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Abstract

Functional neuroimaging data embodies a massive multiple testing problem, where 100,000

correlated test statistics must be assessed. The familywise error rate is the standard measure of

Type I errors in multiple testing, the chance of any false positives. In this paper we review and

evaluate three approaches to thresholding images of test statistics, Bonferroni, random field

and the permutation test. Due to recent developments, improved Bonferroni procedures, such

as Hochberg’s methods, are now applicable to dependent data. Continuous random field meth-

ods use the smoothness of the image to adapt to the severity of the multiple testing problem.

And increased computing power has made both permutation and bootstrap methods applicable

to functional neuroimaging. We evaluate these approaches on
�

images using simulations and

a collection of real datasets. We find that Bonferroni-related tests offers little improvement

over Bonferroni while the permutation method offer substantial improvement over random

field method for low smoothness and low degrees of freedom. We also show the limitations

of trying to find an equivalent number of independent tests for an image of correlated test

statistics.

Running title: Familywise Error Methods in Neuroimaging
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1 Introduction

Functional neuroimaging refers to an array of technologies used to measure neuronal activity in

the living brain. Two widely used methods, Positron Emission Tomograph (PET) and Functional

Magnetic Resonance Imaging (fMRI), both use blood flow as an indirect measure of brain activity.

An experimenter images a subject repeatedly under different cognitive states and typically fits

a massively univariate model. That is, a univariate model is independently fit at each of 100’s of

thousands of volume elements, or voxels. Images of statistics are created which assess evidence for

an experimental effect. Naive thresholding of 100,000 voxels at ������� threshold is inappropriate,

since 5,000 false positives would be expected in null data.

False positives must be controlled over all tests, but there is not a single measure of Type

I error in multiple testing problem1 The standard measure is the chance of any Type I errors,

the Familywise Error Rate (FWE). A relatively new development is the False Discovery Rate

(FDR) error metric, the expected proportion of rejected hypotheses that are false positives. FDR-

controlling procedures are more powerful then FWE procedures, yet still control false positives

in a useful manner. We predict that FDR may soon eclipse FWE as the most common multiple

false positive measure. In light of this, we believe that this is a choice moment to review FWE-

controlling measures.

In this paper we attempt to describe and evaluate all FWE multiple testing procedures useful

for functional neuroimaging. Due to the spatial dependence of functional neuroimaging data data,

there are actually quite a small number of applicable methods. The only methods which are appro-

priate under these conditions are Bonferroni, Random Field methods, and resampling methods. We

limit our attention to finding FWE-corrected thresholds and P-values2 for Gaussian � and Student	
images. In particular we do not consider inference on size of contiguous suprathreshold regions

or clusters. We focus particular attention on low degrees-of-freedom (DF)
	

images, as these are

unfortunately common in group analyses. The typical images have 10’s to 100’s of thousands of
1We prefer the term multiple testing problem over multiple comparisons problem. “Multiple comparisons” can

allude to pairwise comparisons on a single model, where as in imaging a large collection of models is each subjected

to a hypothesis test.
2A 
�� FWE-corrected threshold is one that controls the FWE at 

� , while a FWE-corrected P-value is the most

significant 
�� corrected threshold such that a test can be rejected.
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tests, where the tests have complicated, though usually positive dependence structure.

In 1987 Hochberg and Tamhane wrote “The question of which error rate to control ... has gen-

erated much discussion in the literature” [1]. While that could be true in the statistics literature in

the decades before their book was published, the same cannot be said of neuroimaging literature.

When multiple comparisons have been acknowledged at all, the familywise error rate has usu-

ally been assumed implicitly. For example, of the two papers that introduced corrected inference

methods to neuroimaging, only one explicitly mentions familywise error [2, 3]. It is hoped that

the introduction of FDR will enrich the discussion of multiple testing issues in the neuroimaging

literature.

The remainder of the paper is organized as follows. We first introduce the general multiple

comparison problem and FWE. We then review Bonferroni-related methods, followed by random

field methods and then resampling methods. We then evaluate these different methods with eleven

real datasets and simulations.

2 Multiple Testing Background in Functional Neuroimaging

In this section we formally define strong and weak control of familywise error, as well as other

measures of false positives in multiple testing. We describe the relationship between the maximum

statistic and FWE and also introduce step up and step down tests and the notion of equivalent

number of independent tests.

2.1 Notation

Consider image data on a 2- or 3-dimensional lattice. Usually the lattice will be regular, but it may

also be a irregular, corresponding to a 2D surface. Through some modeling process we have an

image of test statistics ����������� . Let ��� be the value of the statistic image at spatial location � ,��������� ��!#"#"$"%!'&(� , where & is the number of voxels in the brain. Let the )*�+),� be a hypothesis

image, where )(�-�/. indicates that the null hypothesis holds at voxel � , and )0�1�2� indicates that

the alternative hypothesis holds. Let ),3 indicate the complete null case where )4�5�6. for all � .
A decision to reject the null for voxel � will be written 7)8�9�*� , not rejecting 7)8�:�;. . Write the
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null distribution of ��� as <=3?> @%A , and let the image of P-values be B��C�DB=�E� . We require nothing

about the modeling process or statistic other than the test being unbiased, and For simplicity of

exposition, we will assume that all distributions are continuous.

2.2 Measures of False Positives in Multiple Testing

A valid � -level test at location � corresponds to a rejection threshold F where P ���-�8G*F�H )8�I�.��KJ2� . The challenge of the multiple testing problemis to find a threshold F that controls some

measure of false positives across the entire image. While FWE is the focus of this paper, it is useful

to compare its definition with other measures. To this end consider the cross-classification of all

voxels in a threshold statistic image:

Null Not Rejected Null Rejected

(declared inactive) (declared active)

Null True (inactive) & 3ML 3 &�N L 3 &�OP&�Q L N
Null False (active) &R3ML N & N L N & Q L N&/OS&1N L Q &1N L Q &

Where & is total number of voxels tested, & Q L N �6T � )8� is the number of voxels with a true null

hypothesis, & Q L 3U�6&2O T � )8� the number false nulls, and & N L Q � T � 7)8� is the number of voxels

above threshold, & 3ML QV��&�OST � 7)8� the number below; &-N L N is the number of suprathreshold voxels

correctly classified as signal, & N L 3 the number incorrectly classified as signal; &W3ML 3 is the number of

subthreshold voxels correctly classified as noise, & 3ML N the number incorrectly classified as noise.

[Table 1 about here.]

With this notation a range of false positive measures can be defined, as shown in Table 1. An

observed familywise error (oFWE) occurs whenever & N L 3 is greater than zero, and the familywise

error rate (FWE) is defined as the probability of this event. The observed FDR (oFDR) is the

proportion of rejected voxels which have been falsely rejected, and the expected false discover rate

(FDR) is defined as the expected value of oFDR. Note the contradictory notation: An “observed

familywise error” and the “observed false discovery rate” are actually unobservable, since they

require knowledge of which tests are falsely rejected. The measures actually controlled, FWE and
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FDR, are the probability and expectation of the unobservable oFWE and oFDR. Other variants on

FDR have been proposed, including the Positive FDR (pFDR), the FDR conditional on at least

one rejection [4] and controlling the oFDR at some specified level of confidence (FDRc), or the

number of Type I errors at a given level of confidence (PFEc) [5]. The per-comparison error rate

(PCE) is essentially the “uncorrected” measure of false positive, which makes no accommodation

for multiplicity, and the per-family error rate (PFE) measures the expected count of false positives.

Per-family errors can also be controlled with some level confidence (PFEc) [6]. This taxonomy

demonstrates that there are many potentially useful multiple false positive metrics, but we are

choosing to focus on but one.

There are two senses of FWE control, weak and strong. Weak control of FWE only requires

that false positives are controlled under the complete null )03 :
P

XZY�\[$] ���W�^G_F-�a````` )(3?bcJd�e3�! (1)

where �^3 is the nominal FWE. Strong control requires that false positives are controlled for any

subset �^3gf_� where the null hypothesis holds,

P hi Y�\[$]#j ���W�^G_F-� `````` )8�W��.k!?�Z���e3mlnoJd�^3 (2)

Significance determined by a method with weak control only implies that )p3 is false, and does

not allow the localization of individual significant voxels. Because of this, tests with only weak

control sometimes called “omnibus” tests. Significance obtained by a method with strong control

allows rejection of individual )4� ’s while controlling the FWE at all non-significant voxels. This

localization is essential to neuroimaging, and in the rest of this document we focus on strong

control of FWE and we will omit the qualifier unless needed.

Note that variable thresholds, F�� , could be used instead of a common threshold F . Any collec-

tion of thresholds �qFR�E� can be used as long as the overall FWE is controlled. Also note that FDR

controls FWE weakly. Under the complete null oFDR becomes an indicator for an oFWE, and the

expected oFDR exactly the probability of an oFWE.
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2.3 The Maximum Statistic and FWE

The maximum statistic, rs@t�vu0wDxy����� , plays a key role in FWE control. The connection is that

one or more voxels will exceed a threshold if and only if the maximum exceeds the threshold:Y � ���W�eGdF-�I�z�{r�@|G_F-� " (3)

This relationship can be used to directly obtain a FWE-controlling threshold from the distribution

of the maximum statistic under ),3 . To control FWE at �=3 let FR} j �6<8~ N��� L ��j�� ��O_�e3�� , the � ��O�e3'����.�. -th percentile of the maximum distribution under the complete null hypothesis. Then F-}�j
has weak control of FWE:

P

X Y � �����eG�FR}�j��a````` )(3 b � P � r�@�G_FR}�j{H�)(3'�� ��OS< � � L ��j � FR}�jM�� �e3�"
Further, this F�}�j also has strong control of FWE, though an assumption of subset pivotality is

required [7]. A family of tests has subset pivotality if the null distribution of a subset of voxels

does not depend on the state of other null hypotheses. Strong control follows:

P hi Y�\[$]#j ���W�^G_FR}�j$� `````` )8���+.�!m�����e3?ln � P hi Y��[$]�j ���W�^G_FR}�j$� `````` )(3?ln (4)

J P

X Y�\[%] ���W�^G_FR}�j$� ````` )(3 b (5)� �^3�! (6)

where the first equality uses the assumption of subset pivotality. In imaging subset pivotality is

trivially satisfied, as the image of hypotheses ) satisfy the free combination condition. That is,

there are no logical constraints between different voxel’s null hypotheses, and all combinations of

voxel level nulls ( �D.k!#���{� ) are possible. Situations where subset pivotality can fail include tests of

elements of a correlation matrix ([7], pg. 43).

Note that we could equivalently find P-value thresholds using the distribution of the minimum

P-value ������u,�\�y�DB^� . Whether with rs@ or ��� , we stress that we are not simply making inference

on the extremal statistic, but rather using its distribution to find a threshold that controls FWE

strongly.
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2.4 Step-up and step-down tests

A generalization of the single threshold test are multi-step tests. Multi-step tests consider the

sequence of sorted P-values and compare each P-value to a different threshold. Let the ordered

P-values be B�� N�� J�B���� � J������RJ/B�� � � and )p��� � be the null hypothesis corresponding to B���� � . Each

P-value is assessed according to BZ��� � J�Fa� (7)

Usually F N will correspond to a standard fixed threshold test (e.g. Bonferroni F N ���e3'��& ).

There are two types of multi-step tests, step-up and step-down. A step-up test proceeds from

the least to most significant P-value ( B � � � , B � � ~ N�� , ...) and successively applies equation (7). The

first ��� which satisfies (7) implies that all smaller P-values are significant; that is 7)p��� � ��� for all��J�� � , 7)p��� � ��. otherwise. A step-down test proceeds from the most to least significant P-value

( B � N�� , B ��� � , ...). The first �E� which does not satisfy (7) implies that all strictly smaller P-values are

significant; that is 7)p��� � �v� for all �5�+� � , 7)p��� � �o. otherwise. For the same critical values �qF��E� , a

step up test will be as or more powerful than a step-down test.

2.5 Equivalent Number of Independent Tests

The main challenge in FWE control is dealing with dependence. Under independence, the maxi-

mum null distribution < ��� L �Wj is easily derived:

< ��� � 	 ���/  � <e@%A � 	 ����< �@q¡ � 	 �'! (8)

where we have suppressed the ),3 subscript, and the last equality comes from assuming a common

null distribution for all & voxels. However in neuroimaging data independence is rarely a tenable

assumption, as there is usually some form of spatial dependence either due to acquisition physics

or physiology. In such cases the maximum distribution will not be known or even have a closed

form. The methods described in this paper can be seen as different approaches to bounding or

approximating the maximum distribution.

One approach that has an intuitive appeal, but which has not been a fruitful avenue of research,

is to find an equivalent number of independent observations. That is, to find a multiplier ¢ such
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that < � � � 	 ����<�£ �@q¡ � 	 �'! (9)

or, in terms of P-values,

<¥¤R¦ � 	 �§� ��O � ��O¨<^��© ¡�ª � 	 �?�«£ �� ��O � ��O 	 �«£ � (10)

where the second equality comes from the uniform distribution of P-values under the null hypoth-

esis. We are drawn to the second form, for P-values, because of its simplicity and the log-linearity

of �gOt<¥¤ ¦ � 	 � .
For the simulations considered below, we will assess if minimum P-value distributions follow

equation (10) for a small
	
. If they do, one can find the effective number of tests ¢�& . This could be

called the number of maximum-equivalent elements in the data, or maxels, where a single maxel

would consist of &�� � ¢�&U�Z��¢ ~ N voxels.

3 FWE Methods for Functional Neuroimaging

There are two broad classes of FWE methods, those based on the Bonferroni inequality and those

based on the maximum statistic (or minimum P-value) distribution. We first describe Bonferroni

type methods and then two types of maximum distribution methods, random field theory-based

and resampling-based methods.

3.1 Bonferroni & Related

The most widely known multiple comparisons procedure is the “Bonferroni correction”. It is

based on the Bonferroni inequality, a truncation of Boole’s formula [1]. We write the Bonferroni

inequality as

P �{¬¥�®­g�¯� J ° � P �q­±�E� (11)

where ­±� corresponds to the event of test � rejecting the null hypothesis when true. The inequality

makes no assumption on dependence between tests, though it can be quite conservative for strong
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dependence. As an extreme, consider that & tests with perfect dependence ( �e�:�;���³² for �0´��� � )
require no correction at all for multiple testing.

However, for many independent tests the Bonferroni inequality is quite a tight for typical �Z3 .
For example for &o�+µ�¶�· independent voxels and �=39�+.k"�.V� , the exact one-sided P-value threshold

is �(O �¸� �(Oz�e3'� N�¹ �=��� ��"���ºV�{µ�»���. ~y¼ while Bonferroni gives �=3M��& � ��"³��¶���½�»��#. ~y¼ . For

a
	«¾

distribution, this is the difference between 10.1616 and 10.1928. Surprisingly, for weakly

dependent data Bonferroni can also be fairly tight. To preview the results below, for a µV¶ · -voxel
	«¾

statistic image based on Gaussian data with isotropic FWHM smoothness of 3 voxels, we find that

the correct threshold is 10.0209. Hence Bonferroni thresholds and P-values can indeed be useful

in imaging.

Considering another term of Boole’s formula yields a second order Bonferroni, or the Kounias

inequality [1]:

P ¿ Y � ­±�?À�J�° � P �q­±���ÁO u0wDxÂMÃ N >�Ä�Ä�Ä > ��ÅÆ Ç °�ÉÈÃ
Â P �q­±��ÊË­ Â �RÌ ÍÎ (12)

The Slepian or Dunn-Šidák inequalities can be used to replace the bivariate probabilities with prod-

ucts. The Slepian inequality, also known as the positive orthant dependence property, is used when­±� corresponds to a one-sided test; it requires some form of positive dependence, like Gaussian

data with positive correlations [8]. Dunn-Šidák is used for two-sided tests and is a weaker condi-

tion, for example only requiring the data follow a multivariate Gaussian, t or F distribution ([7], pg

45).

If all the null distributions are identical and the appropriate inequality holds (Slepian or Dunn-

Šidák), the second order Bonferroni P-value threshold is Ï such that

&UÏ�O � &�O_�q�ÐÏ � �+�e3 (13)

When & is large, however, Ï will have to be quite small making Ï � negligible, essentially reducing

to the first order Bonferroni. For the example considered above, with &2��µ�¶ · and �e35��.k"�.V� , the

Bonferroni and Kounias P-value thresholds agree to 5 decimal places ( .k"�.V����&o����"³��¶���Ñ�Ñk��»��#. ~y¼
vs. Ï�����"³��¶���ÑVÒ�½U»t��. ~y¼ )

Other approaches to extending the Bonferroni method are step-up or step-down tests. A Bon-

ferroni step-down test can be motivated as follows: If we compare the smallest P-value B:� N�� to
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�e3'��& , and if we reject, then our multiple testing problem has been reduced by one test, and we

should compare the next smallest P-value B �³� � to �^3'� � &/Oc�q� . In general, we haveB ��� �ÓJd�e3 �&/O¨��Ô�� " (14)

This yields the Holm step-down test [9], which starts at �=��� and stops as soon as the inequality is

violated, rejecting all tests with smaller P-values. Using the very same critical values, the Hochberg

step-up test [10] starts at ����& and stops as soon as the inequality is satisfied, rejecting all tests

with smaller P-values.

Simes [11] proposed a step-up method which only controlled FWE weakly and was only proven

to be valid under independence. In their seminal paper, Benjamini & Hochberg [12] showed that

Simes’ method controlled what they named the “False Discovery Rate”. Both Simes’ test and

Benjamini & Hochberg’s FDR have the formB���� � Jd�^3 �& " (15)

Both are step-up tests, which work from �=��& .

The Holm method, like Bonferroni, makes no assumption on the dependence of the tests. But

if the Slepian or Dunn-Šidák inequality holds the “Šidák improvement on Holm” can be used [13].

The Šidák method is also a step-down test but uses thresholds F������9O � �9Ot�e3�� N�¹ � � ~{Õ¸Ö N�� instead.

Recently Benjamini & Yekutieli [14] showed that the Simes/FDR method is valid under “pos-

itive regression dependency on subsets” (PRDS). As with Slepian inequality, Gaussian data with

positive correlations will satisfy the PRDS condition, but it is more lenient than other results in

that it only requires positive dependency on the null, that is, only between test statistics for which)8�5��. . Interestingly, Hochberg’s method depended on Simes’s result, so [14] also implies that

Hochberg’s step-up method is now also valid under dependence.

[Table 2 about here.]

Table 2 summarizes the multi-step methods. The Hochberg step-up method and Šidák step-

down method appears to be the most powerful Bonferroni-related FWE procedures available for

functional neuroimaging. Hochberg uses the same critical values as Holm, but Hochberg can only

be more powerful since it is a step-up test. The Šidák has slightly more lenient critical values, but
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maybe more conservative than Hochberg since it is a step-down method. If positive dependence

cannot be assumed for one-sided tests, Holm’s step-down method would be the best alternative.

The Simes/FDR procedure has the most lenient critical values, but only controls FWE weakly. See

Sakar [15, 16] for a more detailed overview of recent developments in multiple testing and the

interaction between FDR and FWE methods.

The multi-step methods can adapt to the signal present in the data, unlike Bonferroni. For the

characteristics of neuroimaging data, with large images with sparse signals, however, we are not

optimistic these methods will offer much improvement over Bonferroni. For example, with �Z3��.k"�.V� and &o��µ�¶{· , consider a case where 3276 voxels (10%) of the image has a very strong signal,

that is, infinitesimal P-values. For the 3276th smallest P-value the relevant critical value would be.k"�.V��� � &×O8µ�¶�Ò�ºRÔK�q������"�º�½V��µZ»Ø��. ~y¼ for Hochberg and �aO � �aO8.k"�.V��� N�¹ � � ~ · �«Ù ¼«Ö N�� �o��"³Ò{µ�½V¶Ó»��#. ~y¼
for Šidák, each only slightly more generous than the Bonferroni threshold of ��"³��¶���½Ú»P��. ~y¼ and

a decrease of less than 0.16 in
	¸¾

units. For more typical, more sparse signals there will be even

less of an difference. (Note that the Simes/FDR critical value would be .k"�.��0»�µV¶�Ò�º���&v�2.k"�.�.V� ,

though with no strong FWE control.)

The strength of Bonferroni and related methods are their lack or assumptions or only weak

assumptions on dependence. However none of the methods make use of the spatial structure of

the data or the particular form of dependence. The following two methods explicitly account for

image smoothness and dependence.

3.2 Random Field Theory

Both the random field theory (RFT) methods and the resampling based methods account for de-

pendence in the data, as captured by the maximum distribution. The random field methods approx-

imate the upper tail of the maximum distribution, the end needed to find small �Z3 FWE thresholds.

In this section we review the general approach of the random field methods and specifically use

the Gaussian random field results to give intuition to the methods. Instead of detailed formulas for

every type of statistic image we motivate the general approach for thresholding a statistic image

and then briefly review important details of the theory and common misconceptions.

For a detailed description of the random field results we refer to a number of useful papers. The
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original paper introducing RFT to brain imaging [2] is a very readable and well-illustrated intro-

duction to the Gaussian random field method. A later work [17] unifies Gaussian and
	
, Û � and <

field results. A very technical, but comprehensive summary [18] also includes results on Hotellings� � and correlation fields. As part of a broad review of statistical methods in neuroimaging, [19]

describes RFT methods and highlights their limitations and assumptions.

3.2.1 RFT Intuition

[Figure 1 about here.]

Consider a continuous Gaussian random field, � �EÜ � defined on Ü �SÝ�f IR Þ , where ß is the

dimension of the process, typically 2 or 3. Let � �EÜ � have zero mean and unit variance, as would

be required by the null hypothesis. For a threshold F applied to the field, the regions above the

threshold are known as the excursion set, ­�àË��Ý�Ê¨� Ü×á � �EÜ �8â�F-� . The Euler CharacteristicÛ � ­gà{�äã�Û-à is a topological measure of the excursion set. While the precise definition involves the

curvature of the boundary of the excursion set ([20] cited in [21]), it essentially counts the number

of connected suprathreshold regions or “clusters”, minus the number of “holes” plus the number of

“hollows” (See Figure 1). For high thresholds the excursion set will have no holes or hollows andÛ-à will just count the number of clusters; for yet higher thresholds the Û¥à will be either 0 or 1, an

indicator of the presence of any clusters. This seemingly esoteric topological measure is actually

very relevant for FWE control. If a null Gaussian statistic image � approximates a continuous

random field, then

FWE � � P � oFWE � (16)� P ¿ Y � ���^G_F À (17)� P å
u0wDx� �W�^G_FÓæ (18)ç P �qÛ-à8â�.�� (19)ç E �qÛ-àV� " (20)

The first approximation comes from assuming that the threshold F is high enough for there to be no

holes or hollows and hence the Û^à is just counting clusters. The second approximation is obtained

when F is high enough such that the probability of two or more clusters is negligible.
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The expected value of the Ûeà has a closed form approximation [21]; for ß;��µ
E �qÛ-àV� ç è � Ý��qH éØH N�¹ � � F � Oc���kê�x�ë � OgF � ��¶��¸� � ¶Dìe� � (21)

where è � Ý�� is the Lesbegue measure of the search region, the volume in 3D, and é is the variance-

covariance matrix of the gradient of the process,

éí� Var îeï
ððMñ � ððMò � ðð'ó �×ô�õWöp" (22)

Its determinant H é�H is measure of roughness; the more “wiggly” a process, the more variable the

partial derivatives, the larger the determinant.

Consider an observed value ÷ of the process at some location. To build intuition consider the

impact of search region size and smoothness on corrected P-value B8øó . The corrected P-value is the

upper tail area of the maximum distribution:

B øó � P î upwqxù � ��Ü �5Gd÷ ö ç E �qÛ ó � " (23)

For large ÷ , equation (21) gives

B øó�ú è � Ý��qH é�H N�¹ � ÷ � ê'x�ë � O±÷ � ��¶�� (24)

approximately. First note that, all other things constant, increasing large ÷ reduces the corrected P-

value. Of course P-values must be non-increasing in ÷ , but note that equation (24) is not monotonic

for all ÷ , and that E �qÛ ó � can be greater than 1 or even negative! Next observe that increasing the

search region è � Ý�� increases the corrected P-value, decreasing significance. This should be antic-

ipated, since an increased search volume results in a more severe multiple comparisons problem.

And next consider the impact of smoothness, the inverse of roughness. Increasing smoothness de-

creases H é�H , which in turn decreases the corrected P-value and increases significance. The intuition

here is that an increase in smoothness reduces the severity of the multiple comparisons problem;

in some sense there is less information with greater smoothness. In particular, consider that in

the limit of infinite smoothness the entire processes has a common value, and there is no multiple

comparisons problem at all.
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3.2.2 RFT Strengths and Weaknesses

As presented above, the merit of the RFT results are that they adapt to the volume searched (like

Bonferroni) and to the smoothness of the image (unlike Bonferroni). When combined with the gen-

eral linear model (GLM), the random field methods comprise an flexible framework neuroimaging

inference. For functional neuroimaging data that is intrinsically smooth (PET, SPECT, MEG or

EEG) or heavily smoothed (multisubject fMRI), these results provide a unified framework to find

FWE-corrected inferences for statistic images from a GLM. While we only discuss results for peak

statistic height, a family of available results includes P-values for the size of a cluster, the number

of clusters and joint inference on peak-height and cluster size.

Further, the results only depend on volume searched and the smoothness (see below for more

details on edge corrections), and are not computationally burdensome. Finally, they have been

incorporated into various neuroimaging software packages3 and are widely used (if poorly under-

stood) by thousands of users.

The principal weakness of the random field methods are the assumptions. The assumptions are

sometimes misstated, so we carefully itemize them.

1. The entire image is a multivariate Gaussian or derived from multivariate Gaussian images

(e.g. for
	

or < statistic images).

2. The discretely sampled statistic images is assumed to be sufficiently smooth to approximate

the behavior of a continuous random field. The recommended rule-of-thumb is 3 voxels

FWHM smoothness [19], though we will critically assess this simulations and data (see

below for definition of FWHM smoothness).

3. The spatial autocorrelation function (ACF) must have two derivatives at the origin. Except

for the for joint cluster-peak height test [22], the ACF is not assumed to have the form of a

Gaussian density.
3The software packages include SPM, http://www.fil.ion.ucl.ac.uk; VoxBo,

www.voxbo.org; FSL, www.fmrib.ox.ac.uk/fsl; and Worsley’s own fmristat,

http://www.math.mcgill.ca/keith/fmristat
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4. The data must be stationary or there must exist a deformation of space such that the trans-

formed data is stationary [23]. This assumption is most questionable for reconstructed MEG

and EEG data which may have very convoluted covariance structures. Remarkably, for the

peak height results we discuss here, non-stationarity needs not even be estimated (see below

for more.)

5. The results assume that roughness/smoothness is known with negligible error. Poline et al.

[24] found that uncertainty in smoothness was in fact appreciable, causing corrected P-values

to be accurate to only ûØ¶�.V� if smoothness was estimated from a single image. (In a recent

abstract, Worsley proposed methods for non-stationary cluster size inference which accounts

for variability in smoothness estimation [25]).

3.2.3 RFT Essential Details

To simplify the presentation, the results above avoided several important details which we now

review.

Roughness and RESELS Since the roughness parameter H é�H N�¹ � lacks interpretability, Worsley

proposed a reparameterization in terms of the convolution of a white noise field into a random field

with smoothness which matches the data.

Consider a white noise Gaussian random field convolved with a Gaussian kernel. If the kernel

has variance matrix ü then the roughness of the convolved random field is é��ýü ~ N ��¶ [26]. If ü
has þ �ñ , þ �ò , þ �ó on the diagonal and zero elsewhere, then

H éØH N�¹ � � � H�ü�H ~ N ¶ ~ · � N�¹ � (25)� � þ ñ þ ò þ ó � ~ N ¶ ~ · ¹ � " (26)

To parameterize in terms of smoothness, Worsley used the full width at half maximum (FWHM), a

general measure of spread of a density. For a symmetric density ÿ centered about zero FWHM is

the value � such that ÿ � O��W��¶��Z�/ÿ � �W��¶��Z�/ÿ � .V�¸��¶ . A Gaussian kernel has a FWHM of
� Ñ������ä¶{þ .

If a white noise field is convolved with a Gaussian kernel with scale � FWHM ñ ! FWHM ò ! FWHM ó �
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(and zero correlations), the roughness parameter is

H é�H N�¹ � � �
	 �����ä¶��Ð· ¹ �
FWHM ñ FWHM ò FWHM ó " (27)

Worsley defined a RESolution ELement, or RESEL to be a spatial element with dimensions

FWHM ñ » FWHM ò » FWHM ó . The denominator of this expression is the size of one RESEL.

Noting that E �qÛeàV� in Equation (21) depends on the volume and roughness through è � Ý���H é�H N�¹ � ,
it can be seen that search volume and RESEL size can be combined and instead written as the

search volume measured in RESELs:

� · � è � Ý��
FWHM ñ FWHM ò FWHM ó " (28)

The RFT results then depend only on this single quantity, a resolution-adjusted search volume,

the RESEL volume. The essential observation was that H é�H N�¹ � can be interpreted as a function of

FWHM, the scale of a Gaussian kernel required to convolve a white noise field into one with the

same smoothness as the data. When H é�H N�¹ � is unknown it is estimated from the data (see below),

but not by assuming that the ACF is Gaussian. A Gaussian ACF is not assumed by random field

results, rather Gaussian ACF is only used to reparameterize roughness into interpretable units of

smoothness. If the true ACF is not Gaussian the accuracy of the resulting threshold is not impacted,

only the precise interpretation of RESELs is disturbed.

Component Fields and Smoothness Estimation For the Gaussian case presented above, the

smoothness of the statistic image under the null hypothesis is the key parameter of interest. For

results on other types of fields including
	
, Û � and < , the smoothness parameter describes the

smoothness of the component fields. If each voxel’s data is fit with a general linear model 
C���� Ô�� , the component fields are images of � Õ ��� Var ��� Õ � , where � Õ is scan � ’s error. That is,

the component fields are the unobservable, mean zero, unit variance Gaussian noise images that

underly the observed data.

Estimation of component field smoothness is performed on standardized residual images [27],

not the statistic image itself. The statistic is not used because it will generally contain signal,

increasing roughness and decreasing estimated smoothness. Additionally, except for the � statistic,

the smoothness of the null statistic image will be different than that of the component fields. For
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example, see ([21], Eqn. (7); [26], appx. G) for the relationship between
	

and component field

smoothness.

Edge Corrections & Unified RFT Results The original Gaussian RFT results (21) assumed a

negligible chance of the excursion set ­�à touching the boundary of the search region Ý [21]. If

clusters did contact the surface of Ý they would have a contribution less than unity to ÛÓà . Worsley

developed correction terms to (21) to account for this effect [17, 28]. These “unified” results have

the form B øà � Þ°�ÐÃ 3 � ����� � FW��! (29)

where ß is the number of dimensions of the data,
� � is the d-dimensional RESEL measure and

��� � FW� is the Euler Characteristic density. These results are convenient as they dissociate the terms

which depend only on the topology of the search regions (
� � ) from those which only depend on

the type of statistical field ( ��� � FW� ).
Nonstationarity and cluster size tests For inferences on peak height, with the appropriate es-

timator of average smoothness, Equation (21) will be accurate in the presence of nonstationarity

or variable smoothness. However, cluster size inference is also common, but is greatly effected

by nonstationarity. In a null statistic image, large clusters will be more likely in smooth regions

and small clusters more likely in rough regions. Hence an incorrect assumption of stationarity will

likely lead to inflated false positive rate in smooth regions and reduced power in rough regions.

As alluded to above, the solution is to deform space until stationarity holds (if possible [29]).

Explicit application of this transformation is actually not required, and local roughness can be used

to determine cluster sizes in the transformed space [23, 25, 30].

RESEL Bonferroni A common misconception is that the random field results apply a Bonfer-

roni correction based on the RESEL volume (e.g. [31]). They are actually quite different results.

Using Mill’s ratio, the Bonferroni corrected P-value for can be seen to be approximately

B øBonf ú &�� ~ à�� ¹ � F ~ N " (30)
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While the RFT P-value for 3D data is approximatelyB øRFT ú � · � ~ à � ¹ � F � ! (31)

where
� · is the RESEL volume (28). Replacing & with

� · obviously doesn’t align these two

results, nor are they even proportional. We will characterize the performance of a naive RESEL

Bonferroni approach in Section 4.

Gaussianized
	

images Early implementation of random field methods (e.g. SPM96 and pre-

vious versions) used Gaussian RFT results on
	

images. While an image of
	

statistics can be

converted into � statistics with the probability integral transform, the resulting processes is not a	
random field. Worsley [17] found that the degrees of freedom would have to be quite high, as

many as 120 for a
	

field to behave like a Gaussian field. We will examine the performance of the

Gaussianized
	

approach with simulations.

3.2.4 RFT Conclusion

In this subsection we have tried to motivate the RFT results, as well as highlight important details of

their application. They are a powerful set of tools for data that are smooth enough to approximate

continuous random fields. When the data are insufficiently smooth, or when other assumptions are

dubious, nonparametric resampling techniques may be preferred.

3.3 Resampling Methods for FWE Control

The central purpose of the random field methods is to approximate the upper tail of the maximal

distribution < � � � 	 � . Instead of making assumptions on the smoothness and distribution of the

data, another approach is to use the data itself to obtain an empirical estimate of the maximal

distribution. There are two general approaches, permutation-based and bootstrap-based. Excellent

treatments of permutation tests (e.g. [32, 33]) and the bootstrap (e.g. [34, 35]) are available, so

here we only briefly review the methods and focus on the differences between the two and specific

issues relevant to neuroimaging.

To briefly summarize, both permutation and bootstrap methods proceed by resampling the data

under the null hypothesis. In the permutation test the data is resampled without replacement, while
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in a bootstrap test the residuals are resampled with replacement and a null dataset constituted. To

preserve the spatial dependence the resampling is not performed independently voxel-by-voxel,

but rather entire images are resampled as a whole. For each resampled null dataset, the model

is fit, the statistic image computed and the maximal statistic recorded. By repeating this process

many times an empirical null distribution of maximum 7< �ä� is constructed, and the ��.�. � �ZO��=3m� -th
percentile provides provides a FWE-controlling threshold. For more a more detailed introduction

to the permutation test for functional neuroimaging see [36].

We now consider three issues which impact the application of resampling methods to neu-

roimaging.

Voxel-Level Statistic & Homogeneity of Specificity & Sensitivity

[Figure 2 about here.]

The first issue we consider is common to all resampling methods used to find the maximum

distribution and a FWE threshold. While a parametric method will assume a common null distri-

bution for each voxel in the statistic image, <Ó3?> @$A^�/<^3 , FWE resampling methods for are actually

valid regardless of whether the null distributions �D<Ó3?> @%A¯� are the same. This is because the maxi-

mum distribution captures any heterogeneity; as Equation (4) shows, the relationship between the

maximum and FWE makes no assumption of homogeneous voxel null distributions. Nonpara-

metric methods will accurately reflect the maximum distribution of whatever statistic chosen, and

produce valid estimates of FWE-controlling thresholds.

However once a FWE-controlling threshold is chosen, the false positive rate and power at

each voxel depends on each voxel’s distribution. As shown in Figure 2, FWE can be controlled

overall, but if the voxel null distributions are heterogeneous, the Type I error rate will be higher

at some voxels and lower at others. As a result, even though nonparametric methods admit the

use of virtually any statistic (e.g. raw percent change, or mean difference), we prefer a voxel-level

statistic which has a common null distribution <Ó3 (e.g.
	

or < ). Hence the usual statistics motivated

by parametric theory are used to provide a more pivotal �-� than an un-normalized statistic. Note

that even though the statistic image may use a parametric statistic, the FWE-corrected P-values are

nonparametric.
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3.3.1 Randomization vs. Permutation vs. Bootstrap

[Table 3 about here.]

The permutation and bootstrap tests are most readily distinguished by their sampling schemes

(without vs. with replacement). However there are several other important differences, and subtle

aspects to the justification of the permutation test. These are summarized in Table 3.

A permutation test requires an assumption of exchangeability under the null hypothesis. This

is typically justified by an assumption of independence and identical distribution. However, if

a randomized design is used, no assumptions on the data are required at all. A randomization

test regards the data as fixed, and the random selection of the experimental designs specifies the

resampling of the data (or, more precisely, the relabeling of the data). While the permutation test

and randomization test are often referred to by the same name, we find it useful to distinguish

them. Since one considers the data as fixed, the resulting inferences are specific to the sample at

hand. The permutation test, in contrast, uses a population distribution to justify resampling and

hence makes inference on the population sampled [37].

A strength of randomization and permutation tests is that they exactly control the false positive

rate. Bootstrap tests are only asymptotically exact, and each particular type of model should be

assessed for specificity of the FWE thresholds. We are unaware of any studies of the accuracy of

the bootstrap for the maximum distribution in functional neuroimaging. Further, the permutation

test allows the slightly more general condition of exchangeability, in contrast to the bootstrap’s

independent and identically distributed assumption.

The clear advantage of the bootstrap is that is a general modeling method. With the permuta-

tion test, each type of model must be studied to find the nature of exchangeability under the null

hypothesis. And some data, such as positive one-sample data (i.e. not difference data) cannot be

analyzed with a permutation test, as the usual statistics are invariant to permutations of the data.

The bootstrap can be implemented generally for a broad array of models. While we do not assert

that bootstrap tests are automatic, and indeed general linear model design matrices can be found

where the bootstrap performs horribly ([35], pg. 276) , but it is a more flexible approach than the

permutation test.
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3.3.2 Exchangeability and fMRI Time Series

Functional magnetic resonance imaging (fMRI) data is currently the most widely used functional

neuroimaging modality. However, fMRI time series exhibit temporal autocorrelation which vio-

lates the exchangeability/independence assumption of the resampling methods. Three strategies

to deal with temporal dependence have be applied: Do nothing, resample ignoring autocorrelation

[38]; use a randomized design and randomization test [39]; and de-correlate and then resample

[40, 41, 40, 42]. Ignoring the autocorrelation in parametric settings tends to inflate significance

due to biased variance estimates; with nonparametric analyses there may be either inflated or

deflated significance depending on the resampling schemes. In a randomization test the data is

considered fixed, and hence any autocorrelation is irrelevant to the validity of the test (power

surely does depend on the autocorrelation and the resampling scheme, but this hasn’t been stud-

ied to our knowledge). The preferred approach is the last one. The process consists of fitting a

model, estimating the autocorrelation with the residuals, de-correlating the residuals, resampling,

and then re-correlating the resampled residuals, creating null hypothesis realizations of the data.

The challenges of this approach are the estimation of the autocorrelation and the computational

burden of the de-correlation-re-correlation process. To have an exact permutation test the resid-

uals must be exactly whitened, but this is impossible without the true autocorrelation. However,

in simulations and with real null data, Brammer & colleagues found that the false positive rate

was well-controlled [40]. To reduce the computational burden, Fadali and Bullmore [43] proposed

performing the entire analysis in the whitened (i.e. wavelet) domain.

3.3.3 Resampling Conclusion

Nonparametric permutation and bootstrap methods provide estimation of the maximum distribu-

tion without strong assumptions, and without inequalities that loose with increasing dependence.

Only their computational intensity and lack of generality preclude their wide-spread use.
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4 Evaluation of FWE Methods

We evaluated methods from the three classes of FWE-controlling procedures. Of particular interest

is a comparison of random field and resampling methods, permutation in particular. In earlier work

[36] comparing permutation and RFT methods on small group PET and fMRI data, we found the

permutation method to be much more sensitive, and the RFT method comparable to Bonferroni.

The present goal is to examine more datasets to see if those results generalize, and to examine

simulations to discover if the RFT method is intrinsically conservative or if specific assumptions

did not hold in the datasets considered. In particular, we seek the minimum smoothness required

by the random field theory methods to perform well. We also investigate if either of the extended

Bonferroni methods enhance the sensitivity of Bonferroni.

4.1 Real data results

We applied Bonferroni-related, random field and permutation methods to 9 fMRI group datasets

and 2 PET data sets. All data were analyzed with a mixed effect model based on summary statistics

[44]. This approach consists of fitting intrasubject general linear models on each subject, creating

a contrast image of the effect of interest and assessing the population effect with a one-sample t test

on the contrast images. The smoothness parameter of the random field results were estimated from

the standardized residual images of the one-sample
	

[27]. Random field results were obtained

with SPM994 and nonparametric results were obtained with SnPM995.

Detailed description of each dataset is omitted for reasons of space, but we summarize each

briefly. Verbal Fluency is a 5 subject PET dataset comparing a baseline of passive listening versus

word generation as cued by single letter6. Location Switching and Task Switching are two differ-

ent effects from a 10 subject fMRI study of attention switching (Tor Wager et al., in preparation).

Faces: Main Effect and Faces: Interaction are two effects7 from a 12 subject fMRI study of rep-

etition priming [45]. Item Recognition is one effect from a 12 subject fMRI study of working

memory [46]. Visual Motion is a 12 subject PET study of visual motion perception, comparing
4http://www.fil.ion.ucl.ac.uk/spm
5http://www.fil.ion.ucl.ac.uk/spm/snpm
6Complete dataset available at http://www.fil.ion.ucl.ac.uk/spm/data
7Main effect data available at http://www.fil.ion.ucl.ac.uk/spm/data
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moving squares to fixed ones [47]. Emotional Pictures is one effect from a 13 subject fMRI study

of emotional processing, as probed by photographs of varying emotional intensity [48]. Pain:

Warning, Pain: Anticipation and Pain: Pain are three effects from a 23 subject fMRI study of pain

and the placebo effect (Tor Wager et al., in preparation).

[Table 4 about here.]

[Table 5 about here.]

Tables 4 and 5 shows the results for the 11 datasets. Table 4 shows that for every dataset

the permutation method has the lowest threshold, often dramatically so. Using either Bonferroni

or permutation as a reference, the RFT becomes more conservative with decreasing degrees of

freedom (DF), for example specifying a threshold of 4701.32 for a 4 DF analysis. The Bonferroni

threshold is lower than the RFT threshold for all the low-DF studies. Only for the 22-DF study is

the RFT threshold is below Bonferroni, though the two approaches have comparable thresholds for

half of the 11 DF studies. The smoothness is greater than 3 voxel FWHM for all studies, except for

the z-smoothness in the Visual Motion study. This suggests that a 3 voxel FWHM rule of thumb

[19] is insufficient for low DF
	

statistic images.

DF and not smoothness seems to be the biggest factor in the convergence of th RFT and permu-

tation results. That is, RFT comes closest to permutation not when smoothness is particularly large

(e.g. Task Switching), but when degrees of freedom exceed 12 (e.g. the Pain: dataset). This suggest

a conservativeness in the low-DF RFT
	

results which is not explained by excessive roughness.

Comparing the 11 DF studies Item Recognition and Visual Motion is informative, as one has

twice as many voxels and yet half as many RESELs. This situation results in Bonferroni being

higher on Item Recognition (9.80 vs. 8.92) yet RFT being lower (9.87 vs. 11.07). Item Recognition

has the lower permutation threshold (7.67 vs. 8.40) suggesting that the resampling approach is

adapting to greater smoothness despite the larger number of voxels.

Hochberg and Šidák are often infinity, indicating that no �¥3��/.�"�.V� threshold exists (i.e. no P-

value satisfied Eqn. (7)). Also note that Hochberg and Šidák can be more stringent than Bonferroni

even though their critical values F�� are never less than �^3'��& . This occurs because the critical P-

value falls below both F�� and �e3'��& .
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Table 5 shows how, even though the permutation threshold are always lower, it fails to detect

any voxels in some studies8. While truth is unknown here, this is evidence of its specificity. The

last column of this table includes results using a smoothed variance
	

statistic, a means to boost

degrees-of-freedom by “borrowing strength” from neighboring voxels [49, 36]. In all of these

studies it increased the number of detected voxels, in some cases dramatically.

4.2 Simulation Methods

We simulated 32 » 32 » 32 images, since a voxel count of µ�¶ · �CµV¶y!'Ò�ºVÒ is typical for moderate

resolution ( ç µ mm · ) data. Smooth images were generated as Gaussian white noise convolved with

a 3D isotropic Gaussian kernel of size 0, 1.5, 3, 6 and 12 voxels FWHM ( þ = 0, 0.64, 1.27, 2.55,

5.1). We did not simulate in the Fourier domain to avoid wrap-around effects, and to avoid edge

effects of the kernel we padded all sides of image by a factor of 3 FWHM, and then truncated after

convolution. 3000 realizations of one-sample
	

statistic images were simulated for three different
 ,  ����.k!'¶�.�!Mµ�. . Each

	
statistic image was based on  realizations of smooth Gaussian random

fields; to our knowledge there is no direct way to simulate smooth
	

fields. For each simulated

dataset, a simple linear model was fit and residuals computed and used to estimate the smoothness,

as per [27]. To stress, for each realized dataset the both estimated and the known smoothness was

used for the random field inferences, allowing to assess the impact of this important source of

variability.

For each simluated dataset we computed a permutation test with a 100 resamples. While the

exactness of the permutation test is given by exchangeability holding in these examples, this serves

to validate our code and support other work.

We also simluated a Gaussian statistic images with the same set of smoothnesses, but we did

not apply the permutation test nor estimate smoothness.

For each realized statistic image we computed the Bonferroni, Random Field Theory and Per-

mutation thresholds (except Gaussian) and noted the proportion of realizations for which maximal

statistic was above the threshold above the threshold, the Monte Carlo estimate of the familywise

error in these null simulations.
8As noted in [45], the Faces: Interaction effect is significant in an a priori region of interest.
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For each realization we also computed three other FWER proceedures: a FDR threshold, a

threshold based on Gaussianizing the
	

images, and a Bonferroni threshold using the estimated

number of RESELS.

To estimate the equivalent number of independent test (see 2.5) we estimated ¢ with regression

through the origin based on a transformation of equation (10):

����� � �5OS<=��© ¡�ª � 	 �¸�?�Z�!�"��� � �gO 	 �?&U¢y" (32)

We replace <=��© ¡�ª � 	 � with the empirical cumulative distribution function of the minimum P-value

found under simulation. Since we are generally interested in �Ó3��§.k"�.V� we only use only use

values of
	

such that .k"�.�µ4Jd<=� © ¡�ª � 	 �9J�.k"�.�Ò .

4.3 Simulation results

[Figure 3 about here.]

Figure 3 shows the accuracy in the smoothness estimate. Like [27], we found positive bias

for low smoothness, though for higher smoothness we found slight negative bias. Positive bias,

or over-estimation of smoothness under-estimates the degree of the multiple comparisons problem

and can cause inferences to be anteconservative. (However, this was not a problem; see below).

[Figure 4 about here.]

Figure 4 shows the results using the estimated smoothness. Figure 4a shows the permutation

and true results tracking closely, while the RFT results are very conservative, only approaching

truth for very high smoothness. Bonferroni is of course not adaptive to smoothness, but is very

close to truth for low smoothness, especially for low DF. The Gaussian results are much closer

to truth than any of the
	

results (note the y-axis range). Figure 4b shows the familywise error

rates, which magnifies performance differences. RFT is seen to be severely conservative for all by

extremely smooth data, and Bonferroni is indistinguishable from truth for FWHM of 3 or less with

DF of 9 and 19. The permutation performance is consistent with its exactness. For 6 FWHM and

above the Gaussian result is close to nominal.
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Using true smoothness instead of estimated smoothness had little impact on the results. The

rejection rates never differed by more than 0.003, except for the case of 9 DF and 12 FWHM,

where it increased the rejection rate by 0.0084.

[Figure 5 about here.]

Figure 5 plots the cumulative density functions (CDFs) of the minimum P-value found by

simulation, and compares it to other methods for approximating or bounding FWE. The CDF ap-

proximation provided by Bonferroni is the same for all figures, since the number of voxels is fixed.

The RFT approximation (dash-dot line) changes with smoothness, but is far from true CDF for low

smoothness and low DF; critically, for any given FWHM and DF, the RFT results do not improve

with (decreasing P-value) threshold. This indicates that the poor RFT performance is not due to

use of a insufficiently high threshold. Finally, note that the CDF of an equivalent independent num-

ber (EIN) of observations (dashed line) follows the true CDF quite well for moderate smoothness,

but at high smoothness it has the wrong slope and cannot match the CDF in general (as predicted

by equations (30) and (31)). That the EIN approach performs so well for moderate smoothness

suggests that it may yet be a tenable theoretical approach.

Point estimates for ¢ were found to be 0.90, 0.94, 0.87 0.043 and 0.06 for 0, 1.5, 3, 6, 12 voxel

FWHM smoothness, respectively. While Figure 5 indicates that the EIN approach is inappropri-

ate for high smoothness, for 3 voxel FWHM smoothness a µ�¶V· voxel image has the same FWE

threshold as ¢�&o��.�"�ÑVÒ8»|µ�¶�·��/¶�Ñk!mºV¶�µ independent voxels.

[Figure 6 about here.]

Figure 6 shows the performance of three alternative methods. The RESEL Bonferroni approach

fails to control FWE, and for moderate to high smoothness exceeded a FWE of 0.5 (off the plot,

not shown). The Gaussianized
	

method exhibits conservativeness for low smoothness, but for low

DF it is anteconservative, suggesting it would be inappropriate to use for all but the high DF. In

this complete null simulation, Benjamini and Hochberg’s FDR controls FWE, though it becomes

somewhat conservative for increasing smoothness.
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4.4 Results Discussion

While some authors have observed RFT conservativeness [50, 36, 51], other have not [2, 26].

However our findings are consistent with the literature, since authors that found RFT accurate

used Gaussian data with high smoothness. For example, Worsley et al. [2] found the expected ÛZà
was quite accurate on � images, but the smoothness of their data was approximately 10 voxels

FWHM. Our Gaussian simulations are consistent with this, and, for all but the lowest DF, our
	

simulations also suggest that 10 FWHM is sufficient.

With our real data studies the permutation method was found to be more sensitive in all 11

datasets. This is consistent with our simulations, in particular that the RFT method was increas-

ingly conservative for shrinking degrees of freedom. By conventional standards in functional neu-

roimaging our real data would be considered quite smooth ( 	 OPº voxel FWHM), but our simula-

tions indicate this is still insufficient for accurate RFT thresholds.

As a note on the selection of these datasets, they represent a three year process of collecting

group level fMRI and PET datasets. The only data omitted were other effects from the studies

included, usually other non-orthogonal contrasts with qualitatively similar results. In five years of

applying these methods we have never seen a small DF dataset ( �6��. ) where the
	

random field

method outperforms the permutation test.

5 Discussion

We have attempted to provide a comprehensive review and a representative comparison of FWE

methods for functional neuroimaging. From Bonferroni and its extensions, to cutting-edge random

field theory methods, to permutation methods of Fisher, we have attempted to cull all available

tools which are relevant for the massive, dependent data of functional neuroimaging. With an

assumption of positive dependence, we can make use of slightly improved Bonferroni methods.

With an assumption of smoothness, we can make use of smoothness-adaptive RFT methods. And

with few assumptions at all and some computational effort, we have a both adaptive and powerful

method.

There are several limitations of these findings. First, yet more datasets should be studied, over
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yet a wider range of smoothnesses and group sizes. We have focused on very small group data to

demonstrate a suspected conservativeness of RFT methods. However, more moderate group sizes

are needed to see exactly when RFT methods lose power. Second, more simulations are needed for

larger volumes, and for more realistically shaped search regions. Our 32-cubed volume is too small

when 1mm · voxels are used and doesn’t reflect the wrinkled-ellipsoidal topology of real brain data.

And finally, the computational burden of the permutation tests must be considered, along with the

flexibility of a general linear modeling tool combined with RFT inference.
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6 Comparison of other FWE methods. The RESEL-Bonferroni approach fails to
control FWE for any smoothness considered. The Gaussianized T approach does
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Figure 1: Illustration of Euler Characteristic ( Û^à ) for different thresholds F . The left figure shows
the random field, and the remaining images show the excursion set for different thresholds. The ÛZà
illustrated here only counts clusters minus holes (neglecting hollows). For high thresholds there
are no holes, and Ûeà just counts the number clusters.
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Figure 2: Impact of heterogeneous null distributions on FWE control. Shown are the null distribu-
tions for five independent voxels, the null distribution of the maximum of the five voxels, and the
5% FWE thresholds. a. Use of the mean difference statistic allows variance to vary from voxel-to-
voxel, even under the null hypothesis. Voxel 2 has relatively large variance and shifts the maximum
distribution to the right; the risk of Type I error is largely due to voxel 2, and voxel 3, for example,
will almost never generate a false positive. b. If a

	
statistic is used the variance is standardized but

the data may still exhibit variable skew. This would occur if the data are not Gaussian and have
heterogeneous skew. Here voxels 2 and 4 bear most of the FWE risk. c. If the voxel-level null
distributions are homogeneous (e.g. if the

	
statistic is used and the data are Gaussian) there will

be uniform risk of false positives. In all three of these cases the FWE is controlled, but the risk of
Type I error may not be evenly distributed.
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Figure 4: Simulation results. a. FWE threshold found by three different methods compared to
truth. The Bonferroni threshold is non-adaptive, while Permutation and Random Field methods
both use lower thresholds with higher smoothness. The low-smoothness conservativeness of the
Random Field thresholds intensifies with decreasing degrees of freedom. b. Rejection rate of null
simulations for a nominal �=3��/.k"�.V� threshold, with a pointwise Monte Carlo 95% confidence in-
terval shown with fine dotted line. The random field theory results are valid, but quite conservative
for all but high smoothnesses. Bonferroni results are surprisingly satisfactory for up to 3 voxels
FWHM smoothness, but then become conservative.
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Figure 5: Approximating minimum P-value distributions with FWE methods. The minimum P-
value CDF obtained by simulation (“Truth”, solid line with dots) is compared to three different ap-
proximations: Bonferroni inequality (“Bonf”, solid line), random field theory (“RFT”, dot-dashed
line) and the equivalent independent  (EIN, dashed line); a corrected P-value of 0.05 is indicated
(horizontal dotted line). These plots reflect the findings in Fig. 4: Bonferroni is accurate for data
as smooth as 1.5 FWHM data; RFT is more conservative than Bonferroni for data as smooth as 3
FWHM, and for 6 FWHM for 6 DF. While Fig. 4 only depicted results for �Ó39�+.�"�.V� , note that for
a given smoothness and DF the RFT results do not improve with more stringent thresholds (less
than 0.05 corrected). For the 12 FWHM smoothness data the RFT results are quite accurate, and
provide a better approximation than equivalent independent  approach. Particularly for 9 DF and
12 FWHM, note that the EIN approach fails to have the correct slope (it intersects the true CDF
around < �%$ � � .k"�.V��� by construction; see Section 2.5).
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Figure 6: Comparison of other FWE methods. The RESEL-Bonferroni approach fails to control
FWE for any smoothness considered. The Gaussianized T approach does not reliably control FWE,
in particular being anteconservative for smooth, low DF images. FDR does control FWE (weakly),
but becomes somewhat conservative for increasing smoothness. Fine dotted line indicates point-
wise Monte Carlo 95% confidence interval.
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Measure of false positives Abbreviation Definition

Observed Familywise Error oFWE & N L 3gâ_.
Familywise Error Rate FWE P � oFWE �
Observed False Discovery Rate oFDR & N L 3M��& N L Q & ' � ¡.- /10 3 +
Expected False Discovery Rate FDR E � oFDR �
Positive False Discovery Rate pFDR E � oFDR H &-N L Q�â_.��
False Discovery Rate Confidence FDRc P � oFDR J32a�
Per-Comparison Error Rate PCE E �{&-N L 3 �{��&
Per-Family Error Rate PFE E �{& N L 3$�
Per-Family Error Rate Confidence PFEc P �{& N L 3�J42a�

Table 1: Different measures of false positives in the multiple testing problem. &('*),+ is the indicator
function for event ­ .
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Procedure FR� Type FWE Control Assumptions

Holm �^3 N� ~ � Ö N Step-down Strong None

Šidák ��O � ��O¨�^3�� N�¹ � � ~{Õ?Ö N�� Step-down Strong Slepian/Dunn-Šidák

Hochberg �^3 N� ~ � Ö N Step-up Strong PRDS

Simes/FDR �e3 �� Step-up Weak PRDS

Table 2: Summary of multi-step procedures.
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Randomization Permutation Bootstrap
P-values Exact Exact Asymptotic/Approximate
Assumption Randomized Experiment Ho-Exchangeability I.I.D.
Inference Sample only Population Population
Models Simple Simple General

Table 3: Differences between randomization test, permutation test and bootstrap tests.
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FWE-Corrected
Study DF Voxels

Voxel FWHM RESEL 	
Threshold

Smoothness Volume
RFT Bonf. Hoch. Šidák Perm.

Verbal Fluency 4 55027 5.6 6.3 3.9 399.9 4701.32 42.59 5 5 10.14

Location Switching 9 36124 6.1 5.9 5.1 196.8 11.17 10.31 5 5 5.83

Task Switching 9 37181 6.4 6.9 5.2 161.9 10.79 10.35 10.29 10.29 5.10

Faces: Main Effect 11 51560 4.1 4.1 4.3 713.3 10.43 9.07 9.07 9.04 7.92

Faces: Interaction 11 51560 3.8 3.9 4.0 869.8 10.70 9.07 5 5 8.26

Item Recognition 11 110776 5.1 6.8 6.9 462.9 9.87 9.80 9.99 9.99 7.67

Visual Motion 11 43724 3.9 4.4 2.2 1158.2 11.07 8.92 8.90 8.87 8.40

Emotional Pictures 12 44552 5.6 5.4 5.0 294.7 8.48 8.41 5 5 7.15

Pain: Warning 22 23263 4.7 4.9 3.5 288.6 5.93 6.05 6.09 6.04 4.99

Pain: Anticipation 22 23263 5.0 5.1 3.6 253.4 5.87 6.05 6.07 6.07 5.05

Pain: Pain 22 23263 4.6 4.8 3.4 309.9 5.95 6.05 6.05 6.05 5.15

Table 4: Summary of FWE inferences for 11 PET and fMRI studies. 5% FWE thresholds for
five different methods are presented, RFT, Bonferroni, Hochberg step-up, Šidák step-down and
permutation. Note how RFT only out-performs other methods for studies with the largest degrees
of freedom. Hochberg and Šidák’s method rarely differ from Bonferroni by much. Permutation
always has a lowest threshold.



TABLES 47

Number of
Significant VoxelsStudy 	

Sm.Var
	

RFT Bonf. Hoch. Šidák Perm. Perm.
Verbal Fluency 0 0 0 0 0 0

Location Switching 0 0 0 0 158 354

Task Switching 4 6 7 7 2241 3447

Faces: Main Effect 127 371 372 379 917 4088

Faces: Interaction 0 0 0 0 0 0

Item Recognition 5 5 4 4 58 378

Visual Motion 626 1260 1269 1281 1480 4064

Emotional Pictures 0 0 0 0 0 7

Pain: Warning 127 116 116 118 221 347

Pain: Anticipation 74 55 55 55 182 402

Pain: Pain 387 349 350 353 732 1300

Table 5: Summary of FWE inferences for 11 PET and fMRI studies (con’t). Shown are the number
of significant voxels detected with the five methods discussed, along with permutation method on
the smoothed variance

	
statistic.


