
Querying Video Libraries�Eenjun Hwang, V.S. SubrahmanianDepartment of Computer ScienceInstitute for Advanced Computer StudiesInstitute for Systems ResearchUniversity of MarylandCollege Park, MD 20742.fhwang; vsg@cs.umd.eduAbstractThere is now growing interest in organizing and querying large bodies of video data.In this paper, we will develop a simple SQL-like video query language which can beused not only to identify videos in the library that are of interest to the user, but whichcan also be used to extract, from such a video in a video library, the relevant segmentsof the video that satisfy the speci�ed query condition. We investigate various typesof user requests and show how they are expressed using our query language. We alsodevelop polynomial-time algorithms to process such queries. Furthermore, we show howvideo-presentations may be synthesized in response to a user query. We show how astandard relational database system can be extended in order to handle queries such asthose expressed in our language. Based on these principles, we have built a prototypevideo retrieval system called VIQS. We describe the design and implementation of VIQSand show some sample interactions with VIQS.1 IntroductionRecent years have seen a spectacular increase in the ability to deliver video-on-demand(VOD) services to customers over electronic networks. In most such VOD systems, the userspeci�es a simple request of the form \I'd like to view the movie The Rope" and the VODsystem's task is limited to retrieving the movie from its resident disk location and deliveringit to the customer. This task, though, may be far from trivial, involving subtle multiplexingissues and e�cient usage of network bandwidth.In contrast, our aim in this paper is to be able to retrieve appropriate segments of videofrom a video-library. In order to support this, we introduce a logical notion of a frame. Intoday's world, frames usually refer to a �xed amount of time (e.g. 130 'th of a second or 115 'thof a second, etc.). In contrast, in our framework, a frame could be of any length whatsoever,�This work was supported by the Army Research O�ce under Grant Nr. DAAL-03-92-G-0225 and bythe Air Force O�ce of Scienti�c Research under Grant Nr. F49620-93-1-0065, and by ARPA/Rome Labscontract F30602-93-C-0241 (ARPA Order Nr. A716).1

MOSAIC-likeInterfaceAnswer Present-ation Module QueryEngine Video DataStructuresRelationalDBMS (Ingres)end-user answer (for non FR-queries)Figure 1: Architecture of the VIQS Systemas long as it refers to a �xed length of time for any given video. Di�erent videos in thelibrary may use the same abstract notion of frame to denote di�erent lengths of time.Even when the notion of a frame is �xed, video querying leads to complications { for exam-ple, a user may (informally) ask queries such as: Find me a segment of video where aparty occurs. This informally phrased query admits a number of possible interpretations:� For instance, a party occurs in frames 33 through 56 of the movie, The Rope. Shouldthis entire segment of video be included in the solution or is it enough to show theuser any subsegment?� Surely, the user should be able to specify that he would like to see at most say 10frames of video that satisfy the speci�ed query. For example, the user may not wishto see 30 minutes of video, he may initially just want to take a quick peek at therelevant portions and reserve the right to view the rest of the video at his leisure.� Third, there may be several segments of videos (either from the same movie, or fromdi�erent movies) that satisfy a given query. The user should have the ability to specifythat he wishes to view \a little bit" (e.g., a few frames) or \all" of one or each of thesevideo segments.In order to avoid the ambiguous interpretations of the query Find me a segment of videowhere a party occurs, a query language must provide to the user, the ability to preciselyarticulate each and every one of the three alternatives listed above.Before proceeding any further, we present a \birdseye" view of the overall VIQS architectureso that the reader may have a global picture of how the di�erent sections of this paper �ttogether.1. The user interacts with VIQS through a MOSAIC-like graphical user interface (de-scribed in Section 6). This interface allows the user to express queries in an SQL-likelanguage that we have developed. The language itself is described in Section 3. Thisquery language allows the user to retrieve answers in textual form that may requireaccess to video-data as well as to retrieve relevant video segments from one or more2

movies. Queries involving retrieval of video segments are a special class of queriescalled frame-request queries (or FR-queries, for short).2. Using FR-queries, the user may specify the lengths of the segments that he wishesto see, or he may ask the system to generate a maximal segment (or segments) thatsatis�es his query. To facilitate this, the query language contains various primitiveoperations that apply to sets of video-segments. The query engine executes thesequeries using a formal model of video data structures de�ned by Adal� et. al. [1].This paper builds on the data structures de�ned in [1], and adds two fundamentallynew contributions: �rst, it presents a uni�ed query language within which video datacan be accessed { this query language includes temporal modalities; second, this querylanguage provides various algebraic operations to compose video-segments together.3. The answer presentation module (described in Section 4) of VIQS provides a paradigmwithin which di�erent video-segments retrieved in response to a user query may bemerged together to form a single cohesive body of video. In this paper, in additionto the speci�cation of the query language, we develop algorithms that compute theaforementioned algebraic operations on sets of video-segments. Unlike previous ap-proaches that pair-wise combined video segments (a process that takes quadratic time),we present linear-time algorithms to merge answer presentations together.4. We then de�ne the concept of a relation-coupled query and show that we may use thepower of relational DBMSs to focus the search for video segments that contain certainobjects. This is particularly critical if expensive image processing algorithms are usedto retrieve the content of video data. In such cases, the relational component of thequery focuses the search, leading to signi�cant e�ciency gains.2 PreliminariesIn [1], the authors develop a formal model of video data and devise a storage scheme usingmodi�ed spatial data structures. In this section, we present a quick overview of the videomodel developed in [1].As is well known, whenever a movie is played on a VCR, the particular point in themovie that is currently being displayed may be captured by a number (e.g. 1155) on theVCR monitor. This number may be viewed as a frame number of the video. Furthermore,any video contains a number of objects of interest (e.g. the di�erent characters appearingin the movie, di�erent items such as guns, dogs, etc.) as well as a number of activities ofinterest (e.g. weddings, murders, parties, etc.). Furthermore, an event is a kind of activity{ for example, the activity wedding may have two events in the movie { one referring to thewedding of John and Mary, while the other refers to the wedding of Ed and Lisa. These twoevents share the same activity type, i.e. wedding, but have two distinct sets of participantsin that event. Associated with any activity type is a set of roles { for example, the activitytype wedding may have two associated roles { groom and bride. In any event, there arecertain players in these roles { for instance, in the event Wedding of John and Mary, therole groom is played by John, the role bride is played by Mary. Adal� et. al. [1] develop a3

formal model of the above informal description of video-information and develop specialiseddata structures to store such information.We assume that a movie is divided up into a sequence of frames. In our setting, a frameis a logical division of a movie. Usually, a frame is regarded as being 130 'th of a second. Inour framework, a frame can be a video segment of any length whatsoever; however, once thenotion of a frame is picked for a given movie, it must stay �xed for that movie. Di�erentmovies could use di�erent notions of frame as we will show later (Section 6).Every object and every event that occurs in a movie occurs during certain segments ofthe movie. Thus, for instance, the event Wedding of John and Mary may occur betweenframes 1133 and 1147. We would represent this frame-sequence as the left-closed right-openinterval [1133; 1148) that denotes the set fx j 1133 � x < 1148g where x ranges over theintegers. In general, an object/event may occur in multiple frame sequences. For instance,the object John may occur in frame-sequences [1078; 1101); [1133; 1148) and [1198; 1225).Adal� et. al. [1] use this intuition to argue that associated with each object/activity/event,is a set of frame-sequences. Each frame sequence can be viewed as a line-segment; hence,associated with any object/activity/event, is a set of line segments. They enhance anexisting data structure, called the segment tree (cf. Samet [11]) and use that as a basis forquerying. This data structure is described below. Each node in a segment tree represents aninterval. The root represents the entire interval associated with the movie (e.g. [0; 1200)).The interval associated with a node is the disjoint union of the intervals associated with itschildren. The start and finish �elds associated with a node represent the interval; theobjlist associated with a node shows all objects that occur in all frames in the intervalassociated with a node. The actlist is similarly de�ned.type treenode = record ofstart : integer;finish : integer;objlist : ^objnode;actlist : ^actnode;lchild : ^treenode;rchild : ^treenode;end;type objnode = record ofobjid : integernext : ^objnodeendtype evtnode = record ofevtid : integernext : ^evtnodeendThe OBJECTARRAY: The object array is an array whose i'th element denotes video4

object number i. Associated with any element of this array is an ordered linked list ofpointers to nodes in the frame segment tree.The EVENTARRAY: As in the case of OBJECTARRAY, the event array stores a linkedlist of pointers to nodes in the frame segment tree for each di�erent event. Events areuniformly numbered from 1 to N. For each event, we store the activity type, the team andthe list of tree nodes in the segment tree.The ACTIVITYARRAY: This is another index which simply stores for each activitytype the list of events of that type. This will facilitate queries about a certain activity typeas opposed to a certain event of that type. Similarly, a ROLEARRAY simply lists the nameof the roles.3 Query LanguageIn the preceding section, we described, albeit brie
y, a data structure developed by Adal�et. al. [1] to index video data. In this section, we will show how this data struc-ture can be used to facilitate the execution of queries. We will enumerate examplesof such queries and show how these queries can be answered using our data structure.Before describing the query language, we observe that queries to video data may in-volve answers having two forms { the answer to a query may only include textual data(e.g. What is the name of the actor playing the role of the murder victim inthe movie, ``The Rope''? { even though this query involves accessing video data, the an-swer is just a string. In contrast, the query Find the video-segments in ``The Rope''where a murder takes place asks for relevant video-footage. Thus, queries are of twotypes { those that involve textual answers and those that involve returning video-segmentsto the user. Queries of the latter kind are called frame-request (FR)-queries (we will de�nethem formally later). Below, we present some general mathematical de�nitions pertinentto FR-queries.3.1 Frame SequencesIn our framework, a frame represents the smallest physical segment of video that we areinterested in. Thus, a frame could be a 130 second segment of video, or it could be a largersegment of video { the latter is useful if users are not interested in characterizing a videoaccording to the lowest level of granularity.A frame sequence [i; j) where 1 � i < j � n is said to satisfy a query Q i� for eachi � k < j, frame k satis�es query Q.A frame sequence [i; j) is said to maximally satisfy a query Q i�1. frame sequence [i; j) satis�es Q and2. there are no other frame sequence [i0; j 0) where i0 < i or j < j 0 satisfying Q.5

Given a query, there may, in general, be several frame sequences that satisfy the query.Furthermore, the length of each frame sequence satisfying the query might be di�erent. Forexample, the query Find all frame-sequences in which a brown dog appears may be satis�edby frame sequences [5; 11) as well as [56; 90). The user may or may not wish to view theentire set of frame sequences associated with a query. For example, some frame sequencesmay be very long, and it may be extremely tedious and time-consuming for the user to haveto watch the whole frame-sequence. Hence, we need some method to control the length offrame sequence that will be presented to the user.In order to address this problem, we allow the user to parametrize frame sequencevariables. The purpose of such parametrized frame-sequence variables is to allow the userto specify, in his query, a length of the presentation that he wishes to view. The parametersthat can be used in the query are shown below.� 1: choose a single frame from the frame sequence.� k: choose a frame sequence of length k from the frame sequence� *: choose a maximal frame sequence.3.2 Syntax of Query LanguageThe syntax of the query language in this paper is similar to SQL. Its general structure isas follows.FIND result_object_type[parameter]/* the object type returned by the query */FROM video_name [frame_list]/* the video name and frame sequence list */[WHERE condition_list]/* criterion for selecting frame sequences */In the FIND clause, the type of the object which will be returned as a result of the queryis speci�ed. In our index scheme and query language, we support three di�erent types.� Frames : frame sequences satisfying the query are returned.� Objects : objects that appear in the set of frame sequence speci�ed in the query arereturned.� Activities : activities that occur in the set of frame sequence speci�ed in the queryare returned.Every video present in a video-library is not only indexed by the data structures shownabove, but may also have related information about the video stored in a relational DBMS.The relational database(s) may contain information relevant to the movie itself and/orinformation about objects in the movie. Our query language supports accessing not only6

the data stored in the specialized AVIS data structures, but also supports accessing datastored in these a�liated relational DBMSs.In the FROM clause of a query, we may indicate any speci�c video name stored in thedatabase on which we want to execute a query. In the context of query processing, thevideo name provides a pointer to the entire frame-segment tree associated with that video.Depending on the application, we may need to restrict the range of frame sequences forwhich the index data are accessed and searched. For example, we need to know all theobjects appearing in the speci�c set of frame sequences. If the user is familiar with thatmovie, then by specifying its range, the query can be executed more e�ciently than justfrom scratch.There are two ways that can be used to restrict the range. In the �rst way, the user mayspecify a set of frame sequences directly in the query. This set of speci�ed frame-sequencesmay either have been explicitly speci�ed by the user, or may have been obtained as theresult of a previously executed query. The second possibility is to specify any query thatreturns a set of frame sequences as a result.The WHERE clause speci�es the properties we want frame sequences to have. In ourscheme, a body of video data is characterized by the events and the objects that occurwithin that body of video data. Therefore, in order to select the frame sequences that wewant, it is su�cient to specify conditions on the objects and events that we wish to see.� Object condition: obj has (not) object name� Activity condition: act has (not) activity name[:player list]The object condition speci�es the list of objects that the user thinks are relevant to�ltering the frame sequences. In the above speci�cation, the keyword obj refers to the setof objects appearing in the corresponding frame sequence. Similarly, the operator has testswhether the input object appears in the obj list associated with that frame sequence. Ifthe object appears in the list of objects associated with a frame (or frame sequence), thenthe condition obj has object name evaluates to true.Likewise, the activity condition plays a similar role in query processing. As activities havegreater structure than objects (i.e., they have associated players in speci�ed roles, etc.) inthis case, we can specify more detailed conditions on the activities using the list of playersappearing in the event.The has construct speci�ed above can be easily generalized to handle fuzzy matches bymaking has a fuzzy membership function instead of a two-valued membership function.This possibility was �rst introduced by Marcus and Subrahmanian [9] and is discussed indetail in section 3.5.7. 7

3.3 Frame-Request QueriesA special case of the query format occurs when the result object type is frame, i.e. theuser is interested in �nding frames. These queries are of the form:FIND frames[parameter]FROM video_name [frame_list][WHERE condition_list]Unlike other types of queries that return symbol/textual answers, frame-request queriesrequire presenting the user with a list of frames that satisfy a given query. However,consider a simple query of the formFIND frames[*]FROM Oliver TwistWHERE obj has 'Fagin'.Suppose Fagin was present in frames [8; 16) and frames [29; 32). This means that the set offrames in which Fagin appears is f8; 9; 10; 11; 12; 13; 14; 15; 29; 30; 31g. However, this sameset can also be represented by the three intervals [8; 11); [11; 16); [29; 32) { the reader willeasily see that many other representations are possible. Yet, we would like representationsto be compact, cohesive chunks of data. Even more complex scenarios may occur when, forinstance, we wish to ask a query of the formFIND frames[*]FROM Oliver TwistWHERE obj has 'Fagin' AND act has robbery.Here, we may have robberies occurring in frames [13; 19) and [41; 49) { hence, the framesthat satisfy this query are frames f13; 14; 15g. Though computing this set is easy, compactlyrepresenting large sets of this kind may not be easy. In order to facilitate reasoning aboutsets of frame-sequences, we now introduce some special de�nitions. These apply only to thecase of queries of the form FIND frames[�] FROM < �;� > WHERE < �;� >.An answer A to a frame-request query is f f j f is a frame and satis�es the conditiong.Namely, an answer consists of all the frames k such that frame k satis�es the query.However, as is clear from the above examples, the answer A to a query may be a very largeset. It certainly makes sense to represent such sets in a compact form. Below, we de�nethe notion of a presentation of an answer { a presentation is a compact representation ofan answer.A presentation, PRES(A), of an answer A is a set of frame sequences f1; : : : ; fn such that1. fi \ fj = � for all i 6= j 8

2. f1 [: : :[fn = A3. there is no frame sequences fi; fj such that fi = [a,b) and fj = [b, c)Whenever we answer a query of the form FIND frames[�]:::, the answer should be presentedaccording to the de�nition above. In particular, this means that even if the query hasa conjunctive condition in the WHERE clause, the set of frame-sequences corresponding toeach conjunct must be integrated together so as to satisfy the conditions described above.Suppose now that A1; A2 are answers to two queries Q1; Q2. Then the answer to theconjunction of queries Q1; Q2 is A1 \ A2. We would like to de�ne algorithms which, insteadof taking A1; A2 as input, take instead, PRES(A1); PRES(A2) as input, and return as output,PRES(A1 \ A2). Of course, this can be done by brute-force, but this would be ine�cient.In Section 4, we show how such algebraic operations on presentations may be e�cientlyimplemented.3.4 Aggregate QueriesIn addition to the di�erent types of queries described in preceding sections, a user may wishto ask aggregate queries. An aggregate query is of the form f(Q) where Q is an ordinaryquery of the form described earlier that returns a set, ANS(Q) of answers. The functionf re
ects some sort of operation on ANS(Q). Standard aggregate operations in relationaldatabases include COUNT, SUM, AVG, etc. For example, the query How many people makeover 70K ? in a relational DBMS is an aggregate query where Q is the query: \Select alltuples t where t:SAL > 70" and f(Q) is the cardinality of ANS(Q).In the context of video libraries, aggregate queries take on a new meaning. For example, auser may wish to count the total number of frames in which a given object appears, or hemay wish to compute the ratio of the number of frames in which object o appears to thenumber of frames in which object o0 appears. Alternatively, he may wish to compute theaverage pixel value or the average number of colors in all frames in which object o appears.Such queries can be easily modeled within our framework as follows.A video-aggregate operation is any function va that takes, as input, a set S of frame-sequences, and returns as output, an integer. Our video query language de�ned so far maybe augmented with any arbitrary, but �xed set, VA = fva1; : : : ; vakg of video aggregateoperations. A video aggregate query is of the form:FIND vaj(frames[parameter])FROM video name [frame list]WHERE condition listThus, for example, suppose we return to the example in Section 3.3 involving the movie\Oliver Twist" and we wish to �nd the total number of objects occurring in frames in whichFagin appears. This may be done by specifying the following query:FIND va1(frames[*]) FROM Oliver Twist WHERE obj has 'Fagin'.Here, va1 is the video-aggregate function that takes a set of frame sequences and computesthe total number of objects occurring in these frame sequences.9

3.5 Types of QueriesWe will now de�ne di�erent types of queries and show how they can be expressed in theVIQS query language. Not only will we show how they can be represented in the VIQSquery language, we will also outline how these queries may be evaluated by traversing thedata structures described in Section 2.3.5.1 Elementary object queryThis is a query of the form: "Find all the video frames where a given object appears fromthe set of frame sequences."Example: "Find all video frame sequences in the movie \The Rope" where Brandonappears."FIND frames[*]FROM RopeWHERE obj has 'Brandon'Method: This query can be processed by �rst �nding the entry of the object (e.g.Brandon) in question in the OBJECTARRAY using a hash table index into the OBJEC-TARRAY. Then, follow the pointers in the frames �eld, creating a set of frame sequencescorresponding to the start and end points of the tree nodes pointed by this �eld, and �nallymerge the frame sequences (as described in Section 4) to obtain a valid presentation of theanswer.3.5.2 Elementary activity queryThis is a query of the form: \Find all the video frames in which events of a given activitytype occur."Example: \ Find all video frame sequences in the movie \The Rope" where someone ismurdered."FIND frames[*]FROM RopeWHERE act has 'murder'Method: The query may be answered by �rst locating all the events corresponding to theactivity type (e.g., murder) given in the WHERE clause. This can be done by looking intoACTIVITYARRAY using a hash table, and then following the events �eld which has eventid into the EVENTARRAY. The set of frame sequences for all such events are obtained oneby one by following the links in the EVENTARRAY and collecting these frame sequencesinto a set. These sets of frame sequences are then merged into a �nal solid set to give the�nal answer. 10

3.5.3 Detailed activity queryThis is a query of the form: \Find all video frames in which one of a given set of eventsoccurs, where the events are speci�ed by the activity type and the roles of speci�c objectsinvolved in this activity."Example: \Find all the video frames in which Rupert is given a clue by Philip."FIND frames[*]FROM RopeWHERE act = 'finding clue':finder = 'Rupert':giver = 'Philip'Method: The query can be solved in a manner similar to the Elementary activity query,except that the search to locate relevant events is more complex. For this case, we �rstlocate (using a hash table), the given activity type in ACTIVITYARRAY. Then all theevents linked to the entry are followed checking to see whether teams contain all of thenecessary players. Then, for all those events, the link to the frame segment tree is followed,forming a solid set of frame sequences. Finally, all these sets are merged to give the �nalanswer.3.5.4 Object occurrence queryThis is a query of the form: \Find all objects that occur in a given set of frame sequence."The frame sequences are speci�ed directly or by another query returning frame sequencesas result.Example: \Find all the objects that are present in the set f[5; 20); [30; 40)g of framesequences."FIND objectsFROM Rope[5:20] OR Rope[30:40]Method: The query may be solved by searching the frame segment tree starting from theroot for the given set of frame sequences. If the node being visited intersects with any ofthe frame sequences in the set, all the objects stored in this node are added to the outputset of objects, and then both the left and the right children of the node are visited. It ispossible to split the set of frame sequences for the children so that only those sequencesthat may possibly intersect with the corresponding child are included in that call.3.5.5 Activity occurrence queryThis is a query of the form: \Find all the activities that occur in a given set of framesequences." 11

Example: \Find all the activities that occur in the frame sequence where Rupert appears."FIND activitiesFROM Rope[] =(FIND frames[*]FROM RopeWHERE obj has 'Rupert')Method: In this query, the activity search itself is very similar to the object search. Thekey di�erence is that the input frame sequences are speci�ed by another query. Hence, thisquery can be solved in two stages. In the �rst stage, execute the elementary object queryspeci�ed in the FROM clause to get the result frame sequences where Rubert appears. Inthe second stage, search the segment tree for each frame sequence given in the �rst stage,collecting activities as in the case of object occurrence queries.3.5.6 Conjunctive queryThis is a query in which the WHERE clause involves a conjunction of conditions. Thus far, allthe queries have had only one type of condition in the WHERE clause. In a conjunctive query,we can connect them using logical connectives to compose more complicated conditions inthe WHERE clause. Executing this query will involve the decomposition of the query intoelementary subqueries, and then compose the results of these sub-queries to form an answerto the overall query.Example: \Find all the frames where people are eating in the place where a chest can beseen." FIND frames[*]FROM RopeWHERE obj has 'chest' and act has 'eating'.Method: The algorithms depends on the speci�c query posed. But the general rule toexecute the conjunctive queries is to decompose conditions into simpler ones. For example,this query can be decomposed into an elementary object query and activity query each ofwhich can be executed using the algorithm mentioned above. Finally, we intersect theseframe sequences to obtain the answer1.3.5.7 Fuzzy QueriesIt is easy to see that the has construct may be easily generalized to a fuzzy membershipfunction. For example, suppose we use an automatic object recognition algorithm to indexthe content of one or more videos. Such algorithms usually identify objects only to withincertain degrees of certainty. In such cases, the user, when asking queries, may wish to1Conjunctive query optimization strategies will be considered in detail in a future paper.12

specify fuzzy thresholds in his query. For instance, the user may say: \Find me all framesequences in the movie, Oliver Twist, in which Fagin is identi�ed with certainty over 80%."This may be expressed as follows:FIND frames[*]FROM Oliver TwistWHERE obj has 'Fagin':0.8The construct obj has 'Fagin':0.8 is satis�ed i� Fagin appears in the object list with certainty80% or more.4 Composing PresentationsComplex queries like conjunctive queries can be executed by decomposing the selectionconditions into elementary, atomic ones. Processing an elementary atomic condition C1produces a presentation, PRES(A1), of the answer A1 of the selection condition C1. Similarly,processing an elementary atomic condition C2 produces a presentation, PRES(A2) of theanswer A2 of the selection condition C2. The answer to the conjunctive query:FIND frames[parameter]FROM video name [frame list]WHERE C1&C2.is A1 \A2. Hence, as shown in Figure 2, one way to compute the presentation PRES(A1 \A2)is to compute A1 \ A2 and then compute a presentation of A1 \ A2. However this isine�cient because when computing elementary frame-request queries (such as C1, C2), ouralgorithms yield a presentation (such as PRES(A1); PRES(A2)). Surely, there must be a wayto directly combine PRES(A1) with PRES(A2) to obtain PRES(A1 \ A2)? Figure 2 shows adiagrammatic rendering of the situation. The dashed-lines in the �gure show solutions thathave already been computed. The dotted line shows what we would like to compute. Thetwo bold-lines show how we would like to compute PRES(A1 \ A2) using PRES(A1) withPRES(A2) directly.A diagram similar to that in Figure 2 applies when we are interested in considering the dis-junction of conditions C1 and C2. In that case, we would like to directly combine PRES(A1)with PRES(A2) to obtain PRES(A1 [A2).4.1 Computing Intersections of PresentationsIn this section, we present an algorithm that takes two presentations PRES(A1) and PRES(A2)as input (each represented as an array) and returns PRES(A1 \ A2) as output.Algorithm 1 : Composing an intersection of two frame sequences13

A1 A1&A2 A2PRES(A1) PRES(A2)PRES(A1 \ A2)Figure 2: Composing PresentationsInput : Two integer arrays ARR1 and ARR2 of size 2n and 2m respectively which consistsof the start and �nish point of maximal frame sequences fs1 and fs2.Output : An answer presentation fs1N fs2 corresponding to the set of frames f(f1[: : :[fn) \ (f 01 [: : :[f 0m)gint st, fi, /* start and end of each frame in the result */sp[1], sp[2], /* variables pointing to array index */dt[1], dt[2], /* variables for entering and exiting segment */line_num; /* number of lines in consideration */initialize line_num to zero ;initialize sp[1] and sp[2] to one ;initialize dt[1] and dt[2] to one ;set st to the min (ARR1[sp[1]], ARR2[sp[2]]) ;if (ARR1[sp[1]] == ARR2[sp[2]])line_num = line_num + dt[1] + dt[2] ;increase sp[1] and sp[2] by one ;dt[1] = -dt[1] ; dt[2] = -dt[2] ;else set i to sp of min(ARR1[sp[1]],ARR2[sp[2]]) ;line_num = dt[i] ;dt[i] = -dt[i] ;increase sp[i] by one ;while (sp[1] <= 2n and sp[2] <= 2m)if (line_num == 2) 14

set fi to the min(ARR1[sp[1]],ARR2[sp[2]]) ;output pair of (st, fi);if (ARR1[sp[1]] == ARR2[sp[2]])line_num = line_num + dt[1] + dt[2] ;dt[1] = -dt[1] ; dt[2] = -dt[2] ;increase sp[1] and sp[2] by one ;else set i to sp of min(ARR1[sp[1]],ARR2[sp[2]]) ;line_num = line_num + dt[i] ;dt[i] = -dt[i] ;increase sp[i] by one ;else set st to the min(ARR1[sp[1]],ARR2[sp[2]]) ;if (ARR1[sp[1]] == ARR2[sp[2]])line_num = line_num + dt[1] + dt[2] ;dt[1] = -dt[1] ; dt[2] = -dt[2] ;increase sp[1] and sp[2] by one ;else set i to sp of min(ARR1[sp[1]],ARR2[sp[2]]) ;line_num = line_num + dt[i] ;dt[i] = -dt[i] ;increase sp[i] by one ;To see how the algorithm works, we show a �gure where each frame sequence is repre-sented by a line segment and the whole movie is represented by a whole line. In Figure 3,the numbers speci�ed on the line indicate how many input lines are under considerationon that segment. For example, the line segment with value 0 means that any frame inthat segment should not be in the presentation. Similarly, the line segment with value 2indicates that all frames in this segment are contained in both input frame sequences. Inthe intersection operation, any segment with value 2 should be in the presentation. Thealgorithm is easily generalized to a presentation where we have n conjuncts instead of just2. In that case, any segment with value n should be in the presentation.Geometrically speaking, one may think of the algorithm as working by sweeping a verticalline across the horizontal lines shown in Figure 3. The vertical sweep line stops whenevereither a frame-sequence is being \entered" (i.e. when the sweep line encounters a new framesequence) or when a frame sequence is being \exited" (i.e. when the sweep line leaves behinda frame-sequence it was in previously). The algorithm describes how one keeps track of theframe-sequences in the two presentations being intersected so as to create the compositepresentation consisting of the intersection of the input frame sequences.To see how this algorithm works, consider the following example.Intersection Example: Suppose we consider the movie, \The Rope" and assume that ithas 160 frames and that:� Rupert appears in frames [8; 24); [61; 75) and [111; 132), and15

start finish

fs1

fs2
0 1 2 1 0 1 2 1 0 1 0 2 1 2 1 0Figure 3: Intersection of two frame sequences� David appears in frames [11; 19); [70; 79); [91; 97) and [128; 135).Consider now the intersection query where we wish to �nd all frames in which both Rupertand David appear. This query involves computing the intersection of the two presentationsgiven above. In this case:ARR1 = [8; 24; 61; 75; 111; 132]:ARR2 = [11; 19; 70; 79; 91; 97; 128; 135]:Note that we assume that ARR1 and ARR2 are sorted in ascending order. Initially, ARR1[sp[1]] =8 and ARR2[sp[2]] = 11. The algorithm �rst compares 8 and 11. As 8 < 11, t incrementssp[1], adds dt[1] to line num and changes the sign of dt[1]. It also stores 8 into st as apossible start point of a frame sequence in the output presentation. The next elements tobe compared are 24 and 11. As 24 > 11, the algorithm increments sp[2], adds dt[2] toline num and changes the sign of dt[2]. Also, as a new possible start point, it updates stto 11. Now, it is given 19 and 24. However, as line num = 2, it sets fi to the minimumof these two numbers (in this case, 11) and outputs (st,fi) as one of the frame-sequencesin the intersection. The role of the dt[i] variable is to indicate entering and exiting linesegments. dt[1] indicates the status associated with the �rst presentation, while dt[2] indi-cates the status associated with the second presentation. Whenever dt[i] = 1, it means thatthe sweep line is not currently \within" a line from the i'th presentation; when dt[i] = �1,this means that the sweep line is currently \within" a line from the i'th presentation (fori = 1; 2). When entering a new line segment, line num is incremented by one. The sameprocess is repeated as the sweep line moves across the presentations, producing the �nalanswer presentation [11,19),[70,75),[128,132).It is easy to see that the intersection composition algorithm works in time O(max(m;n))where m and n are the number of frame-sequences in the two input presentations, i.e.,the algorithm is linear in the size of the two inputs. In contrast, an algorithm that does16

start finish

fs1

fs2

0 1 2 1 0 1 2 1 0 1 2 1 2 1 0Figure 4: Union of two frame sequencespairwise case-by-case intersection of the frame sequences in the two input presentationswould take time O(m�n). Consequently, from the point of view of algorithmic complexity,our approach is somewhat superior to the case by case intersection approach.4.2 Computing Unions of PresentationsIn this section, we are interested in developing an algorithm that takes two presentationsPRES(A1) and PRES(A2) as input (each represented as an array) and returns PRES(A1 [A2)as output. Fortunately, such an algorithm may be easily developed by modifying Algorithm1. Below, we describe these modi�cations { the full version of the algorithm for computingunions of presentations is contained in [?].Like Algorithm 1, the algorithm considers all the start and �nish points of the frame se-quences given as input. Whenever it enters a new frame sequence (meets start point), itincrements line num variable by one. Also, whenever it exits a frame sequence(meets �nishpoint), it decrements line num variable by one.The algorithm works in exactly the same way as the intersection algorithm describedearlier. The key di�erence is that any segment of the movie that has a value greater than 0is included in the union. This is true even if n elementary atomic conditions are involved,not just two.Union Example: Let us return to the Intersection Example presented earlier, and considerinstead, the query Find all frames in which either Rupert or David appeared. In this case,we need to apply the union composition algorithm to the two presentations described inthe Intersection example. The union composition algorithm works as follows: Initially,ARR1[sp[1]] = 8 and ARR2[sp[2]] = 11. First, it compares 8 and 11. As 8 < 11, it incrementssp[1], adds dt[1] to line num and changes the sign of dt[1]. It also stores 8 in st as a startpoint for a frame-sequence in the unioned-presentation. Unlike the intersection algorithm,the union algorithm considers the next point encounted by the sweep line as a possible�nish point. The next elements that should be compared are 24 and 11. As 24 > 11,it increments sp[2], adds dt[2] to line num and changes the sign of dt[2]. Also, as a17

possible �nish point, it stores 11 in fi. It will repeat this process till line num = 0, whenit can output one frame-sequence in the answer presentation. In this example, [8,24) couldbe the �rst such frame-sequence in the answer presentation. For the next pair of elements,it will continue this comparison, constructing the answer presentation on the
y. The �nalpresentation would be [8,24),[61,79),[91,97),[111,135).Like the intersection composition algorithm, the union-composition algorithm also works intime O(max(m;n)) where m and n are the number of of frame-sequences in the two inputpresentations, i.e. the algorithm is linear in the size of the two inputs.4.3 Computing Complements of PresentationsWe observe that the set f&;_;:g is a complete set of logical connectives, i.e., all booleanoperations can be expressed in terms of these three connectives. Suppose a user wishes toexpress an FR-query of the formFIND frames[parameter]FROM video_name [frame_list]WHERE obj has not obj_nameThis query aks the user for all frames (within the speci�ed parameters) that do not containa given object. Similar queries can be expressed for situations where activities are missing.Example: \Find all frame-sequences in the movie, The Rope, in which Rupert does notappear." This query can be expressed as:FIND frames[*]FROM ropeWHERE obj has not `Rupert'Our indexing method allows us to compute frames in which Rupert appears, but no au-tomatic indexing is available for the latter. In order to compute this query, we �rst �nda presentation of the answer, PRES(A), of all frame sequences where Rupert appears, andthen we need to compute PRES(A), i.e. we need to be able to �nd a presentation of thecomplement of A { however, instead of taking A as input to the algorithm, we need to workwith a presentation of A. For this, all we need to do is to use the same algorithm as before,except that now, we must return all segments (cf. Figure 5) that are marked with 0.Complement Example: Let us return to the Intersection Example presented earlier, andconsider instead, the query Find all frames in which Rupert was not present. In this case,we need to apply the complement composition algorithm to the presentation associatedwith Rupert given in the Intersection example. The complement composition algorithmworks as follows: First, it checks to see if the �rst point is the �rst frame of the movie.If so, st is set to the next element. If not, st is set to the �rst frame of the movie.Then it will make up an answer presentation when crossing the start point of each frame18

start finish

fs

10 0 1 0 1 0 1Figure 5: Complement of a frame sequencesegment (which is actually the fi value) setting the next element as next st value of nextpresentation. For example, given the �rst frame sequence, the �nal presentation would be[1,8),[24,60),[75,110),[132,160).The complement-composition algorithm described here works in time O(n) where n is thenumber of frame-sequences in the input presentation, i.e. the algorithm is linear in the sizeof the input.5 Relation-coupled queryIn the previous section, we de�ned various types of queries, developed a query languageto express such queries, and also developed algorithms to e�ciently process those queries.However, the query language presented thus far falls short of the ideal in a number of ways.Suppose we consider a user who asks the following types of queries:(Query 1) Find out which actor played Rupert in \The Rope."(Query 2) Present a video-clip consisting of 5 frames each from each movie other than\The Rope" in which this actor has starred.(Query 3) Find out which actors and which actresses in \The Rope" also act in \RearWindow" and for each such actor and actress, show a frame-sequence of 5 frames orless from \Rear Window" in which that actor and actress appear together.The data structures of Adal� et. al. [1] are not adequate to express the information requestedin the above queries. However, there is no need to reinvent the wheel { data such as whichactor appeared in which role in which movie is typically likely to be stored in a relationaldatabase management system. Query 1 above requires the ability to formulate a simplerelational query and can therefore be straightforwardly expressed in a language such asSQL. 19

In contrast, Query 2 is somewhat more complex. It requires:� executing Query 1 (relational query)� identifying other movies in which this actor has appeared (relational query), and�nally� executing a FIND frames[5] � � � query that �nds frames from each of the movies iden-ti�ed in the preceding step. In other words, this requires the ability to iteratively�nd 5 frames each from each movie identi�ed in step 2 above and concatenating thesegments thus identi�ed.Query 3 is even more complex. It requires identifying pairs of actors and actresses whoappear in two movies, and then iterating on this pair, �nding frames where both appeartogether.In the rest of this section, we will augment the VIQS query language so as to support allthe above types of queries.A relation-coupled FR-query takes a set as an argument and creates an answer presenta-tion by evaluating each element of the set. Each element of the set is used to get a sequenceof video frames using the algorithms described earlier in the paper. The general form of arelation-coupled query is shown below./* this command establishes a linkage between a variable *//* and set data, so in the subsequent query, the variable *//* name is used to indicate the set data. */SET set_var TO set_object_expression/* set iteration operator where var is used to represent *//* each element in the set per iteration */FOREACH(FORALL) var IN set_object(set_var)FIND framesFROM video_data_name /* index searching operation */WHERE condition_clauseThe SET clause establishes a connection between a variable and a set of data items. It islike a variable declaration with an initialized value in a standard programming language.The variable will be used in the following queries. The set expression to which a set varis initialized may be constructed by an SQL query. Another way to specify set elements isto explicitly enumerate them within a pair of set-braces.Example: Consider the relations actor and sex described below.20

Name Movie RoleJames Stewart Rope RupertJames Stewart Rear Window JohnJames Stewart The Trouble with Harry DonaldFarley Granger Rope PhilipFarley Granger Rear Window DouglasJohn Dall Rope BrandonJohn Dall The Trouble with Harry EdJoan Chandler Rope JanetJoan Chandler Rear Window AnneConstance Collier Rope Mrs. AtwaterConstance Collier The Trouble with Harry Mrs. Atwater Name SexJames Stewart maleFarley Granger maleJohn Dall maleJoan Chandler femaleConstance Collier femaleactor sexSuppose we wish to �nd all actors/actresses who have acted in The Rope and place theresult in a variable X . The SET statement may then be used in the following way.SET X TO (SELECT NameFROM actorWHERE Movie = Rope)The SET construct is relatively simple and has only been included for pedagogical com-pleteness. On the other hand, the constructs FOREACH and FORALL are set-iteratingconstructs which execute the subsequent query for each element in the set. The set is eithera set variable declared in the SET clause or a set object itself specifed directly. The di�er-ence between them is the way they compose the answer presentation. FOREACH constructessentially computes the union of all the frame sequences returned, whereas the FORALLconstructs their intersection.Example (Query 2): Let us examine query 2. The FOREACH construct may be used tocompose a solution to this query as follows.SET MOVIES TO ((SELECT A.MovieFROM actor A, actor BWHERE A.Name = B.name ANDB.Movie = 'Rope' ANDB.Role = 'Rupert')MINUS(SELECT DISTINCT MovieFROM actorWHERE Movie = 'Rope'))FOREACH X IN MOVIESFIND frames [5]FROM X 21

Example (Query 3): In a similar vein, Query 3 may be expressed as follows:SET ACTOR TO ((SELECT A.NameFROM actor A, sex SWHERE S.Sex = 'male' ANDS.Name = A.Name ANDA.Movie = 'Rope')INTERSECT(SELECT A.NameFROM actor A, sex SWHERE S.Sex = 'male' ANDS.Name = A.Name ANDA.Movie = 'Rear Window'))SET ACTRESS TO ((SELECT A.NameFROM actor A, sex SWHERE S.Sex = 'female' ANDS.Name = A.Name ANDA.Movie = 'Rope')INTERSECT(SELECT A.NAMEFROM actor A, sex SWHERE S.Sex = 'female' ANDS.Name = A.Name ANDA.Movie = 'Rear Window'))FOREACH X IN ACTORSFOREACH Y IN ACTRESSFIND frames [5]FROM Rear WindowWHERE obj has X AND obj has YWe now characterize the meaning of the FOREACH and FORALL constructs in much greaterdetail. We assume that we have a set fe1; e2; : : : ; eng speci�ed in the construct. For eachelement ei, the index searching operation returns a presentation, Si, of a set of framesequences as the result. At this stage, the FOREACH query returns an answer presentationconsisting of Sni=1 Si. In contrast, the FORALL query returns the answer presentationTni=1 Si.5.1 Foreach relation-coupled queryThis is a query of the form: "Given a set of objects, �nd a sequence of video frames whereat least one of the set elements appears. " In general, this query can be expressed in theform 22

SET VAR TO set_valued_expressionFOREACH X in VARFIND framesFROM videoWHERE conditions.Example: Consider the query \Find videos, from \The Rope", of all people who haveacted in both \The Rope" and \Rear Window"."SET SOL TO ((SELECT NameFROM actorWHERE Movie = Rope)INTERSECT(SELECT NameFROM actorWHERE Movie = Rear Window)).FOREACH X IN SOLFIND framesFROM RopeWHERE obj has X.Method: The query can be solved by �rst executing the database query contained inthe SET clause on the actor relation de�ned earlier on in the paper. Then store the result ina temporary �le named SOL. Now, for each element in the SOL �le, we execute the subsequentelementary query which returns a sequence of video frames. Finally, we combine those videoframes using the union algorithm described earlier so as to generate an answer presentation.During the iteration, the variable connected to the set goes through the set, executes thesubsequent query and unions the resulting video frames to the currently accumulated videoframes.Using SQL, we can handle more complicated queries. For example, the query shownbelow uses the join operation.Example: \Show video-clips, from \The Rope", of all female actors (i.e. actresses) whohave acted in both \The Rope" and \Rear Window"." This query may be expressed asfollows.SET SOL1 TO (SELECT NameFROM actors A, sex SWHERE A.Name = S.name AND A S.sex = female)INTERSECT(SELECT NameFROM actorsWHERE Movie = Rear Window)23

INTERSECT(SELECT NameFROM actorsWHERE Movie = Rope).FOREACH X IN SOL1FIND framesFROM RopeWHERE obj has X.Method: The query can be solved by �rst executing the join operation on the actorsand sex relations. The result is stored in a temporary �le named SOL1. For each elementin SOL1, execute the subsequent query composing a sequence of video frames as an answerpresentation using theunion composition algorithm described earlier.5.2 Forall presentation queryThis is a query of the form: "Given a set of objects, �nd all the video frames where all theobjects in the set appear together."Example: \Find all frames (if any) in the movie \The Trouble with Harry" where allactors who appeared in both \The Rope" and \Rear Window" appear together." Thisquery may be expressed as follows, where SOL is as de�ned earlier.FORALL X IN SOLFIND framesFROM The Trouble with HarryWHERE obj has X.Method: For each element of SOL, execute the subsequent object query for the movie \TheTrouble with Harry" to get a set of video frames where the element in SOL appears. Finally,we intersect all these sets of video frames (using the intersection composition algorithmsdescribed in this paper, to get a �nal answer presentation.5.3 Brief SummaryThus far, we have described the design of a query language for retrieving video data. Thisquery language has various salient features:1. Each video in the video library may be indexed at its own local level of granularity(e.g. each frame could be 115 'th of a second, or 130 'th of a second, or some othervalue); yet our query language supports accessing video frames based on content froma collection of video data. 24

2. When the user asks a query, s/he may specify a number of frames that s/he is in-terested in viewing. We have developed algorithms that will allow the system tocompose presentations together in linear time rather than in quadratic time. Com-posing presentations together is important because a query may often be broken downinto sub-queries and the presentations generated by these sub-queries must be mergedin order to obtain a coherent presentation.3. Our language provides facilities whereby VIQS can inter-operate with other relationaldata sources very easily. As shown in Section 5, VIQS may easily access relationaldatabases and merge these results with these results of accesses to the content-basedvideo index. Thus, our framework may be used to �rst access relational data (thuspruning the sometimes expensive video search) and then pursuing a focused searchon the video data.4. The language constructs (FOREACH and FORALL) allow a user query to specify complexpresentations based on iterative concatentations of elementary presentations com-puted within the iterative loop. This is essential because in many cases, a relationalDBMS may be used to identify a set of objects that we may wish to �nd in a video,and then we need to iteratively construct a presentation associated with each objectin the set identi�ed.6 ImplementationAll the algorithms described in this paper have been implemented in a prototype systemcalled VIQS (\Video Querying System") at the University of Maryland. VIQS currentlycontains about 3500 lines of C code, which includes a parser for the language describedin this paper, as well as methods to compose a presentation. The system also includes agraphical user interface, constructed using the Tcl/Tk toolkit. The system currently runson Unix workstations under X-Windows.When the user invokes VIQS, a screen comes up (cf. Figure 6). The user �rst speci�es thevideo database that he is interested in by using the Database button seen in Figure 6. Hemay then type in his query in the appropriate form in the speci�ed windows. The query isexecuted when the user presses the Go button. Figure 6 shows a speci�c query requesting allframes of the movie \The Rope" where Brendon appears and there is a conversation goingon. This query requires the use of the intersection-composition algorithms described earlierin the paper. Initially, the bottom window of Figure 6 (\Result of Query Execution")remains empty. However, after the query is executed, the presentation of the answer islisted in this bottom window. In this case, the answer to the query consists of severalframe-sequences. Ten of these frame-sequences are shown in the bottom window { othersmay be viewed using the scroll-bar on the right. The user may click on any one of theseframe sequences { when he does so, the relevant frame sequences are composed togetherinto thumb-nail sketches and displayed to the user. Figure 6 shows the situation when theuser has requested that the frame-sequence [24; 30) be displayed.Figure 7 shows VIQS working on a FOREACH query that uses, within a FOREACH statement,the result of a query similar to that in Figure 6 with some restrictions on where the frames25

Figure 6: VIQS on a Simple Conjunctive Query26

may be selected from (i.e they should lie between frames 1 and 130). The query asks for allframe-sequences where either Rupert or Phillip is present and a conversation is going on.Figure 8 shows the system working on a FORALL query. In e�ect, this query asks for all frame-sequences where Rupert, Phillip and Brendon are all present together. However the FORALLconstruct works as a loop, �rst �nding the frame-sequences in which Rupert appears, then�nding the frame-sequences in which Phillip appears, composing these two presentationstogether using the intersection-composition algorithm; the system then computes the frame-sequences where Brendon appears, and composes this presentation (using the intersection-composition algorithm) with the presentation composed earlier.7 Related WorkOver the last couple of years, there has been a small, but noticeable, spurt of activity in thearea of video databases. The primary aim of this paper is to develop techniques by whichvideo may be organized and queried. Three works that are closely related are [10], [5] and[7],Oomoto and Tanaka [10] have de�ned a video-based object oriented data model, OVID.They take pieces of video, identify meaningful features in them and link these features.They also outline a language called VideoSQL for querying such data. One of the keyadvantages of the VIQS query language is that it can allow the user to specify how manyframes he would like to see in a presentation. In addition, the operations FORALL andFOREACH are new and allow the user to synthesize meaningful presentations. Finally, ourmethods of composing presentations are novel.Gibbs et. al. [5] study how stream-based temporal multimedia data may be modeled us-ing object based methods. However, concepts such as roles and players, the distinctionbetween activities and events, and the integration of such video systems with other tradi-tional database systems are not addressed.Hjelsvold and Midtstraum [7] develop a \generic" data model for capturing video contentand structure. Their idea is that video should be included as a data type in relationaldatabases, i.e. systems such as PARADOX, INGRES, etc. should be augmented to handlevideo data. In particular, they study temporal queries. However, they have no way ofcomposing video-presentations together, nor do they have any constructs similar to ouriterative constructs. Additionally, one of the innovations in our approach is the use of wellstudied spatial (rather than temporal)' data structures, suitably modi�ed, to query videodata.Arman et. al. [2] develop algorithms that can operate on compressed video directly { theycan identify scene changes by performing certain computations on DCT coe�cients in JPEGand MPEG encoded video. Their e�ort complements ours neatly in the following way: theiralgorithms can identify, from compressed video, frame sequences that are of interest, and theobjects/roles/events of these frame sequences can be stored using the indexing structures27

Figure 7: VIQS on a (Complex) Foreach Query28

Figure 8: VIQS on a (Complex) Forall Query
29

of Adal� et. al.[1], and subsequently queried using the VIQS query language.Other work on video includes work by Davenport et. al. [4] who argue that segmenting videoshould not be done at the frame level. This is consistent with our rendition { segmentingvideo at the frame level corresponds to a well-known data structure called the unit segmenttree (cf. Samet [11]) which is just like the segment tree described here except that leavesalways must represent unit intervals, i.e. intervals of the form [i; i + 1). In contrast, byusing segment trees instead, we allow leaves to have whatever granularity is needed to bestrepresent the content of the video under consideration.8 ConclusionsWith the advent of the information superhighway, there is now a spectacular amount ofdata available across computer networks. As the bandwidth of these wide area networksincreases, a vast array of video data is likely to become accessible to authorized users. Forexample, museums and learned societies (e.g., National Geographic) possess large videolibrary archives that one may reasonably expect to become publicly available not too longfrom now.As such video data becomes more and more widely accessible, the need to e�ciently indexthis data becomes more and more signi�cant. In this paper, we have developed schemesthat allow frame-segment based retrieval of large video databases. Davenport et. al. [4]have argued persuasively against the development of indexing schemes that index each andevery frame of video; the reason for this is that many thousands of contiguous frames mayoften denote a single event of interest, and in such cases, repetitive representation of thisdata, once for each frame, is likely to lead to a tremendous waste of storage space. In thispaper, we have proposed a frame-sequence based approach of storing video-data so thatthis problem is circumvented.Additionally, we have proposed a high-level video-language that has several positive fea-tures: �rst, the language is an SQL-like language that is very easily used by individualsalready familiar with SQL (this is a large group of users). Second, the language allowsusers to retrieve video-segments from a video archive without worrying about low-level im-plementation details. Third, we have developed algorithms to implement this language thatsupport succinct, cohesive presentations of video data based on queries expressed in ourlanguage. These algorithms take complex boolean queries and compose presentations to-gether e�ciently { all the algorithms described in this paper can be executed in linear time.Finally, we have provided special, intuitive language constructs (FOREACH and FORALL) thatallows a user query to specify complex presentations based on iterative concatenations ofelementary presentations computed within the iterative loop. This is essential because inmany cases, a relational DBMS may be used to identify a set of objects that we may wishto �nd in a video, and then we need to iteratively construct a presentation associated witheach object in the set identi�ed. Finally, the entire VIQS system based on the principlesarticulated in this paper has been implemented at the University of Maryland.30

There is a great deal of future work that remains to be done. First of all, we plan to developpresentation summaries. When the user of a video server wishes to retrieve videos fromremote network locations, then he should receive, �rst, an \summary" of the presentationin order to conserve network bandwidth. We plan to develop a theory of summarizedanswer presentations. Second, we are developing a theoretical basis for fuzzy video systemswhere a formal basis is provided for video databases with a fuzzy interpretation of the hasconstruct presented in this paper. We plan to test out these ideas on a prototype applicationfor retrieving instructional videos.References[1] S. Adali, K.S. Candan, S.-S. Chen, K. Erol and V.S. Subrahmanian. (1995) AVIS:Advanced Video Information Systems, accepted for publication in: ACM MultimediaJournal. Also available via the WWW at http://www.cs.umd.edu//projects/hermes/publications/abstracts/avisdsqp.html.[2] F. Arman, A. Hsu and M. Chiu. (1993) Image Processing on Compressed Data forLarge Video Databases, First ACM Intl. Conf. on Multimedia, Anaheim, CA, Aug.1993, pps 267{272.[3] A. Brink, S. Marcus and V.S. Subrahmanian. (1995) Heterogeneous Multimedia Rea-soning, IEEE Computer, Vol. 28, No. 9, Sep. 1995, pps 33{39.[4] G. Davenport, T.A. Smith and N. Pincever. (1991) Cinematic Primitives for Multi-media, IEEE Comp. Graphics and Applications, Vol. 11, No. 4, July 1991, pps 67{74.[5] S. Gibbs, C. Breiteneder and D. Tsichritzis. (1994) Data Modeling of Time-BasedMedia, Proc. ACM SIGMOD Conf. on Management of Data, Minneapolis, Minnesota,June 1994, pps 91{102.[6] S. Gibbs and D. Tsichritzis. (1994)Multimedia Programming: Objects, Environmentsand Frameworks, ACM Press/Addison Wesley.[7] R. Hjelsvold and R. Midtstraum. (1994) Modeling and Querying Video Data, Proc.Intl. Conf. on Very Large Databases, Santigo, Chile, Sep. 1994, pps 686{694.[8] M. Iino, Y.F. Day and A. Ghafoor. (1994) An Object-Oriented Model for Spatio-Temporal Synchronization of Multimedia Information, Proc. 1994 Intl. Conf. on Mul-timedia Computing and Systems, Boston, Massachusetts, May 1994, pps 110{120,IEEE Press.[9] S. Marcus and V.S. Subrahmanian. (1994) Multimedia Database Systems, to appearin: \Multimedia Databases: Research Issues and Directions" (eds. S. Jajodia and V.S.Subrahmanian), Springer-Verlag, to appear.[10] E. Oomoto and K. Tanaka. (1993) OVID: Design and Implementation of a Video-Object Database System, IEEE Trans. on Knowledge and Data Engineering, Aug.1993, 5, 4, pps 629{643.[11] H. Samet. (1989)The Design and Analysis of Spatial Data Structures, Addison Wesley.31

[12] R. Weiss, A. Duda and D.K. Gi�ord. (1994) Content-Based Access to Algebraic Video,Proc. 1994 Intl. Conf. on Multimedia Computing and Systems, Boston, Massachusetts,May 1994, pps 140{151, IEEE Press.

32

