R. Vanegas, and K. R. Anderson. QoS As-
pect Language and Their Runtime Integration. In Fourth
Workshop on Languages, Compilers, and Runtime Systems
for Scalable Computers, volume 1511 of Lecture Notes
in Computer Science, Pittsburgh,Pennsylvania,USA, May
1998. Springer-Verlag.

[15] J. Mitola. The Software Radio Architecture. IEEE Commu-
nications Magazine, 33(5):26–38, May 1995.

[16] J. Mitola. Software Radio Architecture - Object-Oriented
Approaches to Wireless Systems Engineering. John Wiley &
Sons, Inc., 2000.

[17] J. Mylopoulos, L. Chung, and B. Nixon. Representing and
Using Nonfunctional Requirements: A Process-Oriented
Approach. IEEE Transaction of Software Engineering,
18(6):483–497, June 1992.

[18] J. Mylopoulos, L. Chung, and E. Yu. From Object-oriented
to Goal-oriented Requirement Analysis. Communications of
the ACM, 42(1):31–37, Jan. 1999.

[19] D. E. Perry and A. L. Wolf. Foundations for the Study
of Software Architecture. Software Engineering Notes,
17(4):40–52, Oct. 1992.

[20] B. Robinson. Software Radio: The Standards Perspective.
In CEC Software Radio Workshop, Brussels, May 1997.

[21] N. S. Rosa, G. R. R. Justo, and P. R. F. Cunha. Incorporating
Non-Functional Requirements into Software Architecture.
In Fifth International Workshop on Formal Methods for Par-
allel Programming: Theory and Applications, volume 1800
of Lecture Notes in Computer Science, pages 1009 – 1018,
Cancun, Mexico, May 2000.

[22] N. S. Rosa, G. R. R. Justo, and P. R. F. Cunha. A Frame-
work for Building Non-Functional Software Architectures.
In 16th ACM Symposium on Applied Computing, pages 141–
147, Las Vegas, USA, Mar. 2001.

[23] T. Saridakis and V. Issarny. Fault Tolerant Software Archi-
tectures. Technical Report 3350, INRIA, 1998.

[24] M. Shaw and D. Garlan. Software Architecture: Perspectives
on an Emerging Discipline. Prentice Hall, 1996.

[25] A. Zarras and V. Issarny. A Framework for Systematic
Synthesis of Transactional Middleware. In Middleware’98,
pages 257–272, The Lake District, England, Sept. 1998.
0-7695-1435-9/02 $17.00 (c) 2002 IEEE 10
 of the 35th Annual Hawaii International Conference on System Sciences (HICSS-35�02)
-9/02 $17.00 © 2002 IEEE

	HICSS35 2002
	Return to Main Menu

