
TCP Switching: Exposing Circuits to IP

Pablo Molinero-Fernández, Nick McKeown
Stanford University

{molinero,nickm}@stanford.edu

Abstract

There has been much discussion about the best way to
combine the benefits of new optical circuit switching
technology with the established packet switched Internet.
In this paper, we explore how electronic and/or optical
circuit switching might be introduced in an evolutionary
manner.

Circuit switches have much simpler data paths, and
being potentially must faster than packet switches. As a
result, very high capacity all-optical circuit switches are
feasible today (e.g. WDM, MEMs, and wavelength
conversion systems), whereas all-optical packet switches
are a long way from being commercially practical,
because we still do not know how to buffer photons. Of
course, the main disadvantage of circuit switching is that
link capacity must be peak-allocated, eliminating the
benefits of statistical multiplexing, leading to the
inefficient use of links. It is a premise of this paper that
link capacity is abundant and will become more so with
time. The bottleneck in the Internet today is most often in
the routers, not the links.

There are other perceived disadvantages of circuit
switching, which we consider. These include: (1) the
amount of state maintained by switches, and its influence
on network-wide fault tolerance, (2) the overhead of
signaling, and (3) the difference in paradigm from the
already successful packet switching used in the Internet.
We propose an approach - which we call TCP Switching -
that can co-exist with the existing Internet in an
evolutionary way. TCP Switching exposes circuits to IP,
establishing a new circuit for each application-level flow
in the network. TCP Switching takes its name from, and
strongly resembles, IP Switching in which a new ATM
virtual circuit is established for each application-level
flow.

We realize that the idea of TCP Switching is
controversial and, no doubt, incomplete. It is the intention
of this paper to contribute to the discussion on how
circuit switching and optical switching technology can be
exploited in the Internet.

1. Introduction: The Internet as a packet
switched network

We tend to take for granted that the Internet is a packet
switched network comprised of just routers, links and end
hosts. In reality there is a lot of circuit switching in the
Internet, both at the core (SONET/SDH) and in the last
mile (modems, DSL). However, these circuits are treated
by IP as static point-to-point links between adjacent
nodes; the physical circuits and IP are completely
decoupled. In this paper we will explore how to integrate
packet switching (PS) and circuit switching (CS) more
tightly in the same network.

One question worth asking is why the Internet is packet
switched in the first place. Textbooks will tell us that the
original reasons for PS (as opposed to CS) are twofold:
The first one being bandwidth efficiency; PS requires less
link capacity to carry the same amount of traffic. In the
70s and 80s links were leased lines and they were an
expensive and scarce resource. The second reason is
robustness. Because the only state needed in the routers
are the routing tables, re-routing around a link/node
failure is as easy as updating these tables.

However, neither of these reasons appears to hold
today. In terms of bandwidth efficiency, it is reported that
most links today are only lightly utilized [5][6].
Furthermore, it is anticipated that utilization will decrease
over time due, in part, to the huge investment in optical
fibers that has created a glut of capacity in the core [8][9].
As for robustness, PS routing protocols do not necessarily
lead to simple and rapid reconfiguration. Routing
protocols today are extremely complicated, and can take
seconds or even minutes to re-route around failures [17].
On the other hand, most CS equipment (e.g. SONET) is
required to recover in less than 50 ms [18]. So having per-
circuit state in the network does not prevent a network
from being robust.

2. Is circuit switching appropr iate in the
Internet?

Although the original reasons for using packet
switching may no longer hold, this is not an argument for
circuit switching. We need to consider carefully both the

advantages and disadvantages of using circuit switching at
the core of the Internet, where the high link data rates will
expose the limitations of any switching technique.

Circuit switching seems to have the following
advantages:
• CS requires no buffers in the switches. A packet switch

must, by definition, maintain packet buffers for periods
of congestion. The need for buffering prevents us from
building feasible all-optical routers. Even in an
electronic core router these buffers must be both large
and fast. A router usually maintains about (R x RTT)
bits of packet buffers, where R is the line rate, and RTT
the round-trip time between any two end-hosts (about
0.25s today). For example, a 10Gb/s line card
maintains about 2.5Gbits (300Mbytes) of storage. In
terms of speed, the buffers must run at least as fast as
the line. Today, it is hard to design a buffer operating
at 10Gb/s, and harder still to design one at 40Gb/s.

• CS simplifies (essentially eliminates) per-packet
processing. A packet switched router must process
each packet as it arrives, performing an address lookup
and modifying the packet header. The processing
might be performed by a network processor, or a
dedicated ASIC. While the processor can be expected
to double in speed every 18 months, the link capacity
in DWDM has been doubling every 7 months. It is
likely that at some point network processors, and later
ASICs, will run out of steam, at which point CS may
be the only alternative.
This leads us to state that for a given technology circuit

switches are faster (i.e. have more capacity) than packet
switches.

Other advantages of CS are:
• CS lends itself to simple, intuitive (and degenerate)

QoS, because the bandwidth is peak allocated, and the
delay jitter is zero. In PS there are two ways of
providing QoS guarantees; one way is to do complex
per-packet processing and to maintain state either per-
flow or at some higher aggregation, for example using
WFQ [19], GPS [20], DiffServ [21], DRR [22] and
other packet scheduling disciplines. These schemes are
complex, significantly increasing the complexity of the
router (both hardware and software) and are hard for
customers to understand, configure and use. Another
way for PS to support QoS is to heavily overprovision
the link capacity, and essentially emulate circuit
switching. While this may be practical, it is no more
efficient in link utilization than circuit switching, and
still requires per-packet processing.

• CS replaces per-packet scheduling or drop decisions
with simple per-flow admission decisions. The
admission control decisions are simple: is there or is
there not sufficient bandwidth on the outgoing link for
the requested flow? And because flows consist of

multiple packets, the decisions are made less often
than for PS.

• CS can, in many situations, actually reduce the
response time† seen by users. When either the
variation of the flow durations is small or when the
peak flow rate is much smaller than the link bandwidth
(e.g. in the core of the network), then the response time
for CS is smaller than for PS.
On the other hand, circuit switching has some

disadvantages:
• CS requires circuits to be established. This circuit

could carry multiplexed traffic between two routers
(e.g. SONET) or a single application flow (which is
what we will consider here). Either way, the circuit
needs to be established, state needs to be kept, and
then the circuit needs to be freed upon completion. If
the number of circuits is large, a circuit switch may
need to maintain a lot of state and the amount of
signaling can be significant. We will argue later that,
in practice, the number of flows (and the rate at which
they are added and removed) will be quite manageable
in simple hardware, even for a high capacity switch.

• CS requires that circuits are multiples of a common
minimum circuit size. For example, it is common for
SONET cross-connects today to provision circuits in
multiples of STS-1 (51Mb/s). If we desire a circuit that
is not an exact multiple, then link capacity will be
wasted. This problem can be minimized by using a
small circuit granularity (for example, 64kb/s), but this
requires the switch to maintain more state.

• CS leads to some probability of blocking while waiting
for a circuit to be available. If a circuit is not available
when needed, we must wait, or be blocked, until a
circuit is free. This is very different from the link-
sharing paradigm present in the Internet today in which
packets will still make (albeit slow) progress over a
congested link.

• The Internet is not prepared to handle the dynamic raw
circuits of CS. We will need an evolutionary solution
to be able to use CS.

3. Typical flows in the Internet today

In what follows, we will explore how circuits could be
established in the core of the Internet for each flow. To
understand whether this is feasible, or sensible, we will
need a good understanding of the Internet today. Because
over 90% of the traffic is TCP (both in terms of packets
and bytes), we need to know what a TCP flow is, and how
it behaves. We have studied traceroute measurements, as
well as packet traces from OC-3 and OC-12 links in vBNS

† Response time is defined here to be the time from when a request is
sent until the response completes the download.

R

C

C

B R

R

R

R

R
R

Links carrying packets Routers
Links using circuits Boundary routers
End hosts Core Circuit switches

R
B

B

B

B

C

Figure 1.- TCP Switching as a cloud of circuit switching
inside a packet switched network

[1] (available at NLANR [2][3]). Table 1 describes the
typical flow in the Internet.

In summary, TCP connections typically last less than
10s, carry less than 4 Kbytes of data and consist of fewer
than 12 packets in each direction. Few TCP flows see any
losses (<6%) and even fewer see a route change (<0.4%1).

4. TCP Switching: a cloud of CS inside a PS
network

Up until now, we have considered both PS and CS. It is
not our goal to propose, or even consider, the complete
replacement of PS by CS. On the contrary, our goal is to
find a way to use the benefits of CS in the core of the
Internet (where it is, in fact, already present), and allow
the circuit switches to be controlled by IP. In the rest of
this paper we propose and explore a network architecture
called TCP Switching.

TCP Switching consists of establishing fast,
lightweight circuits triggered by application-level flows in
the Internet. We call it TCP Switching because most flows
today (over 90%) are TCP, and so TCP Switching is
optimized for the common case of TCP connections; but
the technique is not limited to TCP, and any uni- or bi-
directional flow can be accommodated, albeit less
efficiently. TCP Switching can be deployed in an
evolutionary way, by creating self-contained TCP
Switching clouds inside a PS network, as Figure 1 shows.

The PS portion of the network is unchanged. The core
of the CS portion of the network is built from pure circuit
switches (such as SONET cross connects) with simplified
signaling to setup and teardown circuits. Boundary routers
which act as gateways between the PS and CS world,
mapping data between packet switched flows and circuits.
They are most likely conventional routers with CS line
cards.

TCP Switching requires no additional signaling, as
the first observed packet in a flow triggers the creation of
a new circuit. For TCP connections, the first packet is
most often a SYN or a SYN+ACK packet.2 Circuits are
removed by a TCP FIN packet (the most common case),
or by an inactivity timeout. Because in most cases TCP
Switching re-uses the 3-way TCP handshake to establish
circuits, there is little or no performance hit due to
signaling. In the TCP example, the source sends a SYN
message that traverses a cloud of TCP Switches sitting
somewhere in the network. The SYN is intercepted by
the ingress switch, which will first try to see if it has
enough capacity on its outgoing link to carry a new
circuit. If it does, it will simply start using the new
capacity (for example, by filling an empty time slot, or
using a new wavelength), and then forwards the message

1 This figure is similar to the ones found by Paxson [16] and Labovitz et
al. [17].
2 Unless there was a route change, or packet mis-sequencing, in the PS
portion of the network.

Table 1.- Characteristics of TCP flows in the current Internet

 80%-percentile average median

TCP flow duration < 4-10 sec < 3-7 sec < 0.5-1.2 sec

Packets per flow < 12 pkts < 10-200 pkts† < 5-9 pkts

Bytes per flow < 2.5-4 KBytes < 9-90 KBytes < 0.6-1.3 KBytes

Bandwidth (=bytes/duration) < 50-100 Kbps < 20-140 Kbps† <8-15 Kbps

% Flow with retransmissions < 7.8% < 5.6% < 4.7%

% Flows exper iencing reroute < 0.19% < 0.39%† < 0.02%

Asymmetr ical connections
Around 40% of the flows transmit an ACK after the FIN, i.e. they are acknowledging
a data packet that was sent in the other direction.

.† This is because the tail of the distribution is very long and it has a lot of mass

downstream to set up the circuit. The intermediate
switches do the same; check for capacity on the outgoing
link, then forward the setup message if the request is
acceptable. If any switch along the path has insufficient
capacity on its outgoing link for a new flow, it can simply
drop the packet, or buffer it for a short time, dropping it if
no capacity becomes available.

Once the circuit is set up the SYN will reach the end
host. The destination host will receive the SYN message
as if it were a normal TCP connection. It will respond
with a SYN+ACK, which will create a separate,
independent circuit in the opposite direction. Once the
handshake is complete, the TCP flow has its own private
point-to-point circuit between the ingress and egress of the
CS cloud.

We believe the complexity of the TCP Switches can be
made small. Most of the additional processing is
performed by the ingress boundary router, and takes place
once per flow, rather than once per packet. It must
recognize the first packet in a flow, decide which outgoing
link should be used (i.e. routing), and then determine if
there is sufficient capacity on the outgoing link to carry
the new circuit.

Recognizing the first packet in a new flow requires a
four-field, exact-match classifier. The routing decision can
be made using the routing protocol already present on the
router. The decision as to whether there is enough
capacity to carry the new flow might be as simple as a
counter representing the number of unused time slots or
wavelengths.

When packets arrived for existing circuits, the ingress
boundary router must be able to determine to which flow
and circuit the packet belongs (using the classifier). The
size of the classifier is determined by the number of
circuits on the outgoing link. For example, an OC192c
link carrying 64kb/s circuits requires 156,000 entries in its
table.

At the egress boundary router, arriving data needs to be
reassembled into packets (assuming they were broken into
time slots. If they were carried on their own wavelength,
then no reassembly should be needed).

Because most flows are short lived, the circuit
establishment and tear down must be really fast. Given the
simplicity of the signaling, we believe this can be done in
hardware.

5. One example of TCP Switching

There are a number of ways to design a TCP Switch.
Table 2 shows some of the choices.

We have been experimenting with TCP Switching via
prototyping (in Linux) and simulation (using ns-2 [7]).
We needed to make our own design choices in our
experiments, and so list them here.

The core circuit switches are assumed to carry 64Kb/s
circuits to match the access links of most network users.
High capacity flows use multiple circuits. In our design,
we opt for in-band signaling, which requires a
modification to the circuit switch. (Alternatively, out-of-
band signaling could be used, and would require no
hardware changes to the circuit switch). We consider

Table 2.- Some design choices in TCP Switching

Choice One option Alternative option Notes

Circuit
establishment

triggered by only TCP
SYNs

triggered by first packet seen in a
flow (can be any)

If there is a path reroute outside the TCP
Switched cloud the SYN will not be
observed. This is rare in practice

Circuit
release

triggered by FIN (hard
state)

triggered by inactivity timeout (soft
state)

Neither is perfect. Connections with
asymmetrical closings or with long
inactivity periods can be severed

Handling of
UDP packets

UDP traffic
multiplexed through
permanent circuits
between edge routers

UDP packets contain sufficient state
to create a connection, too. If TCP
SYNs are not used, UDP and TCP
flows are treated the same way.

UDP represents a small (but important)
amount of traffic.

Signaling in-band out-of-band
In-band signaling requires no additional
exchanges, but it is more complex

Routing of
circuits

hop-by-hop routing centralized or source routing
A centralized algorithm can provide
global optimization and path diversity.

Circuit
granular ities

flat, i.e. all switches
have the same
granularity

hierarchical, i.e. different switches
have a different granularities (in the
core flows are bundled together)

A coarser granularity means that the
switch can go faster, as it has to do less
processing

circuits to be idle or active. Idle circuits are ones that have
not been allocated to a flow, and so carry no data. When
the first packet starts flowing on an idle circuit (not
necessarily a TCP SYN packet), the circuit switch tries to
establish a new circuit. This allows the switch to carry
UDP flows without modification, and makes the system
robust against re-routing of TCP flows (about 0.4% of
flows are re-routed today). The routing information is
present in the first packet (i.e. the IP packet header) and is
used to find the next hop for the circuit using regular IP
routing tables. If a circuit cannot be established, the data
is dropped and the boundary router is required to detect a
timeout.

New flows are detected using a simple exact match
classifier. The headers of arriving packets (IP addresses
and TCP port numbers) are compared against a table of
active flows to see if the flow belongs to an existing
circuit, or whether a new circuit should be created. Given
the duration of measured flows, we can expect the rate of
the exact-match lookup to be approximately 31 Mpps and
50,000 new connections per second for an OC192c link.
This is quite manageable in dedicated hardware.

Around 40% of the TCP flows have ACK packets
arriving after the FIN. This happens because the
communication in the other direction is still active, so it is
unwise to close a connection right after seeing a FIN.
Thus, we choose to use soft state, and wait until the
connection times out due to inactivity. Interestingly, our
simulations show that the performance is not very
sensitive for a timeout value of around 60 seconds. This is
similar to the results obtained for IP Switching [13].

The admission controller (in the boundary router)
queues the calls that cannot be accepted for a period up to
1.5 minutes, which is half of the TCP connection
establishment timeout value prescribed by RFC 1122 [4].
We have experimented with ways to determine the data
rate assigned to a new flow, but this is beyond the scope
of this paper. In brief, it could be obtained from a
SLA/policy database or it could be carried as an option in
the TCP header.

6. Exper imentation

We are implementing TCP Switches in three different
ways. First, we have simulated a TCP Switched network
using ns-2 [7], and have used it to study the overall
performance of a network that includes TCP Switching,
the users’ response times, and how TCP congestion
control mechanisms perform.

Most interestingly, we have found that there are quite a
few conditions under which CS gives users a faster
download response time than with PS, for the same
network topology; for example, when there is low
variation in file sizes on a web server, and many

contending clients, or also when the peak flow rate is
much smaller than the link data rate. We have been able to
confirm this theoretically, and will describe it in an
upcoming paper.

We have also implemented an ingress boundary router
as a kernel module in Linux 2.4 on a Pentium III operating
at 1GHz. We measured the increased forwarding delay for
each packet: regular IP forwarding takes 17 � s, and the
addition of a (fairly inefficient) classifier and output
packet scheduler for PS style QoS, increases the delay to
77 � s. On the other hand TCP Switching forwarding takes
between 17 and 25 � s, and the circuit setup time in
software is about 57 � s. These figures indicate that the
performance of a TCP Switching boundary router is
comparable to that of a regular router. Of course, we
expect these numbers to be much reduced if implemented
in dedicated hardware, and so we are just starting on an
FPGA-based implementation.

7. Previous work

Recently several researchers have described the
integration of IP and circuit switching in the core. There
have been three main approaches to define signaling
mechanisms that would add dynamism to the
establishment and release of SONET/SDH circuits. They
are MPLamdaS [10], OIF [11] and ODSI [12]. These
three working groups provide the control mechanisms,
and it is left up to the vendors to define how to monitor
the traffic, what triggers the circuit establishment and how
to allocate the bandwidth.

There are two architectures that try to address this
decision making. The first one is optical burst switching
[14], which queues packets up to a threshold, and then
establishes a circuit with an explicit connection release
time, also known as a burst. In the second one,
Veeraraghavan et al. [15] define an end-to-end, circuit-
switched network that is parallel to the packet switched
Internet. Only big file transfers are transmitted through the
CS network.

Our approach differs in the sense that TCP Switching
re-uses the connection establishment mechanism to create
a circuit for each flow (TCP, UDP or other type). We
exploit the connection-oriented nature of the current
Internet. We create a circuit only when (and as soon as) a
flow starts, and we maintain this circuit until the moment
the flow ends. In this respect, TCP Switching is most
similar to IP Switching [13] in which user flows triggered
the establishment of ATM virtual circuits.

8. Conclusions

New optical technology is being used to build very
high capacity circuit switches. While these switches are

already being used to replace SONET switches, it is not
yet clear how we should control these circuit switches.

We have explored whether it might make sense to
establish a new circuits for each application flow. At first
glance, such fine granularity would appear to be expensive
and impractical. It uses links inefficiently, seems to
require complex processing and signaling, the
maintenance of lots of hard state, and to suffer from poor
robustness.

We agree that links are used inefficiently; but with the
increased over-provisioning of link capacity, and with the
difficulty of building high performance packet switches,
we believe this might be the right (and possibly only long-
term) tradeoff to make.

We believe that the signaling can be kept very simple if
the first packet in a flow triggers the establishment of a
new circuit, and that the processing is quite doable in
dedicated hardware. The per-flow state consists of a
mapping from flows to circuits; and the number is small
enough to maintain in on-chip memory, even for OC192c
links. Hard-state can be avoided by using inactivity
timeouts for each circuit.

TCP Switching relies on the observation that almost all
traffic today is carried in end-to-end connections; and
there is no reason to think this will change. Given that the
control mechanisms already exist to establish and remove
TCP connections, why not use these same mechanisms to
establish circuits?

TCP Switching provides one evolutionary path to
exposing circuits to IP. Our experiments suggest so far
that circuit switching can lead to lower response times for
network users, and that TCP Switching is relatively easy
to implement in a boundary router or in a core switch.

But given the controversy surrounding this topic, and
the incompleteness of our work, we expect this is just one
contribution to the ongoing debate.

9. Acknowledgments

We would like to thank Byung-Gon Chu, Ranganath
Rao, Bo Yang and Feng Wang (students of CS344 at
Stanford) for their contributions to the implementation of
the TCP Switch in Linux and ns-2.

10. References

[1] Very High Performance Backbone Network Service,
http://www.vbns.org

[2] NLANR traceroute measurements, http://amp.nlanr.net/
[3] NLANR network traffic packet header traces,

http://moat.nlanr.ne t/Traces/
[4] R. Braden. "Requirements for Internet Hosts --

Communication Layers". RFC 1122.

[5] A. M. Odlyzko. "Data networks are mostly empty and for
good reason". IT Professional 1 (no. 2), pp. 67-69,
Mar/Apr 1999.

[6] K. G. Coffman, and A. M. Odlyzko. "Internet growth: Is
there a 'Moore's Law' for data traffic?".
http://www.research.att.com/~amo/doc/networks.html

[7] Network Simulator, ns-2, http://www.isi.edu/nsnam/ns/
[8] Cecile Gutscher. "Optical Companies: Seeing clearly?

Some fund managers view optical companies as too
expensive". Wall Street Journal, New York, NY, Nov. 13,
2000

[9] Mark Heinzl. "Operators of Fiber-Optic Networks Face
Capacity Glut, Falling Prices Wall Street Journal". Wall
Street Journal, New York, N.Y., Oct. 19, 2000

[10] D. Awduche, and Y. Rekhter. "Multiprotocol Lambda
Switching: Combining MPLS Traffic Engineering Control
with Optical Crossconnects". IEEE Communications
Magazine, Mar 2001.

[11] G. Bernstein, B. Rajagopalan, and D Spears. "OIF UNI
1.0 -Controlling Optical Networks". White paper, Optical
Internetworking Forum, Mar 2001.

[12] A. Copley. "Optical Domain Service Interconnect (ODSI):
Defining Mechanisms for Enabling On-Demand High-
Speed Capacity from the Optical Domain". IEEE
Communications Magazine, Oct 2000.

[13] P. Newman, G. Minshall, and T. Lyon. "IP Switching:
ATM Under IP". IEEE/ACM Transactions on
Networking, vol. 6, no. 2, pp. 117-129, 1998.

[14] M. Yoo, C. Qiao, and S. Dixit. "Optical Burst Switching
for Service Differentiation in the Next-Generation Optical
Internet". IEEE Communications Magazine, Feb 2001.

[15] M. Veeraraghavan, M. Karol, R. Karri, R. Grobler, and T.
Moors. "Architectures and Protocols that Enable New
Applications on Optical Networks". IEEE
Communications Magazine, Mar 2001.

[16] V. Paxson. "End-to-end routing behavior in the Internet".
Proceedings of ACM SIGCOMM 96, pp. 25-38, Stanford,
CA, Aug 1996.

[17] C. Labovitz, A. Ahuja, and F. Jahanian. "Experimental
Study of Internet Stability and Wide-Area Network
Failures". Proceedings of ACM SIGCOMM 00,
Stockholm, Sweden, Aug/Sep 2000.

[18] T1 Committee. "Synchronous Optical Network (SONET)
- Automatic Protection Switching", T1.105.01-2000,
ANSI Standard, Mar 2000.

[19] A. Demers, S. Keshav, and S. Shenker. "Analysis and
Simulation of a Fair-queueing Algorithm", Proceedings of
ACM SIGCOMM 89, pp 1-12, Austin, TX, Sep 1989.

[20] A. K. Parekh and R. G. Gallager. "A Generalized
Processor Sharing Approach to Flow Control in
Integrated Services Networks: The Single-Node Case".
IEEE/ACM Transactions on Networking, Vol. 1 No. 3,
pp. 344-357, Jun 1993.

[21] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and
W. Weiss. "An Architecture for Differentiated Services".
RFC 2475.

[22] M. Shreedar, G. Varghese. "Efficient Fair Queuing using
Deficit Round Robin". Proceedings of ACM SIGCOMM
95, Cambridge, MA, Aug/Sep 1995.

