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Abstract 

A method for the adaptation of a generic 3-D face model to an actual face in a head-and-shoulders scene is discussed, 
with application to video-telephony. The adaptation is carried out both on a global scale to reposition and resize the 
wire-frame, as well as on a local scale to mimic individual physiognomy. To this effect a hierarchical scheme is developed 
to extract the semantic features in the head-and-shoulders scene, such as silhouette, face, eyes and mouth, using 
a knowledge-based selection mechanism. These algorithms, which are to be an integral part of a general model-based 
image coder, are tested on typical videophone sequences. 

Keywords: Model-based image coding; Knowledge-based segmentation; Facial model adaptation 

1. Introduction 

Model-based coding is a newly emerging image 
sequence compression technique [l, 7,171. In con- 
trast to conventional image compression schemes 
that exploit pixel to pixel correlations, model-based 
coding takes a more global view of objects and their 
specific 3-D representations, and it relies on a priori 
knowledge about the scene. The basic assumption 
in this coding technique is that the expected scenes 
are known and these are constrained to a few world 
objects, like a speaker’s head. 

* Corresponding author. Tel: 3 1 15 783084. Fax: 3 1 15 78 1843. 
E-mail: marcel@it.et.tudelft.nl. 

Model-based coding adapts generic models of 
objects to actual objects encountered in the scene, 
and then tracks their evolution and changes 
throughout the sequence. In this way objects in an 
image sequence can be parsimoniously coded, as 
the information to be transmitted to graphically 
re-enact the sequence consists simply of the 
changes in the model parameters. 

The block diagram of such a model-based coding 
scheme is illustrated in Fig. 1 for the specific case of 
head-and-shoulder scenes. As shown in Fig. 1 
a generic face model (e.g. a wire-frame model) is 
present at both the receiving and transmitting sides. 
This generic face model is adapted during the initial 
frames of a sequence to the physiognomy, that is to 
the actual features of the face in the scene. The 
adaptation is based on the information extracted 
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Encoder Decoder 

Fig. 1. Model-based image coding scheme. 

from the scene frames by using image analysis tech- 
niques (see Fig. 1). The model becomes a specific 
model when it is adapted to the face in the scene. As 
the videophone conversation proceeds, the scene 
object is tracked, so that both the global motion 
parameters of the face as well as the local deforma- 
tions corresponding to facial expressions are 
mimicked. The estimates of motion and expression 
parameters are transmitted to the receiving side. At 
the receiver side the model is continuously adapted 
and animated with the incoming updates. In addi- 
tion to the motion and expression data, additional 
data for texture and illumination changes may also 
be needed. The final rendition of the specific model 
after the model updates is implemented in the 
image synthesis box. 

The fundamental assumption in these techniques 
is that the scenes are constrained to a few objects, 
like a speaker’s head, for which a priori models can 
be developed. The flexibility and accuracy of the 
models is crucial to obtain high compression ratios 
with realistic reproductions of the scenes. If a scene 
change occurs which is outside the range of model 
objects, one can always fall back to conventional 
coding techniques, e.g. CCITT’s H.261 [S]. How- 
ever, problems caused by scene changes fall outside 
the scope of this paper. The implications of the 
model-based coding schemes will be, however, 
beyond video-telephony. In fact these techniques 
may turn out to be more relevant in the context of 
automatic answering machines, graphic animation, 
archival search for human faces, etc. 

Comparing a model-based coder to current stat- 
istical coders, like the CCITT H.261, one notices 
that while the compression ratio increases [1,7], 
the complexity of the image processing tasks also 
increases. The main tasks of a model-based coder 
consist of: (i) detection and localization of semantic 
features to supply initial information for the re- 
maining tasks of the coder; (ii) adaptation of the 
3-D generic model to the actual object, i.e. scaling 
and posing of the generic model [l, 61, and local 
adaptations to reflect the individual physiognomy 
[1,3,17]; and (iii) tracking of motion parameters 

CLfi71 as well as expression parameters 
[S, 10, 11,151. 

Evidently the first task is crucial for a model- 
based coder because all other tasks depend on it. 
Pioneering work on the localization of facial fea- 
ture points has been done by Kanade [9]. Recently 
the automatic extraction of these features has re- 
ceived more attention as part of face recognition 
systems, e.g. in [14] a number of these techniques 
are listed, However, all these methods at some 
point assume either a fixed setting of the back- 
ground or they are scale/rotation dependent. The 
limitations of these methods indicate that extract- 
ing the shape of the facial features from the image 
directly - without any prior knowledge - is not 
practical. In any case it is imperative to obtain an 
accurate estimate of feature positions before their 
shape can be extracted. 

We have focussed on typical videophone scenes, 
i.e. on the head and shoulders of one speaker in 
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front of a still camera. The main goal of our re- 
search is the automatic adaptation of a generic face 
model to the face in the scene. In particular we are 
looking at the automatic detection of facial fea- 

tures. The contributions of our work against the 
background of previous research results can be 

summarized as follows: (i) A robust method for the 
automatic localization of semantic features has 

been developed using a knowledge-based selection 
mechanism. This scheme does not presuppose 
a fixed setting, and imposes restrictions only on 
extreme rotations that preclude visibility of certain 
facial features. (ii) A method to adapt a generic face 
model to the extracted facial contours. This method 

first transforms the generic model globally to ac- 
count for scaling and posing and then refines the 

mismatch between the generic model and the facial 
contours to account for individual physiognomy by 
applying a local adaptation based on a graph 
matching algorithm [4]. 

This paper is organized as follows. Section 2 ad- 
dresses the problem of detection and localization of 
features of interest on human faces, such as occlud- 
ing silhouette, face, mouth and eyes. Given these 
localized features, the global adaptation of the 
model as well as a more refined local fitting arc 
described in Section 3. Experimental results and 

performance figures obtained from typical video- 
phone test sequences are discussed in Section 4, and 
concluding remarks are given in Section 5. In the 
following, we have used lowercase boldface italic 
characters to denote vector variables, and the sym- 
bol ‘ -’ stands for ‘is directly proportional to’. 

2. Localization of facial features in 
head-and-shoulder scenes 

The localization of facial features is based on the 

propagation of knowledge about these features. 
This concept, called the knowledge-based selection 
mechanism, leads to a hierarchical localization 
scheme in which each feature is pinpointed sequen- 
tially. The first feature which is localized is the one 
which can be localized reliably based on a priori 
knowledge solely. 

For each of these features, first, candidate regions 
are generated by a segmentation of the image. 

Candidate 
Region 

Generation 

Fig. 2. Consequent steps when localizing a facial feature. 

From this set of candidate regions, the region 
which best matches the feature searched for is se- 

lected based on the knowledge-based selection 
mechanism (Appendix A), illustrated in Fig. 2. Ac- 
cording to this mechanism one can predict the 
values of certain properties of a feature based on 
a priori knowledge about that feature and pre- 
viously localized features. For example, eyes are 
searched for within the previously located face re- 

gion, and the selection mechanism uses a priori 
knowledge about face sizes and eye-to-eye distan- 

ces. Thus, to select the most likely goal region from 
a set of candidates, one selects that region whose 
current property values match closest the predicted 
ones. The properties used should have high dis- 
criminatory power, and should be invariant to the 

allowed rotations, translations and zoomings. 
To be able to perform these tasks, the following 

basic assumptions about head-and-shoulder se- 
quences are made: (i) There exists only one moving 
object in the foreground consisting of the head and 

shoulders of a talking person, while the back- 
ground is stationary. (ii) The motion of the speaker 
is moderate with respect to the frame rate. (iii) 
Certain facial features are always visible, in other 
words, head rotations and tilts that impede the 

visibility of eyes and mouth are precluded; similarly 
the face is not occluded by other objects such as 
gesticulating hands. (iv) The head inclination (rota- 
tion around the z-axis) should be less than 45’. 
(v) The human face has an approximate vertical 

symmetry. 
In the following sections, the localization of each 

semantic feature of interest in the head-and-shoul- 
der scene is described in more detail. The hierarchi- 

cal approach starts with localizing the silhouette in 
the image, followed by the head, the face and finally 
the eyes and mouth. Some of the basic ideas and 
preliminary results were also presented in [2]. Here 
an extended and more refined system will be pre- 
sented, which has an improved performance while 
localizing more facial features. 
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2.1. Localization of the silhouette 

Based on the above assumptions, the occluding 
silhouette of the head and the shoulders can be 
extracted quite easily from thresholded frame dif- 
ferences. The motion of the speaker induces frame 
differences, which are smoothed to obtain connec- 
ted regions by exploiting their spatial correlations. 
Often, however, evidence about moving objects in 
the scene gathered from a single frame difference 
may not suffice to portray a speaker in its entirety. 
It is then necessary to recover fully the speakers 
silhouette by observing a number of successive 
change detection masks. Because the motion of the 
speaker is generally slow with respect to the frame 
rate, the sequence of change detection masks are 
temporally correlated, and this can be used to im- 
prove the silhouette. 

Candidate region generation 

A block diagram describing the segmentation of 
silhouette regions for a moving speaker is illus- 
trated in Fig. 3, and it consists of the following 
steps: 

(i) The frame differences are spatially low-pass 
filtered with a uniform filter and downsampled by 
a factor of 4. 

(ii) A threshold is calculated from the histogram 
of absolute frame differences. Most techniques try 
to find the best threshold value assuming a bimodal 
histogram. However, histograms of frame differ- 
ences are typically unimodal, with a peak close to 
zero. Zack et al. [19] developed a technique which 
assumes unimodal histograms. This thresholding 
method resulted in good and sufficiently consistent 
silhouette regions from the frame difference images. 

(iii) The sequence of smoothed and thresholded 
change detection masks, b,(i,j), are processed with 

a spatiotemporal filter (t stands for time). The func- 
tion of the spatiotemporal filter is to fuse a number 
of consecutive masks. The temporal fusing between 
previous change decisions and new change evid- 
ences is implemented as 

c,(i,j) = max{NW,j),_L i(i,j) - 1)) (1) 

where b,(i, j) E (0, l}, f,(i, j) E (0, 1,2, . . . , N - 1, N} 
and fO(i, j) = 0. Also, these evidences undergo 
smoothing via median filtering: 

fr(i,j) = Median{c,(i, j)}. (2) 

The scheme to determine c,(i, j) can be thought of 
as a counter, which starts at N when the most 
recent change evidence b,(i, j) equals 1. Otherwise, if 
there is no change at pixel location (i, j) at instance 
t, previous change decisions, fr- I (i, j), are not dis- 
carded immediately, but the counter is de- 
cremented by one. An illustration of fused masks 
obtained from the Miss America sequence is given 
in Fig. 4(a) and (b). 

The parameter N now controls how long frame 
information is retained when it is not refreshed. For 
example, keeping N large will tend to create con- 
nected and smooth foreground blobs, at the ex- 
pense of smearing the silhouette, especially if the 
object motion is excessive. In our experiments, 
N = 10 was found to be adequate, although this 
parameter may also be determined adaptively, e.g. 
considering some norm of motion vectors. 

Feature selection 

Although this algorithm always yields a large 
connected region approximately portraying the sil- 
houette of the speaker, it is possible that other 
smaller regions are found as well, due to noise or 
fragmentation of the silhouette region (e.g. regions 

Luminance 
Frame difference 

Fig. 3. Block diagram describing the generation of candidate silhouette regions. 
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Fig. 4. Dynamic segmentation images obtained using past and present change detection masks: (a) sequentially fused images of Miss 

America sequence of frames 70 to 90; (b) the resulting candidate regions for the silhouette of Miss America in frame 90. 

in the hair). Therefore, the region with the largest 

area is always taken to be the silhouette. 
In principle a more accurate silhouette can be 

obtained with the application of motion compensa- 
tion on the change masks. However, the accuracy 
of the silhouette algorithm without motion com- 
pensation was found satisfactory for the subsequent 
steps of the algorithm, hence this simpler version 
was preferred. 

n, and nl, as illustrated in Fig. 5(a). Notice that one 
should travel down from the top not more than half 
the contour lengths, in order not to get confused by 
the ambiguous and fragmented region of the shoul- 
ders. Finally, the chin contour is roughly approx- 
imated by a circle with its midpoint at the center of 
the two neck points (II,., n,), and the diameter equal 
to the distance between the neck points. Fig. 5(b) 
shows the thus extracted head from the silhouette 
found in Fig. 4(b). 

2.2. Localization of the head 

2.3. Localization of the .face 
The head region can be separated from the 

shoulder region by noticing that the silhouette con- 
tour has always a pair of concavities at the neck. 
The position of these concavities can be identified 
simply by first finding the convex hull of the earlier 
localized silhouette region, and then marking the 
place where the silhouette and hull contours are 
most distant from each other. The search along the 
contour should start from the top of the silhouette 
region, and proceed downwards on both sides, 
keeping track of the minimum of the hull-to-silhou- 
ette distances. The coordinates of the maximum of 
these distances are identified as the neck points, 

Analyzing typical head-and-shoulder images, 
one finds that the facial region, especially at low 
resolution, exhibits a uniform color. Hence, the 
facial region can be extracted by segmenting the 
image by using a region growing technique based 
on the color components, i.e. luminance (y) and 
chrominance (u, U) components. 

Candidate region generation 
A block diagram describing the generation of 

candidate regions for the face is illustrated in Fig. 6, 
and consists of the following steps. 
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- Silhouette region 
- Convex hull t 

(a) @I 

Fig. 5. (a) The extraction of the head region from the silhouette region. (b) The head region extracted from the silhouette region 
in Fig. 4(b). 

Small Region 
removal 

Fig. 6. Block diagram describing the generation of candidate 
face regions. 

(i) The image is low-pass filtered with a uniform 
filter and downsampled repetitively until the size of 
the head region is reduced down to an image 
approximately 32 x 32 pixels in size. 

(ii) The downsampled image is segmented with 
a region growing algorithm based on the three 
color features and the chessboard distance. At pres- 
ent we use a serial scheme, whereby every region is 
initiated by the first ‘non-region’ pixel, that is the 
first pixel that does not belong to any previously 
found region, and it is then grown to its completion. 
After experimenting with different color spaces, e.g. 
YUV, RGB, HSV, the YUV color space gave the 
best results for our test images. Also a weighted 
Euclidean distance in feature space was considered 
but the chessboard distance produced better re- 
sults. The luminance is taken into consideration to 
aid in the segmentation of those areas where the 

chrominance is not well defined, like for example 
the hair. Note that larger variations are allowed in 
the luminance component of a region than in the 
chrominance component. The thresholds for each 
component are kept fixed, in our experiments we 
have used the following thresholds: ( Ty, T,, T,) = 
(40,10,10). 

(iii) Finally, regions smaller than 10 pixels are 
not taken into consideration and removed. 

Feature selection 
Frame number 79 of the Miss America sequence 

thus segmented is shown in Fig. 7(a), which exemp- 
lifies that in general several candidate regions may 
emerge. Therefore, from this map, the region which 
resembles the face most should be selected. In order 
to accomplish this task the knowledge-based selec- 
tion mechanism as detailed in Appendix A is used. 
The selection proceeds by computing a score for 
each region, which in turn can be interpreted as the 
likelihood that the region corresponds to the face. 
The score calculation uses a set of region properties 
chosen to best differentiate the true facial region 
from the other regions. The properties that proved 
to discriminate well are: the distance between the 
head and face centroids and the face area size. The 
combination of these two properties is denoted by 
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Fig. 7. (a) The generated candidate facial regions for frame 79 of Miss America. (b) The generated candidate eyes and mouth regions 

for the same frame of Miss America. Also, as an example, the ey-e vertical (IP,q) and eye horizontal given two candidate eye pair regions 

rP and r4 are shown. 

the vector mj for the region rj. The face score, Sj, of 
the region rj can then be calculated as (see 
Appendix A) 

Sj = P(FaceImj) = P(mj, dist I Face) P(mj, area I Face) 
P(mj, dist) P(mj,area) 

- exp - 
iI 

11 cj - Chad 11 2 

2(0.18 Widthr,,,d)2 I 

(Areaj - Areahead) 

2(0.35 Areai,,,d)2 1 (3) 

In other words, the centroid of the facial region is 
expected to coincide with that of the head region 
with an allowed deviation of 18% of the head 
width, and the area size is expected to be propor- 
tional to the area size of the head region. Allowing 
deviations from the expected values accounts for 
variations in physiognomy and minor segmenta- 
tion errors due to noisy data. Note that, by relating 
these expectations to characteristics of the head 
region, relative scale independence is maintained. 

Finally, a heuristic rule is needed since the region 
corresponding to the hair can sometimes have ap- 
proximately the same score as the face region. Ac- 
cording to this rule the face region is always the 

lower one if there are two regions that closely 
match the expected property values. 

2.4. Localization of the eyes and mouth 

One can observe that the eyes and mouth appear 
in intensity images as small dark areas surrounded 
by brighter areas. If distinguishable, then the pupils 
and eyelashes are always darker than the surround- 
ing areas. The eye sockets strengthen this effect due 
to their shadowing, in fact even with closed eyelids 
the low intensity zones of the eye sockets are suffi- 
cient to delimit the eyes. Finally, eyebrows, nostrils 
and lips and/or a mouth ajar create also darker 
regions. These observations hold true over a wide 
range of lighting conditions and head orientations 
with respect to the camera. 

Candidate region generation 

We have used these considerations to localize the 
eyes and mouth in head-and-shoulder images. 
A block diagram describing the generation of can- 
didate regions for eyes and mouth is shown in 
Fig. 8 and consists of the following steps: 

(i) The eyes and mouth are searched only within 
the convex hull of the localized face region. The 
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Fig. 8. Block diagram describing the generation of candidate eyes and mouth regions. 

convex hull is taken because the localized facial 
region can contain ‘fjords’ due to locks of hair 
occluding parts of the front and the eyes. 

(ii) The small dark areas in a brighter surround- 
ing are enhanced via gray scale morphological op- 
erators, e.g. max-min filters. The max-min filter is 
implemented with a circular structuring element of 
size Nstr, which is estimated from the size of the 
localized facial region. For example, in the Miss 
America sequence N,,, always equals 7. The 
max-min filters calculate the upper envelope of the 
gray scale landscape. The local minima can now be 
enhanced by taking the absolute difference between 
the upper envelope and the original image. 

(iii) The image containing the enhanced local 
minima is thresholded using the well-known 
‘isodata’ thresholding algorithm yielding a binary 
map which reveals the local minima. 

(iv) Finally, the binary map is post-processed to 
remove erroneously candidate regions. To remove 
small regions due to noise, regions smaller than 
0.075% of the face area are removed (for the Claire 
image sequence this is about 3 pixels). Further, to 
remove regions which are falsely generated at the 
contour of the facial region (because it is dark at 
one side and bright at the other), regions which are 
closer than 2.5% of the face width to this contour 
are also removed. 

Feature selection 
In Fig. 7(b) an example of the resulting candi- 

date regions is shown. Again many regions other 
than the eyes, and mouth are present (e.g. the nostril 
regions). From these regions, the eyes and mouth 
have to be selected on the basis of their properties. 
The set of properties which are used to distinguish 
the eye regions from the other candidate regions 
are the eye-to-eye distance and the symmetry. The 

eye-to-eye distance is expected to be equal to 45% 
of the width of the localized face, and the allowed 
standard deviation from this expectation is 7.1% of 
the face width. The symmetry property exploits the 
assumption that human faces are vertically sym- 
metric. The vertical symmetry axis of concern on 
the human face, denoted by the eye vertical, is the 
line passing through the center point between the 
eyes and is perpendicular to the line passing 
through both eye-centers, denoted as the eye hori- 
zontal (see also Fig. 7(b)). 

Let us denote the binary image, as in Fig. 7(b), 
containing the eye candidate regions as e, with the 
extracted regions labeled as 1 and the background 
labeled as - 1. For each pair of candidate regions 
(rp,rq), hypothesized to correspond to a left and 
right eye, a symmetry axis I,,, can be constructed. 
The symmetry score for the above pair can then be 
calculated easily as an inner product between the 
image e, and its mirror reflection with respect to the 
l,,, axis, as follows: 

1 

symmetry = fi 

whereD=(x=(i j l)TIO<i<W,O<j<H}in 
which W and H are the width and height of the 
image e. R,,, denotes the reflection operator in the 
line l,,,. For the true eye pairs, this symmetry score 
is expected to be high, ideally 1. In the selection 
mechanism the standard deviation is chosen as 
0.42. 

To find the true eye pair, each candidate pair of 
regions should be tested on the eye-to-eye distance 
and derived symmetry value. Especially the last 
property is computationally expensive. Therefore, 
before these actual measurements are made, the 
following tests (illustrated in Fig. 9) are applied on 
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d mouth-eyevertical 

Fig. 9. The geometry of the eye pair regions and the mouth 

region, which is used in the reduction of the number of candidate 

eye pair regions. C,,, C,, and Cmoulh are respectively the center 

point of the left eye, right eye and the mouth region. Ceyes is the 

center point of the left and right eye regions. The line connecting 

the eyes is called the eye horizontal and the vertical symmetry 

axis is called the eye vertical. 

each candidate pair of regions to constrain the 
search space: 

(i) The head inclination, measured as the angle 
of the eye horizontal, is constrained to be within 
+ 45”, so that region pairs with higher inclinations 

are disregarded. 

(ii) The eye-to-eye distance, deye_to_eye, (Fig. 9) is 
constrained to be between 25% and 70% of the 
width of the localized face. 

(iii) There should be at least one region from the 
map of candidate mouth regions which fulfills the 
following conditions: 

- The center ( Cmouth ) is below the center of the eyes 

(Ceyes). 
- The distance of C mouth (Fig. 9) to the eye horizon- 

tal is restricted to be within 100% and 175% of 
the eye-to-eye distance. 

~ The distance of Cmouth (Fig. 9) to the eye vertical 
should be less than 25% of the eye-to-eye dis- 
tance. 

By applying these tests the number of region pairs 
for which the symmetry value should be deter- 

mined was reduced considerably. For frame 30 of 
the Talking sequence this number was reduced to 
16 as compared to 435 measurements originally. 
The actual number of symmetry measurements 
is significantly less as compared to symmetry 

measurements one has to do with a relatively 
unconstrained method as in [12]. 

In conclusion, the eyes and mouth regions are 
detected as a threesome ensemble. First, an eye pair 
is selected. A pair of regions is only considered as 
a true eye pair candidate if it passes the above- 

mentioned tests. Then, the score for the candidate 
eye pair is calculated on the basis of the eye distance 
and the symmetry value. The candidate eye pair 
with the best score is selected to represent the eye 
pair. However, if there is a region pair (besides the 

best scoring pair) which has a competing score (i.e. 
the score of the competing pair is not less than 65% 
of the best score), then one always selects the lower 
pair. At the same time, the upper pair of regions is 
hypothesized to belong to the eyebrows. This heu- 
ristic rule is applied because the eyebrows can 

have property values closely matching the ones of 
the eyes. 

In a second step the mouth region is selected 
among the candidates satisfying the above con- 
straints (iii). The distance of the center of the mouth 
to resp. the eye vertical and the eye horizontal are 
used as properties in the selection mechanism. The 
expected values and their allowed deviations for the 
distance to the eye vertical are resp. 0% and 18% of 

the eye-to-eye distance, and for the distance to the 
eye horizontal resp. 125% and 18% of the eye-to- 
eye distance. 

The feature localization technique described 
above has worked very satisfactory in typical 

videophone sequences, as will be shown in Section 
4. The information thus obtained is used to adapt 
and guide the wire-frame model so that individual 
somatic traits, motion, and expressions can be re- 
produced at the receiving site. 

3. Adaptation of the generic face model 

In the foregoing, a method has been described to 
locate the semantic features in a head-and-shoulder 
scene. These features can be used for the adaptation 
of a generic face model to the face in the scene in 
order to acquire an accurate description. However, 
to acquire an accurate adaptation, not only the 
locations of these features need to be known 
but also accurate contour information of the facial 
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Fig. 10. (a) Automatically extracted contours of the chin outline, eyes, nostrils and mouth for frame 10 of the Talking sequence. 
(b) Front view of the CANDIDE 3-D wire-frame model description of a general face. 

features, such as eyes, mouth and the face itself, 
is required. In [18] a method has been described 
for contour extraction of facial features using de- 
formable templates, and in [ 1 l] this approach has 
been integrated with the feature localization de- 
scribed in the previous section. We refer to [l l] 
for further details of the contour extraction algo- 
rithm, which will not be discussed here. Fig. 10(a) 
illustrates a set of contours obtained by this algo- 
rithm as applied to a frame of the Talking se- 
quence. 

The adaptation of the generic model on the basis 
of these shapes takes place in two successive steps: 
(i) the global transformation, and (ii) local trans- 
formations. The global transformation accounts for 
the resizing of the wire frame as well as reposition- 
ing to give it the initial pose of the speaker. How- 
ever, after the global transformation has been ap- 
plied, there remain residual differences between the 
model and the scene facial outlines as well as mouth 
and eye contours. The local transformations deal 
with differences in such facial geometries, e.g. cor- 
recting for slight asymmetries, and repositioning of 
the model eyes and mouth. The generic wire-frame 
model of the face used in our experiments is shown 
in Fig. 10(b). 

3. I. Global adaptation 

The global adaptation of the generic face model 
consists of 3-D rotation, translation and scaling 
operations of the face. Thus, in principle, nine para- 
meters must be estimated, three for scaling 
(sX,sY,s,), three for translation, and three rotation 
angles (rX, r,,, Y,). As illustrated in Fig. 11 (a), in our 
notation, these three angles correspond to the head 
tilt Y, (around the x-axis), the head rotation 

lY (around the y-axis), and head inclination 
r, (around the z-axis). In reality it proves diffi- 
cult to extract depth information at this stage 
from planar contours, hence they are derived in- 
directly from other parameters which are readily 
estimated. 

The parameters are estimated using six points 
(p1,p2,p3,p4,p5,p6), obtained from measurements 
on the extracted facial contours, which are defined 
as follows:p, is the left corner point of the left eye 
contour,p, is the right corner point of the right eye 
contour, p3 is the midpoint of p1 and pz, p4 is the 
topmost point of the mouth contour, p5 andp, are 
projections of the face contour on the eye horizon- 
tal (the line through pi-p2) that are maximally 
distant from the point p3. Using these references, 
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(a) 

cross section of the 

ima 

(b) 

Fig. 11. (a) Global adaptation parameters and control points. (b) Cross-section of the head at the height of the eyes, showing the 
orthogonal projection of the control points on the image plane and their relation to the head rotation. 

the estimation of the rotation and scaling para- 
meters proceed as follows. 

Pose angles: The inclination of the head (r,) is 
simply estimated as the angle of the eye horizontal. 
The head rotation, on the other hand, is found by 
considering the drift of the eye center from that of 
the head center on the same latitude. Assuming 
a circular cross-section of the head at the eye 
height, one compares the midcenter of the eyes, p3, 
to that of the line throughp, andp,, in the formula 
below (Fig. 11 (b) illustrates this geometry): 

sin(r 

Y 

) = 2 < (P3 - (Ps + Psm (Ps - P5) > 

II(Ps -P5)l12 ’ 
(5) 

where < .,. > is the inner product. The head tilt, 
yX, is assumed to be negligible or known at this 
stage. This assumption had to be made due to such 
difficulties as the vertical length of the head not 
being constant due to jaw movement, and the top 
of the head often being ambiguously delineated due 
to hair cover. Furthermore the distance between 
p3 andp, is affected in a coupled way both by the 
actual scale of the subject and the head tilt. 

Scales: The scaling factor s, can be estimated 
from the ratio of lengths il(p6-ps)II as measured 
both in the model and in the actual image. For 
a known head tilt, the factor sY can be similarly 

estimated from the ratio of the // (p4-p3) I/ lengths. 
Since range data are not readily available, the 
depth scaling is taken at this stage as the average of 
the s, and sy factors. 

Position: The position of the face in the projec- 
tion plane can be simply estimated by matching the 
coordinates of the control points with the corres- 
ponding model coordinates in the x-y plane 
(assuming an orthographic projection). 

3.2. Local adaptation 

The goal of the local adaptation, which takes 
place after the affine transformation has been ex- 
ecuted in the global adaptation step, is to provide 
a more refined fit to the somatic contours of the 
actual face. The model wire frame is thus subjected 
to various local deformations. These local adapta- 
tion steps are significant (to differentiate between 
different people), although usually small in magni- 
tude as compared to the initial global adaptation. 

The implementation of the local adaptation is 
based on a method first described by Burr [4]. In 
this technique both the wire frame and the goal 
contours are treated as planar graphs; therefore the 
curvilinear contours must first be polygonized, e.g. 
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using the Wall-Danielson technique [16]. As the 
matching of the two graphs proceeds, the vertices of 
the model are driven towards those of the scene 
contours to coincide. However, to maintain the 
naturalness of the face and to avoid disproportion- 
ate triangulation, each contour translation is 
propagated smoothly to the remaining vertices of 
the face model. The displacement vectors for each 
vertex are derived from local mismatches between 
the positions of the vertices of the start contour 
(certain parts of the wire frame contour corres- 
ponding to the contours of the facial features) and 
the goal contour (actual contours of the facial 
features). Note also that the upper contour of 
the actual face will be almost always missing due 
to hair cover. To recuperate for the missing por- 
tions of the facial contour, we make use of the 
knowledge that the shape of the head is symmetric 
around the center point of the eye horizontal 
axis (see Fig. 1 l(a)), whereby the missing con- 
tour portions are found by reflecting the visible 
symmetric counterparts across the center point of 

PS and PS. 
The contour mismatch (between model and 

scene), as shown in Fig. 12(a), creates a displace- 
ment field which can be interpreted as a force field 
acting on the model, which will reshape it towards 
the face contour. For each vertex si of the start 
contour (wire-frame contour) a displacement vector 
ds,i to the goal contour (actual facial contour) 
is calculated, as illustrated in Fig. 12(a). Similarly, 
for each vertex gj of the goal contour, a dis- 
placement vector d,,j towards the start contour is 
calculated. 

The graph (wire-frame model) can now be de- 
formed in a controllable manner by defining 
a smoothed displacement vector, d,, for any grid 
position, X, illustrated in Fig. 12(b), as a weighted 
average of the calculated displacement vectors, 
using Eq. (6). Now, every vertex can be visited in the 
wireframe and the displacement d, at that vertex is 
calculated as in Eq. (6), which computes the accu- 
mulated effect of contour displacements of the 
N, + N, contour vertices. Fig. 12(b) illustrates the 
computed weighted displacement vectors, d,, for 
a number of grid points X. As is apparent from the 
formula, d, is a weighted mean of all d,,i (displace- 
ments of N, vertices of the start contour) and all 

d,,j (displacements of N, vertices of the goal con- 
tour), where the exponential terms are the weights. 
The weights with which the displacement vectors 
d,,i and dg,j influence any vertex of the graph de- 
pend upon the Euclidean distance of this vertex (at 
position x) to all si and gj vertices. The smoothed 
displacement vector then becomes 

d = 1 CrL 14,iexP( - IIx - Si II’/‘~“) 
x 

Y 1;: 1 exp( - IIX - Si 112/~2) 

_ EYE 1 dg,jexP( - IIx - kj + dg,j) l12/02) 
1;~ 1 exp( - lb - kj + dg,j) l12/02) ’ 

(6) 

In this formula a damping factor, y, controls the 
overshoots/undershoots of the iterations within 
each frame, whereas Q plays the role of a stiffness 
parameter. In fact, large values of cr correspond to 
a rigid graph, not allowing much local deformation. 
On the other hand, small values of 0 signify that 
displacement effects remain very local, such that 
every displacement is limited to a few vertices near- 
by, which effectively corresponds to a very elastic 
graph. Initially it is assumed that the discrepancy 
between the two contour graphs is large, hence 
iterations start with a high stiffness parameter. This 
stiffness parameter is gradually decreased so that 
neighborhoods of interacting vectors become 
smaller, and hence matching in finer detail can be 
realized. The iterations terminate when the mean 
value of the displacement vectors d,,i falls below 
a threshold. This mean value can be interpreted as 
a measure of residual mismatch between the two 
contours. We have used the setting suggested by 
Burr for the stiffness parameter: 

ok = CO/f k, (7) 

where k is the iteration number, and f is some 
constant between 1 and 2. The results shown in 
Fig. 12(c) were produced in ten iterations with 
y = 1.3, (TV = 200 andf= 1.2. Fig. 12(d) shows the 
adapted wire-frame overlaid on the actual Miss 
America image it was adapted to. 

We have implemented the local adaptation based 
on Eq. (6) only in the initial frames. But in fact, this 
adaptation scheme can be invoked at any instant to 
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start contour: 

(a) (b) 

(4 

Fig. 12. (a) Illustration of feature displacement vectors: si the start contour; gj the goal contour; ds,i the pushing feature displacement 

vectors, d,,i the pulling feature displacement vectors; d, the smoothed displacement vector at position x in the image. (b) The start 

contour (thin lines), the goal contour (thick lines), and the smoothed displacement vectors for a set of grid points. (c) The adapted mode1 

(thin lines) and the extracted feature contours (thick lines). (d) Original gray value image with the adapted model overlaid. 

compensate for facial deformations arising from 
expressions. 

4. Experimental results 

Experimental results and performance figures 
obtained from typical head-and-shoulder test 
images are discussed in the sequel. 

4.1. Evaluation of the localization of facial features 

In this section we report the performance of 
the above algorithms in locating each feature in 

the head-and-shoulder scene. The reported per- 
formances are the worst-case results, in that the 
algorithms are tested on individual frames, that is 
without making use of their sequence properties. In 
practice the localization algorithms would be 
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Fig. 13. Selected regions representing the features of interest (silhouette, face, eyes and mouth) and the corresponding eye vertical for 
(a) frame 79 of the Miss America sequence, and (b) frame 205 of the Talking sequence. 

tracking the regions of interest making explicit use 
of information accumulated in previous frames. We 
have used the following sequences in our experi- 
ments: Miss America, Claire and Talking. The stat- 
istics of property values (as explained in Section 2 
and Appendix A) are collected from measurements 
on 25 frames in the Claire and 25 frames in the Miss 
America sequences., Hence, these frames should be 
considered as our training set, while the remaining 
frames of these sequences and the frames in the 
Talking sequence are the test set. The head in the 
Talking sequence shows large rotations and thus 
can be a proof of the proposed scheme. In Fig. 13 
typical localization results are shown for frame 79 
of the Miss America sequence and for frame 205 of 
the Talking sequence. 

SiEhouette region: The silhouette detection algo- 
rithm is tested on 271 different frames, selected 
from the three different sequences. A silhouette 
region was detected in all cases. However in some 
frames the silhouette was somewhat fragmented, 
especially on the torso region, which either lacked 
sufficient motion or gray level details for a good 
segmentation. 

Head region: In all cases the silhouette en- 
compassed a connected head region, which was 
extracted successfully. 

Facial region: Since the facial region was seg- 
mented on the basis of color attributes of the skin, 
the neck was also occasionally included. In all 
tested cases the correct facial region was selected. 
The heuristic rule to separate the hair blob from the 
facial blob proved indeed necessary, especially in 
scenes where the speaker was bending forward. 

Eyes and mouth: The localization performance 
for the eye- and mouth-features are shown in 
Table 1. An eye or mouth is said to be identified 
correctly if the center of gravity of the correspond- 
ing region falls close enough to the correct points 
manually determined in each frame. In Table 1 we 
indicate for each sequence: the number of frames 
tested, the number of frames in which both the eyes 
and the mouth are located correctly, the mean and 
variance of the distance of these features to their 
actual positions (as determined by a human oper- 
ator), as well as the mean eye-to-eye distance to 
give an impression of the scale of the face. The 
percentage of correct frames were lOO%, 100% and 
98.4%, respectively, for Miss America, Claire and 
Talking, or, in other words, an overall perfor- 
mance of 99.6% across all sequences. Note that 
for the eyes and mouth to be located correctly 
all other features should have been located cor- 
rectly. Hence, these performance scores give an 
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Table 1 

Percentage of correctly processed frames (column 3). The mean and standard deviation of the distances in pixels of the various facial 

features from their correct position are also shown in relation to the actual eye-to-eye distance 

Sequence title Number of Number of Facial Absolute Standard &,,.l,..,, 
tested frames correct frames feature mean deviation deviation 

Miss 

America 

140 140 Cr, 2.1 2.2 41.0 

(100%) C,, 2.6 1.9 

c “lO”Lh 8.0 2.7 

Claire 69 

;:oo%) 
C,,? 

C,, 
C mouth 

Talking 62 61 C,,: 3.7 2.6 43.7 

(98.4%) C,, 4.2 1.4 

C n,ou,h 2.5 4.9 

1.6 1.8 28.5 

1.9 0.7 

2.2 1.4 

indication on the capability of the system to local- 
ize all features. 

Only in one case, frame 21 of the Talking se- 
quence, the right eye was not found (although the 
other features were found), because no candidate 
right eye region was generated due to severe 
motion blur in the region of the right eye (combina- 
tion of head movement and blinking). In this 
case the eye was no longer a clearly distinctive dark 
blob in a bright surrounding, thus violating the 
underlying assumption of the candidate eye region 
generation. 

4.2. Extension of the localization to tracking 

A preliminary experiment has been performed to 
study the ability to detect the eyes and mouth 
consecutively in a sequence of frames. In these 
experiments, the features are localized for the first 
frame in initialization mode, i.e. according to the 
description in Section 2; for all following frames 
they are localized in tracking mode. In the tracking 
mode, the search space of the localization scheme 
can be constrained significantly since the informa- 
tion about the features from previous frames can be 
used. According to this information most candidate 
regions in the segmentation map can be ruled out 
using regions of interest based on the positions of 
the feature in the previous frames. Of course this 
assumption holds only if the speed of motion of 

these features with respect to the frame rate is 
moderate. The search space can be restricted fur- 
ther by also basing the prediction of the property 
values on knowledge about features found in the 
previous frames. Thus, the knowledge-based pre- 
diction is no longer based on static (intraframe) 
information, but now can also use dynamic (inter- 
frame) information. Hence, to localize the eyes it is 
no longer necessary to localize the facial region 
first. Among the set of properties used for the eyes 
and mouth regions in the tracking mode were two 
intra-properties: (i) the symmetry score, (ii) the dis- 

tances between the eyes; and two were new inter- 
properties: (i) the distance between the positions of 

the left eye in two consecutiveframes, (ii) the distance 

between the positions of the right eye in two con- 

secutive frames. Besides these intra- and inter-prop- 
erties, also the tests as discussed in Section 2.4 are 
applied on each candidate pair of regions. 

The performance of the region localization algo- 
rithms in the tracking mode remains the same as 
compared to the performance in the initialization 
mode. The computational load of the search, how- 
ever, was much reduced due to the restricted num- 
ber of candidate regions. 

4.3. Evaluation of the model adaptation 

In general, it is very difficult to find objective 
measures to assess the performance and quality of 
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the model adaptation. Part of the difficulty resides 
in the fact that the wire-frame model itself is rather 
coarse. One measure of goodness of fit could have 
been a norm of the residual displacement vectors. 
However, this measure is already incorporated in 
the stopping criterion of the iterations. Hence at 
this stage the best judgment of the model adapta- 
tion algorithms is subjective assessment. 

The subjective assessment results obtained from 
the three test sequences were overall satisfactory. In 
all cases the model and facial contours are well 
aligned during the global adaptation, so that dur- 
ing the local adaptation the contours of the model 
could be transformed correctly to the facial con- 
tours in the scene. Also, the propagation of the 
contour displacement vectors did not yield any 
visible problems. 

5. Conclusion 

A method for the adaptation of a generic 3-D 
face model using 2-D projections data of a head- 
and-shoulders scene has been presented. More spe- 
cifically the contributions of this investigation as 
presented are: (i) a robust method for the auto- 
matic localization of semantic facial features, using 
a knowledge-based selection mechanism, and (ii) a 
method to adapt a generic face model to facial 
contours. Both methods, as tested on typical video- 
phone sequences, perform satisfactory. The local- 
ization algorithm is also shown to work well in the 
tracking mode. The limitations of the algorithms 
are presently that excessive head rotations are to be 
avoided. Other occlusions, for instance, due to 
hands or beards are also precluded. 

Localization of the facial features in situations 
which violate the assumptions, such as occlusion, 
as well as the local adaptation in the depth direc- 
tion are being investigated. 

Appendix A. Knowledge-based selection 
mechanism 

The knowledge-based selection mechanism [ 133 
purports to selecting the most probable region 
from a set of candidate regions for a particular 

object class C. We are interested in the probability 
that region ri represents this class given the set 
of measurements (mj) made on all of the re- 
gions: 

P region ri represents C (A-1) 

where N, is the number of candidate regions and 
mj is the set of measurements made on region rj. 

The region which is supported most by the evid- 
ence, given by all measurements mj, resembles the 
class C most. Thus, the region which maximizes 
Eq. (A.l) is selected to represent class C. The next 
step would be to break this expression up into 
simpler terms, involving only probabilities condi- 
tioned on an individual set of measurements mi, 
P(Clmi), because these are the only distributions 
which can be determined a priori. However, fac- 
torizing Eq. (A.l) into such terms requires indepen- 
dence of the measurements mi. This cannot be 
guaranteed because certain regions may belong to 
the same object or to objects which have properties 
in common, e.g. the color of the face and hands is 
very likely to be the same. Therefore, we are forced 
to adopt a suboptimal approach: we proceed by 
selecting the region having a maximum probability 
that it belongs to the object class C, bused on its 
individual measurements only. As the performance of 
our system is still very good, this simplification 
does not seem to have any noticeable effects. 

The selection process then reduces to the maxi- 
mization of P(C(mi) over all candidate regions ri, 
or 

max (P(Clmi)). 
i=l, . . ..N. 

Applying Bayes rule to Eq. (A.2) gives 

P(mil C)P(C) 
max 

i=l. . . ..N. > WC) 

64.2) 

(A.3) 

We would like to point out that the maximiza- 
tion takes place over all measurement vectors, 
rather than over the different object classes as is the 
case in classical pattern recognition, where one tries 
to classify a region into one of the possible classes, 
given its measured property vector. Consequently, 
P(C) is now constant over the maximization while 
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P(mi) would have been held constant in a pattern 
recognition problem. The optimal decision rule, 
under the assumption that different measurements 
within each measurement set are independent, 
becomes 

x 
P(mi,ll c) P(mi,NmI c) 

P(W,l) .” P(mi,Nm) ’ 
(A.4) 

where the set of measurements mi is split into 
N, different measurements, which are elements of 
the set. 

Each ratio P(mi,IJC)/P(mi,l) in Eq. (A.4) can 
be considered as a score representing the good- 

ness of fit to the object class C. In other words, 
the selection process pinpoints that region whose 
set of property values mi are closest to the ex- 
pected values based on the prior knowledge about 
the object class, i.e. regions which have high 
scores. 

Although there is no fixed rule for property selec- 
tion it is desirable that they have high dis- 
criminative power, whereby the ratio P(mi,l) C)/ 

P(mi.l) peaks for the sought class region. Further- 
more, to apply Eq. (A.4), these properties should be 

independent. In our experiments the set of proper- 
ties are chosen heuristically, and, in the absence of 
further knowledge, we assumed that the measured 
property values have uniform prior distributions. 
Further, their posterior distributions were assumed 

to be independent and Gaussian with means and 
variances estimated from measurements on train- 
ing images. More specifically, the mean and vari- 
ance of the normal distribution for each property 

are derived from a set of training images (25 frames 
of the Miss America sequence and 25 frames of the 
Claire sequence). Although the selection mecha- 
nism worked very satisfactorily under these 
assumptions, further work remains to be done for 

their justification. 
To give a concrete example, consider an object 

class ‘eye pair’. The set of property values which are 
used to select the pair of regions corresponding to 
the eye pair from the other region pairs are the 
eye-to-eye distance (mi,disJ and the symmetry score 
(mi.,,,), see also Section 2.4. Then the conditional 

probability becomes 

P(Fyepairl (mi,,ist, mi,S,m} 1 

- exp - L II mi, dist - 0.45 Widthface II ’ 
2(0.071 Widthf,,,)2 

(%,ln - 1)2 1 2(0.42)2 
(A.5) 

This score (as in Eq. (A.5)) is calculated for each 
pair of candidate regions, and the region which has 
the highest score is then selected to represent the 
object class ‘eyepair’. 
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