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Real-Time Mental Arithmetic Task Recognition
From EEG Signals

Qiang Wang and Olga Sourina, Senior Member, IEEE

Abstract—Electroencephalography (EEG)-based monitoring
the state of the user’s brain functioning and giving her/him the
visual/audio/tactile feedback is called neurofeedback technique,
and it could allow the user to train the corresponding brain
functions. It could provide an alternative way of treatment
for some psychological disorders such as attention deficit
hyperactivity disorder (ADHD), where concentration function
deficit exists, autism spectrum disorder (ASD), or dyscalculia
where the difficulty in learning and comprehending the arith-
metic exists. In this paper, a novel method for multifractal
analysis of EEG signals named generalized Higuchi fractal
dimension spectrum (GHFDS) was proposed and applied in
mental arithmetic task recognition from EEG signals. Other
features such as power spectrum density (PSD), autoregressive
model (AR), and statistical features were analyzed as well.
The usage of the proposed fractal dimension spectrum of EEG
signal in combination with other features improved the mental
arithmetic task recognition accuracy in both multi-channel and
one-channel subject-dependent algorithms up to 97.87% and
84.15% correspondingly. Based on the channel ranking, four
channels were chosen which gave the accuracy up to 97.11%.
Reliable real-time neurofeedback system could be implemented
based on the algorithms proposed in this paper.

Index Terms—Brain state, electroencephalography (EEG),
fractal dimension, mental arithmetic task, neurofeedback.

I. INTRODUCTION

ODERN electroencephalography (EEG) devices pro-

vide us a convenient way to monitor human brain
activities in real-time as recently, EEG devices became wireless
and portable. EEG devices like Emotiv [1], could be used easily
in real-time applications as EEG data are transmitted through
the Bluetooth, and such device could be setup within minutes.
The convenience of the EEG technology has boosted further
development of EEG-based applications such as brain—com-
puter interfaces (BCls) [2]-[6], neurofeedback systems [7]-[9],
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and brain function training [10]-[12] and performance training
systems [13].

Neurofeedback games could be used for training of different
brain functions. Mental arithmetic task recognition from EEG
in real-time could be useful for patients with psychological dis-
orders like dyscalculia where the difficulty in learning and com-
prehending the arithmetic exists [14], attention deficit hyper-
activity disorder (ADHD) [15], and autism spectrum disorders
(ASD) [9] where attention deficit problem exists. It is also fea-
sible to build a neurofeedback system based on mental arith-
metic task recognition algorithm for healthy adults to improve
their working performance. Similar approach could be used for
the concentration training of drivers or nuclear facility operators
as well.

In previous works, mental arithmetic task recognition and
training systems were mainly based on EEG power spectrum
density (PSD) calculation [16]-[18]. For example, in [16], de-
crease at lower beta band within the left parietal cortex was
associated to a sign of retrieval of arithmetic facts from long
term memory. In another work [17], significant changes in alpha
band and beta band were reported when the subject was doing
the mental arithmetic task. Besides PSD features, autoregres-
sive model (AR) coefficients were also successfully applied for
mental arithmetic task classification in [19].

Although, the power spectrum based features of EEG signals
were well applied in EEG related researches like arithmetic
recognition, those linear features may not characterize nonlin-
earity of brain activities. Nonlinear analysis of EEG signals
could afford more information from different aspects [20]. In
our work, fractal dimension models are used to quantify the
complexity of EEG signals to represent the dynamic properties
of brain activities. Nonlinear FD features have been proven
effective in EEG studies [21]-[24]. Compared to the linear
PSD features, fractal dimension features could perform better
in EEG-based applications such as emotion recognition [25],
neurofeedback [26], [27].

In this work, we designed and implemented an experiment
on induction of mental arithmetic task and relaxed states. We
proposed generalized Higuchi fractal dimension spectrum
(GHFDS) to analyze the multifractality of EEG signals and
applied it in the mental arithmetic tasks recognition. AR
features [19], statistical features, PSD features, and GHFDS
features were extracted to analyze the recorded EEG data. The
features and its combinations were analyzed. It was shown that
using the GHFDS features in combination with other features
could enhance the mental arithmetic task classification rate.
The possibility of reducing the number of channels used in the
mental arithmetic task classification was discussed.

1534-4320/$31.00 © 2012 IEEE
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TABLE I
MENTAL TASKS CLASSIFICATION ACCURACY FOR ALL SUBJECTS
(32 PRINCIPAL COMPONENTS WERE USED)

Subject Gender Efficiency Accuracy Std
1 Female 30 100% 0
2 Male 16 91.89% 11.59
3 Female 22 100% 0
4 Male 24 98.42% 3.16
5 Male 23 97.89% 421
6 Male 20 97.78% 4.44
7 Male 24 98.04% 241
8 Male 28 98.22% 3.56
9 Female 17 100% 0
10 Male 54 89.13% 7.10

II. METHOD

A. Mental Arithmetic Task Experiment

Mental arithmetic tasks experiment was organized for 10 sub-
jects aged from 22 to 30. In order to minimize the impact of the
subjects’ intelligence level, postgraduate students and research
staff were chosen as participants of the experiment. Two mental
tasks for relax and arithmetic operation were arranged respec-
tively following the standard procedures [16],[20]. Each subject
had two sessions. Each session had either relax or mental arith-
metic task. Each session lasted 2 min. In the relax task, subjects
were asked to open their eyes and try to be relaxed. There was no
mental arithmetic task to fulfill in this session. Subjects were re-
quired to breathe deeply and focus on their breath. In the mental
arithmetic task, subjects were required to complete arithmetic
calculations as quick as possible. Totally, 100 three-digits addi-
tion problems, (for example, 752 4+ 464) were printed and given
to each subject to make sure it is enough for the 2 min session.
The subjects did not need to write down the answers to avoid
additional movements of their head and body. The number of
arithmetic problems solved by each subject in 2 min is listed in
Table I as the “efficiency” column. During each session, EEG
signals were recorded for further processing and classification.

EEG signals from 14-channels were recorded by Emotiv de-
vice with 128 Hz sampling frequency and 16-bit A/D resolution.
The Emotiv device can be set up quickly and it is suitable for
real-time applications [6], [13]. The electrodes were placed ac-
cording to the extended 10-20 international system [28]. The
14 positions were AF3, F7, F3, FCS5, T7, P7, O1, 02, P8, T8,
FCo6, F4, F8, AF4. All positions and contacts of the Emotiv elec-
trodes were examined carefully before recording to make sure
that locations of the EEG sources are correct. EEG signals were
transmitted to computer with Bluetooth and were recorded with
Emotiv TestBench software.

The overall EEG processing procedure for mental arithmetic
task classification is shown in Fig. 1. The same procedure
was used in mental tasks classification in [19]. The EEG data
recorded in each session was divided into five nonoverlapping
trials in order to provide block wise partitioning of the data.
First, artifacts were removed with 2—42 Hz 324-order equiripple
FIR band-pass filter and notch filter as it was recommended by
Emotiv device designer and in [29]. Both filters were designed
with Matlab signal processing toolbox. Raw EEG signals were
normalized to zero mean and variance one. Normalized EEG

EEG raw signals
(2 tasks x 5 trials)
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Artifact removal

Artifact free EEG signals
(2 tasks x 5 trials)

EEG signals normalization
(zero mean and variance one)

Normalized EEG signals
(2 tasks x 5 trials)
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EEG signal segments
(2 tasks x 5 trials x 19 segments)

Feature Extraction

<

EEG features
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L
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Fig. 1. Flow diagram shows the overall procedure for metal tasks classification
using raw EEG signals.
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Fig. 2. EEG signals were divided into 4-s segments with the overlapping of 3 s.

signals were divided into 4-s segments with the overlapping of
3 s (as shown in Fig. 2). In each trial, 21 segments could be ex-
tracted. The first and the last segments in each trial were dropped
out to avoid overlapping between different trials. The remaining
19 segments were used in the classification. Segments contains
ocular artifacts detected with a fixed-weight leakage normalized
stochastic least mean fourth algorithm [30] are ignored. Totally
95 segments could be extracted at most for one session. Features
were extracted, and PCA method was used to construct the
feature space. One out of five trials is used for establishing the
classifiers’ parameters. Four-fold cross validation was used for
remaining four trials of the recorded EEG signals.
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B. Feature Extraction

In the feature extraction step, EEG frequency band power,
six order AR model coefficients, statistical features, and fractal
dimension features were extracted.

EEG frequency band powers were widely used in EEG anal-
ysis. Powers over ¢ band (2—4 Hz), # band (4-8 Hz), o band
(8-12 Hz), 31 band (12-18 Hz), 3> band (18-30 Hz), and v
band (>30 Hz) were estimated with periodogram method [16].
AR model was also successfully applied in EEG based mental
tasks classification [19] and other EEG applications [31]. Six-
order AR model was applied in this experiment and six co-
efficients were estimated as features. Statistical features were
well adopted in EEG based emotion recognition [32], [33]. In
this work, six statistical features were extracted, i.e., means of
the raw signal, standard deviations of the raw signal, means of
the absolute value of the first and second difference of the raw
signal, means of the absolute value of the first and second dif-
ference of the normalized signal.

Fractal dimension value is a standard quantification of self-
similarity of an object [34]. There is a well-known method for
estimating fractal dimension value of time series, i.e., Higuchi
method. In Higuchi method [35], the time series is first divided
into different subsequences according to the delay-time embed-
ding technique [36] as shown in (1). IV is the number of samples
in the signal

Xioa(),z(1+k), ...,z (1 + {%J k:)
X2 :2(2),2(24k),....z (2 + {%J k)
XFoak),e(k+k),.... ¢ (k:+ LJJ A) (1)

The average length L(k) of the time series is calculated by

|22

Li(m) = % [ Lz::l \x(m +ik) — z (m + (i — 1)k)]
=]
L{k) = Ly
(k) =+ 2231 Li(m) @
The relationship between L(k) and % is shown in
L(k) o k~HFD, 3)

Higuchi fractal dimension (HFD) has recently become a
commonly used tool in fractal dimension analysis of biomed-
ical signals. Biological systems exhibit a complex behavior
which cannot be characterized with single fractal dimension
value [37]. In our work, in order to quantify the multifractality
of EEG signals, Higuchi method was generalized to the form of
fractal dimension spectrum (named GHFDS) by indentifying
the scaling of the gth-order moments where the power-law de-
pends on the average subsequence length. The original Higuchi
method is using the first moment as ¢ = 1.

In our new GHFDS method, time-series is divided into sev-
eral subsequences in the same way as in Higuchi method in (1).
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Fig. 3. (a) Proportional relationship between L(k, q) and F'DS, for EEG
signal. (b) GHFDS of mono-fractal signal (fBM signal) and multi-fractal signal
(EEG signal), and CFDS of fBM signal.

In the average length calculation step, the order parameter ¢ is
introduced. The average length for the order g is calculated by

1
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The relationship between L, (%) and k is shown in
Ly(k) oc kP55, (6)

Fractal dimension methods could be tested on mono-fractal
signals such as fractional Brownian motion (fBM) signal [38]
or Weierstrass signals [39] where theoretical fractal dimension
values are known in advance and have the same fractal dimen-
sion values if different orders are used. The mono-fractal fBM
signal with FD = 1.67 was generated and used for the testing.
The GHFDS values of the fractional Brownian motion signal
and multi-fractal signal (EEG signal) were calculated by the
proposed generalized fractal dimension method described by
(4) and (5). In Fig. 3(a), the proportional relationship between
L,(%k) and FDS, for EEG signal is shown. The slopes are dif-
ferent when the order parameter ¢ changes from —30 to 30 that
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correspond to theoretical prediction. In Fig. 3(b), the fBM signal
and EEG signal have the same fractal dimension value of order
1 (FD = 1.67). The blue line is the calculated fractal spec-
trum GHFDS of the fBM signal where the red line is the cal-
culated fractal spectrum GHFDS of EEG signal (multi-fractal
signal). Compared to the generalized correlation fractal dimen-
sion spectrum (CFDS) [40], our GHFDS method could obtain
flatter spectrum for mono-fractal fBM signal which ideally has
to be a constant. The time complexity of GHFDS (O(n)) is also
smaller than that of CFDS (O(n?)).

In our experiment, six GHFDS values forg = 0, ..., 5, which
could quantify the scaling effects of the larger fluctuation [41],
were extracted to represent the multifractality of EEG signals.

C. Principal Component Analysis

Principal component analysis (PCA) is a quantitative method
for reducing the redundant information among all the observa-
tions. Some extracted features are strongly correlated to other
features, e.g., within statistical features there are features de-
pending on each other. PCA models can extract significant com-
ponents from the original data by mapping the data to the prin-
cipal component (PC) space [42]. The PCA model can be rep-
resented as follows:

X=TP'+E (7)

where X is the original data matrix. Each row of X represents
one observed sample. T' is the scores matrix which represents
coordinates in PC space. P is the loadings matrix which reveals
the relations between the original space and PC space.

In general, higher-order PCs represent the noisy. With appro-
priate PC selection strategy, reduced scores matrix (1) could
be used as new features. Loadings matrix () could be used for
transforming new data into PC space.

D. Classification

Support vector machines (SVMs) [43] were used for mental
arithmetic task classification.

SVMs are learning systems which are used in high feature
dimension classification. The aim of support vector machine is
to devise a computationally efficient way to calculate optimal
separating hyperplanes. The distance from hyperplanes to the
nearest sample point in each class is maximized. SVM with
radial basis function (RBF) as kernel was applied in mental
tasks classification. The dual form of the optimization problem
is shown in
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The RBF kernel function is shown in
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Fig. 4. Contours of validation accuracy for SVMs’ parameters (C, 7).

The parameter ~ in the kernel function and soft margin pa-
rameter C' were selected carefully on validation dataset with
grid-searching procedure [44].

All the classification results presented in this paper were
obtained on NEC PC platform with windows xp, matlab,
quad Q9400 2.66-Hz processor, and 4G RAM. LIBSVM [45]
package was used as SVMs implementation.

III. RESULTS

A. Classifier Parameter Selection

For SVMs with RBF kernel, two parameters (C and v) are
required to be optimized. Grid-searching technique is used for
choosing the best (C, ) pair in (C — ) plane on validation
dataset. The parameters for all SVMs are assumed to be the
same. In Fig. 4, the validation accuracy is demonstrated with
contour lines in (C—+) plane. The (C,v) = (2%,275) is chosen
due to the SVMs with this parameter pair can achieve the best
validation accuracy 89.0%.

For each segment of EEG data, totally 336 features were ex-
tracted. PCA method was used to reduce the dimension of the
feature space when all features were used. The principal com-
ponent loadings matrix (P) was calculated using the training
dataset, and then, it was applied to the testing dataset to ex-
tract the principal component coordinates. The number of PC
components used in the experiment is discussed according to
the classification success rate. Fig. 5. shows the boxplots for
mental arithmetic task classification accuracy based on different
number of principal components. The mean accuracy is marked
as the star symbol. Mean accuracy and standard deviation are
also displayed below each boxplot. The classification accuracy
based on features without PCA is also shown in this boxplot. If
the largest 32 principal components are used, the average classi-
fication accuracy is 97.14%, which is almost the same as when
all features are used (97.87%). In our algorithm, 32 principal
components were selected.

The mean accuracy of the mental arithmetic task classifica-
tion for each subject was evaluated using four-fold cross valida-
tion. The results are shown in Table I. The “efficiency” column
records the average number of math addition problems they
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solved during the “arithmetic” session. Subject 2 has the lowest
efficiency during the math test, and Subject 10 has the highest
efficiency. However, Subject 10 explained that he did not do the
calculation with care. It could be a possible reason that the clas-
sification rate of both Subject 2 and Subject 10 are worse than
that of the other eight subjects.

B. Feature Comparison

In our experiment, totally four groups of features were ex-
tracted for mental arithmetic task classification. Within these
features, EEG frequency band powers represent the power dis-
tribution in frequency domain. These features are commonly
used for EEG analysis in neurofeedback systems. AR features
are parameters in linear prediction model which reveal the rela-
tions between current sample and previous samples. Six statis-
tical features are common quantifications used in statistics that
represent the mean, standard deviation, and gradients. Higuchi
fractal dimension spectrum is used to quantify the complexity
and multifractality of the EEG epoch.

First, we analyze the loadings plot in PCA to compare dif-
ferent features. In Fig. 6, the loadings plot for PC1 and PC2 is
shown. In this figure, the average loadings matrix is analyzed.
The features of which the loadings distance to the origin (0, 0) is
larger than 0.03 are shown in the loadings plot. The features are
labeled with feature type and channel number. From the load-
ings plot, in general, statistical features have the most significant
influence to PC1 and PC2. However, using only two compo-
nents cannot get high classification accuracy, and the loadings
values for all features are relatively small and closed to each
other. The other features may also be important for arithmetic
mental task classification.

We also conducted a comparison between different types of
features by measuring the classification accuracy based on these
feature groups individually. The features comparison result is
shown in Fig. 7. In each test, all channels were used. Mean accu-
racy of the mental arithmetic task classification for 10 subjects
is listed. Statistical features obtained the best mean classifica-
tion accuracy 90.33%. AR model coefficients and GHFDS got
83.96% and 80.57% mean accuracy respectively which were
lower than that of statistical features but significantly higher
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than that of power features (67.07%). Combing all features to-
gether enhanced the classification accuracy significantly up to
97.87%.

C. Reduce Number of Channels

One of the aims of our work is to build a portable real-time
EEG based mental training neurofeedback system. Minimizing
the number of EEG channels used in mental tasks classification
algorithms would make the system more mobile and easier to
setup and maintain.

First, we ranked all 14 channels based on the mental arith-
metic task classification accuracy by using all features extracted
for each channel. Table II shows the rank of all channels ac-
cording to the mental arithmetic task classification accuracy.
Features from the channel F8 achieved the best classification
mean accuracy equal to 84.15%. This result is consistent with
the real-time FD value observations shown in Fig. 9 where the
scaled Higuchi FD values in frontal lobe are significantly dif-
ferent when the subject is processing arithmetic operations: the
subject has the lowest HFD in the relaxed session compared to
the highest HFD in the mental arithmetic session.
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TABLE 11
RANK OF CHANNELS FOR MENTAL TASKS CLASSIFICATION

Channels (10-10 System) Mean Accuracy Std
F8 84.15% 11.94
F3 82.15% 16.70
02 79.46% 15.82

AF3 78.42% 18.09
AF4 77.38% 14.78
F4 76.72% 21.97
P8 76.33% 20.54
0] 75.57% 20.72
FC5 75.56% 18.04
P7 75.41% 18.77
FC6 71.86% 21.31
F7 70.76% 22.30
T7 70.45% 21.23
T8 69.42% 18.78

Then, channels were selected according to the channel ac-
curacy rank shown in the Table II. For example, when four
channels were used in the algorithm, the following channels lo-
cated at F8, F3, O2, AF3 are selected. The features from the
selected channels were used in mental arithmetic task classi-
fication. The comparison of mean classification accuracy was
conducted when different number of channels for all features
(without PCA) was used. As it is shown in Fig. 8, the mean
classification accuracy increases when the number of channels
used in the experiment increased. However, if more than four
channels are selected, the accuracy would not be significantly
improved. Finally, for the mental arithmetic task recognition al-
gorithm, four channels located at F8, F3, AF3, O2 were chosen
as it gave 97.11% accuracy.

D. Time Complexity of Feature Extraction Methods

As our final objective is to build a real-time mental arith-
metic task recognition system, the time spent on the feature
extraction step should be reasonable. The algorithms for ex-
tracting PSD features, AR features, Statistical features, and
GHFDS features have time complexity O(nlog(n)), O(n),
O(n), and O(nlog?(n)), respectively. Then, time complexity

of extracting all features for one segment of the signal is
O(nlog?(n)). Extracting all features from one EEG channel
under MATLAB R2010a on a desktop with Core 2 Quad CPU
Q9400 @ 2.66 GHz and 3.25 GB RAM could be completed
within 400 ms. The feature extraction algorithms could be
used in real-time mental arithmetic task recognition systems
with four EEG channels. If all 14 EEG channels are used, a
suitable parallel computing framework, for example, frame-
work MapReduce [47] could be applied. Applying parallel
computing frameworks on clusters would help accelerate the
feature extraction process.

IV. DISCUSSION

In Section III, four groups of features were extracted from 14
EEG channels, and the classification accuracy was analyzed.
Classification parameters were selected by grid-searching in
(C — ) plane. 32 PCA components were used to reduce the
dimension of the feature space when all features were applied.
In such case, the applicable classification accuracy could be
maintained. In this work, the proposed algorithms are sub-
ject-dependent ones. We trained a specific SVM model for each
subject. When all features and all channels were used, PCA
method was applied to reduce the number of features.

GHFDS method was proposed for EEG data analysis, and it
was applied for mental arithmetic task classification. FD values
could quantify the complexity of the EEG signals. The com-
plexity of EEG signal recorded in frontal lobe is higher when
subject is performing the mental arithmetic operations than that
of EEG signal recorded when the subject is relaxed as it was
seen from Fig. 9. This observation is consistent with the exper-
iment results that the F8 channel is the best channel for mental
arithmetic task classification.

Neurofeedback systems based on mental arithmetic task
classification algorithms could be used for treating dyscalculia,
ADHD, concentration training and performance enhancing
with content of games. The features commonly used in neuro-
feedback games are EEG frequency band powers [16]-[18].
In [16] and [17], the correlation between PSD features and
mental arithmetic tasks was reported. In [18], classification of
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Fig. 9. Real-time Higuchi FD value comparison for two mental tasks. The left
color map shows the scaled Higuchi FD value of the subject’ brain when he is
relaxed. The right color map shows the scaled Higuchi FD value of the subject’s
brain when he is doing arithmetic operation.

mental arithmetic tasks with different difficulty levels was im-
plemented. EEG frequency band powers were used as features.
83% classification accuracy was reported for two brain states:
the state of performing the most difficult mental arithmetic
task and the relaxation state using 16 channels. In Fig. 7, it
was shown that mental arithmetic task classification accuracy
could be enhanced when other features were used together
with EEG frequency band powers. Here, accuracy of two brain
states recognition (mental arithmetic task and relaxation state)
improved from 67.07% with PSD features to 97.87% with all
features including PSD, GHFDS, AR, and statistical features
using 14 channels. In [19], AR features were used for five types
of mental tasks recognition with six EEG channels. In our ex-
periment, combination of AR features with PSD, GHFDS, and
statistical features gave better performance in mental arithmetic
task recognition than just using AR features. The classification
accuracy for two mental states recognition was enhanced by
13.91% (from 83.96% with AR features to 97.87% with all
features).

Using less EEG channels in real-time EEG-based applica-
tions is another option for reducing the cost in feature extraction
process. Systems could also be set up much easier and faster.
Meanwhile, with an algorithm based on more EEG channels, ap-
plications accuracy could be compromised if any channels were
found not activated. Thus, systems based on less EEG channels
could be more robust. The tradeoff between reducing number of
EEG channels and maintaining the classification accuracy en-
couraged us to conduct a channel ranking analysis described in
Section III-C. Using only four channels which have the highest
ranking as it was shown in Table II could maintain good mental
arithmetic task classification accuracy.

Emotiv device with 14 channels was selected as the equip-
ment for the experiment. This device can be easily set up
without any professional help within short time and can be used
for different real-time EEG-based applications. When using the
Emotiv device in research, connections of the EEG electrodes
should be checked carefully before recording the data. EEG
signals are filtered by high order band-pass filter as it was
suggested by [29], [46]. Removing ocular artifacts in real-time
is still the challenging task. Currently, we are discarding the
EEG segments containing the ocular artifacts detected with the
fixed-weight leakage normalized stochastic least mean fourth
algorithm. Further efforts could be made to correct the EEG
signals recorded with eye movement and blinking artifacts.

The proposed algorithms are subject-dependent and need a
training session last for 2 min for a new user. Subject-inde-
pendent algorithms for real-time mental arithmetic task recog-
nition could be studied in the future work to reduce the set
up time cost introduced by the training session. In the sub-
ject-independent algorithms, SVM models would be trained by
larger EEG database and classified by different parameters (age,
gender, etc.) first. The user is required to input several param-
eters, like gender and age. A suitable SVM model with similar
parameters would be selected for real-time mental arithmetic
task classification.

V. CONCLUSIONS

In this paper, we first designed and implemented the EEG
based arithmetic mental task experiment with Emotiv device
for 10 subjects. After preprocessing the data, four groups
of features, i.e., statistical features, AR model coefficients,
PSD features, GHFDS features were extracted for the mental
arithmetic task classification. Grid-searching technique was
used for selecting SVM parameters. First, we proposed mental
arithmetic task classification algorithm based on 14 channels.
Four groups of features were extracted and 32 PCA components
were selected. The mean classification accuracy of 97.14% was
achieved. Among all four groups of features, algorithms based
on statistical features had the best accuracy compared to other
three groups. Using all four groups of features enhanced the
accuracy up to 97.87%. One channel located at F8 gave the best
mean accuracy equal to 84.15% using all features. Four chan-
nels located at F8, F3, 02, AF3 gave the mean classification
accuracy 97.11% using all features. The possibility of applying
the proposed four-channel mental arithmetic task classification
algorithm in neurofeedback systems was also discussed. High
accuracy of the mental arithmetic task classification algorithm
could enhance the efficiency of neurofeedback systems.
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