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Code Generation for Multiple MappingsWayne Kelly William Pugh Evan Rosserwak@cs.umd.edu pugh@cs.umd.edu ejr@cs.umd.eduDepartment of Computer ScienceUniversity of Maryland, College Park, MD 20742AbstractThere has been a great amount of recent worktoward unifying iteration reordering transformations.Many of these approaches represent transformationsas a�ne mappings from the original iteration spaceto a new iteration space. These approaches show agreat deal of promise, but they all rely on the abilityto generate code that iterates over the points in thesenew iteration spaces in the appropriate order. Thisproblem has been fairly well-studied in the case whereall statements use the same mapping. We have devel-oped an algorithm for the less well-studied case whereeach statement uses a potentially di�erent mapping.Unlike many other approaches, our algorithm can alsogenerate code from mappings corresponding to loopblocking. We address the important trade-o� betweenreducing control overhead and duplicating code.1 IntroductionOptimizing compilers apply iteration reorderingtransformations for a variety of reasons. By changingthe order of computations in a loop, these transforma-tions can expose parallelism and improve data locality.They can also be used together with other techniquesto improve the e�ciency of SPMD code, for example,by moving communication statements out of loops, orby restructuring loops to avoid the execution of itera-tions which do no work.Traditionally, reordering transformations have beenused by applying a sequence of pre-speci�ed transfor-mations such as loop interchange, loop distribution,skewing, tiling, index set splitting and statement re-ordering [21]. Each of these transformations has itsown legality checks and transformation rules. Thesechecks and rules make it hard to analyze or predict thee�ects of a sequence of these transformations without

actually performing the transformations and analyz-ing the resulting code.This complexity has inspired a great deal of recentwork toward uni�ed systems for iteration reorderingtransformations[3, 20, 15, 10, 8]. These approaches usea variety of formalisms, but most can be considered asspecial cases of a formalismwe have developed [12]. Inour formalism, transformations are represented as one-to-one mappings from the original iteration space to anew iteration space. We allow a potentially di�erentmapping to be used for each atomic statement. Werestrict the mappings to be those that can be repre-sented using a�ne constraints.Unimodular transformations can be viewed as thespecial case where there is a single atomic state-ment (the body of a set of perfectly nested loops)and the mapping is restricted to be linear and onto.The extended unimodular transformations developedby Li and Pingali [15] removes the onto restriction.The schedules produced by Feautrier [10] are not, bythemselves, one-to-one, but when they are combinedwith the space mappings, they become one-to-one.Feautrier allows a potentially di�erent schedule to beused for each atomic statement. Schedules are alsoused by a number of other researchers [14, 8].We use the following notation to represent the map-ping used for statement sp:Tp : [i1; : : : ; im]! [f1; : : : ; fn]where:� i1; : : : ; im are the index variables of the loopsnested around statement sp.� The fj 's (called mapping components) are quasi-a�ne functions [1] of the iteration variables andsymbolic constants.This mapping represents the fact that iteration[i1; : : : ; im] in the original iteration space of statementsp is mapped to iteration [f1; : : : ; fn] in the new iter-ation space.



Finding legal mappings that produce e�cient codeis an important and di�cult problem, but is not dis-cussed in this paper. We refer interested readers toour earlier work in that area [12, 11, 13].This paper deals with the problem of generatingtransformed code given an original program and amapping. This involves creating loops and condition-als that iterate over all and only those points in thenew iteration space. When each statement uses thesame mapping, and that mapping is linear and onto,code generation is relatively simple. If we start witha convex iteration space and apply a one-to-one andonto mapping, then the transformed iteration spacewill also be convex. The problem of generating per-fectly nested loops to iterate over all and only thosepoints in such a convex region has been studied by anumber of researchers starting with the seminal workof Ancourt and Irigoin [1].If the original iteration space is non-convex (as aconsequence of non-unit loop steps), or if the map-ping applied is not onto, then the transformed itera-tion space may be non-convex. In these cases it is stillpossible to generate suitable perfectly nested loops;however, some of the loop steps will be non-unit. Tech-niques for handling this case are described by Li andPingali [15].Our work addresses the case where a potentiallydi�erent mapping is used for each statement. The cor-responding transformed iteration space can be \very"non-convex; that is, there is no set of perfectly nestedloops without conditionals, even with non-unit steps,that can scan the space. The simplest code for anon-convex iteration space scans the convex hull ofthe space, and tests the conditions under which eachstatement should be executed at the innermost level.This method can incur a high control overhead. Wecan eliminate control overhead by breaking the convexhull into a sequence of smaller, tighter regions, whicheliminates the need for conditionals at the expense ofcode duplication. Figure 1 shows an example of this.Eliminating control overhead tends to be particularlyimportant for transformations that radically alter thestructure of the original program such as when loopblocking is performed or when the transformed itera-tion spaces of di�erent statements overlap in complexways.Our algorithm can be summarized as follows: We�rst construct an abstract syntax tree (AST) that de-�nes an initial structure of the loops and conditions.In determining the initial structure we try to intro-duce as little control overhead as possible under therestriction that no code duplication is introduced. Sec-

Code generated for the iteration spaces:I1 : f[i; j] : 1 � i � 10 ^ j = 1gI2 : f[i; j] : 1 � i � 5 ^ 1 � j � 10gCode with no duplication:for i = 1 to 10for j = 1 to 10if (j = 1) s1[i,j]if (i < 5) s2[i,j]Code with no avoidable control overhead:for i = 1 to 5s1[i,1]for j = 1 to 10s2[i,j]for i = 6 to 10s1[i,1]Figure 1: Control overhead versus code duplicationtion 3 describes the structure of our abstract syntaxtrees, and Section 4, describes how we determine aninitial AST that produces no code duplication. Next,we augment this tree with more detailed informationregarding the conditions and loop bounds of the con-ditionals and loops respectively. This is described inSection 5.Next we consider the problem of removing con-trol overhead. Sources of overhead nested inside themost loops will be executed most frequently and arethe most important to remove. But further removingoverhead requires code duplication and an increase incode size. This trade-o� is controlled by specifying thedepths from which overhead will be eliminated. Thisoptimization algorithm is described in Section 7.Once we have performed this optimization, we gen-erate the actual code using the abstract syntax treeand the information that it contains. Section 6 de-scribes how to generate code from an AST.Before describing the actual algorithmwe �rst sum-marize the Omega library, a set of routines that we useto represent and manipulate sets of a�ne constraints,in Section 2.2 The Omega libraryMany code generation algorithms use linear alge-bra to represent and manipulate sections of iterationspaces. We use higher-level abstractions called tuplesets and tuple relations. An integer k-tuple is a pointin Zk. A tuple relation is a mapping from tuples to



restrict domain ( R , S )f i ! j j i ! j 2 R ^ i 2 S grange ( R )f j j i ! j 2 R gproject ( S , 1 : : : r )f [t1 : : : tr] j 9 integers tr+1 : : : tn s:t:[t1; : : : ; tr ; tr+1; : : : ; tn] 2 S ggist ( S , K )least constrained set S0 s:t: (S0 ^K), (S ^K)convex hull ( fS1; : : : ; Smg )TupleSet represented by constraintsf c j c part of Si ^ 8j=1:::m(Sj ^ c) , SjgFigure 2: Functions provided by the Omega Librarytuples and a tuple set is a set of tuples. Tuple rela-tions and sets are represented using the Omega Li-brary [16, 18], which is a set of routines for manipu-lating a�ne constraints over integer variables. The re-lations and sets may involve symbolic constants suchas n in the following example: f [i] ! [i + 1] j 1 �i � n g. They may also involve existentially quan-ti�ed variables such as � in the following example:f [i] j 9� s:t: i = 2� ^ 1 � i � 10 g. Relationshipsbetween the variables are represented by a disjunctionof conjunctions of a�ne constraints. Figure 2 gives abrief description of the operations on tuple relationsand sets that we use in code generation. All opera-tors return their results in the simplest form possible,i.e. redundant constraints are always detected and re-moved.3 Code StructureThis section describes the abstract syntax trees(AST) that we use to de�ne the structure of the loopsand conditions. An AST can contains three types ofnodes:split nodes - This type of node is labeled with a condi-tion c and has two children named true child andfalse child. A node of this type corresponds to asequence of two code fragments. The �rst codefragment will execute iterations that satisfy thecondition c and all of the conditions1 containedin split nodes above the current one. The secondcode fragment will execute iterations that satisfy1Whenever we refer to the condition in a split node abovesome current node, we are actually referring to either that con-dition or the negation of that condition, depending on whichsub-tree of that split node the current node is contained in.

the condition :c and all of the conditions con-tained in split nodes above the current one. Thetrue child de�nes the structure of the �rst codefragment and the false child de�nes the structureof the second code fragment. The condition mustbe such that the iterations executed by the truebranch are lexicographically less than the itera-tions executed by the false branch.loop nodes - This type of node is labeled with an in-dex variable tk and has only one child. A nodeof this type corresponds to a for loop, possi-bly surrounded by a conditional statement. Thefor nodes loop iterates over all valid values ofthe index variable tk. If there exists an iteration[i1; : : : ; in] of any statement s that satis�es all ofthe conditions contained in split nodes above thecurrent node then ik is a valid value. The con-ditional statement is inserted, if necessary, to en-force constraints contained in split nodes abovethe current node that don't involve the currentindex variable and to ensure that at least one it-eration of the for loop will be executed.leaf - As its name implies, this type of node hasno children. A node of this type corresponds toa sequence of atomic statements. Each atomicstatement is surrounded, if necessary, by a condi-tional statement to ensure that only those itera-tions that satisfy all of the conditions contained insplit nodes above the current node are executed.Every path from the root to a leaf contains n loopnodes labeled with index variables t1; : : : ; tn in thatorder. The condition in a split node refers only toindex variables t1; : : : ; tk, where tk is the label of the�rst loop node below that split node. Figure 4 containsan example of an AST and its corresponding code.4 Initial code structureIn this section we describe how to construct theAST that de�nes the initial structure of the loops andconditions. In the initial structure we try to introduceas little control overhead as possible, under the restric-tion that no code is duplicated. If we were to use thisinitial structure to generate code, then we would ob-tain code that is correct but might contain too muchoverhead. In Section 7 we describe how to modify theinitial structure, to decrease overhead at the expenseof increased code size. The algorithm to construct theinitial AST is given in Figure 4 and explained below.



Original codefor k = 1 to nfor i = k+1 to na(i,k) = a(i,k) / a(k,k)for j = k+1 to na(i,j) = a(i,j) - a(i,k) * a(k,j)MappingT10 :f[k; i ]! [64((k�1) div 64)+1;64(i div 64); k; k; i]gT20 :f[k; i; j]! [64((k�1) div 64)+1;64(i div 64); j; k; i]gNew Iteration Space:I1 : f[t1; t2; t3; t4; t5]j9�;� s:t: t1 = 1+ 64� ^ t2 = 64�^t3 � 63;1 � t1 � t3 < t5 � t2 + 63; n^t2 � t5 ^ t4 = t3gI2 : f[t1; t2; t3; t4; t5]j9�;� s:t: t1 = 1+ 64�^ t2 = 64�^t4 � 63;1 � t1 � t4 < t5 � t2 + 63; n^t4 + 1 � t3 � n ^ t2 � t5gInitial AST
loop ( t1 )

loop ( t2 )

split ( t4 < t3 )

loop ( t3 )

leaf

loop ( t5 )

loop ( t4 ) loop ( t4 )

loop ( t5 )

leafCode corresponding to the initial ASTif 2<=n thenfor t1 = 1 to n-1 step 64for t2 = t1-1 to n step 64for t3 = t1 to nif t1<t3 thenfor t4 = t1 to min(t2+62,t1+63,t3-1)for t5 = max(t2,t4+1) to min(t2+63,n)s2[t4,t5,t3]if t3<=t2+62 and t3<=t1+63 and t3<=n-1 thenfor t5 = max(t2,t3+1) to min(t2+63,n)s1[t3,t5]Figure 3: Initial blocked LU decompositionGiven the original program and a set of mappings,our �rst step is to compute the new iteration spacesbelonging to each of the statements. We restrict

the domains of the mappings to the original iterationspaces. The new iteration spaces are the ranges ofthese restricted mappings. These new iteration spacesmay be disjoint or may overlap.We need to generate code that will execute eachstatement at all and only those points in its respec-tive iteration space. The new code must also executethe iterations in lexicographical order based on thenew coordinate system. Since the new iteration spacesmay overlap, the new code may have to interleave theexecution of di�erent statements.At this stage, we calculate only the basic structureof the loop nests, not the loop bounds. We will createnested loops to iterate over all of the points [t1; : : : ; tjn]in the new iteration spaces. The outermost loop williterate over the appropriate values of t1, the next out-ermost loop iterates over the appropriate values of t2,and so on.We build the initial AST in a depth �rst fashion. Ateach stage of this construction process, we try to �nd asuitable condition c on which to split the range of val-ues of the next index variable tk. The idea is that gen-erating two tighter loops for this index variable, ratherthan one looser loop, will allow us eliminate some moredeeply nested source of control overhead. However,the initial AST must not produce any code duplica-tion, so these split conditions must be chosen such thatthe new ranges will have disjoint, non-empty sets ofactive statements. A statement is active if it possessesan iteration that needs to be executed in the branchof the AST currently being constructed. For each ac-tive statement, we compute the constraints on tk foriterations of that statement in terms of t1; : : : ; tk�1.We then check to see if any of these constraints satisfythe above requirements. If such a condition c exists,we generate a split node with c as the condition, andcalculate the set active statements for each branch. Ifnecessary, we adjust c so that values of tk that satisfyit are less than those that do not. We then recursivelydetermine the structure of the child nodes.If no such c exists, then there is no way to furtherpartition the range of tk without duplicating code. So,we generate a loop node here for tk (making tk+1 thenext index variable). After loops have been generatedfor each index variable, we generate a leaf node.5 Evaluating node attributesIn this section we describe how to augment the ASTwith more detailed information regarding the condi-tions and loop bounds of the conditionals and loops



Generate Initial AST ( T, old IS )input:T : array [maxStmts] of TupleRelation, T[p] is the mapping associated with statement p.old IS : array [maxStmts] of TupleSet, old IS[p] is the iteration space of statement p in the originalcode of the statements.output:An AST node which is the root of the tree which represents the structure of the code.algorithm:foreach statement snew IS[s] = range ( restrict domain ( T[s], old IS[s] ))for L = 1 to last levelI[s, L] = project ( new IS[s], 1: : :L)return Partition ( 1, fall stmtsg )Partition ( level, active, I )input:level : integer Loop levels 1; : : : ; level� 1 have already been generated and should be consided �xed.active : set of statement, The statements for which code should be generatedI : array [maxStmts,maxLevels] of TupleSet, I[s,L] is the new iteration space of statement s projectedonto symbolic constants and index variables at levels 1: : :L.output:An AST node which is the root of the tree which represents the structure of the code.algorithm:if level = last level thenreturn AST leaf ( )if 9 constraint c 2 I[s; level], for some s, s:t: active1 6= ;^ active2 6= ;^active1 \ active2 = ;where active1 = f s : s 2 active ^ fcg \ I[s, level] is satis�able gand active2 = f s : s 2 active ^ f:cg \ I[s, level] is satis�able gthen return AST split (level, c, Partition (level, active1, I), Partition (level, active2, I))else return AST loop (level, Partition (level+1, active, I))Figure 4: Algorithm to construct the initial ASTrespectively. This information is initially used to iden-tify sources of control overhead (see Section 7), andlater to generate the actual code (see Section 6). Thisalgorithm is performed on the initial AST and lateron the sub-trees of the AST that are modi�ed by theoptimization phase.The algorithm is given in Figure 5 and is explainedbelow. The algorithm performs a depth �rst traver-sal of the AST, evaluating attributes of the nodesas it goes. As we move down the tree we maintaintwo tuple sets: restrictions and known. The tupleset restrictions contains all constraints from splitnodes between the current node and nearest loop nodeabove. The tuple set known contains all constraintsenforced by conditionals and loop bounds above thecurrent node. These tuple sets de�ne the current con-text; that is, the subsets of the iteration spaces thatthe code corresponding to the current sub-tree willhave to iterate over.We wish to maintain the property that for every
split node, both subtrees represent at least one itera-tion of some statement. So, when we come to a splitnode, we check that such iterations exist, and if not,we remove the split node, replacing it with the appro-priate child node.In evaluating a loop node at level l, we computethree things: the statements that should be exe-cuted in the loop body, the conditions under whichthe loop should be executed, and the values of thecurrent index variable tk the loop should enumer-ate. We �rst determine which statements will needto be executed in that loop (those whose iterationspaces intersect restrictions \ known.) Given thatset of statements, and the constraints in known andrestrictions, we want to �nd the strongest con-ditional and the tightest loop bounds that will notexclude any iterations in those statements' iterationspaces. Any constraints in restrictions can be en-forced, since any iterations a given constraint excludeswill be included in the other subtree of that con-



Evaluate ( node, known, restrictions )input:node : AST node, the root of the subtree to be evaluatedknown : TupleSet, constraints on index variables and symbolic constants that have been representedin above loop nodesrestrictions : TupleSet, constraints on the current index variable that specify the region whose subtreeis being evaluatedoutput:This function computes tuple sets that represent the guards and loop bounds for loop nodes andguards for the leaf nodes.algorithm:if (node.type == AST split)if (:9 statement s s:t: I[s, node.level] \ known \ restrictions \ node.condition is satis�able)remove node and replace it with node.false sideEvaluate (node.false side, known, restrictions)elseif (:9 statement s s:t: I[s, node.level] \ known \ restrictions \ : node.condition is satis�able)remove node and replace it with node.true sideEvaluate (node.true side, known, restrictions)elseEvaluate (node.true side, known, restrictions \ node.condition)Evaluate (node.false side, known, restrictions \ : node.condition)elseif (node.type == AST loop)foreach statement sactive[s] = (I[s, node.level] \ restrictions \ known) is satis�ablebounds = convex hull (Ss s:t: active[s] I[s, node.level]) \ known \ restrictions \greatest common step (active, node.level, I)needsCheck = gist (bounds, known)node.guard = project (needsCheck, 1: : :node.level-1)node.loop = gist (needsCheck, guard)Evaluate (node.child, bounds, True)elseif (node.type == AST leaf)foreach statement snode.guard[s] = gist (new IS[s] \ restrictions \ known, known)Figure 5: Evaluate Algorithmstraint's split node. We want to add further con-straints on tk so that the loop only iterates over thosepoints for which at least one iteration of some state-ment is executed. For example, consider the two iter-ation spaces: I1 : f[i]j1 � i � 5gI2 : f[i]j1 � i � 10gUnless we enforce the constraints 1 � i and i � 10, theloop would iterate over points (such as i = 11) whichdo not correspond to an iteration of any statement.However, if we were to add the constraint i � 5, whichis not on the convex hull of the union of the two spaces,we would be erroneously excluding required iterationsof statement 2 (6 � i � 10) .There are also some non-convex constraints thatwe can enforce. We collect together all stride con-straints of the form 9� s:t: tk = ap� + bp (where ap
is an integer coe�cient and bp is an a�ne functionof symbolic constants and outer level index variables)that are associated with statements in the loop. Wethen calculate the greatest common step of the loop asfollows:gcs = gcd(fapjsp is activeg [fgcd(bq � bp)jsq is active ^ sp is activeg)The gcd of an expression is de�ned to be the gcd ofthe coe�cients in the expression.We can enforce the constraint9� s:t: tk = gcs � + bpwhere sp is an arbitrary statement in the loop, bymaking gcs the loop step and suitably modifying thelower bound so that it satis�es this constraint. Theloop step may not enforce all of the stride constraintson statements in the loop, but we cannot add anythingstronger without excluding required iterations. Any



remaining stride constraints will be enforced later.To construct the full set of constraints to be en-forced at the loop, we intersect the convex hull ofthe active statements' iteration spaces with known,restrictions, and the greatest common step. Weuse the gist operation to remove any constraints thatare implied by known and thus will be enforced atearlier loop nodes. Once we have determined whichconstraints can be enforced at this point, we dividethem into those that can be enforced in the condi-tional statement and those that must be enforced bythe for loop.To evaluate a leaf node we determine which atomicstatements will need to be executed. For each state-ment that needs to be executed, we calculate the con-straints for its iteration space that are not implied bythe surrounding loops and conditionals.6 Generating code from an ASTGenerating code in a high-level language is straight-forward once we have evaluated the attributes of theAST. The algorithm performs a depth �rst traversalof the AST, generating the code as it goes.When we come to a split node, we generate codefor the true child and then generate code for the falsechild. We do not generate a conditional statementat this point; rather, it is the responsibility of thecode generated for the child nodes to execute only theappropriate iterations.When we come to a loop node we generate a forloop and possibly a conditional statement around thatfor loop. In the case where we can prove that at mostone iteration can execute, we can avoid generating aloop. If the condition attribute of the loop node isnot a tautology then an if statement is generated tocheck this condition.Generating the for loop from the bounds attributeof the loop node is slightly more complicated, sincethe semantics of for loops are not de�ned in termsof (multiple) lower bounds, (multiple) upper boundsand stride constraints. Instead, they are de�ned interms of an initial value, a single bound and a step (thebound is either an upper or lower bound, dependingon the sign of the step). Since the code we gener-ate enumerates the iteration space in lexicographicalorder, we need only consider positive steps.We now need to calculate the initial value: thesmallest integer that satis�es both the lower boundsand the stride constraint. Assume that we have alower bound of the form L � mtk, where L is a func-

PrintNode (node)input:node : AST node, the node for whichwe are generating code.output:for loops and if statements to executethe ASTalgorithm:if (node.type == AST split)PrintNode (node.left)PrintNode (node.right)elseif (node.type == AST loop)if (node.guard is not Tautology)print if then (node.guard)print loop (node.level, node.loop)PrintNode (node.child))elseif (node.type == AST leaf)foreach statement sif (node.guard[s] is Satis�able)if (node.guard[s] is not Tautology)print if then (node.guard)print statement (s, T[s])Figure 6: Print Code Algorithmtion of outer level index variables and symbolic con-stants and m is an integer coe�cient. If there is nostride constraint, the initial value implied by this lowerbound is CeilDiv(L;m), where CeilDiv(a; b) is a func-tion that computes dL=me.If there is a stride constraint of the form9� s:t: tk = c + s�, the step will be s and the small-est integer that satis�es both the lower bound and thestride constraint is CeilDiv(CeilDiv(L;m)�c; s)�s+c.In a number of cases, we can generate simpler for-mulas. For example we can generate simpler for-mulas when m is 1 or when we can determine thatCeilDiv(L;m) is always a solution to the stride con-straint. For space reasons, we do not detail these here.Finally, we convert multiple upper or lower boundsinto a single lower or upper bound using max or minas appropriate.When we come to a leaf node we generate codein turn for each active statement. If the guard at-tribute for a statement is not a tautology then a con-ditional statement is generated to test this condition.The statements themselves are unchanged from theoriginal program, except that the old index variablesare replaced by appropriate functions of the new loopvariables. Since the mapping is one-to-one, these func-tions can be easily determined by simply inverting themapping.



7 Optimizing the code structureHaving generated an initial AST that does not du-plicate code, we now consider optimizations that re-duce execution time overhead at the cost of an increasein code size. We consider three types of overheadin our implementation: guards around loops, guardsaround atomic statements, and min's and max's inloop bounds. Zero trip loops are also a potentialsource of overhead; we generate guards to ensure thatloops have at least one iteration, so this problem re-duces to the case of guards around loops.We remove overhead as follows:1. Find an overhead we wish to remove.2. Determine a constraint that, if tested, would al-low us to eliminate the overhead.3. Create a new split node that tests that constraint,with the code containing the overhead duplicatedunder both branches of the split.Our optimization criteria is the maximum number ofloops kmax, that we will allow to surround a source ofoverhead. Roughly speaking, the cost of an overheadnested inside of d loops will be O(nd), where n is thenumber of iterations of a loop. We could use moreexact methods [17] to evaluate the cost of an over-head. However, the cost of such analysis is probablynot worthwhile and would be of questionable bene�t(e.g., it is not clear whether it is better to remove asource of overhead executed mn(n � 1)=2 times or asource executed m2n times).If a code fragment executes O(nd) necessary op-erations, then executing O(nd) avoidable overhead isprobably unacceptable. Reducing the avoidable over-head to O(nd�1) will probably be acceptable in thissituation and any further reduction may be unnotice-able. We are able to dynamically control the amountof overhead that we eliminate based on the amount ofcode explosion seen so far.Given an AST with loops nested d deep, we �rst re-move overhead nested within d loops. We next removeoverhead nested within d � 1 loops, and so on, untilall overhead nested inside kmax loops is eliminated.To remove all overhead nested kmax deep, we �rsttraverse down the AST to each loop nested kmax deep.Note that in counting nesting depth, we only countloop nodes that require a loop to be generated (i.e.,that may contain more than one iteration). Uponreaching a loop nested kmax deep, we need to lift outall overhead from the body of that loop. We searchthe body of the loop for a constraint that would elim-inate some source of overhead. We then generate a

Level of Overhead as Bytes ofOverhead elim. (k) % of original object codeNaive code 31% 584Initial code 13% 712Optimized kmax = 4 13% 712Optimized kmax = 3 5% 1576Optimized kmax = 2 4% 5352Original code 0% 392Table 1: Results for blocked LU decompositionsplit node on that condition, place copies of the orig-inal loop node under both branches of the split node,and attempt to remove overhead from both branches.We only extract one constraint at a time and thenreevaluate using the algorithm described in Section5. Testing one constraint might eliminate the needto test another constraint in one of the two branches(e.g., both i � 10 and i � 20 might remove overhead,but i � 20 would not need to be tested in the truebranch of a split on i � 10).Finding constraints that eliminate overheads isfairly straightforward. All guards of atomic state-ments and loops are sources of overhead and can easilybe located by examining the guard attributes of loopand leaf nodes. For loop nodes, we also can checkto see if the bounds contain multiple lower bounds ormultiple upper bounds. If so, it is straightforward togenerate the constraint that eliminates the overhead(e.g., testing a � b will eliminate the overhead of com-puting min(a; b)).Figure 7 shows the optimized AST and correspond-ing code for the example introduced in Figure 4, withall overhead inside four or more loops removed. Table1 shows the overhead (as a percentage of original codetime) and code size for di�erent levels of overhead op-timization. The blocked version contains more over-head than the original, unblocked code, since it addsextra loops for the blocking. The line marked \Naive"is for comparison only; we do not generate that code.The naive code is a set of loops scanning the convexhull, with all remaining conditions checked as inner-most guards. The optimized code for kmax = 4 isidentical to the initial case, since are no overheadsnested inside 5 loops in the initial code. The resultshere do not include cache e�ects, so we can measurethe overhead directly. At higher levels of optimization,the code size increases dramatically, with diminishingperformance gains. In this example, removing controloverhead located inside more than 3 loops (kmax = 3)is probably su�cient.



Optimized AST
leaf

loop ( t5 )

loop ( t4 )

leaf

loop ( t5 )

loop ( t4 )

leaf

loop ( t5 )

loop ( t4 )

leaf

loop ( t5 )

loop ( t4 )

loop ( t1 )

loop ( t2 )

loop ( t3 )

split ( t4 < t3 )

split (t2+62< n)

split ( t4 < t2 )

split (t2+63< n)

loop ( t4 )

loop ( t5 )

leafCode corresponding to the optimized ASTif 2 <= n thenfor t1 = 1 to n-1 step 64for t2 = t1-1 to n step 64for t3 = t1 to nif t1<t3 & 64+t2<=n & 63+t1<=t2 thenfor t4 = t1 to min(t3-1,t1+63,t2-1)for t5 = t2 to t2+63s2[t4,t5,t3]if t1<t3 & 63+t1<=t2 & n<=63+t2 thenfor t4 = t1 to min(t1+63,t3-1,t2-1)for t5 = t2 to ns2[t4,t5,t3]if t1<t3& 63+t2<=n & t2<=63+t1 & t2<t3 thenfor t4=max(t2,t1)to min(t2+62,t1+63,t3-1)for t5 = t4+1 to t2+63s2[t4,t5,t3]if t1<t3& t2<t3 & t2<=63+t1 & n<=62+t2 thenfor t4 = max(t2,t1) to min(t1+63,t3-1)for t5 = t4+1 to ns2[t4,t5,t3]if t3<=62+t2 & t3<=63+t1 & t3<n thenfor t5 = max(t2, t3+1) to min(t2+63,n)s1[t3,t5]Figure 7: Optimized blocked LU decomposition8 Related workThe problem of generating code for a convex regionwas �rst addressed by Ancourt and Irigoin [1]. Theyuse Fourier pairwise elimination at each level to pro-

vide bounds on each of the index variables. They thenform the union of all of these projections to producea single set of constraints which explicitly contains allof the information necessary to generate code. Theypropose that fast inexact techniques be used to removeredundancies from this set before it is used to generatecode. They consider only the single mapping convexcase.Li and Pingali [15] consider the non-convex caseresulting from mappings that are not necessarily onto.They use a linear algebra framework and compute loopbounds and steps using Hermite normal form. Theydo not consider the multiple mapping case.Ayguad�e and Torres [2] consider a limited case ofthe multiple mapping case where each statement canhave a potentially di�erent mapping but all mappingsmust have the same linear part (i.e., they only di�erin their constant parts).Chamski [4, 5] generates Nested Loop Structures,which are similar to our AST. He discusses generat-ing code only for the single mapping convex case. Hereduces control overhead by generating sequences ofloops to remove all min and max expressions in loopbounds. The cost of code duplication may be largewhen all such overheads are removed. We are ableto eliminate control overhead from sources other thanmin's and max's and we selectively decide which over-heads to eliminate by considering both the amount ofcontrol overhead and the amount of code duplicationthat would occur.Chamski claims [4] that Fourier variable elimina-tion is prohibitively expensive for code generation.We have found it to be a very e�cient method, andsuspect he used unrealistic examples and/or a poorimplementation of Fourier variable elimination. It iswell known that Fourier variable eliminate performspoorly on moderate to large systems of constraintswhere the constraints are dense: each constraint in-volves many variables. However, the constraints wehave seen in both dependence analysis and code gen-eration are quite sparse, and Fourier elimination isquite e�cient for sparse constraints [19].Collard, Feautrier and Risset [7] show how PIP, aparametrized version of the Dual SimplexMethod, canbe used to solve the simple case. Collard and Feautrier[6] address the multiple mapping case; however, onlyone dimensional iteration spaces are considered andmany guards are generated. They provide some inter-esting solutions to the situation where statements haveincompatible stride constraints (e.g., t1 is even and t1is odd). Stride constraints such as this arise frequentlyin Feautrier's parallelization framework [9, 10], while



we [13, 11] try to avoid them in our framework, sincegenerating good code for them is di�cult.9 ConclusionWe have presented an algorithm to generate trans-formed code from the original code and a set of one-to-one statement mappings representing the transforma-tion. Unlike most previous systems, our system cangenerate e�cient loop structures even when a poten-tially di�erent mapping is used with each statementand the resulting union of iteration spaces is non-convex. Our algorithms permit optimizations of thecontrol overhead that results from non-convexity, andallows the user to trade-o� lower overhead for code du-plication. This approach to generating code and theoptimization we describe are particularly importantfor loop interchange or loop blocking of imperfectlynested loops.10 Implementation and availabilityAn implementation of this algorithm is availablein the Omega Calculator. The Omega Calcula-tor and copies of our other papers are availablefrom http://www.cs.umd.edu/projects/omega andftp://ftp.cs.umd.edu/pub/omega.References[1] Corinne Ancourt and Franccois Irigoin. Scanning polyhe-dra with DO loops. In Proc. of the 3rd ACM SIGPLANSymposium on Principles and Practice of Parallel Pro-gramming, pages 39{50, April 1991.[2] Eduard Ayguad�e and Jordi Torres. Partitioning the state-ment per iteration space using non-singular matrices. InInternational Conference on Supercomputing, pages 407{415, July 1993.[3] U. Banerjee. Unimodular transformations of double loops.In Proc. of the 3rd Workshop on Programming Languagesand Compilers for Parallel Computing, pages 192{219,Irvine, CA, August 1990.[4] Zbigniew Chamski. Fast and e�cient generation of loopbounds. Publication interne 771, Institut de Recherche enInformatique et Syst�emes Al�eatoires, October 1993.[5] Zbigniew Chamski. Nested loop sequences: Towards e�-cient loop structures in automatic parallelization. Publi-cation interne 772, Institut de Recherche en Informatiqueet Syst�emes Al�eatoires, October 1993.[6] J.-F. Collard and P. Feautrier. Automatic generation ofdata parallel code. In H.J. Sips, editor, Proceedings of theFourth International Workshop on Compilers for ParallelComputers, pages 321{332, Delft, The Netherlands, De-cember 1993.
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