UMIACS-TR-94-87.1 November, 1994
CS-TR-3317.1

Code Generation for Multiple Mappings

Wayne Kelly William Pugh Evan Rosser
wak@cs.umd.edu pugh@cs.umd.edu ejr@cs.umd.edu
Dept. of Computer Science  Institute for Advanced Computer Studies  Dept. of Computer Science
Dept. of Computer Science

Univ. of Maryland, College Park, MD 20742

Abstract

There has been a great amount of recent work toward unifying iteration reordering transfor-
mations. Many of these approaches represent transformations as affine mappings from the original
iteration space to a new iteration space. These approaches show a great deal of promise, but
they all rely on the ability to generate code that iterates over the points in these new iteration
spaces In the appropriate order. This problem has been fairly well-studied in the case where all
statements use the same mapping. We have developed an algorithm for the less well-studied case
where each statement uses a potentially different mapping. Unlike many other approaches, our
algorithm can also generate code from mappings corresponding to loop blocking. We address the
important trade-off between reducing control overhead and duplicating code.

This work is supported by an NSF PYI grant CCR-9157384 and by a Packard Fellowship.



Code Generation for Multiple Mappings

Wayne Kelly

wak@cs.umd.edu

William Pugh

pugh@cs.umd.edu

Evan Rosser

ejr@cs.umd. edu

Department of Computer Science

University of Maryland, College Park, MD 20742

Abstract

There has been a great amount of recent work
toward unifying iteration reordering transformations.
Many of these approaches represent transformations
as affine mappings from the original iteration space
to a new iteration space. These approaches show a
great deal of promise, but they all rely on the ability
to generate code that iterates over the points in these
new Iteration spaces in the appropriate order. This
problem has been fairly well-studied in the case where
all statements use the same mapping. We have devel-
oped an algorithm for the less well-studied case where
each statement uses a potentially different mapping.
Unlike many other approaches, our algorithm can also
generate code from mappings corresponding to loop
blocking. We address the important trade-off between
reducing control overhead and duplicating code.

1 Introduction

Optimizing compilers apply iteration reordering
transformations for a variety of reasons. By changing
the order of computations in a loop, these transforma-
tions can expose parallelism and improve data locality.
They can also be used together with other techniques
to improve the efficiency of SPMD code, for example,
by moving communication statements out of loops, or
by restructuring loops to avoid the execution of itera-
tions which do no work.

Traditionally, reordering transformations have been
used by applying a sequence of pre-specified transfor-
mations such as loop interchange, loop distribution,
skewing, tiling, index set splitting and statement re-
ordering [21]. Each of these transformations has its
own legality checks and transformation rules. These
checks and rules make it hard to analyze or predict the
effects of a sequence of these transformations without

actually performing the transformations and analyz-
ing the resulting code.

This complexity has inspired a great deal of recent
work toward unified systems for iteration reordering
transformations[3, 20, 15, 10, 8]. These approaches use
a variety of formalisms, but most can be considered as
special cases of a formalism we have developed [12]. In
our formalism, transformations are represented as one-
to-one mappings from the original iteration space to a
new iteration space. We allow a potentially different
mapping to be used for each atomic statement. We
restrict the mappings to be those that can be repre-
sented using affine constraints.

Unimodular transformations can be viewed as the
special case where there is a single atomic state-
ment (the body of a set of perfectly nested loops)
and the mapping is restricted to be linear and onto.
The extended unimodular transformations developed
by Li and Pingali [15] removes the onto restriction.
The schedules produced by Feautrier [10] are not, by
themselves, one-to-one, but when they are combined
with the space mappings, they become one-to-one.
Feautrier allows a potentially different schedule to be
used for each atomic statement. Schedules are also
used by a number of other researchers [14, 8].

We use the following notation to represent the map-
ping used for statement s,:

TP:[ila"'aim]ﬁ[fl""’f”]

where:

,i_ are the index variables of the loops
nested around statement s,,.

® i, ...

e The f;’s (called mapping components) are quasi-
affine functions [1] of the iteration variables and
symbolic constants.

This mapping represents the fact that iteration
[i1,...,1,,] in the original iteration space of statement
s, is mapped to iteration [f;,..., f,] in the new iter-
ation space.



Finding legal mappings that produce efficient code
is an important and difficult problem, but is not dis-
cussed in this paper. We refer interested readers to
our earlier work in that area [12, 11, 13].

This paper deals with the problem of generating
transformed code given an original program and a
mapping. This involves creating loops and condition-
als that iterate over all and only those points in the
new iteration space. When each statement uses the
same mapping, and that mapping is linear and onto,
code generation is relatively simple. If we start with
a convex iteration space and apply a one-to-one and
onto mapping, then the transformed iteration space
will also be convex. The problem of generating per-
fectly nested loops to iterate over all and only those
points in such a convex region has been studied by a
number of researchers starting with the seminal work
of Ancourt and Irigoin [1].

If the original iteration space is non-convex (as a
consequence of non-unit loop steps), or if the map-
ping applied is not onto, then the transformed itera-
tion space may be non-convex. In these cases it is still
possible to generate suitable perfectly nested loops;
however, some of the loop steps will be non-unit. Tech-
niques for handling this case are described by Li and
Pingali [15].

Our work addresses the case where a potentially
different mapping is used for each statement. The cor-
responding transformed iteration space can be “very”
non-convex; that is, there is no set of perfectly nested
loops without conditionals, even with non-unit steps,
that can scan the space. The simplest code for a
non-convex iteration space scans the convex hull of
the space, and tests the conditions under which each
statement should be executed at the innermost level.
This method can incur a high control overhead. We
can eliminate control overhead by breaking the convex
hull into a sequence of smaller, tighter regions, which
eliminates the need for conditionals at the expense of
code duplication. Figure 1 shows an example of this.
Eliminating control overhead tends to be particularly
important for transformations that radically alter the
structure of the original program such as when loop
blocking is performed or when the transformed itera-
tion spaces of different statements overlap in complex
ways.

Our algorithm can be summarized as follows: We
first construct an abstract syntaz tree (AST) that de-
fines an initial structure of the loops and conditions.
In determining the initial structure we try to intro-
duce as little control overhead as possible under the
restriction that no code duplication is introduced. Sec-

Code generated for the iteration spaces:

L[5, 1<i<10Aj=1}
L {[t,7]:1<i<5A1 <5 <10}

Code with no duplication:

for i =1 to 10
for j =1 to 10
if (j = 1) si1li,]j]
if (i < 5) s2[1,j]

Code with no avoidable control overhead:

for i =1 to 5
s1li,1]
for j =1 to 10
s2[i,jl
for i = 6 to 10
s1li,1]

Figure 1: Control overhead versus code duplication

tion 3 describes the structure of our abstract syntax
trees, and Section 4, describes how we determine an
initial AST that produces no code duplication. Next,
we augment this tree with more detailed information
regarding the conditions and loop bounds of the con-
ditionals and loops respectively. This is described in
Section b.

Next we consider the problem of removing con-
trol overhead. Sources of overhead nested inside the
most loops will be executed most frequently and are
the most important to remove. But further removing
overhead requires code duplication and an increase in
code size. This trade-off is controlled by specifying the
depths from which overhead will be eliminated. This
optimization algorithm is described in Section 7.

Once we have performed this optimization, we gen-
erate the actual code using the abstract syntax tree
and the information that it contains. Section 6 de-
scribes how to generate code from an AST.

Before describing the actual algorithm we first sum-
marize the Omega library, a set of routines that we use
to represent and manipulate sets of affine constraints,
in Section 2.

2 The Omega library

Many code generation algorithms use linear alge-
bra to represent and manipulate sections of iteration
spaces. We use higher-level abstractions called tuple
sets and tuple relations. An integer k-tuple is a point
in Z%¥. A tuple relation is a mapping from tuples to



restrict_domain ( R, S )
{i—jli—jERANIES}
range ( R )
{sili—yeRr}
project (S ,1...7)
{[t1...4-] | 3 integers tr41...4n s.t.
[t1,...,tr,tr+1,...,tn] €S }
gist (S, K )
least constrained set S’ s.t. (S' A K) & (S A
K)
convex_hull ( {S1,...,Sn})
TupleSet represented by constraints
{ ¢ | cpart of S; AV;=1..m(S; Ac) & S5}

Figure 2: Functions provided by the Omega Library

tuples and a tuple set is a set of tuples. Tuple rela-
tions and sets are represented using the Omega Li-
brary [16, 18], which is a set of routines for manipu-
lating affine constraints over integer variables. The re-
lations and sets may involve symbolic constants such
as n in the following example: { [{] — [i+1] | 1 <
i < n }. They may also involve existentially quan-
tified variables such as « in the following example:
{[{ | Jast.i=2a A1l <i<10}. Relationships
between the variables are represented by a disjunction
of conjunctions of affine constraints. Figure 2 gives a
brief description of the operations on tuple relations
and sets that we use in code generation. All opera-
tors return their results in the simplest form possible,
i.e. redundant constraints are always detected and re-
moved.

3 Code Structure

This section describes the abstract syntax trees
(AST) that we use to define the structure of the loops
and conditions. An AST can contains three types of
nodes:

split nodes - This type of node is labeled with a condi-
tion ¢ and has two children named true_child and
false_child. A node of this type corresponds to a
sequence of two code fragments. The first code
fragment will execute iterations that satisfy the
condition ¢ and all of the conditions' contained
in split nodes above the current one. The second
code fragment will execute iterations that satisfy

1Whenever we refer to the condition in a split node above
some current node, we are actually referring to either that con-
dition or the negation of that condition, depending on which
sub-tree of that split node the current node is contained in.

the condition —¢ and all of the conditions con-
tained in split nodes above the current one. The
true_child defines the structure of the first code
fragment and the false_child defines the structure
of the second code fragment. The condition must
be such that the iterations executed by the true
branch are lexicographically less than the itera-
tions executed by the false branch.

loop nodes - This type of node is labeled with an in-
dex variable f; and has only one child. A node
of this type corresponds to a for loop, possi-
bly surrounded by a conditional statement. The
for nodes loop iterates over all valid values of
the index variable ¢;. If there exists an iteration
[i1,...,1,] of any statement s that satisfies all of
the conditions contained in split nodes above the
current node then 7; 1s a valid value. The con-
ditional statement is inserted, if necessary, to en-
force constraints contained in split nodes above
the current node that don’t involve the current
index variable and to ensure that at least one it-
eration of the for loop will be executed.

leaf - As its name implies, this type of node has
no children. A node of this type corresponds to
a sequence of atomic statements. FEach atomic
statement is surrounded, if necessary, by a condi-
tional statement to ensure that only those itera-
tions that satisfy all of the conditions contained in
split nodes above the current node are executed.

Every path from the root to a leaf contains n loop
nodes labeled with index variables ¢1,...,%, in that
order. The condition in a split node refers only to
index variables t1,...,t;, where t; is the label of the
first loop node below that split node. Figure 4 contains
an example of an AST and its corresponding code.

4 Initial code structure

In this section we describe how to construct the
AST that defines the initial structure of the loops and
conditions. In the initial structure we try to introduce
as little control overhead as possible, under the restric-
tion that no code is duplicated. If we were to use this
initial structure to generate code, then we would ob-
tain code that is correct but might contain too much
overhead. In Section 7 we describe how to modify the
initial structure, to decrease overhead at the expense
of increased code size. The algorithm to construct the
initial AST is given in Figure 4 and explained below.



Original code
for k =1 ton
for i = k+1 to n
a(i,k) = a(i,k) / a(k,k)
for j = k+1 ton
a(i,j) = a(i,j) - a(i,k) * a(k,j)

Mapping

Tyo:{lkyi | —[64((k—1) div 64)+1,64(i div 64), k, k,i]}
Ty :{lky i, ] — [64((k—1) div 64)+1,64(i div 64), j, k,d]}

New Iteration Space:

I {[t17t27t37t4,t5]|30z,ﬁ s.t. t1 =14 6408 A to = 64aA
t3 — 63,1 <t <tz <ts <t24+63,n
Nty < t5 /\t4:t3}

L {[t17t27t37t4,t5]|30z,ﬁ s.t. t1 =14 64a Aty = 648A
tg — 63,1 <t <t <t5s <t24+63,n
/\t4—|—1§t3§n/\t2§t5}

Initial AST

Code corresponding to the initial AST

if 2<=n then
for t1 = 1 to n-1 step 64
for t2 = t1-1 to n step 64
for t3 = t1 ton
if t1<t3 then
for t4 = t1 to min(t2+62,t1+63,t3-1)
for t5 = max(t2,t4+1) to min(t2+63,n)
s2[t4,t5,t3]
if t3<=t2+62 and t3<=t1+63 and t3<=n-1 then
for t5 = max(t2,t3+1) to min(t2+63,n)
s1[t3,t5]

Figure 3: Initial blocked LU decomposition

Given the original program and a set of mappings,
our first step is to compute the new iteration spaces
belonging to each of the statements. We restrict

the domains of the mappings to the original iteration
spaces. The new iteration spaces are the ranges of
these restricted mappings. These new iteration spaces
may be disjoint or may overlap.

We need to generate code that will execute each
statement at all and only those points in its respec-
tive 1teration space. The new code must also execute
the iterations in lexicographical order based on the
new coordinate system. Since the new iteration spaces
may overlap, the new code may have to interleave the
execution of different statements.

At this stage, we calculate only the basic structure
of the loop nests, not the loop bounds. We will create
nested loops to iterate over all of the points [t1, . . ., t|n]
in the new iteration spaces. The outermost loop will
iterate over the appropriate values of £1, the next out-
ermost loop iterates over the appropriate values of 5,
and so on.

We build the initial AST in a depth first fashion. At
each stage of this construction process, we try to find a
suitable condition ¢ on which to split the range of val-
ues of the next index variable ;. The idea is that gen-
erating two tighter loops for this index variable, rather
than one looser loop, will allow us eliminate some more
deeply nested source of control overhead. However,
the 1nitial AST must not produce any code duplica-
tion, so these split conditions must be chosen such that
the new ranges will have disjoint, non-empty sets of
active statements. A statement is active if it possesses
an iteration that needs to be executed in the branch
of the AST currently being constructed. For each ac-
tive statement, we compute the constraints on #; for
iterations of that statement in terms of #1,...,tx_1.
We then check to see if any of these constraints satisfy
the above requirements. If such a condition ¢ exists,
we generate a split node with ¢ as the condition, and
calculate the set active statements for each branch. If
necessary, we adjust ¢ so that values of #; that satisfy
it are less than those that do not. We then recursively
determine the structure of the child nodes.

If no such ¢ exists, then there is no way to further
partition the range of ¢; without duplicating code. So,
we generate a loop node here for ¢, (making t541 the
next index variable). After loops have been generated
for each index variable, we generate a leaf node.

5 Evaluating node attributes

In this section we describe how to augment the AST
with more detailed information regarding the condi-
tions and loop bounds of the conditionals and loops



Generate_Initial AST ( T, old_IS )
INPUT:

T : array [maxStmts] of TupleRelation, T[p] is the mapping associated with statement p.
old_IS : array [maxStmts] of TupleSet, old_IS[p] is the iteration space of statement p in the original

code of the statements.
OUTPUT:

An AST_node which is the root of the tree which represents the structure of the code.

ALGORITHM:
foreach statement s

new_IS[s] = range ( restrict_domain ( T[s], old_IS[s] ))

for L = 1 to last_level

I[s, L] = project ( new_IS[s], 1...

return Partition ( 1, {all stmts} )

Partition ( level, active, I)
INPUT:

level : integer Loop levels 1,...,level — 1 have already been generated and should be consided fixed.
active : set of statement, The statements for which code should be generated
I:array [maxStmts,maxLevels] of TupleSet, I[s,L]is the new iteration space of statement s projected

onto symbolic constants and index variables at levels 1...L.

OUTPUT:

An AST_node which is the root of the tree which represents the structure of the code.

ALGORITHM:
if level = last_level then
return AST leaf ()

if 3 constraint ¢ € I[s, level], for some s, s.t. activel # QA active2 # DAactivel N active2 = @
where activel = { s : s € active A {c} N I[s, level] is satisfiable }
and active2 = { s : s € active A {—c} N I[s, level] is satisfiable }
then return AST split (level, ¢, Partition (level, activel, I), Partition (level, active2, I))
else return AST loop (level, Partition (level+1, active, I))

Figure 4: Algorithm to construct the initial AST

respectively. This information is initially used to i1den-
tify sources of control overhead (see Section 7), and
later to generate the actual code (see Section 6). This
algorithm is performed on the initial AST and later
on the sub-trees of the AST that are modified by the
optimization phase.

The algorithm is given in Figure b and is explained
below. The algorithm performs a depth first traver-
sal of the AST, evaluating attributes of the nodes
as 1t goes. As we move down the tree we maintain
two tuple sets: restrictions and known. The tuple
set restrictions contains all constraints from split
nodes between the current node and nearest loop node
above. The tuple set known contains all constraints
enforced by conditionals and loop bounds above the
current node. These tuple sets define the current con-
text; that is, the subsets of the iteration spaces that
the code corresponding to the current sub-tree will
have to iterate over.

We wish to maintain the property that for every

split node, both subtrees represent at least one itera-
tion of some statement. So, when we come to a split
node, we check that such iterations exist, and if not,
we remove the split node, replacing it with the appro-
priate child node.

In evaluating a loop node at level {, we compute
three things: the statements that should be exe-
cuted in the loop body, the conditions under which
the loop should be executed, and the values of the
current index variable t; the loop should enumer-
ate. We first determine which statements will need
to be executed in that loop (those whose iteration
spaces intersect restrictions N known.) Given that
set of statements, and the constraints in known and
restrictions, we want to find the strongest con-
ditional and the tightest loop bounds that will not
exclude any iterations in those statements’ iteration
spaces. Any constraints in restrictions can be en-
forced, since any iterations a given constraint excludes
will be included in the other subtree of that con-



Evaluate ( node, known, restrictions )
INPUT:

node : AST node, the root of the subtree to be evaluated
known : TupleSet, constraints on index variables and symbolic constants that have been represented

in above loop nodes

restrictions : TupleSet, constraints on the current index variable that specify the region whose subtree

is being evaluated
OUTPUT:

This function computes tuple sets that represent the guards and loop bounds for loop nodes and

guards for the leaf nodes.
ALGORITHM:
if (node.type == AST _split)

if (-3 statement s s.t. I[s, nodelevel] N known N restrictions N node.condition is satisfiable)
remove node and replace it with node.false_side
Evaluate (node.false_side, known, restrictions)

elseif (-3 statement s s.t. I[s, nodelevel] N known N restrictions N — node.condition is satisfiable)
remove node and replace it with node.true_side
Evaluate (node.true_side, known, restrictions)

else

Evaluate (node.true_side, known, restrictions N node.condition)
Evaluate (node.false_side, known, restrictions N — node.condition)

elseif (node.type == AST loop)
foreach statement s

active[s] = (I[s, node.level] M restrictions N known) is satisfiable

bounds = convex_hull ((

s s.t. active[s]

Is, node.level]) N known N restrictions N

greatest_common_step (active, node.level, T)

needsCheck = gist (bounds, known)

node.guard = project (needsCheck, 1...node.level-1)

node.loop = gist (needsCheck, guard)

Evaluate (node.child, bounds, True)
elseif (node.type == AST leaf)

foreach statement s

node.guard[s] = gist (new_IS[s] N restrictions N known, known)

Figure 5: Evaluate Algorithm

straint’s split node. We want to add further con-
straints on t; so that the loop only iterates over those
points for which at least one iteration of some state-
ment is executed. For example, consider the two iter-
ation spaces:

LAl <i<5)

1 6N <i< 10}
Unless we enforce the constraints 1 < i and ¢ < 10, the
loop would iterate over points (such as ¢ = 11) which
do not correspond to an iteration of any statement.
However, if we were to add the constraint ¢ < 5, which
is not on the convex hull of the union of the two spaces,
we would be erroneously excluding required iterations
of statement 2 (6 < ¢ < 10) .

There are also some non-convex constraints that
we can enforce. We collect together all stride con-
straints of the form 38 s.t. ¢t = a,8 + b, (where q,

is an integer coefficient and b, is an affine function
of symbolic constants and outer level index variables)
that are associated with statements in the loop. We
then calculate the greatest common step of the loop as
follows:

ges = ged({ay|sp is active} U

{ged(by — by)|s, is active A s, 1s active})

The ged of an expression is defined to be the ged of
the coefficients in the expression.

We can enforce the constraint

A8 st. iy =ges B+ by

where s, is an arbitrary statement in the loop, by
making ges the loop step and suitably modifying the
lower bound so that it satisfies this constraint. The
loop step may not enforce all of the stride constraints
on statements in the loop, but we cannot add anything
stronger without excluding required iterations. Any



remaining stride constraints will be enforced later.

To construct the full set of constraints to be en-
forced at the loop, we intersect the convex hull of
the active statements’ iteration spaces with known,
restrictions, and the greatest common step. We
use the g¢ist operation to remove any constraints that
are implied by known and thus will be enforced at
earlier loop nodes. Once we have determined which
constraints can be enforced at this point, we divide
them into those that can be enforced in the condi-
tional statement and those that must be enforced by
the for loop.

To evaluate a leaf node we determine which atomic
statements will need to be executed. For each state-
ment that needs to be executed, we calculate the con-
straints for its iteration space that are not implied by
the surrounding loops and conditionals.

6 Generating code from an AST

Generating code in a high-level language is straight-
forward once we have evaluated the attributes of the
AST. The algorithm performs a depth first traversal
of the AST, generating the code as it goes.

When we come to a split node, we generate code
for the true child and then generate code for the false
child. We do not generate a conditional statement
at this point; rather, it is the responsibility of the
code generated for the child nodes to execute only the
appropriate iterations.

When we come to a loop node we generate a for
loop and possibly a conditional statement around that
for loop. In the case where we can prove that at most
one iteration can execute, we can avoid generating a
loop. If the condition attribute of the loop node is
not a tautology then an if statement is generated to
check this condition.

Generating the for loop from the bounds attribute
of the loop node is slightly more complicated, since
the semantics of for loops are not defined in terms
of (multiple) lower bounds, (multiple) upper bounds
and stride constraints. Instead, they are defined in
terms of an initial value, a single bound and a step (the
bound is either an upper or lower bound, depending
on the sign of the step). Since the code we gener-
ate enumerates the iteration space in lexicographical
order, we need only consider positive steps.

We now need to calculate the initial value: the
smallest integer that satisfies both the lower bounds
and the stride constraint. Assume that we have a
lower bound of the form L < mt;, where L is a func-

PrintNode (node)
INPUT:
node : AST node, the node for which
we are generating code.
OUTPUT:
for loops and if statements to execute
the AST
ALGORITHM:
if (node.type == AST _split)
PrintNode (node.left)
PrintNode (node.right)
elseif (node.type == AST loop)
if (node.guard is not Tautology)
print_if_ then (node.guard)
print_loop (node.level, node.loop)
PrintNode (node.child))
elseif (node.type == AST leaf)
foreach statement s
if (node.guard[s] is Satisfiable)
if (node.guard[s] is not Tautology)
print_if_ then (node.guard)
print_statement (s, T[s])

Figure 6: Print Code Algorithm

tion of outer level index variables and symbolic con-
stants and m is an integer coefficient. If there is no
stride constraint, the initial value implied by this lower
bound is CeilDiv(L, m), where CeilDiv(a, b) is a func-
tion that computes [L/m].

If there is a stride constraint of the form
36 s.t. t;, = ¢ + s, the step will be s and the small-
est integer that satisfies both the lower bound and the
stride constraint is CeilDiv(CeilDiv(L, m)—c, s)*s+c.
In a number of cases, we can generate simpler for-
mulas. For example we can generate simpler for-
mulas when m is 1 or when we can determine that
CeilDiv(L,m) is always a solution to the stride con-
straint. For space reasons, we do not detail these here.

Finally, we convert multiple upper or lower bounds
into a single lower or upper bound using max or min
as appropriate.

When we come to a leaf node we generate code
in turn for each active statement. If the guard at-
tribute for a statement is not a tautology then a con-
ditional statement is generated to test this condition.
The statements themselves are unchanged from the
original program, except that the old index variables
are replaced by appropriate functions of the new loop
variables. Since the mapping is one-to-one, these func-
tions can be easily determined by simply inverting the

mapping.



7 Optimizing the code structure

Having generated an initial AST that does not du-
plicate code, we now consider optimizations that re-
duce execution time overhead at the cost of an increase
in code size. We consider three types of overhead
in our implementation: guards around loops, guards
around atomic statements, and min’s and max’s in
loop bounds. Zero trip loops are also a potential
source of overhead; we generate guards to ensure that
loops have at least one iteration, so this problem re-
duces to the case of guards around loops.

We remove overhead as follows:

1. Find an overhead we wish to remove.

2. Determine a constraint that, if tested, would al-
low us to eliminate the overhead.

3. Create a new split node that tests that constraint,
with the code containing the overhead duplicated
under both branches of the split.

Our optimization criteria is the maximum number of
loops kpae, that we will allow to surround a source of
overhead. Roughly speaking, the cost of an overhead
nested inside of d loops will be O(n?), where n is the
number of iterations of a loop. We could use more
exact methods [17] to evaluate the cost of an over-
head. However, the cost of such analysis is probably
not worthwhile and would be of questionable benefit
(e.g., it is not clear whether it is better to remove a
source of overhead executed mn(n — 1)/2 times or a
source executed m?n times).

If a code fragment executes O(n?) necessary op-
erations, then executing O(n?) avoidable overhead is
probably unacceptable. Reducing the avoidable over-
head to O(n?~!) will probably be acceptable in this
situation and any further reduction may be unnotice-
able. We are able to dynamically control the amount
of overhead that we eliminate based on the amount of
code explosion seen so far.

Given an AST with loops nested d deep, we first re-
move overhead nested within d loops. We next remove
overhead nested within d — 1 loops, and so on, until
all overhead nested inside k4 loops is eliminated.

To remove all overhead nested k4. deep, we first
traverse down the AST to each loop nested k4 deep.
Note that in counting nesting depth, we only count
loop nodes that require a loop to be generated (i.e.,
that may contain more than one iteration). Upon
reaching a loop nested k4, deep, we need to lift out
all overhead from the body of that loop. We search
the body of the loop for a constraint that would elim-
inate some source of overhead. We then generate a

Level of Overhead as | Bytes of
Overhead elim. (k) | % of original | object code
Naive code 31% 584

Initial code 13% 712
Optimized kyer = 4 | 13% 712
Optimized k0. =3 | 5% 1576
Optimized kpoe = 2 | 4% 5352
Original code 0% 392

Table 1: Results for blocked LU decomposition

split node on that condition, place copies of the orig-
inal loop node under both branches of the split node,
and attempt to remove overhead from both branches.
We only extract one constraint at a time and then
reevaluate using the algorithm described in Section
5. Testing one constraint might eliminate the need
to test another constraint in one of the two branches
(e.g., both ¢ < 10 and ¢ < 20 might remove overhead,
but ¢ < 20 would not need to be tested in the true
branch of a split on ¢ < 10).

Finding constraints that eliminate overheads is
fairly straightforward. All guards of atomic state-
ments and loops are sources of overhead and can easily
be located by examining the guard attributes of loop
and leaf nodes. For loop nodes, we also can check
to see if the bounds contain multiple lower bounds or
multiple upper bounds. If so, it is straightforward to
generate the constraint that eliminates the overhead
(e.g., testing a < b will eliminate the overhead of com-
puting min(a, b)).

Figure 7 shows the optimized AST and correspond-
ing code for the example introduced in Figure 4, with
all overhead inside four or more loops removed. Table
1 shows the overhead (as a percentage of original code
time) and code size for different levels of overhead op-
timization. The blocked version contains more over-
head than the original, unblocked code, since it adds
extra loops for the blocking. The line marked “Naive”
is for comparison only; we do not generate that code.
The naive code is a set of loops scanning the convex
hull, with all remaining conditions checked as inner-
most guards. The optimized code for kg = 4 1s
identical to the initial case, since are no overheads
nested inside 5 loops in the initial code. The results
here do not include cache effects, so we can measure
the overhead directly. At higher levels of optimization,
the code size increases dramatically, with diminishing
performance gains. In this example, removing control
overhead located inside more than 3 loops (kmaz = 3)
is probably sufficient.



Optimized AST

Code corresponding to the optimized AST

if 2 <= n then
for t1 = 1 to n-1 step 64
for t2 = t1-1 to n step 64
for t3 = t1 to n
if t1<t3 & 64+t2<=n & 63+t1<=t2 then
for t4 = t1 to min(t3-1,t1+63,t2-1)
for t6 = t2 to t2+63
s2[t4,t5,t3]
if t1<t3 & 63+t1<=t2 & n<=63+t2 then
for t4 = t1 to min(t1+63,t3-1,t2-1)
for t6 = t2 to n
s2[t4,t5,t3]
if t1<t3& 63+t2<=n & t2<=63+t1 & t2<t3 then
for t4=max(t2,t1)to min(t2+62,t1+63,t3-1)
for t5 = t4+1 to t2+63
s2[t4,t5,t3]
if t1<t3& t2<t3 & t2<=63+t1 & n<=62+t2 then
for t4 = max(t2,t1) to min(t1+63,t3-1)
for t5 = t4+1 to n
s2[t4,t5,t3]
if t3<=62+t2 & t3<=63+t1 & t3<n then
for t5 = max(t2, t3+1) to min(t2+63,n)
s1[t3,t5]

Figure 7: Optimized blocked LU decomposition
8 Related work

The problem of generating code for a convex region
was first addressed by Ancourt and Irigoin [1]. They
use Fourier pairwise elimination at each level to pro-

vide bounds on each of the index variables. They then
form the union of all of these projections to produce
a single set of constraints which explicitly contains all
of the information necessary to generate code. They
propose that fast inexact techniques be used to remove
redundancies from this set before it is used to generate
code. They consider only the single mapping convex
case.

Li and Pingali [15] consider the non-convex case
resulting from mappings that are not necessarily onto.
They use a linear algebra framework and compute loop
bounds and steps using Hermite normal form. They
do not consider the multiple mapping case.

Ayguadé and Torres [2] consider a limited case of
the multiple mapping case where each statement can
have a potentially different mapping but all mappings
must have the same linear part (i.e., they only differ
in their constant parts).

Chamski [4, 5] generates Nested Loop Structures,
which are similar to our AST. He discusses generat-
ing code only for the single mapping convex case. He
reduces control overhead by generating sequences of
loops to remove all min and max expressions in loop
bounds. The cost of code duplication may be large
when all such overheads are removed. We are able
to eliminate control overhead from sources other than
min’s and max’s and we selectively decide which over-
heads to eliminate by considering both the amount of
control overhead and the amount of code duplication
that would occur.

Chamski claims [4] that Fourier variable elimina-
tion is prohibitively expensive for code generation.
We have found it to be a very efficient method, and
suspect he used unrealistic examples and/or a poor
implementation of Fourier variable elimination. It is
well known that Fourier variable eliminate performs
poorly on moderate to large systems of constraints
where the constraints are dense: each constraint in-
volves many variables. However, the constraints we
have seen in both dependence analysis and code gen-
eration are quite sparse, and Fourier elimination is
quite efficient for sparse constraints [19].

Collard, Feautrier and Risset [7] show how PIP, a
parametrized version of the Dual Simplex Method, can
be used to solve the simple case. Collard and Feautrier
[6] address the multiple mapping case; however, only
one dimensional iteration spaces are considered and
many guards are generated. They provide some inter-
esting solutions to the situation where statements have
incompatible stride constraints (e.g., 1 is even and t;
is odd). Stride constraints such as this arise frequently
in Feautrier’s parallelization framework [9, 10], while



we [13, 11] try to avoid them in our framework, since
generating good code for them 1s difficult.

9 Conclusion

We have presented an algorithm to generate trans-
formed code from the original code and a set of one-to-
one statement mappings representing the transforma-
tion. Unlike most previous systems, our system can
generate efficient loop structures even when a poten-
tially different mapping is used with each statement
and the resulting union of iteration spaces is non-
convex. Our algorithms permit optimizations of the
control overhead that results from non-convexity, and
allows the user to trade-off lower overhead for code du-
plication. This approach to generating code and the
optimization we describe are particularly important
for loop interchange or loop blocking of imperfectly
nested loops.

10 Implementation and availability

An implementation of this algorithm is available
in the Omega Calculator. The Omega Calcula-
tor and copies of our other papers are available
from http://www.cs.umd.edu/projects/omega and
ftp://ftp.cs.umd.edu/pub/omega.
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