Querying Video Libraries®

Eenjun Hwang, V.S. Subrahmanian
Department of Computer Science
Institute for Advanced Computer Studies
Institute for Systems Research
University of Maryland
College Park, MD 20742.
{hwang, vs}@cs.umd.edu

Abstract

There is now growing interest in organizing and querying large bodies of video data.
In this paper, we will develop a simple SQL-like video query language which can be
used not only to identify videos in the library that are of interest to the user, but which
can also be used to extract, from such a video in a video library, the relevant segments
of the video that satisfy the specified query condition. We investigate various types
of user requests and show how they are expressed using our query language. We also
develop polynomial-time algorithms to process such queries. Furthermore, we show how
video-presentations may be synthesized in response to a user query. We show how a
standard relational database system can be extended in order to handle queries such as
those expressed in our language. Based on these principles, we have built a prototype
video retrieval system called VIQS. We describe the design and implementation of VIQS
and show some sample interactions with VIQS.

1 Introduction

Recent years have seen a spectacular increase in the ability to deliver video-on-demand
(VOD) services to customers over electronic networks. In most such VOD systems, the user
specifies a simple request of the form “I’d like to view the movie The Rope” and the VOD
system’s task is limited to retrieving the movie from its resident disk location and delivering
it to the customer. This task, though, may be far from trivial, involving subtle multiplexing
issues and efficient usage of network bandwidth.

In contrast, our aim in this paper is to be able to retrieve appropriate segments of video
from a video-library. In order to support this, we introduce a logical notion of a frame. In
today’s world, frames usually refer to a fixed amount of time (e.g. ;—O’th of a second or 11—5’th
of a second, etc.). In contrast, in our framework, a frame could be of any length whatsoever,

*This work was supported by the Army Research Office under Grant Nr. DAAL-03-92-G-0225 and by
the Air Force Office of Scientific Research under Grant Nr. F49620-93-1-0065, and by ARPA/Rome Labs
contract F30602-93-C-0241 (ARPA Order Nr. A716).

MOSAIC-like Video Data

/ Interface Structures
answer (for non FR-queries) | Query
Engine
end-user Answer Presentf Relational
ation Module DBMS (Ingres

Figure 1: Architecture of the VIQS System

as long as it refers to a fixed length of time for any given video. Different videos in the
library may use the same abstract notion of frame to denote different lengths of time.

Even when the notion of a frame is fixed, video querying leads to complications — for exam-
ple, a user may (informally) ask queries such as: Find me a segment of video where a
party occurs. This informally phrased query admits a number of possible interpretations:

e For instance, a party occurs in frames 33 through 56 of the movie, The Rope. Should
this entire segment of video be included in the solution or is it enough to show the
user any subsegment?

e Surely, the user should be able to specify that he would like to see at most say 10
frames of video that satisfy the specified query. For example, the user may not wish
to see 30 minutes of video, he may initially just want to take a quick peek at the
relevant portions and reserve the right to view the rest of the video at his leisure.

e Third, there may be several segments of videos (either from the same movie, or from
different movies) that satisfy a given query. The user should have the ability to specify
that he wishes to view “a little bit” (e.g., a few frames) or “all” of one or each of these
video segments.

In order to avoid the ambiguous interpretations of the query Find me a segment of video
where a party occurs, a query language must provide to the user, the ability to precisely
articulate each and every one of the three alternatives listed above.

Before proceeding any further, we present a “birdseye” view of the overall VIQS architecture
so that the reader may have a global picture of how the different sections of this paper fit
together.

1. The user interacts with VIQS through a MOSAIC-like graphical user interface (de-
scribed in Section 6). This interface allows the user to express queries in an SQL-like
language that we have developed. The language itself is described in Section 3. This
query language allows the user to retrieve answers in textual form that may require
access to video-data as well as to retrieve relevant video segments from one or more

movies. Queries involving retrieval of video segments are a special class of queries
called frame-request queries (or FR-queries, for short).

2. Using FR-queries, the user may specify the lengths of the segments that he wishes
to see, or he may ask the system to generate a maximal segment (or segments) that
satisfies his query. To facilitate this, the query language contains various primitive
operations that apply to sets of video-segments. The query engine executes these
queries using a formal model of video data structures defined by Adal et. al. [1].
This paper builds on the data structures defined in [1], and adds two fundamentally
new contributions: first, it presents a unified query language within which video data
can be accessed — this query language includes temporal modalities; second, this query
language provides various algebraic operations to compose video-segments together.

3. The answer presentation module (described in Section 4) of VIQS provides a paradigm
within which different video-segments retrieved in response to a user query may be
merged together to form a single cohesive body of video. In this paper, in addition
to the specification of the query language, we develop algorithms that compute the
aforementioned algebraic operations on sets of video-segments. Unlike previous ap-
proaches that pair-wise combined video segments (a process that takes quadratic time),
we present linear-time algorithms to merge answer presentations together.

4. We then define the concept of a relation-coupled query and show that we may use the
power of relational DBMSs to focus the search for video segments that contain certain
objects. This is particularly critical if expensive image processing algorithms are used
to retrieve the content of video data. In such cases, the relational component of the
query focuses the search, leading to significant efficiency gains.

2 Preliminaries

In [1], the authors develop a formal model of video data and devise a storage scheme using
modified spatial data structures. In this section, we present a quick overview of the video
model developed in [1].

As is well known, whenever a movie is played on a VCR, the particular point in the
movie that is currently being displayed may be captured by a number (e.g. 1155) on the
VCR monitor. This number may be viewed as a frame number of the video. Furthermore,
any video contains a number of objects of interest (e.g. the different characters appearing
in the movie, different items such as guns, dogs, etc.) as well as a number of activities of
interest (e.g. weddings, murders, parties, etc.). Furthermore, an event is a kind of activity
— for example, the activity wedding may have two events in the movie — one referring to the
wedding of John and Mary, while the other refers to the wedding of EEd and Lisa. These two
events share the same activity type, i.e. wedding, but have two distinct sets of participants
in that event. Associated with any activity type is a set of roles — for example, the activity
type wedding may have two associated roles — groom and bride. In any event, there are
certain players in these roles — for instance, in the event Wedding of John and Mary, the
role groom is played by John, the role bride is played by Mary. Adah et. al. [1] develop a

formal model of the above informal description of video-information and develop specialised
data structures to store such information.

We assume that a movie is divided up into a sequence of frames. In our setting, a frame
is a logical division of a movie. Usually, a frame is regarded as being ;—O’th of a second. In
our framework, a frame can be a video segment of any length whatsoever; however, once the
notion of a frame is picked for a given movie, it must stay fixed for that movie. Different
movies could use different notions of frame as we will show later (Section 6).

Every object and every event that occurs in a movie occurs during certain segments of
the movie. Thus, for instance, the event Wedding of John and Mary may occur between
frames 1133 and 1147. We would represent this frame-sequence as the left-closed right-open
interval [1133,1148) that denotes the set {x | 1133 < 2 < 1148} where x ranges over the
integers. In general, an object/event may occur in multiple frame sequences. For instance,
the object John may occur in frame-sequences [1078,1101),[1133,1148) and [1198,1225)
Adali et. al. [1] use this intuition to argue that associated with each object/activity/event,
is a set of frame-sequences. Fach frame sequence can be viewed as a line-segment; hence,
associated with any object/activity/event, is a set of line segments. They enhance an
existing data structure, called the segment tree (cf. Samet [11]) and use that as a basis for
querying. This data structure is described below. Fach node in a segment tree represents an
interval. The root represents the entire interval associated with the movie (e.g. [0,1200)).
The interval associated with a node is the disjoint union of the intervals associated with its
children. The start and finish fields associated with a node represent the interval; the
objlist associated with a node shows all objects that occur in all frames in the interval
associated with a node. The actlist is similarly defined.

type treenode = record of

start : integer;
finish : integer;
objlist : “objnode;
actlist : “actnode;
1child : “treenode;
rchild : “treenode;
end;

type objnode = record of
objid : integer
next : “objnode
end

type evtnode = record of
evtid : integer
next : “evtnode
end

The OBJECTARRAY: The object array is an array whose ¢’'th element denotes video

object number 7. Associated with any element of this array is an ordered linked list of
pointers to nodes in the frame segment tree.

The EVENTARRAY: As in the case of OBJECTARRAY, the event array stores a linked
list of pointers to nodes in the frame segment tree for each different event. Events are
uniformly numbered from 1 to N. For each event, we store the activity type, the team and
the list of tree nodes in the segment tree.

The ACTIVITYARRAY: This is another index which simply stores for each activity
type the list of events of that type. This will facilitate queries about a certain activity type
as opposed to a certain event of that type. Similarly, a ROLEARRAY simply lists the name
of the roles.

3 Query Language

In the preceding section, we described, albeit briefly, a data structure developed by Adah
et. al. [l] to index video data. In this section, we will show how this data struc-
ture can be used to facilitate the execution of queries. We will enumerate examples
of such queries and show how these queries can be answered using our data structure.
Before describing the query language, we observe that queries to video data may in-
volve answers having two forms — the answer to a query may only include textual data
(e.g. What is the name of the actor playing the role of the murder victim in
the movie, ‘‘The Rope’’? —even though this query involves accessing video data, the an-
swer is just a string. In contrast, the query Find the video-segments in ‘‘The Rope’’
where a murder takes place asks for relevant video-footage. Thus, queries are of two
types — those that involve textual answers and those that involve returning video-segments
to the user. Queries of the latter kind are called frame-request (FR)-queries (we will define
them formally later). Below, we present some general mathematical definitions pertinent
to FR-queries.

3.1 Frame Sequences

In our framework, a frame represents the smallest physical segment of video that we are

interested in. Thus, a frame could be a 31—0 second segment of video, or it could be a larger

segment of video — the latter is useful if users are not interested in characterizing a video
according to the lowest level of granularity.

A frame sequence [i,j) where 1 < ¢ < j < n is said to satisfy a query Q iff for each
1 < k < 7, frame k satisfies query Q.

A frame sequence [i,7) is said to maximally satisfy a query Q iff

1. frame sequence [, j) satisfies Q and

2. there are no other frame sequence [¢’, j') where ¢/ < i or j < j' satisfying Q.

Given a query, there may, in general, be several frame sequences that satisfy the query.
Furthermore, the length of each frame sequence satisfying the query might be different. For
example, the query Find all frame-sequences in which a brown dog appears may be satisfied
by frame sequences [5,11) as well as [56,90). The user may or may not wish to view the
entire set of frame sequences associated with a query. For example, some frame sequences
may be very long, and it may be extremely tedious and time-consuming for the user to have
to watch the whole frame-sequence. Hence, we need some method to control the length of
frame sequence that will be presented to the user.

In order to address this problem, we allow the user to parametrize frame sequence
variables. The purpose of such parametrized frame-sequence variables is to allow the user
to specify, in his query, a length of the presentation that he wishes to view. The parameters
that can be used in the query are shown below.

o 1: choose a single frame from the frame sequence.
o k: choose a frame sequence of length k from the frame sequence

e *: choose a maximal frame sequence.

3.2 Syntax of Query Language

The syntax of the query language in this paper is similar to SQL. Its general structure is
as follows.

FIND result_object_typel[parameter]

/* the object type returned by the query */
FROM video_name [frame_list]

/* the video name and frame sequence list */
[WHERE condition_list]

/* criterion for selecting frame sequences */

In the FIND clause, the type of the object which will be returned as a result of the query
is specified. In our index scheme and query language, we support three different types.

¢ Frames : frame sequences satisfying the query are returned.

e Objects : objects that appear in the set of frame sequence specified in the query are
returned.

e Activities : activities that occur in the set of frame sequence specified in the query
are returned.

Every video present in a video-library is not only indexed by the data structures shown
above, but may also have related information about the video stored in a relational DBMS.
The relational database(s) may contain information relevant to the movie itself and/or
information about objects in the movie. OQur query language supports accessing not only

the data stored in the specialized AVIS data structures, but also supports accessing data
stored in these affiliated relational DBMSs.

In the FROM clause of a query, we may indicate any specific video name stored in the
database on which we want to execute a query. In the context of query processing, the
video name provides a pointer to the entire frame-segment tree associated with that video.
Depending on the application, we may need to restrict the range of frame sequences for
which the index data are accessed and searched. For example, we need to know all the
objects appearing in the specific set of frame sequences. If the user is familiar with that
movie, then by specifying its range, the query can be executed more efficiently than just
from scratch.

There are two ways that can be used to restrict the range. In the first way, the user may
specify a set of frame sequences directly in the query. This set of specified frame-sequences
may either have been explicitly specified by the user, or may have been obtained as the
result of a previously executed query. The second possibility is to specify any query that
returns a set of frame sequences as a result.

The WHERE clause specifies the properties we want frame sequences to have. In our
scheme, a body of video data is characterized by the events and the objects that occur
within that body of video data. Therefore, in order to select the frame sequences that we
want, it is sufficient to specify conditions on the objects and events that we wish to see.

e Object condition: obj has (not) object_name

e Activity condition: act has (not) activity_name[:player list]

The object condition specifies the list of objects that the user thinks are relevant to
filtering the frame sequences. In the above specification, the keyword obj refers to the set
of objects appearing in the corresponding frame sequence. Similarly, the operator has tests
whether the input object appears in the obj list associated with that frame sequence. If
the object appears in the list of objects associated with a frame (or frame sequence), then
the condition obj has object name evaluates to true.

Likewise, the activity condition plays a similar role in query processing. As activities have
greater structure than objects (i.e., they have associated players in specified roles, etc.) in
this case, we can specify more detailed conditions on the activities using the list of players
appearing in the event.

The has construct specified above can be easily generalized to handle fuzzy matches by
making has a fuzzy membership function instead of a two-valued membership function.
This possibility was first introduced by Marcus and Subrahmanian [9] and is discussed in
detail in section 3.5.7.

3.3 Frame-Request Queries

A special case of the query format occurs when the result_object_type is frame, i.e. the
user is interested in finding frames. These queries are of the form:

FIND frames[parameter]
FROM video_name [frame_list]
[WHERE condition_list]

Unlike other types of queries that return symbol/textual answers, frame-request queries
require presenting the user with a list of frames that satisfy a given query. However,
consider a simple query of the form

FIND frames[x]
FROM Oliver Twist
WHERE obj has ’Fagin’.

Suppose Fagin was present in frames [8,16) and frames [29,32). This means that the set of
frames in which Fagin appears is {8,9,10,11,12,13,14,15,29,30,31}. However, this same
set can also be represented by the three intervals [8,11),[11,16),[29,32) — the reader will
easily see that many other representations are possible. Yet, we would like representations
to be compact, cohesive chunks of data. Fven more complex scenarios may occur when, for
instance, we wish to ask a query of the form

FIND frames[*]
FROM Oliver Twist
WHERE obj has ’Fagin’ AND act has robbery.

Here, we may have robberies occurring in frames [13,19) and [41,49) — hence, the frames
that satisfy this query are frames {13, 14, 15}. Though computing this set is easy, compactly
representing large sets of this kind may not be easy. In order to facilitate reasoning about
sets of frame-sequences, we now introduce some special definitions. These apply only to the
case of queries of the form FIND frames[+] FROM < —,— > WHERE < —,— >.

An answer A to a frame-request query is { f | f is a frame and satisfies the condition}.
Namely, an answer consists of all the frames k such that frame k satisfies the query.

However, as is clear from the above examples, the answer A to a query may be a very large
set. It certainly makes sense to represent such sets in a compact form. Below, we define
the notion of a presentation of an answer — a presentation is a compact representation of
an answer.

A presentation, PRES(A), of an answer A is a set of frame sequences fi,..., f, such that

1. inf=¢forallt#j

2. LUu...Uf.=A
3. there is no frame sequences f;, f; such that f; = [a,b) and f; = [b, ¢)

Whenever we answer a query of the form FIND frames[]..., the answer should be presented
according to the definition above. In particular, this means that even if the query has
a conjunctive condition in the WHERE clause, the set of frame-sequences corresponding to
each conjunct must be integrated together so as to satisfy the conditions described above.
Suppose now that Ay, Ay are answers to two queries (J1,¢)2. Then the answer to the
conjunction of queries (1,2 is 41 N Ay. We would like to define algorithms which, instead
of taking Ay, Ay as input, take instead, PRES(Ay), PRES(A3) as input, and return as output,
PRES(A; N Az). Of course, this can be done by brute-force, but this would be inefficient.
In Section 4, we show how such algebraic operations on presentations may be efficiently
implemented.

3.4 Aggregate Queries

In addition to the different types of queries described in preceding sections, a user may wish
to ask aggregate queries. An aggregate query is of the form f(()) where @ is an ordinary
query of the form described earlier that returns a set, ANS(Q) of answers. The function
f reflects some sort of operation on AN S(Q)). Standard aggregate operations in relational
databases include COUNT, SUM, AVG, etc. For example, the query How many people make
over 70K ?in a relational DBMS is an aggregate query where @) is the query: “Select all
tuples ¢ where ¢.SAL > 70” and f(Q) is the cardinality of AN S(Q).

In the context of video libraries, aggregate queries take on a new meaning. For example, a
user may wish to count the total number of frames in which a given object appears, or he
may wish to compute the ratio of the number of frames in which object o appears to the
number of frames in which object o' appears. Alternatively, he may wish to compute the
average pixel value or the average number of colors in all frames in which object o appears.
Such queries can be easily modeled within our framework as follows.

A wideo-aggregate operation is any function va that takes, as input, a set S of frame-
sequences, and returns as output, an integer. Our video query language defined so far may
be augmented with any arbitrary, but fixed set, VA = {vay,...,var} of video aggregate
operations. A video aggregate query is of the form:

FIND va;(frames[parameter])
FROM video name [frame list]
WHERE condition_list

Thus, for example, suppose we return to the example in Section 3.3 involving the movie
“Oliver Twist” and we wish to find the total number of objects occurring in frames in which
Fagin appears. This may be done by specifying the following query:

FIND vaq(frames[*]) FROM Oliver Twist WHERE obj has ’Fagin’.

Here, va; is the video-aggregate function that takes a set of frame sequences and computes
the total number of objects occurring in these frame sequences.

3.5 Types of Queries

We will now define different types of queries and show how they can be expressed in the
VIQS query language. Not only will we show how they can be represented in the VIQS
query language, we will also outline how these queries may be evaluated by traversing the
data structures described in Section 2.

3.5.1 Elementary object query

This is a query of the form: ”"Find all the video frames where a given object appears from
the set of frame sequences.”

Example: 7Find all video frame sequences in the movie “The Rope” where Brandon
appears.”

FIND frames[*]
FROM Rope
WHERE obj has ’Brandon’

Method: This query can be processed by first finding the entry of the object (e.g.
Brandon) in question in the OBJECTARRAY using a hash table index into the OBJEC-
TARRAY. Then, follow the pointers in the frames field, creating a set of frame sequences
corresponding to the start and end points of the tree nodes pointed by this field, and finally
merge the frame sequences (as described in Section 4) to obtain a valid presentation of the
answer.

3.5.2 Elementary activity query

This is a query of the form: “Find all the video frames in which events of a given activity
type occur.”

Example: “ Find all video frame sequences in the movie “The Rope” where someone is
murdered.”

FIND frames[x]
FROM Rope
WHERE act has ’murder’

Method: The query may be answered by first locating all the events corresponding to the
activity type (e.g., murder) given in the WHERE clause. This can be done by looking into
ACTIVITYARRAY using a hash table, and then following the events field which has event
id into the EVENTARRAY. The set of frame sequences for all such events are obtained one
by one by following the links in the EVENTARRAY and collecting these frame sequences
into a set. These sets of frame sequences are then merged into a final solid set to give the
final answer.

10

3.5.3 Detailed activity query

This is a query of the form: “Find all video frames in which one of a given set of events
occurs, where the events are specified by the activity type and the roles of specific objects
involved in this activity.”

Example: “Find all the video frames in which Rupert is given a clue by Philip.”

FIND frames[x]

FROM Rope

WHERE act = ’finding clue’:finder = ’Rupert’:
giver = ’Philip’

Method: The query can be solved in a manner similar to the Elementary activity query,
except that the search to locate relevant events is more complex. For this case, we first
locate (using a hash table), the given activity type in ACTIVITYARRAY. Then all the
events linked to the entry are followed checking to see whether teams contain all of the
necessary players. Then, for all those events, the link to the frame segment tree is followed,
forming a solid set of frame sequences. Finally, all these sets are merged to give the final
answer.

3.5.4 Object occurrence query

This is a query of the form: “Find all objects that occur in a given set of frame sequence.”
The frame sequences are specified directly or by another query returning frame sequences
as result.

Example: “Find all the objects that are present in the set {[5,20),[30,40)} of frame
sequences.”

FIND objects
FROM Rope[5:20] OR Rope[30:40]

Method: The query may be solved by searching the frame segment tree starting from the
root for the given set of frame sequences. If the node being visited intersects with any of
the frame sequences in the set, all the objects stored in this node are added to the output
set of objects, and then both the left and the right children of the node are visited. It is
possible to split the set of frame sequences for the children so that only those sequences
that may possibly intersect with the corresponding child are included in that call.

3.5.5 Activity occurrence query

This is a query of the form: “Find all the activities that occur in a given set of frame
sequences.”

11

Example: “Find all the activities that occur in the frame sequence where Rupert appears.”

FIND activities
FROM Ropel[] =
(FIND frames[x]
FROM Rope
WHERE obj has ’Rupert’)

Method: In this query, the activity search itself is very similar to the object search. The
key difference is that the input frame sequences are specified by another query. Hence, this
query can be solved in two stages. In the first stage, execute the elementary object query
specified in the FROM clause to get the result frame sequences where Rubert appears. In
the second stage, search the segment tree for each frame sequence given in the first stage,
collecting activities as in the case of object occurrence queries.

3.5.6 Conjunctive query

This is a query in which the WHERE clause involves a conjunction of conditions. Thus far, all
the queries have had only one type of condition in the WHERE clause. In a conjunctive query,
we can connect them using logical connectives to compose more complicated conditions in
the WHERE clause. Executing this query will involve the decomposition of the query into
elementary subqueries, and then compose the results of these sub-queries to form an answer
to the overall query.

Example: “Find all the frames where people are eating in the place where a chest can be
seen.”

FIND frames[x]
FROM Rope
WHERE obj has ’chest’ and act has ’eating’.

Method: The algorithms depends on the specific query posed. But the general rule to
execute the conjunctive queries is to decompose conditions into simpler ones. For example,
this query can be decomposed into an elementary object query and activity query each of
which can be executed using the algorithm mentioned above. Finally, we intersect these

frame sequences to obtain the answer!.

3.5.7 Fuzzy Queries

It is easy to see that the has construct may be easily generalized to a fuzzy membership
function. For example, suppose we use an automatic object recognition algorithm to index
the content of one or more videos. Such algorithms usually identify objects only to within
certain degrees of certainty. In such cases, the user, when asking queries, may wish to

!Conjunctive query optimization strategies will be considered in detail in a future paper.

12

specify fuzzy thresholds in his query. For instance, the user may say: “Find me all frame
sequences in the movie, Oliver Twist, in which Fagin is identified with certainty over 80%.”
This may be expressed as follows:

FIND frames[x]
FROM Oliver Twist
WHERE obj has ’Fagin’:0.8

The construct obj has "Fagin’:0.8 is satisfied iff Fagin appears in the object list with certainty
80% or more.

4 Composing Presentations

Complex queries like conjunctive queries can be executed by decomposing the selection
conditions into elementary, atomic ones. Processing an elementary atomic condition Cy
produces a presentation, PRES(Ay), of the answer Ay of the selection condition . Similarly,
processing an elementary atomic condition Cy produces a presentation, PRES(A3) of the
answer A, of the selection condition C5. The answer to the conjunctive query:

FIND frames[parameter]
FROM video name [frame 1ist]
WHERE () & Cy.

is A1 N Ay. Hence, as shown in Figure 2, one way to compute the presentation PRES(A1 N Ay)
is to compute Ay N Ay and then compute a presentation of A1 N Ay. However this is
inefficient because when computing elementary frame-request queries (such as Cq, C3), our
algorithms yield a presentation (such as PRES(A;),PRES(Ajy)). Surely, there must be a way
to directly combine PRES(A;) with PRES(A3) to obtain PRES(A; N Aj3)? Figure 2 shows a
diagrammatic rendering of the situation. The dashed-lines in the figure show solutions that
have already been computed. The dotted line shows what we would like to compute. The
two bold-lines show how we would like to compute PRES(A; N Ag) using PRES(A;) with
PRES(A3z) directly.

A diagram similar to that in Figure 2 applies when we are interested in considering the dis-
Junction of conditions Cq and Csy. In that case, we would like to directly combine PRES(A;)
with PRES(A3) to obtain PRES(A; U Aj).

4.1 Computing Intersections of Presentations

In this section, we present an algorithm that takes two presentations PRES(A;) and PRES(A3)
as input (each represented as an array) and returns PRES(A; N Ag) as output.

Algorithm 1 : Composing an intersection of two frame sequences

13

Ay AL & A,

&

- = = = - -
U o<- - - - - - -

RES(A,)

PRES(A; N Aj)

Figure 2: Composing Presentations

Input : Two integer arrays ARR1 and ARR2 of size 2n and 2m respectively which consists
of the start and finish point of maximal frame sequences fsl and fs2.

Output : An answer presentation fsl &) fs2 corresponding to the set of frames {(fyU...U
fa)0(fiu. U)}

int st, fi, /* start and end of each frame in the result */
spl[1], spl[2], /* variables pointing to array index */
dt[1], dt[2], /* variables for entering and exiting segment */
line_num; /* number of lines in consideration */

initialize line_num to zero ;
initialize sp[1] and sp[2] to one ;
initialize dt[1] and dt[2] to one ;

set st to the min (ARR1[sp[1]], ARR2[sp[2]1]) ;

if (ARR1[sp[1]] == ARR2[sp[2]]1)
line_num = line_num + dt[1] + dt[2] ;
increase sp[1] and sp[2] by one ;
dt[1] = -dt[1] ; dt[2] = -dt[2] ;

else

set i to sp of min(ARR1[sp[1]1],ARR2[sp[2]]) ;
line_num = dt[i] ;
dt[i] = -dt[i] ;
increase spl[i] by one ;

while (sp[1] <= 2n and sp[2] <= 2m)
if (line_num == 2)

14

set fi to the min(ARR1[sp[1]],ARR2[sp[2]1]) ;
output pair of (st, fi);
if (ARR1[sp[1]] == ARR2[sp[2]])
line_num = line_num + dt[1] + dt[2] ;
dt[1] = -dt[1] ; dt[2] = -dt[2] ;
increase sp[1] and sp[2] by one ;
else
set i to sp of min(ARR1[sp[1]],ARR2[sp[2]]) ;
line_num = line_num + dt[i] ;
dt[i] = -dt[i] ;
increase spl[i] by one ;
else
set st to the min(ARR1[sp[1]],ARR2[sp[2]1]) ;
if (ARR1[sp[1]] == ARR2[sp[2]])
line_num = line_num + dt[1] + dt[2] ;
dt[1] = -dt[1] ; dt[2] = -d4t[2] ;
increase sp[1] and sp[2] by one ;
else
set 1 to sp of min(ARR1[sp[1]1],ARR2[sp[2]1]) ;
line_num = line_num + dt[i] ;
dt[i] = -dt[i] ;
increase spl[i] by one ;

To see how the algorithm works, we show a figure where each frame sequence is repre-
sented by a line segment and the whole movie is represented by a whole line. In Figure 3,
the numbers specified on the line indicate how many input lines are under consideration
on that segment. For example, the line segment with value 0 means that any frame in
that segment should not be in the presentation. Similarly, the line segment with value 2
indicates that all frames in this segment are contained in both input frame sequences. In
the intersection operation, any segment with value 2 should be in the presentation. The
algorithm is easily generalized to a presentation where we have n conjuncts instead of just
2. In that case, any segment with value n should be in the presentation.

Geometrically speaking, one may think of the algorithm as working by sweeping a vertical
line across the horizontal lines shown in Figure 3. The vertical sweep line stops whenever
either a frame-sequence is being “entered” (i.e. when the sweep line encounters a new frame
sequence) or when a frame sequence is being “exited” (i.e. when the sweep line leaves behind
a frame-sequence it was in previously). The algorithm describes how one keeps track of the
frame-sequences in the two presentations being intersected so as to create the composite
presentation consisting of the intersection of the input frame sequences.

To see how this algorithm works, consider the following example.

Intersection Example: Suppose we consider the movie, “The Rope” and assume that it
has 160 frames and that:

e Rupert appears in frames [8,24),[61,75) and [111,132), and

15

Figure 3: Intersection of two frame sequences

e David appears in frames [11,19),[70,79),[91,97) and [128,135).

Consider now the intersection query where we wish to find all frames in which both Rupert
and David appear. This query involves computing the intersection of the two presentations
given above. In this case:

ARR1 = [8,24,61,75,111,132].
ARR2 = [11,19,70,79,91,97,128,135).

Note that we assume that ARR1 and ARR2 are sorted in ascending order. Initially, ARR1[sp[1]] =
8 and ARR2[sp[2]] = 11. The algorithm first compares 8 and 11. As 8 < 11, t increments
sp[1], adds dt[1] to line num and changes the sign of dt[1]. It also stores 8 into st as a
possible start point of a frame sequence in the output presentation. The next elements to
be compared are 24 and 11. As 24 > 11, the algorithm increments sp[2], adds dt[2] to
line num and changes the sign of dt[2]. Also, as a new possible start point, it updates st
to 11. Now, it is given 19 and 24. However, as 1ine num = 2, it sets £i to the minimum
of these two numbers (in this case, 11) and outputs (st,fi) as one of the frame-sequences
in the intersection. The role of the dt[i] variable is to indicate entering and exiting line
segments. dt[1]indicates the status associated with the first presentation, while dt[2] indi-
cates the status associated with the second presentation. Whenever dt[i] = 1, it means that
the sweep line is not currently “within” a line from the i’th presentation; when dt[i] = —1,
this means that the sweep line is currently “within” a line from the i’th presentation (for
i = 1,2). When entering a new line segment, line num is incremented by one. The same
process is repeated as the sweep line moves across the presentations, producing the final
answer presentation [11,19),[70,75),[128,132).

It is easy to see that the intersection composition algorithm works in time O(maz(m,n))
where m and m are the number of frame-sequences in the two input presentations, i.e.,
the algorithm is linear in the size of the two inputs. In contrast, an algorithm that does

16

o — : | —
0 — — | I

0 1,2 /1, 0 1,2 /1,0 1,2/1,21 0
Start

Figure 4: Union of two frame sequences

pairwise case-by-case intersection of the frame sequences in the two input presentations
would take time O(m x n). Consequently, from the point of view of algorithmic complexity,
our approach is somewhat superior to the case by case intersection approach.

4.2 Computing Unions of Presentations

In this section, we are interested in developing an algorithm that takes two presentations
PRES(A;) and PRES(A3) as input (each represented as an array) and returns PRES(A; U Aj)
as output. Fortunately, such an algorithm may be easily developed by modifying Algorithm
1. Below, we describe these modifications — the full version of the algorithm for computing
unions of presentations is contained in [?].

Like Algorithm 1, the algorithm considers all the start and finish points of the frame se-
quences given as input. Whenever it enters a new frame sequence (meets start point), it
increments line num variable by one. Also, whenever it exits a frame sequence(meets finish
point), it decrements line num variable by one.

The algorithm works in exactly the same way as the intersection algorithm described
earlier. The key difference is that any segment of the movie that has a value greater than 0
is included in the union. This is true even if n elementary atomic conditions are involved,
not just two.

Union Example: Let us return to the Intersection Example presented earlier, and consider
instead, the query Find all frames in which either Rupert or David appeared. In this case,
we need to apply the union composition algorithm to the two presentations described in
the Intersection example. The union composition algorithm works as follows: Initially,
ARR1[sp[1]] = 8 and ARR2[sp[2]] = 11. First, it compares 8 and 11. As 8 < 11, it increments
sp[1], adds dt[1] to 1ine num and changes the sign of dt[1]. It also stores 8 in st as a start
point for a frame-sequence in the unioned-presentation. Unlike the intersection algorithm,
the union algorithm considers the next point encounted by the sweep line as a possible
finish point. The next elements that should be compared are 24 and 11. As 24 > 11,
it increments sp[2], adds dt[2] to line num and changes the sign of dt[2]. Also, as a

17

possible finish point, it stores 11 in £i. It will repeat this process till 1ine_num = 0, when
it can output one frame-sequence in the answer presentation. In this example, [8,24) could
be the first such frame-sequence in the answer presentation. For the next pair of elements,
it will continue this comparison, constructing the answer presentation on the fly. The final
presentation would be [8,24),[61,79),[91,97),[111,135).

Like the intersection composition algorithm, the union-composition algorithm also works in
time O(maxz(m,n)) where m and n are the number of of frame-sequences in the two input
presentations, i.e. the algorithm is linear in the size of the two inputs.

4.3 Computing Complements of Presentations

We observe that the set {&,V,—} is a complete set of logical connectives, i.e., all boolean
operations can be expressed in terms of these three connectives. Suppose a user wishes to
express an F'R-query of the form

FIND frames[parameter]
FROM video_name [frame_list]
WHERE obj has not obj_name

This query aks the user for all frames (within the specified parameters) that do not contain
a given object. Similar queries can be expressed for situations where activities are missing.

Example: “Find all frame-sequences in the movie, The Rope, in which Rupert does not
appear.” This query can be expressed as:

FIND frames[*]
FROM rope
WHERE obj has not ‘Rupert’

Our indexing method allows us to compute frames in which Rupert appears, but no au-
tomatic indexing is available for the latter. In order to compute this query, we first find
a presentation of the answer, PRES(A), of all frame sequences where Rupert appears, and
then we need to compute PRES(A), i.e. we need to be able to find a presentation of the
complement of A — however, instead of taking A as input to the algorithm, we need to work
with a presentation of A. For this, all we need to do is to use the same algorithm as before,

except that now, we must return all segments (cf. Figure 5) that are marked with 0.

Complement Example: Let us return to the Intersection Example presented earlier, and
consider instead, the query Find all frames in which Rupert was not present. In this case,
we need to apply the complement composition algorithm to the presentation associated
with Rupert given in the Intersection example. The complement composition algorithm
works as follows: First, it checks to see if the first point is the first frame of the movie.
If so, st is set to the next element. If not, st is set to the first frame of the movie.
Then it will make up an answer presentation when crossing the start point of each frame

18

Figure 5: Complement of a frame sequence

segment (which is actually the £i value) setting the next element as next st value of next

presentation. For example, given the first frame sequence, the final presentation would be
[1,8),[24,60),[75,110),[132,160).

The complement-composition algorithm described here works in time O(n) where n is the
number of frame-sequences in the input presentation, i.e. the algorithm is linear in the size
of the input.

5 Relation-coupled query

In the previous section, we defined various types of queries, developed a query language
to express such queries, and also developed algorithms to efficiently process those queries.
However, the query language presented thus far falls short of the ideal in a number of ways.

Suppose we consider a user who asks the following types of queries:

(Query 1) Find out which actor played Rupert in “The Rope.”

(Query 2) Present a video-clip consisting of 5 frames each from each movie other than
“The Rope” in which this actor has starred.

(Query 3) Find out which actors and which actresses in “The Rope” also act in “Rear
Window” and for each such actor and actress, show a frame-sequence of 5 frames or
less from “Rear Window” in which that actor and actress appear together.

The data structures of Adali et. al. [1] are not adequate to express the information requested
in the above queries. However, there is no need to reinvent the wheel — data such as which
actor appeared in which role in which movie is typically likely to be stored in a relational
database management system. Query 1 above requires the ability to formulate a simple
relational query and can therefore be straightforwardly expressed in a language such as

SQL.

19

In contrast, Query 2 is somewhat more complex. It requires:

e executing Query 1 (relational query)

e identifying other movies in which this actor has appeared (relational query), and
finally

e executing a FIND frames[5] - - - query that finds frames from each of the movies iden-
tified in the preceding step. In other words, this requires the ability to iteratively
find 5 frames each from each movie identified in step 2 above and concatenating the
segments thus identified.

Query 3 is even more complex. It requires identifying pairs of actors and actresses who
appear in two movies, and then iterating on this pair, finding frames where both appear
together.

In the rest of this section, we will augment the VIQS query language so as to support all
the above types of queries.

A relation-coupled FR-query takes a set as an argument and creates an answer presenta-
tion by evaluating each element of the set. Each element of the set is used to get a sequence
of video frames using the algorithms described earlier in the paper. The general form of a
relation-coupled query is shown below.

/* this command establishes a linkage between a variable */
/* and set data, so in the subsequent query, the variable */
/* name is used to indicate the set data. */
SET set_var TO set_object_expression

/* set iteration operator where var is used to represent */

/* each element in the set per iteration */
FOREACH(FORALL) var IN set_object(set_var)

FIND frames

FROM video_data_name /* index searching operation */

WHERE condition_clause

The SET clause establishes a connection between a variable and a set of data items. It is
like a variable declaration with an initialized value in a standard programming language.
The variable will be used in the following queries. The set expression to which a set_var
is initialized may be constructed by an SQL query. Another way to specify set elements is
to explicitly enumerate them within a pair of set-braces.

Example: Consider the relations actor and sex described below.

20

Constance Collier
Constance Collier

Rope

The Trouble with Harry

Name Movie Role
James Stewart Rope Rupert
James Stewart Rear Window John
James Stewart The Trouble with Harry Donald
Farley Granger Rope Philip
Farley Granger Rear Window Douglas

John Dall Rope Brandon

John Dall The Trouble with Harry Ed
Joan Chandler Rope Janet
Joan Chandler Rear Window Anne

Mrs. Atwater
Mrs. Atwater

Name Sex
James Stewart male
Farley Granger male

John Dall male
Joan Chandler female
Constance Collier | female

actor

sex

Suppose we wish to find all actors/actresses who have acted in The Rope and place the

result in a variable X. The SET statement may then be used in the following way.

SET X TO (SELECT Name
FROM actor
WHERE Movie

= Rope)

The SET construct is relatively simple and has only been included for pedagogical com-
pleteness. On the other hand, the constructs FOREACH and FORALL are set-iterating
constructs which execute the subsequent query for each element in the set. The set is either
a set variable declared in the SET clause or a set object itself specifed directly. The differ-
ence between them is the way they compose the answer presentation. FOREACH construct
essentially computes the union of all the frame sequences returned, whereas the FORALL

constructs their intersection.

Example (Query 2): Let us examine query 2. The FOREACH construct may be used to
compose a solution to this query as follows.

SET MOVIES TO ((SELECT A.Movie
FROM actor A, actor B

WHERE A.Name = B.name AND

B.Movie = ’Rope’
B.Role = ’Rupert’)

MINUS

(SELECT DISTINCT Movie

FROM actor
WHERE Movie

FOREACH X IN MOVIES
FIND frames [5]

FROM X

21

’Rope’))

Example (Query 3): In a similar vein, Query 3 may be expressed as follows:

SET ACTOR TO ((SELECT A.Name

FROM actor A, sex S

WHERE S.Sex = ’male’ AND
S.Name = A.Name AND
A.Movie = ’Rope’)

INTERSECT

(SELECT A.Name

FROM actor A, sex S

WHERE S.Sex = ’male’ AND
S.Name = A.Name AND
A.Movie = ’Rear Window’))

SET ACTRESS TO ((SELECT A.Name

FROM actor A, sex S

WHERE S.Sex = ’female’ AND
S.Name = A.Name AND
A.Movie = ’Rope’)

INTERSECT

(SELECT A.NAME

FROM actor A, sex S

WHERE S.Sex = ’female’ AND
S.Name = A.Name AND
A.Movie = ’Rear Window’))

FOREACH X IN ACTORS
FOREACH Y IN ACTRESS
FIND frames [5]
FROM Rear Window
WHERE obj has X AND obj has Y

We now characterize the meaning of the FOREACH and FORALL constructs in much greater
detail. We assume that we have a set {e1,es,...,€,} specified in the construct. For each
element e;, the index searching operation returns a presentation, 5;, of a set of frame
sequences as the result. At this stage, the FOREACH query returns an answer presentation
consisting of (Jin; 5;. In contrast, the FORALL query returns the answer presentation

m?:l SZ

5.1 Foreach relation-coupled query
This is a query of the form: ”Given a set of objects, find a sequence of video frames where

at least one of the set elements appears. ” In general, this query can be expressed in the
form

22

SET VAR TO set_valued_expression
FOREACH X in VAR

FIND frames

FROM video

WHERE conditions.

Example: Consider the query “Find videos, from “The Rope”, of all people who have
acted in both “The Rope” and “Rear Window”.”

SET SOL TO ((SELECT Name
FROM actor
WHERE Movie
INTERSECT
(SELECT Name
FROM actor
WHERE Movie

Rope)

Rear Window)).

FOREACH X IN SOL
FIND frames
FROM Rope
WHERE obj has X.

Method: The query can be solved by first executing the database query contained in
the SET clause on the actor relation defined earlier on in the paper. Then store the result in
a temporary file named SOL. Now, for each element in the SOL file, we execute the subsequent
elementary query which returns a sequence of video frames. Finally, we combine those video
frames using the union algorithm described earlier so as to generate an answer presentation.
During the iteration, the variable connected to the set goes through the set, executes the
subsequent query and unions the resulting video frames to the currently accumulated video
frames.

Using SQL, we can handle more complicated queries. For example, the query shown
below uses the join operation.

Example: “Show video-clips, from “The Rope”, of all female actors (i.e. actresses) who
have acted in both “The Rope” and “Rear Window”.” This query may be expressed as
follows.

SET SOL1 TO (SELECT Name
FROM actors A, sex S
WHERE A.Name = S.name AND A S.sex = female)
INTERSECT
(SELECT Name
FROM actors
WHERE Movie = Rear Window)

23

INTERSECT

(SELECT Name

FROM actors

WHERE Movie = Rope).

FOREACH X IN SOL1
FIND frames
FROM Rope
WHERE obj has X.

Method: The query can be solved by first executing the join operation on the actors
and sex relations. The result is stored in a temporary file named SO0L1. For each element
in SOL1, execute the subsequent query composing a sequence of video frames as an answer
presentation using theunion composition algorithm described earlier.

5.2 Forall presentation query

This is a query of the form: ”Given a set of objects, find all the video frames where all the
objects in the set appear together.”

Example: “Find all frames (if any) in the movie “The Trouble with Harry” where all
actors who appeared in both “The Rope” and “Rear Window” appear together.” This
query may be expressed as follows, where SOL is as defined earlier.

FORALL X IN SOL
FIND frames
FROM The Trouble with Harry
WHERE obj has X.

Method: For each element of SOL, execute the subsequent object query for the movie “The
Trouble with Harry” to get a set of video frames where the element in SOL appears. Finally,
we intersect all these sets of video frames (using the intersection composition algorithms
described in this paper, to get a final answer presentation.

5.3 Brief Summary

Thus far, we have described the design of a query language for retrieving video data. This
query language has various salient features:

1. Fach video in the video library may be indexed at its own local level of granularity
(e.g. each frame could be ll—s’th of a second, or ;—O’th of a second, or some other
value); yet our query language supports accessing video frames based on content from
a collection of video data.

24

2. When the user asks a query, s/he may specify a number of frames that s/he is in-
terested in viewing. We have developed algorithms that will allow the system to
compose presentations together in linear time rather than in quadratic time. Com-
posing presentations together is important because a query may often be broken down
into sub-queries and the presentations generated by these sub-queries must be merged
in order to obtain a coherent presentation.

3. Our language provides facilities whereby VIQS can inter-operate with other relational
data sources very easily. As shown in Section 5, VIQS may easily access relational
databases and merge these results with these results of accesses to the content-based
video index. Thus, our framework may be used to first access relational data (thus
pruning the sometimes expensive video search) and then pursuing a focused search
on the video data.

4. The language constructs (FOREACH and FORALL) allow a user query to specify complex
presentations based on iterative concatentations of elementary presentations com-
puted within the iterative loop. This is essential because in many cases, a relational
DBMS may be used to identify a set of objects that we may wish to find in a video,
and then we need to iteratively construct a presentation associated with each object
in the set identified.

6 Implementation

All the algorithms described in this paper have been implemented in a prototype system
called VIQS (“Video Querying System”) at the University of Maryland. VIQS currently
contains about 3500 lines of C code, which includes a parser for the language described
in this paper, as well as methods to compose a presentation. The system also includes a
graphical user interface, constructed using the Tcl/Tk toolkit. The system currently runs
on Unix workstations under X-Windows.

When the user invokes VIQS, a screen comes up (cf. Figure 6). The user first specifies the
video database that he is interested in by using the Database button seen in Figure 6. He
may then type in his query in the appropriate form in the specified windows. The query is
executed when the user presses the Go button. Figure 6 shows a specific query requesting all
frames of the movie “The Rope” where Brendon appears and there is a conversation going
on. This query requires the use of the intersection-composition algorithms described earlier
in the paper. Initially, the bottom window of Figure 6 (“Result of Query Execution”)
remains empty. However, after the query is executed, the presentation of the answer is
listed in this bottom window. In this case, the answer to the query consists of several
frame-sequences. Ten of these frame-sequences are shown in the bottom window — others
may be viewed using the scroll-bar on the right. The user may click on any one of these
frame sequences — when he does so, the relevant frame sequences are composed together
into thumb-nail sketches and displayed to the user. Figure 6 shows the situation when the
user has requested that the frame-sequence [24,30) be displayed.

Figure 7 shows VIQS working on a FOREACH query that uses, within a FOREACH statement,
the result of a query similar to that in Figure 6 with some restrictions on where the frames

25

Database Vanable

For =

Find = find frames

L

M

From = |from rope

.I".

Where > where obj has 'Brendon’ and act has Conversatio

Go Hewr Cancel

== Hesult of Query Execution »»

2 1(3.23)
1(24,30)
11(31,32)
2((33,45)
1(49,50)
=1 (a1,52)
{55, 56)
{ 57,58)
{ 64, BE)
(72 ,75)

Figure 6: VIQS on a Simple Conjunctive Query

26

may be selected from (i.e they should lie between frames 1 and 130). The query asks for all
frame-sequences where either Rupert or Phillip is present and a conversation is going on.

Figure 8 shows the system working on a FORALL query. In effect, this query asks for all frame-
sequences where Rupert, Phillip and Brendon are all present together. However the FORALL
construct works as a loop, first finding the frame-sequences in which Rupert appears, then
finding the frame-sequences in which Phillip appears, composing these two presentations
together using the intersection-composition algorithm; the system then computes the frame-
sequences where Brendon appears, and composes this presentation (using the intersection-
composition algorithm) with the presentation composed earlier.

7 Related Work

Over the last couple of years, there has been a small, but noticeable, spurt of activity in the
area of video databases. The primary aim of this paper is to develop techniques by which
video may be organized and queried. Three works that are closely related are [10], [5] and

[7],

Oomoto and Tanaka [10] have defined a video-based object oriented data model, OVID.
They take pieces of video, identify meaningful features in them and link these features.
They also outline a language called VideoSQL for querying such data. One of the key
advantages of the VIQS query language is that it can allow the user to specify how many
frames he would like to see in a presentation. In addition, the operations FORALL and
FOREACH are new and allow the user to synthesize meaningful presentations. Finally, our
methods of composing presentations are novel.

Gibbs et. al. [5] study how stream-based temporal multimedia data may be modeled us-
ing object based methods. However, concepts such as roles and players, the distinction
between activities and events, and the integration of such video systems with other tradi-
tional database systems are not addressed.

Hjelsvold and Midtstraum [7] develop a “generic” data model for capturing video content
and structure. Their idea is that video should be included as a data type in relational
databases, i.e. systems such as PARADOX, INGRES, etc. should be augmented to handle
video data. In particular, they study temporal queries. However, they have no way of
composing video-presentations together, nor do they have any constructs similar to our
iterative constructs. Additionally, one of the innovations in our approach is the use of well
studied spatial (rather than temporal)’ data structures, suitably modified, to query video
data.

Arman et. al. [2] develop algorithms that can operate on compressed video directly — they
can identify scene changes by performing certain computations on DCT coeflicients in JPEG
and MPEG encoded video. Their effort complements ours neatly in the following way: their
algorithms can identify, from compressed video, frame sequences that are of interest, and the
objects/roles/events of these frame sequences can be stored using the indexing structures

27

(@] Video Query System

foreach x in {"Rupert’, Phillip’}

find frames

from rope [1:130]

where ob) has x and act has Conversation

Go MNewr Cancel

<< Hesult of Query Execution ==

(55,58)

L (61,64)
2 |(68,72)

[(75.78)
£ |(85,89)
(90,98)
2 (99,100)
(106 , 107)
(121,128)
(129 ,130)

Figure 7: VIQS on a (Complex) Foreach Query

28

[®] Video Query System

Database Vanable Query Help

.I'l.

For » forall x in {"Rupert’,"Phillip’,"Brendon"}
< Fnd > find frames

From = |from rope

Where > lwhere obj has x|

L

M

Go Mew Cancel

<< Hesult of Query Execution »»

(67 ,68)
(97 ,98)
(99,100)
(123,128)
(135,137)
(140 ,141)
(153 ,154)
()

Figure 8: VIQS on a (Complex) Forall Query

29

of Adah et. al.[1], and subsequently queried using the VIQS query language.

Other work on video includes work by Davenport et. al. [4] who argue that segmenting video
should not be done at the frame level. This is consistent with our rendition — segmenting
video at the frame level corresponds to a well-known data structure called the unit segment
tree (cf. Samet [11]) which is just like the segment tree described here except that leaves
always must represent unit intervals, i.e. intervals of the form [/,7 4+ 1). In contrast, by
using segment trees instead, we allow leaves to have whatever granularity is needed to best
represent the content of the video under consideration.

8 Conclusions

With the advent of the information superhighway, there is now a spectacular amount of
data available across computer networks. As the bandwidth of these wide area networks
increases, a vast array of video data is likely to become accessible to authorized users. For
example, museums and learned societies (e.g., National Geographic) possess large video
library archives that one may reasonably expect to become publicly available not too long
from now.

As such video data becomes more and more widely accessible, the need to efficiently index
this data becomes more and more significant. In this paper, we have developed schemes
that allow frame-segment based retrieval of large video databases. Davenport et. al. [4]
have argued persuasively against the development of indexing schemes that index each and
every frame of video; the reason for this is that many thousands of contiguous frames may
often denote a single event of interest, and in such cases, repetitive representation of this
data, once for each frame, is likely to lead to a tremendous waste of storage space. In this
paper, we have proposed a frame-sequence based approach of storing video-data so that
this problem is circumvented.

Additionally, we have proposed a high-level video-language that has several positive fea-
tures: first, the language is an SQL-like language that is very easily used by individuals
already familiar with SQL (this is a large group of users). Second, the language allows
users to retrieve video-segments from a video archive without worrying about low-level im-
plementation details. Third, we have developed algorithms to implement this language that
support succinct, cohesive presentations of video data based on queries expressed in our
language. These algorithms take complex boolean queries and compose presentations to-
gether efficiently — all the algorithms described in this paper can be executed in linear time.
Finally, we have provided special, intuitive language constructs (FOREACH and FORALL) that
allows a user query to specify complex presentations based on iterative concatenations of
elementary presentations computed within the iterative loop. This is essential because in
many cases, a relational DBMS may be used to identify a set of objects that we may wish
to find in a video, and then we need to iteratively construct a presentation associated with
each object in the set identified. Finally, the entire VIQS system based on the principles
articulated in this paper has been implemented at the University of Maryland.

30

There is a great deal of future work that remains to be done. First of all, we plan to develop
presentation summaries. When the user of a video server wishes to retrieve videos from
remote network locations, then he should receive, first, an “summary” of the presentation
in order to conserve network bandwidth. We plan to develop a theory of summarized
answer presentations. Second, we are developing a theoretical basis for fuzzy video systems
where a formal basis is provided for video databases with a fuzzy interpretation of the has
construct presented in this paper. We plan to test out these ideas on a prototype application
for retrieving instructional videos.

References

[1]

[7]

[8]

[9]

[10]

[11]

S. Adali, K.S. Candan, S.-S. Chen, K. Erol and V.S. Subrahmanian. (1995) AVIS:
Advanced Video Information Systems, accepted for publication in: ACM Multimedia
Journal. Also available via the WWW at http://www.cs.umd.edu//projects/hermes
/publications/abstracts/avisdsqp.html.

F. Arman, A. Hsu and M. Chiu. (1993) Image Processing on Compressed Data for
Large Video Databases, First ACM Intl. Conf. on Multimedia, Anaheim, CA, Aug.
1993, pps 267-272.

A. Brink, S. Marcus and V.S. Subrahmanian. (1995) Heterogeneous Multimedia Rea-
soning, IEEE Computer, Vol. 28, No. 9, Sep. 1995, pps 33-39.

G. Davenport, T.A. Smith and N. Pincever. (1991) Cinematic Primitives for Multi-
media, IEEE Comp. Graphics and Applications, Vol. 11, No. 4, July 1991, pps 67-74.

S. Gibbs, C. Breiteneder and D. Tsichritzis. (1994) Data Modeling of Time-Based
Media, Proc. ACM SIGMOD Conf. on Management of Data, Minneapolis, Minnesota,
June 1994, pps 91-102.

S. Gibbs and D. Tsichritzis. (1994) Multimedia Programming: Objects, Environments
and Frameworks, ACM Press/Addison Wesley.

R. Hjelsvold and R. Midtstraum. (1994) Modeling and Querying Video Data, Proc.
Intl. Conf. on Very Large Databases, Santigo, Chile, Sep. 1994, pps 686-694.

M. Ilino, Y.F. Day and A. Ghafoor. (1994) An Object-Oriented Model for Spatio-
Temporal Synchronization of Multimedia Information, Proc. 1994 Intl. Conf. on Mul-
timedia Computing and Systems, Boston, Massachusetts, May 1994, pps 110-120,
IEEE Press.

S. Marcus and V.S. Subrahmanian. (1994) Multimedia Database Systems, to appear
in: “Multimedia Databases: Research Issues and Directions” (eds. S. Jajodia and V.S.
Subrahmanian), Springer-Verlag, to appear.

E. Oomoto and K. Tanaka. (1993) OVID: Design and Implementation of a Video-
Object Database System, IEEE Trans. on Knowledge and Data Engineering, Aug.
1993, 5, 4, pps 629-643.

H. Samet. (1989) The Design and Analysis of Spatial Data Structures, Addison Wesley.

31

[12] R. Weiss, A. Duda and D.K. Gifford. (1994) Content-Based Access to Algebraic Video,
Proc. 1994 Intl. Conf. on Multimedia Computing and Systems, Boston, Massachusetts,
May 1994, pps 140-151, IEEE Press.

32

