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Abstract 
 

There has been much discussion about the best way to 
combine the benefits of new optical circuit switching 
technology with the established packet switched Internet. 
In this paper, we explore how electronic and/or optical 
circuit switching might be introduced in an evolutionary 
manner.  

Circuit switches have much simpler data paths, and 
being potentially must faster than packet switches. As a 
result, very high capacity all-optical circuit switches are 
feasible today (e.g. WDM, MEMs, and wavelength 
conversion systems), whereas all-optical packet switches 
are a long way from being commercially practical, 
because we still do not know how to buffer photons. Of 
course, the main disadvantage of circuit switching is that 
link capacity must be peak-allocated, eliminating the 
benefits of statistical multiplexing, leading to the 
inefficient use of links. It is a premise of this paper that 
link capacity is abundant and will become more so with 
time. The bottleneck in the Internet today is most often in 
the routers, not the links.  

There are other perceived disadvantages of circuit 
switching, which we consider. These include: (1) the 
amount of state maintained by switches, and its influence 
on network-wide fault tolerance, (2) the overhead of 
signaling, and (3) the difference in paradigm from the 
already successful packet switching used in the Internet. 
We propose an approach - which we call TCP Switching - 
that can co-exist with the existing Internet in an 
evolutionary way. TCP Switching exposes circuits to IP, 
establishing a new circuit for each application-level flow 
in the network. TCP Switching takes its name from, and 
strongly resembles, IP Switching in which a new ATM 
virtual circuit is established for each application-level 
flow.   

We realize that the idea of TCP Switching is 
controversial and, no doubt, incomplete. It is the intention 
of this paper to contribute to the discussion on how 
circuit switching and optical switching technology can be 
exploited in the Internet.  

1. Introduction: The Internet as a packet 
switched network 

We tend to take for granted that the Internet is a packet 
switched network comprised of just routers, links and end 
hosts. In reality there is a lot of circuit switching in the 
Internet, both at the core (SONET/SDH) and in the last 
mile (modems, DSL). However, these circuits are treated 
by IP as static point-to-point links between adjacent 
nodes; the physical circuits and IP are completely 
decoupled. In this paper we will explore how to integrate 
packet switching (PS) and circuit switching (CS) more 
tightly in the same network.  

One question worth asking is why the Internet is packet 
switched in the first place. Textbooks will tell us that the 
original reasons for PS (as opposed to CS) are twofold: 
The first one being bandwidth efficiency; PS requires less 
link capacity to carry the same amount of traffic. In the 
70s and 80s links were leased lines and they were an 
expensive and scarce resource. The second reason is 
robustness. Because the only state needed in the routers 
are the routing tables, re-routing around a link/node 
failure is as easy as updating these tables.  

However, neither of these reasons appears to hold 
today. In terms of bandwidth efficiency, it is reported that 
most links today are only lightly utilized [5][6]. 
Furthermore, it is anticipated that utilization will decrease 
over time due, in part, to the huge investment in optical 
fibers that has created a glut of capacity in the core [8][9]. 
As for robustness, PS routing protocols do not necessarily 
lead to simple and rapid reconfiguration. Routing 
protocols today are extremely complicated, and can take 
seconds or even minutes to re-route around failures [17]. 
On the other hand, most CS equipment (e.g. SONET) is 
required to recover in less than 50 ms [18]. So having per-
circuit state in the network does not prevent a network 
from being robust.  

2. Is circuit switching appropr iate in the 
Internet? 

Although the original reasons for using packet 
switching may no longer hold, this is not an argument for 
circuit switching. We need to consider carefully both the 



advantages and disadvantages of using circuit switching at 
the core of the Internet, where the high link data rates will 
expose the limitations of any switching technique. 

Circuit switching seems to have the following 
advantages:  
• CS requires no buffers in the switches. A packet switch 

must, by definition, maintain packet buffers for periods 
of congestion. The need for buffering prevents us from 
building feasible all-optical routers. Even in an 
electronic core router these buffers must be both large 
and fast. A router usually maintains about  (R x RTT) 
bits of packet buffers, where R is the line rate, and RTT 
the round-trip time between any two end-hosts (about 
0.25s today). For example, a 10Gb/s line card 
maintains about 2.5Gbits (300Mbytes) of storage. In 
terms of speed, the buffers must run at least as fast as 
the line. Today, it is hard to design a buffer operating 
at 10Gb/s, and harder still to design one at 40Gb/s. 

• CS simplifies (essentially eliminates) per-packet 
processing. A packet switched router must process 
each packet as it arrives, performing an address lookup 
and modifying the packet header. The processing 
might be performed by a network processor, or a 
dedicated ASIC. While the processor can be expected 
to double in speed every 18 months, the link capacity 
in DWDM has been doubling every 7 months. It is 
likely that at some point network processors, and later 
ASICs, will run out of steam, at which point CS may 
be the only alternative. 
This leads us to state that for a given technology circuit 

switches are faster (i.e. have more capacity) than packet 
switches.  

Other advantages of CS are: 
• CS lends itself to simple, intuitive (and degenerate) 

QoS, because the bandwidth is peak allocated, and the 
delay jitter is zero. In PS there are two ways of 
providing QoS guarantees; one way is to do complex 
per-packet processing and to maintain state either per-
flow or at some higher aggregation, for example using 
WFQ [19], GPS [20], DiffServ [21], DRR [22] and 
other packet scheduling disciplines. These schemes are 
complex, significantly increasing the complexity of the 
router (both hardware and software) and are hard for 
customers to understand, configure and use. Another 
way for PS to support QoS is to heavily overprovision 
the link capacity, and essentially emulate circuit 
switching. While this may be practical, it is no more 
efficient in link utilization than circuit switching, and 
still requires per-packet processing.  

• CS replaces per-packet scheduling or drop decisions 
with simple per-flow admission decisions. The 
admission control decisions are simple: is there or is 
there not sufficient bandwidth on the outgoing link for 
the requested flow? And because flows consist of 

multiple packets, the decisions are made less often 
than for PS. 

• CS can, in many situations, actually reduce the 
response time† seen by users.  When either the 
variation of the flow durations is small or when the 
peak flow rate is much smaller than the link bandwidth 
(e.g. in the core of the network), then the response time 
for CS is smaller than for PS. 
On the other hand, circuit switching has some 

disadvantages:  
• CS requires circuits to be established. This circuit 

could carry multiplexed traffic between two routers 
(e.g. SONET) or a single application flow (which is 
what we will consider here). Either way, the circuit 
needs to be established, state needs to be kept, and 
then the circuit needs to be freed upon completion. If 
the number of circuits is large, a circuit switch may 
need to maintain a lot of state and the amount of 
signaling can be significant. We will argue later that, 
in practice, the number of flows (and the rate at which 
they are added and removed) will be quite manageable 
in simple hardware, even for a high capacity switch.  

• CS requires that circuits are multiples of a common 
minimum circuit size. For example, it is common for 
SONET cross-connects today to provision circuits in 
multiples of STS-1 (51Mb/s). If we desire a circuit that 
is not an exact multiple, then link capacity will be 
wasted. This problem can be minimized by using a 
small circuit granularity (for example, 64kb/s), but this 
requires the switch to maintain more state.  

• CS leads to some probability of blocking while waiting 
for a circuit to be available. If a circuit is not available 
when needed, we must wait, or be blocked, until a 
circuit is free. This is very different from the link-
sharing paradigm present in the Internet today in which 
packets will still make (albeit slow) progress over a 
congested link. 

• The Internet is not prepared to handle the dynamic raw 
circuits of CS. We will need an evolutionary solution 
to be able to use CS. 

3. Typical flows in the Internet today 

In what follows, we will explore how circuits could be 
established in the core of the Internet for each flow. To 
understand whether this is feasible, or sensible, we will 
need a good understanding of the Internet today. Because 
over 90% of the traffic is TCP (both in terms of packets 
and bytes), we need to know what a TCP flow is, and how 
it behaves. We have studied traceroute measurements, as 
well as packet traces from OC-3 and OC-12 links in vBNS 

                                                 
† Response time is defined here to be the time from when a request is 
sent until the response completes the download. 
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Figure 1.- TCP Switching as a cloud of circuit switching 
inside a packet switched network 

[1] (available at NLANR [2][3]). Table 1 describes the 
typical flow in the Internet. 

In summary, TCP connections typically last less than 
10s, carry less than 4 Kbytes of data and consist of fewer 
than 12 packets in each direction. Few TCP flows see any 
losses (<6%) and even fewer see a route change (<0.4%1).  

4. TCP Switching: a cloud of CS inside a PS 
network 

Up until now, we have considered both PS and CS. It is 
not our goal to propose, or even consider, the complete 
replacement of PS by CS. On the contrary, our goal is to 
find a way to use the benefits of CS in the core of the 
Internet (where it is, in fact, already present), and allow 
the circuit switches to be controlled by IP. In the rest of 
this paper we propose and explore a network architecture 
called TCP Switching.  

TCP Switching consists of establishing fast, 
lightweight circuits triggered by application-level flows in 
the Internet. We call it TCP Switching because most flows 
today (over 90%) are TCP, and so TCP Switching is 
optimized for the common case of TCP connections; but 
the technique is not limited to TCP, and any uni- or bi-
directional flow can be accommodated, albeit less 
efficiently. TCP Switching can be deployed in an 
evolutionary way, by creating self-contained TCP 
Switching clouds inside a PS network, as Figure 1 shows.  

The PS portion of the network is unchanged. The core 
of the CS portion of the network is built from pure circuit 
switches (such as SONET cross connects) with simplified 
signaling to setup and teardown circuits. Boundary routers 
which act as gateways between the PS and CS world, 
mapping data between packet switched flows and circuits. 
They are most likely conventional routers with CS line 
cards.  

TCP Switching requires no additional signaling, as 
the first observed packet in a flow triggers the creation of 
a new circuit. For TCP connections, the first packet is 
most often a SYN or a SYN+ACK packet.2 Circuits are 
removed by a TCP FIN packet (the most common case), 
or by an inactivity timeout. Because in most cases TCP 
Switching re-uses the 3-way TCP handshake to establish 
circuits, there is little or no performance hit due to 
signaling. In the TCP example, the source sends a SYN 
message that traverses a cloud of TCP Switches sitting 
somewhere in the network. The SYN is intercepted by 
the ingress switch, which will first try to see if it has 
enough capacity on its outgoing link to carry a new 
circuit. If it does, it will simply start using the new 
capacity (for example, by filling an empty time slot, or 
using a new wavelength), and then forwards the message 

                                                                               
1 This figure is similar to the ones found by Paxson [16] and Labovitz et 
al. [17]. 
2 Unless there was a route change, or packet mis-sequencing, in the PS 
portion of the network. 

Table 1.- Characteristics of TCP flows in the current Internet 

  80%-percentile average median 

TCP flow duration < 4-10 sec < 3-7 sec < 0.5-1.2 sec  

Packets per  flow < 12 pkts < 10-200 pkts† < 5-9 pkts  

Bytes per  flow < 2.5-4 KBytes < 9-90 KBytes < 0.6-1.3 KBytes  

Bandwidth (=bytes/duration) < 50-100 Kbps < 20-140 Kbps† <8-15 Kbps  

% Flow with retransmissions < 7.8% < 5.6% < 4.7% 

% Flows exper iencing reroute < 0.19% < 0.39%† < 0.02% 

Asymmetr ical connections  
Around 40% of the flows transmit an ACK after the FIN, i.e. they are acknowledging 
a data packet that was sent in the other direction.  

.† This is because the tail of the distribution is very long and it has a lot of mass 



downstream to set up the circuit. The intermediate 
switches do the same; check for capacity on the outgoing 
link, then forward the setup message if the request is 
acceptable. If any switch along the path has insufficient 
capacity on its outgoing link for a new flow, it can simply 
drop the packet, or buffer it for a short time, dropping it if 
no capacity becomes available. 

Once the circuit is set up the SYN will reach the end 
host. The destination host will receive the SYN message 
as if it were a normal TCP connection. It will respond 
with a SYN+ACK, which will create a separate, 
independent circuit in the opposite direction. Once the 
handshake is complete, the TCP flow has its own private 
point-to-point circuit between the ingress and egress of the 
CS cloud.  

We believe the complexity of the TCP Switches can be 
made small. Most of the additional processing is 
performed by the ingress boundary router, and takes place 
once per flow, rather than once per packet. It must 
recognize the first packet in a flow, decide which outgoing 
link should be used (i.e. routing), and then determine if 
there is sufficient capacity on the outgoing link to carry 
the new circuit.   

Recognizing the first packet in a new flow requires a 
four-field, exact-match classifier. The routing decision can 
be made using the routing protocol already present on the 
router. The decision as to whether there is enough 
capacity to carry the new flow might be as simple as a 
counter representing the number of unused time slots or 
wavelengths.  

When packets arrived for existing circuits, the ingress 
boundary router must be able to determine to which flow 
and circuit the packet belongs (using the classifier). The 
size of the classifier is determined by the number of 
circuits on the outgoing link. For example, an OC192c 
link carrying 64kb/s circuits requires 156,000 entries in its 
table.  

At the egress boundary router, arriving data needs to be 
reassembled into packets (assuming they were broken into 
time slots. If they were carried on their own wavelength, 
then no reassembly should be needed). 

Because most flows are short lived, the circuit 
establishment and tear down must be really fast. Given the 
simplicity of the signaling, we believe this can be done in 
hardware.  

5. One example of TCP Switching 

There are a number of ways to design a TCP Switch. 
Table 2 shows some of the choices.  

We have been experimenting with TCP Switching via 
prototyping (in Linux) and simulation (using ns-2 [7]).  
We needed to make our own design choices in our 
experiments, and so list them here.  

The core circuit switches are assumed to carry 64Kb/s 
circuits to match the access links of most network users. 
High capacity flows use multiple circuits. In our design, 
we opt for in-band signaling, which requires a 
modification to the circuit switch. (Alternatively, out-of-
band signaling could be used, and would require no 
hardware changes to the circuit switch). We consider 

Table 2.- Some design choices in TCP Switching 

Choice One option Alternative option Notes 

Circuit 
establishment 

triggered by only TCP 
SYNs 

triggered by first packet seen in a 
flow (can be any) 

If there is a path reroute outside the TCP 
Switched cloud the SYN will not be 
observed. This is rare in practice 

Circuit 
release  

triggered by FIN (hard 
state) 

triggered by inactivity timeout (soft 
state) 

Neither is perfect. Connections with 
asymmetrical closings or with long 
inactivity periods can be severed 

Handling of 
UDP packets 

UDP traffic 
multiplexed through 
permanent circuits 
between edge routers 

UDP packets contain sufficient state 
to create a connection, too. If TCP 
SYNs are not used, UDP and TCP 
flows are treated the same way. 

UDP represents a small (but important) 
amount of traffic.  

Signaling in-band  out-of-band  
In-band signaling requires no additional 
exchanges, but it is more complex 

Routing of 
circuits 

hop-by-hop routing centralized or source routing 
A centralized algorithm can provide 
global optimization and path diversity.  

Circuit 
granular ities  

flat, i.e. all switches 
have the same 
granularity  

hierarchical, i.e. different switches 
have a different granularities  (in the 
core flows are bundled together) 

A coarser granularity means that the 
switch can go faster, as it has to do less 
processing  

 



circuits to be idle or active. Idle circuits are ones that have 
not been allocated to a flow, and so carry no data. When 
the first packet starts flowing on an idle circuit (not 
necessarily a TCP SYN packet), the circuit switch tries to 
establish a new circuit. This allows the switch to carry 
UDP flows without modification, and makes the system 
robust against re-routing of TCP flows (about 0.4% of 
flows are re-routed today). The routing information is 
present in the first packet (i.e. the IP packet header) and is 
used to find the next hop for the circuit using regular IP 
routing tables. If a circuit cannot be established, the data 
is dropped and the boundary router is required to detect a 
timeout.  

New flows are detected using a simple exact match 
classifier. The headers of arriving packets (IP addresses 
and TCP port numbers) are compared against a table of 
active flows to see if the flow belongs to an existing 
circuit, or whether a new circuit should be created. Given 
the duration of measured flows, we can expect the rate of 
the exact-match lookup to be approximately 31 Mpps and 
50,000 new connections per second for an OC192c link. 
This is quite manageable in dedicated hardware.  

Around 40% of the TCP flows have ACK packets 
arriving after the FIN. This happens because the 
communication in the other direction is still active, so it is 
unwise to close a connection right after seeing a FIN. 
Thus, we choose to use soft state, and wait until the 
connection times out due to inactivity. Interestingly, our 
simulations show that the performance is not very 
sensitive for a timeout value of around 60 seconds. This is 
similar to the results obtained for IP Switching [13].  

The admission controller (in the boundary router) 
queues the calls that cannot be accepted for a period up to 
1.5 minutes, which is half of the TCP connection 
establishment timeout value prescribed by RFC 1122 [4]. 
We have experimented with ways to determine the data 
rate assigned to a new flow, but this is beyond the scope 
of this paper. In brief, it could be obtained from a 
SLA/policy database or it could be carried as an option in 
the TCP header.  

6. Exper imentation 

We are implementing TCP Switches in three different 
ways. First, we have simulated a TCP Switched network 
using ns-2 [7], and have used it to study the overall 
performance of a network that includes TCP Switching, 
the users’  response times, and how TCP congestion 
control mechanisms perform.  

Most interestingly, we have found that there are quite a 
few conditions under which CS gives users a faster 
download response time than with PS, for the same 
network topology; for example, when there is low 
variation in file sizes on a web server, and many 

contending clients, or also when the peak flow rate is 
much smaller than the link data rate. We have been able to 
confirm this theoretically, and will describe it in an 
upcoming paper.  

We have also implemented an ingress boundary router 
as a kernel module in Linux 2.4 on a Pentium III operating 
at 1GHz. We measured the increased forwarding delay for 
each packet: regular IP forwarding takes 17 � s, and the 
addition of a (fairly inefficient) classifier and output 
packet scheduler for PS style QoS, increases the delay to 
77 � s. On the other hand TCP Switching forwarding takes 
between 17 and 25 � s, and the circuit setup time in 
software is about 57 � s. These figures indicate that the 
performance of a TCP Switching boundary router is 
comparable to that of a regular router. Of course, we 
expect these numbers to be much reduced if implemented 
in dedicated hardware, and so we are just starting on an 
FPGA-based implementation.  

7. Previous work 

Recently several researchers have described the 
integration of IP and circuit switching in the core. There 
have been three main approaches to define signaling 
mechanisms that would add dynamism to the 
establishment and release of SONET/SDH circuits. They 
are MPLamdaS [10], OIF [11] and ODSI [12]. These 
three working groups provide the control mechanisms, 
and it is left up to the vendors to define how to monitor 
the traffic, what triggers the circuit establishment and how 
to allocate the bandwidth.  

There are two architectures that try to address this 
decision making. The first one is optical burst switching 
[14], which queues packets up to a threshold, and then 
establishes a circuit with an explicit connection release 
time, also known as a burst. In the second one, 
Veeraraghavan et al. [15] define an end-to-end, circuit-
switched network that is parallel to the packet switched 
Internet. Only big file transfers are transmitted through the 
CS network.  

Our approach differs in the sense that TCP Switching 
re-uses the connection establishment mechanism to create 
a circuit for each flow (TCP, UDP or other type). We 
exploit the connection-oriented nature of the current 
Internet. We create a circuit only when (and as soon as) a 
flow starts, and we maintain this circuit until the moment 
the flow ends. In this respect, TCP Switching is most 
similar to IP Switching [13] in which user flows triggered 
the establishment of ATM virtual circuits.  

8. Conclusions 

New optical technology is being used to build very 
high capacity circuit switches. While these switches are 



already being used to replace SONET switches, it is not 
yet clear how we should control these circuit switches.  

We have explored whether it might make sense to 
establish a new circuits for each application flow. At first 
glance, such fine granularity would appear to be expensive 
and impractical. It uses links inefficiently, seems to 
require complex processing and signaling, the 
maintenance of lots of hard state, and to suffer from poor 
robustness.  

We agree that links are used inefficiently; but with the 
increased over-provisioning of link capacity, and with the 
difficulty of building high performance packet switches, 
we believe this might be the right (and possibly only long-
term) tradeoff to make.  

We believe that the signaling can be kept very simple if 
the first packet in a flow triggers the establishment of a 
new circuit, and that the processing is quite doable in 
dedicated hardware. The per-flow state consists of a 
mapping from flows to circuits; and the number is small 
enough to maintain in on-chip memory, even for OC192c 
links. Hard-state can be avoided by using inactivity 
timeouts for each circuit.  

TCP Switching relies on the observation that almost all 
traffic today is carried in end-to-end connections; and 
there is no reason to think this will change. Given that the 
control mechanisms already exist to establish and remove 
TCP connections, why not use these same mechanisms to 
establish circuits?  

TCP Switching provides one evolutionary path to 
exposing circuits to IP. Our experiments suggest so far 
that circuit switching can lead to lower response times for 
network users, and that TCP Switching is relatively easy 
to implement in a boundary router or in a core switch.  

But given the controversy surrounding this topic, and 
the incompleteness of our work, we expect this is just one 
contribution to the ongoing debate.   
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