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Attractor Landscapes and Active Tracking: The 

Neurodynamics of Embodied Action

Mario Negrello, Frank Pasemann
Fraunhofer Institute for Intelligent Analysis and Information Systems, Sankt Augustin, Germany

Behavior is the product of three intertwining dynamics: of the world, of the body and of internal control

structures. Neurodynamics focuses on the dynamics of neural control, while observing interfaces with
the world and the body. From this perspective, we present a dynamical analysis of embodied recur-

rent neural networks evolved to control a cybernetic device that solves a problem in active tracking.

For competent action selection, agents must rely on the attractor landscapes of the evolved networks.
Insights into how the networks achieve this are given in terms of the network’s dynamical substrate,

which highlights the role of the network’s inherent attractors as they change as a function of the input

parameters (sensors). We introduce some terminological extensions to neurodynamics to allow for a
more precise formulation of how attractor changes influence behavior generation: in particular, attrac-

tor landscapes, which are the space of all attractors accessible through coherent parametrizations of

the network (input stimuli), and the meta-transient, which resolves behavior by approaching attractors
as they shape-shift. We apply these concepts to the analysis of interesting behaviors of the tracking

device, such as temporal contextual dependency, chaotic transitory regimes in moments of ambigu-

ity, and implicit mapping of environmental asymmetricities in the response of the device. Finally, we
discuss the relevance of the concepts introduced in terms of autonomy, learning, and modularity.

Keywords neurodynamics · dynamical systems · active tracking · chaos · recurrent neural networks ·

cognition

1 Introduction

1.1 Attractor Landscapes and Behavior

How many behaviors does an agent have in stock? A
starting point for assessing this question might be the
observation that behavior is the product of three inter-
twining dynamics: of the body, of the environment,
and of internal control structures (Varela, 1979).
Clearly, the complexity of behavior can originate in
any one of these sources or in all three; as Simon
(1969) pointed out, the complex path an ant takes

might be a function of the surface it walks on, the
ant’s body, or its neurons. The complexities of behav-
ior resulting from the environment and body physics
are easier to observe and explain, but the complexities
ensuing from neural control remain, to a large extent,
mysterious.

So, let us consider that control structures are
responsible for behavior, immersed between the dynam-
ics of the body and of the environment. Neurodynamics
(Negrello & Pasemann, 2008; Pasemann, Steinmetz,
Hülse, & Lara, 2001) as a theory provides tools,
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extended from dynamical systems theory (DST), for
the analysis of dynamical entities resulting from embod-
ied control structures. Discrete time recurrent neural net-
works (RNNs) implement control of the embodied
agents studied here. When parametrized1 by the input,
RNNs are in fact a collection of dynamical systems, in
which a large repository of dynamics might be encoun-
tered. We call the dynamical repository given by one
RNN and its possible parametrizations the “attractor
landscape.”

We argue that meaningful behavior results from
the exploitation of multifaceted dynamical entities
by transients. In DST, transients are defined as the
sequences of states of a dynamical system in phase
space before asymptotic states (attractors) are reached.
However, during behavior it is unlikely that transients
are given time to settle on one attractor, because of
ever-present feedback, both from the body (as in prop-
rioception) and the environment (exteroception, stim-
uli). Rather, behavior hops under their influences and,
regarding the input to the system as parameter
changes, both in the form of feedback or perturba-
tions, results in the realization of a class of dynamical
systems, upon which parametrizations the attractor
landscape is dependent. Therefore, we find it informa-
tive to think of behavior as happening on a “meta-
transient.” In contrast to a transient, which approaches
an attractor in one dynamical system, a meta-transient
is, roughly, the transient that is subject to varying par-
ametrizations (changing stimuli) and therefore to dis-
tinct dynamical systems. In other words, the meta-
transient explores the basins of attraction as they
change (in size, number or shape) under the influence
of the changing stimuli, internal state, and situations.
In fact, our thesis is that behavior can be regarded as
being generated by a meta-transient across the attrac-
tor landscape of a parametrized dynamical system (an
RNN) that acts non-trivially through parameter shifts.

The multifarious characteristic of behavior is then
a consequence of the changes in attractor structures of
the activity space that influence the meta-transient.
Because the portions of the attractor landscape acces-
sible by the network change as a function of the input,
so does the overlying meta-transient. Moreover,
although in principle attractors fit into a small number
of categories (fixed-points, cyclic attractors, quasi-
periodic attractors, and chaotic attractors), their char-
acteristics are far from exhausted by this categoriza-
tion. In some sense, the shape of an attractor is its

identity.2 Therefore, an RNN might contain a poten-
tially immense number of different attractors (Berry &
Quoy, 2006). Regarding the attractor landscape as a
result of input, attractors approached by transients
might either change smoothly (which we later refer to
as attractor morphs) or “catastrophically,” depending
on whether a bifurcation boundary is crossed. Here,
we also introduce the notion of “paths in parameter
space.” Intuitively, these are sequences of stimuli that
are correlated through embodiment and the environ-
ment, which is structured and coherent. The implica-
tions of this terminological refinement are exemplified
by the results to come.

In an embodied agent, the transients are driven by
the input to exploit the dynamical substrate of an
RNN as a scaffold for behavior expression (Beer &
Gallagher, 1992). In what follows, we demonstrate
empirically how this exploration can occur, using a
toy problem in active tracking. The goal of the depic-
tions included is to highlight the dynamical entities as
reductionistic concepts for the explanation of behav-
ior. However, before the introduction of the problem
itself, we review some necessary neurodynamics ter-
minology, while introducing some new terminology.

1.2 Definitions

We look briefly at the definitions of the terms that
appear most often in the article. For more detailed and
comprehensive formalizations of parametrized dynami-
cal systems and related concepts, we refer to Pasemann
(2002).

By assumption, we (and others) consider input to
the network to be equivalent to parametrizations,
which change slowly in comparison with the dynam-
ics of the network. In an embodied problem, these par-
ametrizations carry the structure of the interactions.
So, following Varela (1979), we write “structural cou-
pling” (�) of the agent (�) and environment (�) at a
given moment (t) as leading to (�) a set of parame-
ters (ρ) to the control structure, the RNN:

��� ��t � ρt. (1)

A “path in parameter space” � = (…, ρt – 1, ρ,
ρt + 1, …) refers to the temporal sequence of parameter
changes resulting from the structural coupling with
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the environment, where the reticences before and after
the parameters stress the ongoingness of behavior.

In a parametrized RNN, such as those we handle
here, every parameter defines a distinct “dynamical
system” �ρ. We note that a discrete time dynamical
system is a map that takes a state in phase space to the
next. So, one parameter (ρ) given by the interaction of
� and � will take state st to st + 1:

�ρt
(st) st + 1. (2)

Any state s of the network’s activity in phase
space might, or might not, have reached an “attractor.”
An attractor of a dynamical system is an asymptotic
state. A dynamical system might possess “coexisting
attractors,” in which initial conditions in different
basins of attraction will lead to distinct attractors. The
denomination of the state of a dynamical system before
the attractor is reached is the “transient state.”

It is worth noting that when the network has
motor efference, a transient may also be a functional
state, which produces a change in the state of �, possi-
bly an action, changing the relations between � and �,
as in Equation 1, recursively resolving subsequent
parametrizations. However, it is not necessary that the
network should only produce behavior if an attractor
has been reached. If the state of the network is con-
stantly projecting to motor output, a transient state
might also produce an action. Therefore, the path in
parameter space � is determined by the sequence of
interactions between the agent and the environment,
which, although influenced by the attractors, is not
strictly a function thereof.

Consequently, the “meta-transient” � is simply
the set of states of the network in phase space as it is
constrained by the structural coupling and its respec-
tive parametrizations, � = (…, st, …). However, this
can be rewritten so as to outline the fact that the states
are dependent on the application of the map �ρt

 with
the parametrization that changes over time:

� = […, �ρt – 1
(st – 1), …]. (3)

Note that a “bifurcation” is a region of structural
instability, where the dynamics of two neighboring
dynamical systems have qualitatively different attrac-
tor sets. Paths in parameter space � can be within or
across the bifurcation boundaries. In the first case,
attractors undergo smooth changes or “morphing,”

while bifurcation boundary crossings lead to qualita-
tively distinct dynamical behavior.3 To illustrate this,
in Figure 1 we have plotted a bifurcation sequence
respective to the change of input to neuron (θ2) of an
example two neuron network.4

Above this bifurcation diagram, we show a plot of
the Lyapunov exponent respective to it, which, when
positive, indicates chaotic attractors.

The dynamical substrate mentioned in the Section 1
is the attractor landscape of an RNN, which is deter-
mined by its structure (i.e., the weights and biases of
one RNN and its possible input parametrizations,
which, as we have seen, are constrained by the struc-
tural coupling between an agent and its environment).
We assume that the structural variables of the network
(weights and biases) remain fixed for the duration of a
trial. For instance, the bifurcation sequence of Figure 1
is the projection of the attractor landscape along the
dimension of θ2.

Consequently, for one embodied network with a
fixed structure, the agent will do that which the net-
work structure plus parametrizations allows; the agent
will act according to its attractor landscape subject to
paths in parameter space. The attractor landscape is, so
to speak, the behavior invariant of the embodied agent.
In other words, the capacity for behavior is given by the
attractor landscape and the interaction with the envi-
ronment. In the following sections, we aim to substan-
tiate this claim.

1.3 Toy Problem in Active Tracking

To illustrate the relevance of the concepts mentioned
above, we present a toy problem in active tracking, in
which evolutionary robotics (Harvey, Di Paolo, Wood,
Quinn, & Tuci, 2005) methods beget the structural
parameters of the networks (weights and biases). Simply
put, the problem is that a cybernetic head should be
able to follow, with its gaze, a ball that bounces irreg-
ularly in a two-dimensional plane (i.e., within a frame;
see Figure 2). The primary problems of the head are to
know in what direction to turn and with what velocity.
A secondary problem is to actively search for the ball,
in case it is lost from sight.

Our problem then is to discover the dynamical
entities that allow the network to do this. That is, the
focus of the analysis is to see how the meta-transient
might hop between attractors while attractors change
as a function of changing input patterns, and how

→
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Figure 1 Bottom: Bifurcation sequence for a two-neuron network parametrized by input to unit 2 (θ2). We plot the
mean output activity of the two neurons. As the parameter is varied, the network undergoes qualitative changes in dy-
namical regimes. The scattered dots are transient states (first 300 iterations), and the thick lines belong to the attractors
(next 100 iterations). The region around the dashed line has a period 5 periodic attractor. Close to bifurcations, the
smearing of gray dots indicates longer transients. Top: The associated Lyapunov exponents where positive values indi-
cate chaos. Around θ2 = 4, a chaotic attractor coexists with a period 5 attractor.
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the projection of attractors becomes proper motor
action.

The main motivation for this formulation is to have
a highly dynamical problem where embodiment by
necessity plays a fundamental role. In the case under
study, inertial factors are crucial components of behav-
ior, which impact on the dynamics of the sensory motor
loop. In this way, we can observe the behavior that
occurs between attractors, in the meta-transient.

In Section 3, we describe in more detail the useful
characteristics of problem solving employed by the
evolved networks, and the respective dynamical enti-
ties responsible. Here, we outline the dynamical fea-
tures of the tracker’s problem solving that are
addressed in Section 3.

1. The projections of the high-dimensional attractors
onto the motor units are at the core of the solu-
tion. We speak of projection shapes as the action
identity and indicate how morphing may also be
responsible for proper action selection.

2. Control is established by negative feedback, where
the control signal is provided by the environment;

the action is supported by the attractor landscape,
which determines the amplitude of the oscilla-
tions.

3. The agents display temporal context dependency.
We show that there may be two coexisting attrac-
tors associated with one parametrization of the
network, and that these attractors may lead to dif-
ferent actions; a path in parameter space usually
keeps the meta-transient under the influence of
the same basins of attraction.

4. Robustness to errors and mismatches appears
because of multiple possible network responses
that generate similar actions to a given pattern.
This means that the attractor landscapes also have
redundancy in action. Conversely, there might be
different actions to one stimulus pattern in ambig-
uous circumstances. This may also be due to cha-
otic attractors in ambiguous regions of the attractor
landscape.

5. Using an analysis of the meta-transient, it becomes
possible to infer an implicit modeling of the physi-
cal characteristics of the environment, such as
gravity.

Figure 2 The simulated environment and the agent. The lines represent the distance sensors, where white means that
the ray does not encounter the ball. The head is mounted on a neck controlled by two motors for pitch and yaw (the dis-
tance from the head to the ball is 3 m).
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2 Methods

2.1 Description of the Problem

The toy problem here consists of a cybernetic tracking
device following a ball in a virtual environment (see
image of the environment and agent in Figure 2). The
task of the device (the head) is to track a ball that
bounces within a frame, keeping the ball in sight at all
times. The device is a head mounted on a neck, com-
posed of two motors for yaw and pitch. The input sen-
sors are an array of nine distance sensors that signal
linearly in the range 0 (nothing meets the ray) to 0.15
(ball closest to the head). The head is directed towards
a frame that constrains a ball, which hops erratically
in the two-dimensional plane. The ball is subject to
gravity and to the geometry of the frame. As men-
tioned, by design the ball does not lose energy as it
bounces. The head “sees” the ball as the interaction
between the distance rays and the ball. It is possible to
get an idea of the type of input to the head by looking
at Figure 3, where 15 sequential inputs gathered dur-
ing a trial are depicted (the input is analogous to a
nine-pixel retina). The simulated neck motors take the
desired velocity as input, up to a certain force [accord-
ing to the specifications of the simulation library of

rigid body dynamics used in the simulation, the famed
open dynamics engine (ODE); see Table 1 for other
physical properties of the simulation].

As is usual in evolutionary robotics, an evolution-
ary algorithm selects the RNNs according to a fitness
function defining the aptitude of the agent to solve the
prescribed problem. So, the objective of the head
(keeping the ball in sight) is reflected in the fitness
function: the more the agent is able to keep the ball in
sight (the sensor input accumulated over the trial time)
while minimizing oscillations, the fitter the network
(see Equation 4).

The fitness function of a trial for an individual
(“ind”) is

. (4)

Here, Ss(t) is the input at sensor neuron s at time t and
Mm(t) is the activation of the motor neuron m at t. The
first term (LT) denotes the sum of stimulus input per

Figure 3 A sequence of 15 frames of stimuli, gathered during an average trial. The stimuli are analogous to a nine-
pixel retina.
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Table 1 ODE simulation physics.

Entity Property Quantity

Head Mass 3 kg

Head Height 2 m

Yaw and pitch motor Maximum force 5 N

Yaw and pitch motor Maximum velocity 90° s–1

3 × 3 distance input array V and H distance between sensors 0.25 m

Ball Radius 0.5 m

RNN and physics Update frequency 100 Hz
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cycle, while the negative quadratic term (QT) aims to
minimize oscillations. α and β are parameters to
weight the terms and can be altered on-the-fly during
evolution, depending on the experimenter’s emphasis.
c denotes the number of steps or cycles in a single
trial. Note that all the knowledge the fitness function
requires is that about the motor activities, so all the
knowledge of the fitness function is also available to
the agent.

The model used in the experiments is a discrete
time RNN, with the hyperbolic tangent as the nonlin-
ear transfer function. The input layer is composed of
linear buffers and receives no backward connection.
In Appendix A we give the weights of two of the
evolved networks as examples.

(5)

Here, ai is the activity of the ith unit of the network,
the total number of units is n, and τ is a sigmoid func-
tion. In this case, the hyperbolic tangent, wij, reads i
receives from j with weight ditto. θs is interpreted as a
slowly varying input from the sensors. The sensors are
units 1–9, and the motors are 10 (yaw) and 11 (pitch).

2.2 Challenges for the Tracker

Although a toy problem, the solution is not trivial,
because of the dynamical physical simulation. Figure 2
shows a depiction of the environment, and the diffi-
culties arising from it are listed, as follows.

1. The head has to cope with rather meager input (a
mere nine distance sensors) and, moreover, every
pattern taken individually is ambiguous (is the
ball coming into or escaping from view?). Also,
even small changes in ball position relative to the
sensor rays might lead to large input changes
(e.g., in one cycle the input of one sensor might
drop from positive to zero, as can be seen in Fig-
ure 3).

2. The head’s foe, the bouncing ball, is designed to
bounce erratically as a result of being dropped
from different initial positions and because of
the different angles of the bottom platforms (see

Figure 2). For most initial conditions, the bounc-
ing trajectories of the ball are highly unpredicta-
ble.

3. By design, the ball does not lose energy as it
bounces, implying that when the ball bounces in
different positions of the side walls or bottom
platforms, it has very different velocities in the z
and y Cartesian axes. For example, when the ball
bounces sideways in the bottom of the frame, the
horizontal velocity is much higher than when it
bounces higher up in the frame. The ball is con-
stantly subject to gravity of 9.8 m s–2.

4. The network has no knowledge of the frame, so in
principle the head has no information about the
exit angle of the ball after it bounces against the
frame. This means that if the network has a stereo-
typical response to ball following (such as pure
asymmetry of the left–right weights), it is bound
to lose track, as observed in the first generations
(approximately up to 50 generations).

2.3 Evolution of Networks

For the artificial evolution, we use the ENS3 algorithm
(Dieckmann, 1995). The genome of the evolution is
the structure of the networks themselves. The varia-
tion operator adds or deletes units (neurons) and syn-
apses, as well as changing weights according to on-
the-fly specified probabilities. The experimenter can
also limit the number of units in the network, as well
as introducing costs for extra units. The selection of
the agent that generates offspring is rank-based. The
offspring production is a Poisson process controlled
by the shape of a distribution. This is done in order to
keep a high diversity of the networks.

All parameters of the evolution are alterable on-
the-fly (i.e., during the evolution itself; Huelse, Wis-
chmann, & Pasemann, 2004). In this way, the experi-
menter is enabled as a “meta-fitness,” selecting agents
not only by their raw fitness but also by remarkable
characteristics of behavior. The controllable parame-
ters are the weights of the terms of the fitness func-
tion, the shape of the distribution of offspring
production, the number of cycles of the trial, the
number of initial conditions (such as the initial posi-
tion of the ball), the number of neurons and synapses,
and so forth. Off-line parameters are, for example, the
frequency of the virtual simulation and the refresh rate
of the networks.

ai t 1+( ) wijτ aj t( )[ ]
j

n

∑ θs;+=

i j, 10 … n s;, , 1 … 9., ,= =
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2.4 Motor Projections of Attractors

Effective methods of analyzing small neural networks
for their dynamic capacity have shown how paths in
parameter space are able to change the behavior of the
network both qualitatively and quantitatively. The
presence of bifurcation boundaries in parameter space
illustrates how even slight changes of a parameter can
bring the networks to different dynamical regimes.
Unfortunately, the powerful mathematical methods
that can be used with very small networks become
very complicated with highly recurrent networks,
such as this one. Nevertheless, in an ambitious project
recently, a systematic analysis of the dynamics of
small continuous time RNNs has been advanced
(Beer, 2006).

Nonetheless, complex high-dimensional spaces
are not wholly intractable. Therefore, we rely on pro-
jection methods for the analysis, such as projecting
the many dimensional orbits to motor space according
to the definition of connected paths in parameter
space, which indicate bifurcations as well as attractor
morphs. Motor projections point to many of the rele-
vant aspects of the dynamical entities involved, and
provide for intuitive visualization of the meanings of
the meta-transients. Figure 8, for instance, depicts a
considerable part of the action set to the whole set of
possible inputs. Although this analysis sacrifices, for
example, the determination of precise bifurcation
boundaries, it nevertheless allows for a bird-eye’s
view of the totality of the agent’s action set.

Problem-specific knowledge can also simplify the
input dimensions. In our case, we reduce the nine-
dimensional input space to the two principal compo-
nents of the stimulus, which are the relative positions
of the ball to the sensory array in the horizontal and
vertical dimensions. This reduction has the added ben-
efit of showing how raw numbers of sensory input can
drastically be reduced by the mild assumption that the
changes in input space are correlated. This is because
both the embodied agent and the environment are
extended in the world, and so the inputs are never
scrambled. The possible configurations of the sensory
stimulus in our case are constrained to the possible
interactions with the rays and the ball, which define
the sensory manifold, and thereby all the possible
paths on the sensory space (as in Philipona, O’Regan,
Nadal, & Coenen, 2003). Through these defensible sim-
plifications, it became possible to analyze the “action

set” of the agent, despite the high dimensionality of
both the input and the internal states.

3 Results

3.1 Tracking Behavior Across Attractors

Competent behavior occurs when the head is able to
match its velocity with the velocity of the ball. This
requires modulation of both the direction and the force
applied to the motors. From the input alone, neither
direction nor force are decidable. So, in order to have
the best tracking, the past states also have to be taken
into account for the current action. This means that for
the optimal solution the system will also require mem-
ory, found in the internal states of the hidden layer. As
we see, it is the profile of the motor output wave that
modulates both the force and direction of the neck.
The choice of wave profile (the attractor translated
into a motor output time series; see Figure 5) for con-
trol is equivalent to the choice of an attractor invoked
by the sensory-motor loop.

3.2 Solutions

The first solutions (before the 50th generation) were
simple networks, which have been built upon during
the evolution of the more resourceful ones. These
primitive solutions used the asymmetry of the network
weights to lock onto the ball, where only the differ-
ence between the up and bottom sensors of the array
implied the direction input to the motor. A very obvi-
ous limitation of such networks is that they are unable
to actively search, rather remaining at fixed points
(i.e., remaining down left until the ball is again in
sight) or in a trivial oscillatory behavior. These primi-
tive solutions were gradually substituted by networks
that were able to solve the problem more robustly,
although aspects of the initial networks have also been
inherited by their descendants.

The agents inspected in the following sections
have the ability to never lose sight of an object under
normal conditions (e.g., unchanged gravity, same size
of ball). Many of the networks were not only selected
for their high fitness, but also for their observed behav-
ior in different conditions, for example, a smaller ball
and higher simulation frequencies (many subtle and
interesting properties are hard to define in terms of the
fitness function, for example, the search strategies
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when the ball moves out of sight). The networks
whose behavior was seemingly less stereotypical also
proved to have more diversity of supporting dynami-
cal structures. Nevertheless, the network’s size was
constrained in evolution to no more than six units in
the recurrent layer and a maximal of 120 synapses.

3.3 Analysis of Dynamical Entities 
Generating Behavior

Most of the analysis is performed in terms of the
asymptotic behavior of networks decoupled from the
sensory-motor loop of the simulation. Artificial stimu-
lus patterns, which represent interactions of the sen-
sors with the ball, lead to responses that are projected
onto motor space. This reduction has often been used
in such studies and allows an intuitive understanding
of the behavior of the network. It produces a picture of
the behavior in the case of constant input, and it
depicts the snapshot tendency of the meta-transient.
Moreover, to represent the motor actions the agent’s
body effectively impresses, we average the motor out-
puts (100 network steps), producing the average
amplitude of the motor outputs to verify the action
tendency in any given moment.

3.3.1 Velocity Modulation via Motor Projection of
Attractors For our analysis, we define the velocity
with which the head will move by the average of the
output of the motor units for a number of cycles. This
is seen in Figure 4, which shows a constant stimulus
input, the associated attractor, and an arrow represent-
ing the averaged output for both motors.

Figure 5 shows the period 4 attractor in a time
series of the motor output projections, in time, for both
motors. The output of the motor units is regulated by
the profiles of the activation curves for both motors,
and therefore by the shape of the motor projections of
the attractor. The amplitudes of the motor projections
determine the velocity imprinted to the motors.

In Figure 5, we also see that although the activi-
ties of the two motors (in any t) are dependent on one
and the same attractor, each motor reads different
aspects of it. So, although the activity of the network
is holistic, the motor efferences are independent read-
ings of this n-D attractor shape, as we have claimed in
the introduction.5

3.4 Attractor Landscapes

During behavior, the attractors that are projected to
motor actions are often not trivial. The network does
not simply associate a fixed point attractor in response
to a stimulus pattern, such as in a Hopfield network.

Figure 4 Left to right: stimulus pattern, the period 4 attractor itself, and the averaged output of the associated attractor
(the vertices of the polygon are the attractor’s states). In the middle box, the arrow indicates the direction of states in the
attractor.
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In fact, we find a rich portfolio of attractors, as can be
seen for example in Figures 6, 8, and 11. We observe
that for a large portion of the input patterns (con-
structed to represent interactions with the ball), the
natural asymptotic output of the network is some non-
trivial attractor, normally with high periodicity, quasi-
periodic orbits or chaos (see Lyapunov exponents in
Appendix A). This is also true for coexisting attrac-
tors, which exist for one and the same input pattern.
This is verified by randomizing the initial condi-
tions of the hidden layer and comparing the resulting
asymptotic states for one single stimulus pattern (as in
Figure 6).6 In support of our observations, unlearned
randomly connected RNNs with high recurrence have

been shown to possess many very informative states
(e.g., Berry & Quoy, 2006; Molter, Salihoglu, & Ber-
sini, 2007), as they use many different attractors to
translate different input patterns. Here, it is also the case
that the networks “freely” associate different types of
attractor to stimuli during the evolution, keeping a high
capacity for attractor storage.

3.4.1 Implicit Mapping of Environmental Asym-
metries It is easy to see that there is no one-to-one
mapping of a given input pattern to a velocity of the
ball.7 It follows that to be optimal (gaze locked with
the ball), the head has to use different velocities even

Figure 5 Temporal translation of an orbit on the period 4 attractor, for yaw (top) and pitch motors (bottom). The shape
of the oscillations evoked by the attractor defines the velocity arrow in Figure 4.

Figure 6 Plots of orbits on output phase space, for a series of different attractors for one and the same input pattern
and randomized initial conditions of the hidden layer [relative position of the ball (0,0)]. The z-axis tick is the number of
network iteration steps. The widely varying shapes of the attractors indicate distinct basins of attraction, and coexisting
attractors on the attractor landscape.
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when keeping the input pattern constant (although the
acceleration is constant). Therefore, the velocity of the
head has to be chosen by considering the recent veloc-
ity history in order to respond to gravity. For example,
in the case of a ball falling, in order for this to occur
the meta-transient has to approach attractors whose
motor projection increases as the ball accelerates. Fur-
thermore, as the input patterns are rather similar when
the ball is in sight, small paths in parameter space
have a very definite meaning.

This is indicated in Figure 7, which shows a plot
of the pitch projection of the meta-transient. Here, the
activations of the pitch motor unit were recorded dur-
ing a trial. The rigged profile of the transient is aver-
aged with a causal rectangular convolution window,
to represent the effected output velocity. We see that
the oscillations on the y-axis lead to a linear increase
of the averaged velocity of the tracker’s neck. This is
consistent with a linear velocity increase imposed by
gravity. This means that the network has implicitly
imprinted the interaction with gravity into its dynami-
cal substrate. The negative feedback was adjusted to
cope with the specific physics of the environment.

3.4.2 Attractor Landscape and Negative Feed-
back How is the agent able to accompany the ball
despite the increasing velocity? Rephrasing this ques-
tion in terms of the tendencies under which the meta-
transient is subject might give us some insight into

the mechanics of control. By plotting the squashed
projection of the output space as a function of the pos-
sible interactions of the input array and the ball, we
gain an outlook of the whole of the agent’s action set.

For each output unit, we plot the mean amplitude
of the respective motor projection for all the states in
input space, as in Figure 8. The figure is constructed
as follows. The coordinates of each pixel denote the
relative position of the ball in head-centered coordi-
nates. The color of this pixel represents the average
amplitude of the respective output unit given one
dynamical system, parametrized by the correspondent
interaction with the ball, in head-centered coordinates.
The center of the diagram (0, 0) denotes when the
center of the ball image coincides with the center of
the retina; that is, the relative position of the ball to the
retina, both in horizontal and vertical coordinates, is
zero (to see how the stimulus looks at the center of the
coordinate system, check the last state in the input
sequence in Figure 3, which is about the center). To
compute the action to every pixel, we proceed system-
atically by calculating the actions associated with the
pixels according to vertical scan lines. For every new
input pattern, we then calculate 300 steps in that orbit,
drop 200, and average the last hundred.8

Here, we describe how Figure 8 explains control.
For each stimulus (i.e., for each given initial condition
resulting from interaction between head and ball),
there is a single pixel that represents it, for each asso-
ciated output unit. Assume that for a small number of

Figure 7 A roughly linear increase and decrease of the pitch velocity of the head. The top row is the actual output of
the network. The second row is the convolution with a rectangular causal kernel of 10 steps (0.1 s), representing the av-
erage velocity implemented by the tracker. For the average velocity to increase, the meta-transient must be switching to
attractors of different shapes across the landscape.
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network iterations, the input remains similar. The
color of that pixel then represents roughly the action
of the agent, albeit not exactly, as it is dependent on a
temporal average, and the meta-transient might become
entrained in different states of the attractor. The sim-
plest example is as follows. When the ball is in the
precise (0, 0) coordinate, the action of both the yaw
and pitch motors is roughly zero. Assume the ball is
falling. If the agent does nothing, the sensory input
will change, and the ball will be lower in relation to
the center of the retina [e.g., coordinate (0, –0.3)].
This new situation will remove the agent from repose
and evoke a response of the pitch motor close to –1,
while the yaw remains at zero. However, because –1
is the largest velocity, the head will advance in com-
parison with the ball, for example changing the coor-
dinate to (0, 0.3), which will evoke a small upward
velocity. This process continues as connected paths of
parameter space (stimuli) are associated with attrac-
tors (motor actions). It should be clear that the actions
of the agent result from a negative feedback loop,
where the environment provides the control signal.
Gravity is encoded in the shape of the loose input-action

mapping of the attractor landscape, and expressed in the
sequence of states of the meta-transient.

It can be said that Figure 8 depicts the agent’s
“action space,” by showing what the velocity imprinted
by the motors would be, had the input been one given
input pattern, when the network is given enough time.
However, recalling that the ball dynamics does not
permit the network to settle on its final attractor lazily,
the picture should be read as a collection of input-
tendency pairs. Without enough time to settle on the
attractor, the behavior is the meta-transient that over-
lays the attractor landscape, as a function of the con-
nected path in sensor/parameter space.

It is also interesting to observe that the functional
characteristics of the individual projections on the out-
put dimensions (pitch and yaw) are strongly dissimi-
lar, although both are functions of the high-dimensional
space of the evolved network. Conceivably, this results
from the impact of the asymmetries of the environment
and of the ball’s behavior: in the vertical direction, a
bouncing driven by gravity, while in the horizontal
direction, a more constant velocity (contingent on the
wall bounces).

Figure 8 Depiction of the attractor landscape for the totality of the possible input space, on the left the pitch motor unit,
and on the right the yaw motor unit. Every pixel is a head-centered coordinate of the ball (the icons in the corners repre-
sent the interaction between the input array and the ball). The behavior of the agent can be seen as the meta-transient
relating paths in parameter space (see text for explanation).
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These landscapes varied considerably in the details
among the evolved networks, although the general char-
acteristics were present in all the successful networks.
That is, despite the randomization of the different evolu-
tionary runs that produced the networks, the evolu-
tionary path generated attractor landscapes that would
provide for a similar function. Moreover, the general
trend in evolution was one of complexification of the
landscapes: increased complexity of the underlying
attractor landscapes usually implied solutions that
were both more robust and resourceful (an aperiodic
active search, for instance).

3.5 Attractor Shapes and Action

The averaged motor projections of the attractors also
indicate that there are two features of the attractors
responsible for the action, where neither is preponder-
ant over the other (i.e., the attractor’s periodicity and
shape). Different periods might lead to similar average

speed, and conversely equal periods might lead to dif-
ferent outputs. This is clearly illustrated with the fol-
lowing series of chaotic and quasi-periodic attractors
in Figure 4, calculated for very similar input patterns.9

For the Lyapunov exponents of the respective stimuli,
please see Appendix A. Figure 4 shows the motor
space projection of the simulated asymptotic orbit on
the attractor, for 150 steps, with similar averaged
velocities. In the simulation, however, there would
probably not be such equality. As the actions during
the trials occur over a very short time, the average
speed might change depending on two factors: where
the transient starts and for how long it approaches the
attractor. This is particularly true for chaotic attractors,
in which transients might become entrained in differ-
ent positions. From Figure 9 we see that the attractor
has a definite shape and structure. However, because it
is aperiodic, the average over motor output will obvi-
ously vary depending on the time window taken for
computation. Nevertheless, it will only vary within the

Figure 9 The first-return map of a chaotic attractor for the yaw motor output indicates that despite the presence of
structure, the putative action of the agent will change depending on where the meta-transient engages the attractor.
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bounds given by the structure of the attractor itself
(i.e., depending on where the meta-transient engages
the attractor, and how long it remains under its influ-
ence).

3.5.1 Attractor Morph The attractors might also
change smoothly with paths in parameter space con-
tained within bifurcation boundaries. A meta-transient
guided through a morphing attractor might wind along
the attractor set, changing smoothly as the attractor
landscape is explored through parameter shifts. Fig-
ure 10 shows a morphing attractor given a particular
path in parameter space. Basically, the plot is the
exploded version of one vertical scan line of Figure 8,
where the output is not squashed in the average. The
z-axis represents the parameter path, corresponding to
the sensory input from the ball on the bottom of the
sensor to the ball on top. In other words, the z-axis in

the figure represents the relative position of the ball in
the vertical direction, keeping the horizontal constant.
The x- and y-axes are the motor phase space. Each
slice in z determines a dynamical system given the
corresponding parametrization (stimulus). For each
slice, we plot 45 steps, after discarding the first five,
of the projection of the orbit. The plot is in fact a
bifurcation diagram, where we plot the two output
dimensions as a function of the parameter, which is
the relative position of the ball.

We interpret Figure 10 as follows. We start, for
example, at the bottom of the z-axis with the relative ball
position on the vertical axis = –0.7 m (the relative posi-
tion on the horizontal axis is constant at –0.23 m). In this
situation, with the ball having a slight offset to the left,
the network starts with a saturated response of –1 in yaw
and –1 in pitch, and very low amplitude oscillations.
As the parameter in z is increased, meaning the ball
moves up relative to the input array, the amplitude of

Figure 10 Morphing attractor for a path in parameter space corresponding to a ball’s trajectory from bottom to top (z-
axis). For each parameter in z (the relative position of the ball on the vertical axis), the orbit is computed in phase space
and plotted as a z slice.
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the oscillations on the phase space increases smoothly.
The density and form indicate that the morphing attrac-
tor might be composed of quasi-periodic attractors. As
we continue to move up the z-axis (i.e., ball up), the
attractor smoothly saturates again on the maximum
pitch. Because these transitions are between bifurca-
tion boundaries, the shape of the attractor set is
smooth. It is also worth mentioning that this particular
solution was not the case for all the networks, despite
their apparent similarity in action sets.

3.5.2 Coexisting Attractors The presence of coex-
isting attractors is observed by presenting the same
stimulus but with randomized initial states of the hid-
den layer. In theory, two identical parametrizations
possess the same attractor structure, because they
resolve the same dynamical system. Theoretically, the
fact that two initial conditions lead to different attrac-
tors means that there are at least two attractors, each
belonging to a distinct basin of attraction, possibly
across an unstable manifold. When we observe differ-
ent orbits with the input pattern clamped constant (a
single dynamical system subject to one parametriza-

tion � ), we can conclude that there are coexisting
attractors for the dynamical system determined by that
parametrization. Coexisting attractors might play sim-
ilar or different functional roles, as discussed later.

In Figure 6 we see that the network might produce
distinct outputs when given one and the same stimulus
pattern, plus a randomized initial condition of the hid-
den layer. This indicates the coexistence of attractors
with different functional roles, because they produce
different average motor outputs as the arrows point in
different directions.

We compare Figure 11, where we plot the actual
attractors elicited during the trials (the activities of the
hidden layer were logged, allowing off-line recomput-
ing of the attractors visited during the trials). The
stimulus was the same for all the figures, but the ini-
tial condition of the hidden layer was taken from the
trials. The z-axis is the iteration step of the network,
so we can see the time series of the motor projection.
Note that, although the shape of the attractor noticea-
bly varies, the average outputs of the attractor (given
by the arrow plot beneath) are in this case very simi-
lar. This indicates distinct coexisting attractors, which
nevertheless play similar functional roles.

ρpattern

Figure 11 For each of the stimulus patterns, the motor output orbit is plotted in phase space (the z-axis is the iteration
cycle). Although five different attractors appear, they all lead to very similar actions (compare the velocity vectors of the
third row).
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Because the coexisting attractors are accessed in
accordance with the internal state of the hidden layer,
this invokes high context dependency. As the system
is sensitive to history, this implies a sort of transient
memory. Transient memory is an issue of current cog-
nitive dynamics research (as in, for example, Beer,
2008). The fact that there are coexisting attractors
implies that there are multistable states, and so differ-
ent actions can be elicited by one and the same stimu-
lus as a function of history.

4 Discussion

4.1 Transmission of Attractor Projections: 
Modularity

We have shown that the motor projection of the meta-
transient is the functional underpinning of the competent
behavior that the agent deploys. However, as discussed
in the introduction, and seen in the phenomenon of mor-
phing, the meta-transient can be said to draw shapes in
phase space, and also in the motor projections thereof.
Therefore, we may say that the shape of the attractor, at
least in the case shown, has functional significance, inas-
much as it is what determines the translation from shape
to actions in order to command the motors.

If it is correct to employ attractor shapes as one
explanatory feature of the theory of cognition, other
promising research fronts appear, such as, for exam-
ple, how attractors might communicate their meaning
(i.e., their identifying shapes) through transmission
bottlenecks (such as axonal pathways) to neighboring
modules. Here, modules (Pasemann, 1995) are taken
as the brain’s computational units according to some
criterion, which take afferent inputs and produce effer-
ent outputs.10,11 In this article, what modules project to
others is not the abstract high-dimensional space activ-
ity, but much simplified projections, with retrievable
coding schemes.

Identifying how transmissions carry the important
features of the attractors to and from other modules,
such as for example hyper-columns or back projec-
tions to the sensorial preprocessing, may produce
insights into how to evolve functionality modularly.
In other words, an approach based on the attractor
identities projected to smaller dimensions might give
insights into how to define neural interfaces of
dynamical exchange. However, in holistic systems,
the embodied brain attractors are never independent of

each other, because of massive efferent and afferent
connectivity between brain areas and modules, but all
the same, the messages they carry across can only be a
sample of the internal activity of these modules. A
requirement for pursuing this idea of modularity fur-
ther is whether it is at all feasible to disentangle the
attractors or whether it might be a lost cause (Watson
& Pollack, 2005). Nevertheless, many do think that
modularity in the brain is a pervasive characteristic
(Fodor, 1983), interfaces remaining to be defined
(Haugeland, 1995).

4.2 Learning as Deforming Attractor 
Landscapes

Neurodynamics defines learning as changes of the
network during behavior (i.e., variation of weights
according to synaptic plasticity rules). The networks
here were static; plasticity was not involved. This sim-
plification, which permits simpler off-line analysis,
has the disadvantage that all of the landscapes have a
rigid structure. In spite of this, active tracking as
defined here is a simple problem, and one that can be
solved merely with evolution. The selection process
can be seen as operating on attractor landscapes,
selecting those with the most useful action set.

In living beings, ecological problems are way
beyond the isolated function of tracking. One of the
essentials is learning. However, thinking in terms of the
dynamical substrates of the embodied RNN provides a
new facet to conceptualizing learning. We might say
that evolution begets initial parameter sets (instinctive
responses), while learning modulates them to extend
behavioral breadth (Sterelny, 2005). Stretching out the
analogy to the development of the central nervous sys-
tem of higher organisms, it could be said that the initial
structure has to carry those sets of conditions that allow
for the lodging of the “learnable” attractors, those that
the organism is able to learn. This provides a neurody-
namics interpretation of the Baldwin effect in terms of
the “learning capacity” of the underlying networks.
Selection will benefit those individuals endowed with
initial structures that are more malleable and permeable
to useful attractors landscapes.

4.3 Related Work

There has been much work carried out over the last 15
years on the topic of the dynamical systems analysis
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of evolved agents, pioneered in articles by, for exam-
ple, Husbands, Harvey, and Cliff (1993), Beer (1995),
Tani (1998), and others. Our contribution rests on the
shoulder of these seminal works, and presents a novel
toy problem on pan–tilt tracking, with high environ-
ment–sensory-motor dynamics and an analysis of
behavior based on evolved attractor landscapes (rather
than learned, as in for example Ijspeert, Nakanishi, &
Schaal, 2003), which gain a little more substance than
in the usual metaphorical usage (e.g., Banerjee, 2001).

With reference to the concepts of the meta-tran-
sient and attractor landscapes, the concept of chaotic
itinerancy (CI) advanced by Ikeda, Kaneko, Tsuda,
and others is worth mentioning for two reasons. First,
this has made great impact in the field of cognition and
brain dynamics (Tsuda, 1991, 2001), not only very
broadly (Kaneko & Tsuda, 2003), but also formally
(Kaneko, 1990), conceptually (Tsuda, 1991), and meta-
phorically. An excellent review of the applications of the
concept is presented in Kaneko and Tsuda (2003). Sec-
ond, important differences appear when the approaches
are contrasted. Mercilessly squeezing the concept into
a couple of sentences, chaotic itinerancy is the idea that
a chaotic attractor spanning the whole of a high-dimen-
sional phase space of a dynamical system (also neural
networks) at times collapses in limit cycles of lower
dimensions, called attractor ruins. The paths connect-
ing the lower-dimensional attractor ruins are itinerant
(chaotic) because of the crossing of unstable mani-
folds, thus giving the name chaotic itinerancy.

Although the concepts of chaotic itinerancy and
meta-transient can be made analogous, there are two
main distinctions to be drawn. First, the systems we
describe are parametrized by the input, and therefore
we deal with a collection of dynamical systems,
instead of a single one with many dimensions. So, in
the case of itinerancy we talk about one orbit that
explores the complexity of the basins of attraction of
one dynamical system of high dimension. However,
here we talk about the complexity of the attractor
landscape, which is the concoction of all basins of
attractions of all dynamical systems in an RNN acces-
sible by parametrizations. Second, in chaotic itiner-
ancy the basin crossing of an orbit is usually due to
noise, and unstable manifolds, while here the meta-
transient crosses dynamical systems because of para-
metrizations of the system, which are a function of the
structural coupling between the agent and the environ-
ment. So, the crucial aspect of this difference is para-

metrization by structural coupling. Ikegami and Tani
(2001) touched on the core of this issue in the title of
their article: “Chaotic itinerancy needs embodied cog-
nition to explain memory dynamics.” Finally, because
our functional states are efferent projections, the
actual dimensionality of the attractor in higher dimen-
sions is not crucial for behavior; there is a many-to-
one mapping of different attractors to actions. It is
assumed to be indifferent whether the period of the
attractor is low or high, as long as the motor projec-
tion finishes the job.

5 Conclusion

In their renowned article, von Holst and Mittelstaedt
(1950) wrote about the reflex arc: “…jede Einzelbewe-
gung reflektorisch ihre Gegenbewegung …in Gang
setzt.”12

Introducing some controversy by interpreting the
model presented here as an analogy, it is possible to
frame the phrase above in terms of behavior on the
sensory-motor loop, as a sequence of non-trivial reflex
arcs, with reafferences from the state of the body, the
control structures, and the environment. This is because
for every state of a path in parameter space, and every
initial condition of the hidden layer, there corresponds
an attractor, whose mapping to action causes the next
state of the path in parameter space, closing the loop
in a sequence of linked actions. However, this does
not necessarily mean that reflexes are stereotypical.13

The complexity of attractor landscapes and possible
coexisting attractors may lead to a wide behavioral
breadth (Sterelny, 2005), so that complex reflex arcs
might generate highly adaptive behavior, through con-
text dependency, redundancy, and novelty in response.
Here, these three are exemplified through coexisting
attractors, different attractors with similar meanings,
and chaotic attractors entrained in different moments.
Neurodynamics has provided the analysis methods for
the evolved embodied RNN, where the concepts of
attractor landscapes and meta-transients show the
RNN to be rich in behavior capacity.

In the context of solving problems of physical
nature, we have studied a simulation that has shown
how an evolved attractor landscape provides for
embodied active tracking. This comes from the hypoth-
esis that motor control, because it is dynamics (of
body) embedded in dynamics (of environment), can
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be properly described and analyzed using the lan-
guage of neurodynamics.

5.1 Future Work

We are currently running a variety of experiments that
extend the experiment described here and probe the
dynamics generated by adding proprioceptive inputs to
the network. Specifically, one experiment removes the
restriction of the ball only moving in one plane, by
allowing the ball to bounce in a room with three
dimensions. Preliminary results indicate that despite
the additional source of ambiguity of ball proximity,
tracking is successful. Additionally, we are studying
the dynamical mechanisms of distance estimation by
vergence, by introducing a second pan–tilt and postu-
lating as fitness the correlations between the input
arrays. For both the above-mentioned experiments, the
analysis will derive and extend the analysis in this arti-
cle, by outlining the importance of the embodiment
variables (internal feedback through proprioception),
and demonstrating the space of possible dynamics of
interactive behavior buttressed on the concepts of
attractor landscapes and meta-transients.

Appendix A: Lyapunov Landscape

In many parts of this article, we have claimed that
there were chaotic attractors in regions of ambiguity
and that even chaotic attractors with positive Lyapun-
ovs may be functional states. In support of this, we
plot the landscape of Lyapunov exponents for the dif-
ferent possible parametrizations of the network (stim-
ulus space) using the same axis dimensions as in the
attractor landscape (Figure 8). For each pixel on the
plot, the state of the hidden layer is randomized. In
this way we also sample the coexisting attractors
involved.

Two aspects should be observed. First, as the ball
comes into the center view, there is a tendency for the
attractors to have positive Lyapunov exponents. We
attribute this to regions of larger ambiguity (is the ball
coming into or leaving sight?). Second, the scattering
of points of different Lyapunov values spread over the
landscape indicates that for that particular dynamical
system we calculate the Lyapunov of different attrac-
tors; in these regions there may be the coexistence of
chaotic attractors and attractors of different periodici-
ties.

Figure A1 Each pixel represents the Lyapunov exponent of one of the attractors (the initial condition of the hidden layer is
randomized) for each of the stimulus patterns. The x- and y-axes are the position of the ball in head-centered coordinates.
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Notes

1 We use “parametrizations” here in the manner that has
become usual in the literature of dynamical systems, in
which parameters are variables that change slowly with
respect to the dynamics of the network.

2 This is meant in the sense that not all four-sided figures
are squares and not all squares are of the same size. In
other words, the number of edges does not exhaust the rel-
evant aspects of the figure. The statement about attractor
shape identity suggests that attractors can be seen as fig-
ures in phase space, which is, after all, a measurable
space. In this sense, two period 5 attractors occupying dif-
ferent portions of the phase space are not the same if they
do not look the same.
An orbit draws paths that are constrained, or guided, by
the influence of the attractor whose basin it occupies. In
this sense, even chaotic attractors, with their ineluctable
difficulties, may be described by their shape. By consider-
ing the fact that chaotic attractors cover regions of phase
space with varying density, this helps to illustrate that as
an orbit approaches the attractor, it outlines its shape. This
is like discovering a solid when blindfolded: although we
never touch the whole solid at a time, as we continue to
touch it, its shape is incrementally revealed to us.
We believe that this metaphorical notion becomes useful
in our discussion of attractor morphing later, in which we
catch glimpses of the shape of the N-dimensional attractor
by seeing how its lower-dimensional projections change
as we parametrize the network. In fact, attractor shapes
become most meaningful in a discussion of the functional
roles of the activities of a network, as here, where the
amplitude of an oscillation is translated to the velocity of
the motor, subject to the inertial masses involved, or in
other words, the projections of the attractor’s shape do
help to shape the agent’s actions.
Although we are not aware of any particular reference in the
literature concerning the functional significance of particu-
lar attractor shapes, the distinctive geometrical features of
the attractors commonly studied in the literature (e.g., limit
cycles of planetary orbits or the mandelbrot set in the study
of biological morphology) often define (or strongly corre-
late with) the behavior of the system they describe. There-
fore, we have the idea that an attractor’s shape is its identity.

3 It is helpful to be aware that “qualitatively distinct
dynamic behavior” might lead to qualitatively similar
agent behavior, which might be a source of ambiguity.
Distinct dynamic behavior refers only to domains of dif-
ferent attractors, while qualitatively distinct agent behav-
ior is a much more subjective criterion, requiring the
judgment of an observer.

4 The weight matrix and bias vectors of the network in Fig-
ure 1:

5 The idea that readout units sample different aspects of the
same attractor is analogous to the approach of liquid state
machines or echo state networks (Jaegger, Maas, &
Markram, 2007). The difference is that their attractors are
generated randomly to satisfy certain requirements for
complex dynamics, while our attractors are incrementally
evolved. This difference results from the role of the attrac-
tors, in which we think that there are attractors that are
more apt to solve some types of problem, and that artifi-
cial evolution is a good method to beget them.

6 This does not mean, however, that all the agents reach
every coexisting attractor during behavior, as the possible
states are also bounded by the possible history of interac-
tions.

7 Consider that when the input pattern is locked with the
ball, the input pattern is constant, but the pitch motor has
to accelerate down.

8 The internal states of the hidden layer are inherited across
parametrizations.

9 These input patterns were obtained with the same network
operating at 500 Hz update frequency, so the differences
between steps would be tiny. Note that this test would not
have been possible if the network had not been robust to
different update frequencies.

10 Arguably, it might not be the case that the computational
units can be easily outlined and modularized. However,
there are extensive data showing the presence of possible
interfaces in brain structures, given their observable
organization of architectonic implementations. Spatial
spread incurs in time specific operations, resulting from
axonal delays and distinctive connectivities. At one
extreme, Fodor (1983) argues for absolute modularity,
while Haugeland (1995) states that there is no possible
unequivocal unpluggability criterion; these extreme posi-
tions are held by many others (see for example, Clark &
Chalmers, 1998; Grush, 2004). Still others (such as Free-
man, 1995) argue that although the resulting activations
are necessarily holistic and hermeneutic, different mod-
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ules contribute in specific ways to the global patterns of
global significance. Whatever the case, if we aim for
agreement with the neuroscientific understanding of brain
function, as modelers we should propose mechanisms of
information exchange that will allow a certain degree of
localization. Here we take the semirealist approach,
where although the processing is happening on the
higher-dimensional space of the computing unit, the pro-
jection of the attractor carries orderly correlates, and thus
products that can be safely used by a number of modules
of different roles. Besides, to take an attitude of mystery
is to forsake many glimpses of understanding that do
seem to point out that the brain might rely on an abstract
and general neural mechanism, which is locally imple-
mented.

11 Information and computation here are used with small “i”
and small “c.”

12 …that each movement reflexively starts its counter-move-
ment and so, in a sequence.

13 Merleau-Ponty (1965) made a case for the inadequacy of a
physiological theory of behavior based on reflexes, as a
quantitative change of the stimulus induces a qualitative
change in behavior. However, as we have seen in our case,
even a small quantitative difference does precisely this, it
invokes a reaction that is incommensurable with the stim-
ulus, but adequate to solve the postulated problem.
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