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Abstract

Head and neck cancer (HNC) patients have variable
prognoses even within the same clinical stage and
while receiving similar treatments. The number of
studies of genetic polymorphisms as prognostic factors
of HNC outcomes is growing. Candidate polymor-
phisms have been evaluated in DNA repair, cell cycle,
xenobiotic metabolism, and growth factor pathways.
Polymorphisms of XRCC1, FGFR , and CCND1 have
been consistently associated with HNC survival in at

least two studies, whereas most of the other poly-
morphisms have either conflicting data or were from
single studies. Heterogeneity and lack of description of
patient populations and lack of accounting for multiple
comparisons were common problems in a significant
proportion of studies. Despite a large number of
exploratory studies, large replication studies in well-
characterized HNC populations are warranted. (Cancer
Epidemiol Biomarkers Prev 2008;17(3):490–9)

Introduction

Head and neck cancers (HNC) are a cause of serious
morbidity and mortality in North America. In North
America, there are >33,000 new cases of HNC per year
and >11,000 deaths (1, 2). The major anatomic sites of
primary HNC are the oral cavity, oropharynx, nasophar-
ynx, hypopharynx, and larynx (which include the
supraglottis, glottis, and subglottis). With smoking and
alcohol as major risk factors, HNC will remain an
important disease entity for years to come.

Treatment and prognosis for HNC are dependent on
several important clinical factors, including stage, ana-
tomic site, and performance status (3). Whereas early
HNC are often treated with surgery and/or radiothera-
py, management of locally advanced HNC may also

involve chemotherapy (particularly in combination with
radiation) depending on the patient’s overall health
status and preference (3). Some anatomic subsites (e.g.,
larynx and some areas in the oral cavity) appear to have
better prognoses, but this may be more related to earlier
symptoms leading to diagnosis at an earlier stage. In
general, patients with good performance status do
better than those with poor performance status, in part,
because they can tolerate more aggressive therapies
(4-6). Poor performance status is common in HNC
patients because of the risk profile of these patients
(heavy tobacco and alcohol exposure), which can lead to
significant comorbidities that affect treatment and there-
fore prognosis (4, 5).

Important clinical outcomes in HNC include overall
survival (OS), disease-free survival (DFS), disease-
specific survival (DSS), or progression-free survival
(PFS) and the development of second primaries. Second
primaries are important because of the high frequency
with which they occur. Exposure to alcohol and tobacco
produces a carcinogenic field effect, which results in a
reported 15% to 20% of patients developing a second
primary tumor (SPT) within 5 years after diagnosis
(7-14) and a metachronous alcohol- or tobacco-related
cancer in up to 5% of patients (15). Several epidemiologic
variables, including male gender (16), Asian and African
American races (1, 17-19), increasing age (16, 20, 21),
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presence of comorbid conditions (20, 22), alcohol (23, 24)
and tobacco consumption (24, 25), are also associated
with worse prognosis. Molecular markers, such as
human papillomavirus infection (26), tumor markers
(26-30), and more recently, genetic polymorphisms, the
subject of this review, have been associated with disease
outcomes. In addition to survival outcomes in HNC,
long-term treatment morbidity is important, and major
factors affecting quality of life include facial disfigure-
ment, dysphonia, dysphagia, and xerostomia.

With the completion of the human genome map
(31, 32), inherited factors (such as genetic polymor-
phisms) have become increasingly studied as potential
prognostic and predictive factors in a variety of cancers
including gastric cancer (33), hematologic malignancies
(34), non-small cell lung cancer (35-37), colorectal cancer
(38), breast cancer (39), and esophageal cancer (40, 41).
Alongside clinical and tumor molecular prognostic
factors, genetic polymorphisms may play key roles by
increasing the accuracy and validity of outcome predic-
tion models. In the case of HNC, several studies have
explored a select few candidate polymorphic variants.
Ultimately, replicating these findings in large well-
characterized populations will be essential. We reviewed
the state of the current literature of polymorphisms and
HNC outcomes, with the goal of identifying the most
suitable candidate genetic polymorphisms for replication.

Materials and Methods

For the purposes of this review, we defined HNC as
squamous cell carcinomas of the oral cavity, nasopharynx,
oropharynx, hypopharynx, and larynx (supraglottis,
glottis, and subglottis). We assessed articles that consid-
ered the following major outcomes: OS, DFS/PFS, and
toxicity (acute or chronic).

Search Strategy. Literature searches of MEDLINE
(1950-July 2007), PubMed (1950-July 2007), EMBASE
(1980-July 2007), CINAHL (1982-July 2007), and All
EBM Reviews (to July 2007) were done using keywords
and MeSH terms. Included MeSH terms were ‘‘polymor-
phism, single nucleotide,’’ ‘‘head and neck neoplasms,’’
‘‘neoplasms,’’ ‘‘outcome assessment (healthcare),’’ ‘‘out-
come and process assessment (healthcare),’’ ‘‘survival,’’
‘‘radiotherapy,’’ ‘‘chemotherapy,’’ ‘‘drug therapy,’’ and
‘‘humans.’’ Keywords included ‘‘polymorphism*,’’ ‘‘sin-
gle nucleotide polymorphism*,’’ ‘‘SNP*,’’ ‘‘head and
neck cancer,’’ ‘‘neoplasm*,’’ ‘‘cancer*,’’ ‘‘carcinoma*,’’
‘‘outcome*,’’ ‘‘survival,’’ ‘‘toxicity,’’ ‘‘response*,’’ ‘‘radio-
therapy,’’ and ‘‘chemotherapy.’’ Searches were limited to
human studies and the English language. Citation lists
of retrieved articles were checked to ensure sensitivity of
the search strategy. We excluded studies that presented
aggregate data for several cancers but not of HNC alone.

Study Selection. The list of retrieved articles was
examined. Duplicates and obviously unrelated articles
were eliminated from the list by a single reviewer (J.H.).
Abstracts of remaining articles were examined by two
reviewers (J.H. and D.C.) to determine if the full-text
article should be obtained. In the event the reviewers
disagreed or there was insufficient evidence in the
abstract to determine the relevance of the article, the full
text was obtained.

Articles published in English-language, peer-reviewed
journals that assessed the relationship between germ-line
polymorphic variants and major outcomes of interest
were included. We excluded single case reports and
opinion pieces, such as editorials and letters to the editor.

Results

Summary. The literature search found 398 articles.
After removal of duplicate entries and obviously
unrelated studies, 105 abstracts and 48 full-text articles
were reviewed. Eventually, only 22 studies were identi-
fied that evaluated polymorphisms and HNC outcomes/
prognosis; the remaining abstracts and full-text articles
did not pertain to HNC, polymorphisms, and/or out-
comes. All of these studies were case series or cohort
observational studies or subsets of cohort, case-control,
or randomized controlled studies. Study populations
were predominantly Caucasian or Asian (reported or
inferred based on the academic affiliation of authors or
hospital location). Study size varied widely (median
n = 110; range, 27-312). For study size determination,
we only included the subset of individuals who had
genotyping done, not the entire study population. More
than half of the studies evaluated a mixed population
of HNC sites, whereas 10 focused on specific subana-
tomic sites, particularly oral cavity lesions (Table 1).
Twenty studies conducted multivariate analyses. Al-
though the specific prognostic variables included in
multivariate analyses varied, 13 (65%) studies included
analyses that adjusted for three or more variables (range,
1-7 variables).

Most of the articles used OS or DFS as the primary
outcome (Table 1). One study chose a primary toxicity
outcome of gastrostomy tube dependence at 180 days
(42), and another study chose a primary outcome
consisting of nonresponsiveness to cisplatin-based che-
motherapy (43). Two studies also evaluated DSS in
addition to OS/DFS (44, 45).

Almost half of the polymorphisms studied were part
of DNA repair pathways. There were three polymor-
phisms that had at least two studies with consistent
positive associations: CCND1 A870G, FGFR4 Gly388Arg ,
and XRCC1 Arg399Gln . Conflicting data were present
for GSTM1, GSTT1 , and XPD Lys751Gln . An additional
dozen associations were found in single unreplicated
studies (Table 2). Practically all studies identified
themselves as exploratory or in need of validation or
replication.

DNA Repair Polymorphisms. DNA repair pathways
and their polymorphisms are among the best studied in
cancer risk and prognosis (36, 37, 46-69). Carcinogenesis
involves accumulation of DNA mutations, eventually
leading to loss of host control and neoplastic transfor-
mation. For a disease such as HNC where SPT are
frequent because of a field effect, this endpoint may be
affected by any increased predisposition to host DNA
damage. However, an increased predisposition to DNA
damage may also prove beneficial in treatment, as both
platinum agents and radiation rely on DNA damage as
part of their mechanisms of tumor cell killing. Addition-
ally, treatment toxicities, an important clinical endpoint,
may be modulated by DNA repair capacity, because the
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Table 1. Summary of 22 publications reviewed

First author
(reference)

Country n analyzed Primary
outcomes

Multivariate
analysis (yes/no)

Polymorphisms
evaluated

(A) Not otherwise specified, non-nasopharyngeal, or all HNC (12 studies in descending order of sample size)

Holley (79) Germany 294 DFS Yes CCND1 A870G
CCND1 G1722C

Matthias (78) Germany 224 DFS Yes CCND1 A870G
Matthias (24) Germany 312 DFS Yes CCND1 A870G

TNFa TNFBID5 haplotype
(list of genes with
nonspecified polymorphisms:
GSTM1, GSTM3, GSTT1,
GSTP1, CYP2D6, CYP1A1,
CYP2E1, various MHC)

Minard (97) United States 303 SPT Yes GSTM1 deletion
GSTT1 deletion

Geisler (44) United States 185 OS Yes GSTT1 deletion
DSS GSTM1deletion
Time to recurrence GSTP1 Ile105Val

XRCC1 Arg399Gln
XRCC1 Arg194Trp

Blons (43) France 148 Response to
cisplatin
chemotherapy

Yes MMP1 -1607insG
MMP3 -1612insA
MMP7 -A181G
MMP7 -C153T

Etienne-Grimaldi (90) France 112 DSS No EGFR intron 1 CA repeat
Carles (70) Spain 108 Time to progression Yes XPA 5UTR (rs1800975)

OS XPC Lys940Gln
XPD Lys751Gln
ERCC1 Lys259Thr
ERCC5 His1104Asp
ERCC5 C581T
XRCC5 3UTR (rs1051677)
XRCC5 3UTR (rs1051685)
XRCC1 Arg399Gln

Quintela-Fandino (65) Spain 103 OS Yes ERCC1 C8092A
Chemoresponse XPD Asp312Asn

XRCC1 Arg399Gln
XPD Lys751Gln

da Costa Andrade (89) Brazil 75 OS Yes FGFR4 Gly388Arg
Sullivan (81) Italy 70 PFS No p53 Arg72Pro

OS
Treatment response

Wang (103) United States 27 OS Yes DNMT3B6 C-149T

(B) Oral cavity and/or oropharynx cancers (7 studies in descending order of sample size)

Gal (45) United States 279 SPT Yes XRCC1 Arg399Gln
OS XRCC3 Thr241Met
DSS XPD Lys751Gln

MGMT Leu84Phe
MGMT Val143Ile

Tsai (111) Taiwan 130 Recurrence rate No Urokinase 3¶-UTR C4065T
Kornguth (42) United States 122 Toxicity (g-tube

dependency)
Yes ERCC4 G1244A

ERCC4 T2505C
Wong (101) Taiwan 118 OS No CTLA-4 A49G
Streit (88) Germany 104 OS No FGFR4 Gly388Arg
Worrall (92) United Kingdom 100 Time to recurrence Yes GSTM1 deletion

GSTM3 exon 6/7 *A/*B
GSTT1 deletion
CYP1A1 3¶ exon 7
CYP1A1 exon 7 Ile!Val
CYP2D6 4/3/5

Sanguansin (102) Thailand 32 UNK No hMSH2 at IVS C211+9G

(C) Nasopharyngeal or laryngeal cancers (3 studies in descending order of sample size)

Kondo (100) Japan, Taiwan 83 OS Yes MMP1 1G 1607 2G
Monteiro (112) Portugal 71 OS Unknown hOGG1 Ser326Cys
Monteiro (80) Portugal 66 Unknown CCND1 A870G

NOTE: DFS represents DFS but also recurrence-free survival and PFS where appropriate.
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same DNA damage that occurs within the tumor may
also take place in normal tissues as a side effect of
therapy. It is therefore of great importance to consider
overall how the polymorphism may affect multiple
endpoints such as survival, toxicity, and SPT outcomes.

X-ray repair cross-complementing group 1 (XRCC1) is a
key DNA repair gene in the base excision repair pathway
and is involved with radiation-related DNA repair. Three
studies (44, 45, 65) found that the variant Gln allele of
XRCC1 was associated with either improved OS or
prolonged time to recurrence. These studies involved
relatively large samples (n = 103-279). In contrast, a
smaller study of 98 individuals genotyped for XRCC1
Arg399Gln found no association with outcome (70).
XRCC1 Arg399Gln therefore represents an excellent
candidate polymorphism suitable for replication in large
prospective cohort studies.

Two studies (65, 70) analyzed multiple DNA repair
pathway polymorphisms using an approach of adding
‘‘at-risk’’ alleles across several polymorphic variants
and then comparing groups with differing numbers of
‘‘at-risk’’ alleles with OS. These exploratory joint ana-
lyses have been used in other cancers for both risk and
outcomes (71-75). These multiple polymorphism studies
highlight pitfalls: modest sample sizes (n = 100) with
multiple comparisons (exceeding 10 for either study).
Further, in Carles et al.’s study, the rationale for selection
of polymorphisms was unclear and the possibility of
bias was introduced by selective incorporation of poly-
morphisms in the models (70). Thus, replication in other
larger data sets is warranted.

Data for other DNA repair polymorphisms were
less consistent (45, 65), were from unreplicated studies
(45, 65, 74), or were not associated with outcome
at all.

Cell Cycle. Cyclin D1 (the protein encoded by the
CCND1 gene) plays a critical role in cell cycle regulation,
and its overexpression has been associated with cell
proliferation (27, 76). The CCND1 A870G polymorphism
has been associated with response to neoadjuvant radio-
therapy in rectal cancer and has reasonable functional
data (77). In HNC outcomes, there are two independent
groups of studies of CCND1 polymorphisms. Three
publications, with significant overlap (24, 78, 79),
reported that the G/G genotype was associated with
reduced DFS [hazard ratio (HR), 2.3-3.72]. An indepen-
dent study drew a similar conclusion in 66 laryngeal
cancer patients of all stages (80). Thus, CCND1 A870G
represents a reasonable polymorphism to validate
prospectively in larger scale studies. A second polymor-
phism, CCND1 G1722C , in strong linkage disequilibrium
with CCND1 A870G was also associated with HNC
outcome (79).

Sullivan et al. evaluated the role of the p53 Arg72Pro
polymorphism through in vitro and in vivo tests (81).
It was postulated that the wild-type p53 Arg/Arg
genotype, if retained as wild-type in the tumor itself,
would lead to superior apoptosis-inducing activity after
being challenged by platinum chemotherapy. This, in
turn, translates into a greater clinical response (that is,
more tumor cells enter apoptosis) in the wild-type
patients. To validate their cell line results, 70 cisplatin-
based chemoradiotherapy-treated patients showed that
the combination of having the wild-type Arg/Arg

genotype in both blood and tumor had the longest
median OS. This intriguing result awaits replication.

Growth Factor Pathways. Fibroblast growth factor
receptor 4 (FGFR4) is a tyrosine kinase receptor with a
central role in cell growth (82). The FGFR4 Gly388Arg
polymorphism has been associated in some studies with
worse prognosis in cancers of the breast, lung, and
prostate cancers as well as high-grade soft tissue sarcoma
(83-85) but not in other cancer studies (86, 87). In HNC,
two studies of the FGFR Gly388Arg polymorphism each
found that the Arg allele was associated with worse OS.
Streit et al. found that individuals with high protein
expression of FGFR4 who also carried the FGFR4 Arg
allele had poorer prognosis than individuals carrying
Gly/Gly , but this finding was based on the 17 high
expressors of FGFR4 (88). da Costa Andrade et al. found
an overall worsening of prognosis in individuals
carrying the FGFR Arg allele (adjusted HR, 2.18;
P = 0.004; n = 75; ref. 89). These two studies have
consistent results but involve relatively small and poorly
described patient populations, arguing for validation
prospectively.

In another growth factor pathway, a single study of
the epidermal growth factor receptor (EGFR) intron 1 CA
dinucleotide polymorphism found no association with
outcome based on a French population of 112 consecutive
HNC patients with poorly described characteristics (90).

Xenobiotic Metabolism. Cytochrome P450 (CYP )
enzymes are involved in phase I metabolism of drugs
and other xenobiotics. They play an important role in the
activation/inactivation of carcinogens, and the activa-
tion/inactivation of chemotherapy drugs, and as such
are important determinants of cancer risk and outcome
respectively (91). One study showed CYP2D6 to be
significantly associated with time to development of first
cervical lymph node metastases (HR, 3.6; P = 0.04), but
the number of studied patients was small (n = 20) and
follow-up time was short (2 years; ref. 92). The other CYP
polymorphisms were not significant.

Glutathione S-transferases (GST) are a group of enzymes
involved in phase II detoxification of carcinogens; GST
overexpression has been implicated in acquired resis-
tance to chemotherapy drugs (93). GST polymorphisms
may be prognostic in cancers of the prostate (94) and
lung (95) cancer and non-Hodgkin’s lymphoma (96).
Four studies found conflicting results between the GST
polymorphisms and HNC outcomes (24, 44, 92, 97).

Matrix Metalloproteinases, Inflammatory, and Other
Pathways. The matrix metalloproteinases (MMP) have
been postulated to interact with the Fas/Fas ligand
pathways (98) and modulate patient response to cisplatin
and 5-fluorouracil (99). Blons et al. reported that the
MMP3 6A/6A genotype had significantly higher response
to chemotherapy in a study involving awell-characterized
sample of 148 patients of all stages undergoing neo-
adjuvant cisplatin/5-fluorouracil chemotherapy fol-
lowed by either surgery or radiation (43). In contrast,
the MMP1 -1607insG, MMP7 -A181G , and MMP7 -C153T
polymorphisms were not associated with outcomes
based on small studies (43, 100). Single unreplicated
studies also suggest potential roles for polymorphisms of
the immunologic pathway (101, 102) and of DNA
methylation (103) in HNC prognosis.
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Table 2. Polymorphisms with at least one positive prognostic results

Genetic
polymorphism

First author
(reference)

Variant Outcome
measure

Estimate Comments

Polymorphisms with a positive association across two or more studies

CCND1 A870G Matthias (78) G/G vs A/A DFS AHR, 3.72 (1.37-10.09);
P = 0.010

Matthias et al. (24)
found association
at 5 y with DFS of
AHR, 2.3 (0.9-8.3)

Holley et al. (79) have
similar data and are
based on same data set.

A/G vs A/A DFS
AHR, 1.38 (0.50-3.82);
P = 0.531

Monteiro (80) G/- vs A/A OS Variant had worse OS;
P = 0.0095

Monteiro et al. (80)
did not find a
relationship with DFS.

FGFR4 Gly388Arg da Costa Andrade (89) Arg/- vs Gly/Gly OS AHR,* 2.18 (1.05-4.55);
P = 0.04

Streit (88) Arg/- vs Gly/Gly OS Variant had worse OS;
log-rank P = 0.032 in
subgroup of patients
with high FGFR4
expression

XRCC1 Arg399Gln Gal (45) Gln/- vs Arg/Arg OS AHR, 0.68 (0.47-0.97);
P = 0.03

Gln/Gln vs Arg/Arg OS AHR, 0.77 (0.40-1.50);
P = 0.44

Arg/Gln vs Arg/Arg OS AHR, 0.66 (0.45-0.96);
P = 0.03

Geisler (44) Gln/- vs Arg/Arg OS AHR, 1.06 (0.64-1.76);
P = 0.82

Geisler et al. (44)
found no association
with OS or DSS.

Time to
recurrence

AHR, 0.38 (0.18-0.81);
P = 0.01

Quintela-Fandino et al.
(65) found an association
with response to
cisplatin chemotherapy;
P = 0.017.

Quintela-Fandino (65) Gln/- vs Arg/Arg OS Variants had improved
OS (median OS not
reached for either
category); P = 0.0044

Polymorphisms with conflicting results for association

XPD Lys751Gln Quintela-Fandino (65) Gln/- vs Lys/Lys OS Median OS NR vs
20 mo; P = 0.0012

Gal (45) Gln/- vs Lys/Lys OS AHR, 1.06 (0.74-1.51);
P = 0.74

Gal et al. (45) found no
association with DSS.

Gln/Gln vs Lys/Lys OS AHR, 1.05 (0.72-1.53);
P = 0.80

Gln/Lys vs Lys/Lys OS AHR, 1.12 (0.62-1.98);
P = 0.73

GSTM1 deletion Minard (97) Null vs Present SPT AHR, 1.99 (1.11-3.56);
Geisler (44) Present vs Null DFS AHR, 0.97 (0.55-1.73);

P = 0.92
Geisler et al. (44) found
no associations with
OS or DSS.

Matthias (24) Present vs Null DFS Specific data not
provided but NS

GSTT1 deletion Geisler (44) Present vs Null OS AHR, 2.37 (1.13-4.97);
P = 0.02

Geisler et al., Minard
et al., Worrall et al.,
and Matthias et al.
separately found no
relationships with
DFS/SPT
(24, 44, 92, 97).

Present vs Null DSS AHR, 3.35 (1.33-8.41);
P = 0.01

Polymorphism pathway analyses

ERCC1 C8092A Quintela-Fandino (65) No. of DNA
polymorphic
variants
(combined
analysis)

OS AHR, 175 comparing
7 variant alleles to 0
variant alleles across
four polymorphisms;
P < 0.001

An increasing number
of polymorphic
variants was
associated with
worse OS.

XPD Asp312Asn
XPD Lys751Gln
XRCC1 Arg399Gln

(Continued on the following page)
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Discussion

In our overall assessment of the literature, several
common concerns emerged about the published studies
as a whole, representing the challenges of a maturing
field. Firstly, there was often inadequate reporting of key
aspects of the underlying population. Most studies had at
least one to several of the following key categories
incompletely reported: country of study and source of
population (e.g., community, hospital-based, convenient
sample); inclusion/exclusion criteria for participants;
study design (e.g., retrospective cohort); population
characteristics for general demographic variables and
clinically important prognostic factors (e.g., stage, eth-

nicity, performance status, treatment); explanations of
why only subsets were analyzed; demographic compar-
isons of patients included against those excluded from
analysis; and detailed descriptions of both genotyping
quality control measures and statistical methods. Sec-
ondly, there was a lack of discussion of the implications
of multiple comparisons. Most studies evaluated more
than one polymorphic variant, but none took multiple
comparisons into account in the analysis. With many of
the unadjusted P-values only slightly below P = 0.05, the
potential for false positive results is high. Thirdly, there
is possible publication bias. Seventeen studies (77%) had
at least one statistically significant primary result (P <
0.05 or confidence interval not crossing 1), and almost all

Table 2. Polymorphisms with at least one positive prognostic results (Cont’d)

Genetic
polymorphism

First author
(reference)

Variant Outcome
measure

Estimate Comments

Polymorphism pathway analyses

ERCC1 Lys259Thr Carles (70) No. of DNA
polymorphic
variants
(combined
analysis)

OS 99.6 mo (4 favorable genotypes)
vs 9.7 mo (4 unfavorable
genotypes); P = 0.0002

An increasing
number of
polymorphic variants
was associated with
worse OS and worse
time to progression.

ERCC5 His1104Asp
Time to
progression 99 vs 7.2 mo; P = 0.0003

ERCC5 C581T
XPA 5¶UTR

Polymorphisms with an association in a single study

XRCC3 Thr241Met Gal (45) Met/- vs Thr/Thr Any SPT AHR, 1.62 (0.98-2.67);
P = 0.059

Met/Met also
significant for any
upper aerodigestive
tract cancer and for
HNC separately.
No association
with OS

Met/Met vs Thr/Thr AHR, 2.65 (1.29-5.45);
P = 0.008

Thr/Met vs Thr/Thr AHR, 1.38 (0.81-2.37);
P = 0.24

ERCC1 A98C Carles (70) C/C vs A/A PFS ARR, 6.922; P = 0.009
XPD Asp312Asn Quintela-Fandino

(65)
Asn/- vs Asp/Asp OS Median OS NR vs

30 mo; P = 0.001
ERCC4 T2505C Kornguth (42) C/- vs T/T Need for

180-d g-tube
ARR, 0.20 (0.06-0.7)

DNMT3B6 -C149T Wang (103) C/C and T/T vs CT OS AHR, 4.829; P = 0.004
CCND1 G1722C Holley (79) C/C vs G/G DFS AHR, 7.3 (1.1-27.2);

P = 0.003
G/C vs G/G DFS AHR, 1.6 (0.6-4.8);

P = 0.36
p53 Arg72Pro Sullivan (81) Pro/Pro vs

Arg OS/PFS
Pro/Pro does
worse;
log-rank
P < 0.0001

CYP2D6 *4/*3/*5 Worrall (92) Var/Var vs Wt/- PFS/DFS AHR, 3.6 (1.1-12.5);
P = 0.040

Matthias et al. (24)
studied an unspecified
polymorphism of
CYP2D6 and found no
relationship with DFS.

CTLA-4 A49G Wong (101) A/A vs A/G vs G/G OS Variant survival worse;
log-rank P = 0.003

hMSH2 at IVS
C211+9G

Sanguansin (102) G/- vs C/C DFS Unadjusted OR, 10.67;
P = 0.030

MMP3 -1607insG Blons (43) 6A/6A vs 5A/5A Nonresponse
to cisplatin

AOR, 0.15 (0.04-0.6);
P = 0.008

5A/6A vs 5A/5A AOR, 0.6 (0.3-1.28);
P = 0.18

TNF B1D5 haplotype
of TNFa

Matthias (24) Haplotype present
vs absent

DFS at 5 y AHR, 3.9 (1.38-14.44);
P = 0.022

Not statistically
significant DFS
at 2 y

*Likely to be adjusted HR (AHR), as original report used Cox proportional hazards, although they reported as adjusted relative risks. ARR, adjusted
relative rate; AOR, adjusted odds ratio.
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had at least one secondary positive association. Given
that the usual a priori chances of a positive result in a
genetic polymorphisms association study are significant-
ly lower, publication bias may be a factor.

Toxicity is always difficult to measure objectively.
Only one study evaluated toxicity as an endpoint (42).
New methodologies and more accurate measurements
of dose delivery may promote future toxicity studies.
It was also promising to see some studies evaluate
specific subsets of uniformly-treated patients, such as
Stage I and II patients treated with radiation (70, 97), or
HNC patients treated with surgery (24, 78, 79, 88, 89,
103), in addition to performing multivariate analyses to
adjust for additional prognostic factors. This reflects a
shift towards better understanding of the impact of
clinical prognostic factors on outcome as well as how
prognostic factors in general are utilized in clinical
practice.

The majority of the published studies evaluated
general prognostic polymorphic markers, rather than
predictive markers. A biomarker is prognostic if it
predicts outcome independent of therapy. If the
biomarker differentially predicts outcome in patients
receiving a specific therapy compared to patients not
receiving that specific therapy, then it is a predictive
marker. Thus, predictors of toxicity are generally
considered to be predictive, while predictors of out-
come can be either prognostic or predictive. Quintela-
Fandino et al. (65) focused on cisplatin-treated patients,
tying the evaluation of DNA repair polymorphisms to
the mechanism of cisplatin function, thus meeting half
of the definition of a predictive marker. However,
because no control group was present to show that
DNA repair polymorphisms predict outcome differently
(or not at all) in non-cisplatin-treated patients, one
cannot be certain that the DNA repair polymorphisms
in question were truly predictive of therapy outcome or
simply prognostic.

This raises another issue. To truly evaluate whether a
polymorphism is predictive or prognostic, the analysis
should use samples obtained from either a randomized
controlled clinical trial comparing two or more different
treatments or an observational study of patients treated
heterogeneously for nonclinical reasons (e.g., limited
access to drugs), because a comparison of patients
treated and not treated with the therapy in question is
needed to prove that a marker is predictive. Distinguish-
ing between predictive and prognostic factors is impor-
tant, because one could potentially use a predictive
marker to help individualize patient treatment plans,
whereas a general prognostic marker can only stratify a
patient into different prognostic groups and may be one
step further removed from having utility in therapy
selection.

None of the studies used a haplotype tagging approach
in polymorphism selection. In circumstances when a
gene is known or highly suspected to be important
for prognosis but there are little data on the function of
its associated polymorphisms, a tagging approach may
be useful. Resequencing data are analyzed to determine
which polymorphisms are inherited together, in a block,
or ‘‘haplotype.’’ These blocks divide the gene into smaller
segments that is inherited as a unit generally. A specific
polymorphism that reflects the genetic variation in a
specific segment is known as a tagging polymorphism.

Thus, the vast majority of genetic variation in a gene can
be measured by evaluating a select number of tagging
polymorphisms, typically identified through in silico
prediction programs. This method is more comprehen-
sive than the usual candidate polymorphism selection
process. The attraction to using this approach is that one
does not need to worry about polymorphism functional-
ity during polymorphism selection. A functional poly-
morphism might be missed in a tagging approach, but
this functional polymorphism should be linked to a
tagging polymorphism. New and future studies should
consider this alternative approach as complementary to
the standard candidate selection procedures that choose
based on known, predicted, or putatively functional
polymorphisms.

Genome-wide and multistage test validation or mul-
tiple replication approaches, pathway and bioinformatic
analytical approaches to high-dimensionality data, the
development of large comprehensive institutional bio-
banks, careful prospective documentation of all clinical
outcomes, and the incorporation of correlative tissue
banking into randomized controlled studies could soon
change the way we evaluate polymorphic variants in
cancer outcomes. For example, in cancer risk analyses,
one approach to the problems of multiple comparisons
and false-positive results has been to use a multistage
training validation approach. The first stage is to identify
candidate polymorphic variants that are associated with
outcomes of interest, casting a wide net over potential
polymorphic prognostic factors.

In subsequent stages, additional independent set(s) of
patients with similar demographic and risk characteristics
to the original are used to confirm results from the original
study for a predetermined small proportion of the original
large exploratory set of candidate polymorphisms. The
multistage approach still requires an adequate sample size
in each step and robust analytical approaches (104, 105).
Application of these approaches (currently used in risk
analyses) to the cancer outcomes setting has enormous
potential. A final benefit of comprehensive tissue banking
initiatives will be the ability to examine gene and protein
expression alongside polymorphic variants, thereby en-
abling correlation of tumor and host biology. Some studies
have already started to do this, albeit with limitations due
to lack of availability of large numbers of biological
specimens (79, 81, 88).

Conclusion

We reviewed the field of polymorphic variants and
outcomes in HNC. Published studies have all used a
standard candidate genetic polymorphism approach.
Almost all studies evaluated survival outcomes, with
only one examining a toxicity outcome. We found that
three genetic polymorphisms had consistent associations
with survival outcomes across at least two studies:
CCND1 A870G, XRCC1 Arg399Gln , and FGFR4 Gly388Arg ,
and these three polymorphisms should be at the top of
the list for replication in large studies. All three are
well-known polymorphisms with prognostic implica-
tions in other cancers (36-38, 63, 77, 83-85, 106-110). DNA
repair pathways continue to be the most studied path-
ways for HNC outcomes. The vast majority of studies
were exploratory in nature resulting in the need to
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validate or replicate results in larger, well-characterized
populations of patients. Novel haplotype tagging and
multistage dense genotyping approaches should be
considered.
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