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Abstract

In this paper, we present an efficient general-purpose ob-
jective no-reference (NR) image quality assessment (IQA)
framework based on unsupervised feature learning. The
goal is to build a computational model to automatically pre-
dict human perceived image quality without a reference im-
age and without knowing the distortion present in the im-
age. Previous approaches for this problem typically rely on
hand-crafted features which are carefully designed based
on prior knowledge.

In contrast, we use raw-image-patches extracted from a
set of unlabeled images to learn a dictionary in an unsu-
pervised manner. We use soft-assignment coding with max
pooling to obtain effective image representations for quality
estimation. The proposed algorithm is very computation-
ally appealing, using raw image patches as local descrip-
tors and using soft-assignment for encoding. Furthermore,
unlike previous methods, our unsupervised feature learning
strategy enables our method to adapt to different domains.
CORNIA (Codebook Representation for No-Reference Im-
age Assessment) is tested on LIVE database and shown to
perform statistically better than the full-reference quality
measure, structural similarity index (SSIM) and is shown to
be comparable to state-of-the-art general purpose NR-IQA
algorithms.

1. Introduction
Our work addresses the problem of no-reference (NR)

objective image quality assessment (IQA) on natural scene
images. The goal is to build a computational model to pre-
dict human perceived image quality, accurately and auto-
matically without access to reference images [1, 11, 13,
14, 17, 18, 22, 23, 26]. In the past several decades, there
has been an increased interest in objective IQA due to the
tremendous growth in the use of digital images for repre-
senting and communicating information. Objective image
quality measures have been used in a wide range of com-

puter vision and image processing applications. For exam-
ple, image processing and transmission systems may have
their parameters be adjusted according to the image quality
[9]; image retrieval systems can use quality as an attribute
to rank images and image processing algorithms may use
image quality measures for evaluation.

Based on the availability of non-distorted reference im-
ages, objective image quality measures are typically classi-
fied into three categories: full-reference (FR) IQA, reduced-
reference (RR) IQA and no-reference (NR) IQA. FR-IQA
requires reference images to evaluate the quality of de-
graded images. Examples of state-of-the-art FR-IQA algo-
rithms include VSNR [2], VIF [19], SSIM [25] and MSSIM
[27]. For RR-IQA, partial information of reference im-
age is necessary for computing the quality measure [8]. In
many practical applications, however, information of refer-
ence images is not available, thus it is desirable to develop
NR-IQA methods [1, 11, 13, 14, 17, 18, 22, 23, 26] where
quality estimation are performed without using any infor-
mation extracted from reference images.

1.1. Background

Most of the existing NR-IQA algorithms [1, 11, 26] limit
themselves to one or more specific types of distortions such
as blur, blockiness from JPEG compression [26], or ringing
arising from JPEG2k compression [11], and thus have very
limited application domains. In contrast, general purpose
non-distortion-specific (NDS) NR-IQA methods do not ex-
amine the exact prior knowledge of distortion for quality es-
timation, thus are more practical in real-world applications.

Existing general-purpose NR-IQA algorithms can be
broadly classified as (1) Natural scene statistics (NSS)
based approaches [13, 14, 17, 18] and (2) Training-based
approaches [7, 22, 29]. NSS based approaches are based
on the hypothesis that natural scenes possess certain statis-
tical properties which will be affected by the presence of
distortion. Complex statistical models for wavelet coeffi-
cients [13, 14] or cosine coefficients [17, 18] were devel-
oped to characterize these natural scene properties. Esti-
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mated model parameters are used as features to perform re-
gression. Then, based on the learned regression model, a fi-
nal quality score is obtained for a given test image. The sec-
ond approach relies on a large number of features which are
designed to capture relevant factors affecting image quality,
but these features may not be easily interpreted, and it is not
clear what features are best for this problem.

1.2. Our approach

Our approach follows the latter trend. However, un-
like all previous approaches which rely on features that are
designed based on prior knowledge on the differences be-
tween non-distorted images and distorted images, our un-
supervised feature learning strategy offers the following ad-
vantages. First, we use raw-image-patches local descrip-
tors in our learning framework instead of hand-crafted fea-
tures, which are more efficient and easily computable. Un-
labeled data available on internet can be easily used in
this framework. In contrast, current state-of-the-art gen-
eral purpose NR-IQA algorithms [14, 18, 22, 29] use off-
the-shelf image transformation and filtering techniques such
as wavelet transform, cosine transform and Gabor filtering
for extracting features, which can be very time consum-
ing. Computation efficiency of NR-IQA method is very
important when image quality measures are embedded in
real-time imaging systems or image transmission systems.
Second, we use a codebook based approach which allows
to learn highly effective features automatically. Third, we
use soft-assignment coding with max pooling for encoding.
This process is computationally efficient and parameter-
free. Fourth, non-linearities introduced in the features dur-
ing pooling stage allows our method to use more efficient,
linear-SVM for obtaining quality scores. Moreover, if the
domain of the problem changes, say from natural scene im-
ages to document images, the performance of previous tech-
niques is questionable, while the proposed method does not
embed any prior knowledge about natural scene statistics,
making it more general and giving it the potential to adapt
to different domains.

The remainder of this paper describes CORNIA (COde-
book Representation for No-reference Image quality As-
sessment) in detail and is organized as follows. In Section
2, previous work on general-purpose NR-IQA and unsu-
pervised feature learning that is most relevant to our work
is briefly reviewed. Section 3 describes details about the
proposed framework. Experimental results and a thorough
analysis of our results are presented in Section 4. Finally,
Section 5 concludes with a summary of our work.

2. Related Work
2.1. No-reference Image Quality Assessment

The use of a visual codebook for NR-IQA problem was
first proposed by Ye and Doermann [29]. They approach the

NR-IQA problem from the perspective of texture-analysis,
and use Gabor-filter based visual codewords for represent-
ing images. Quality measure of a new image is obtained
by computing the average of quality scores of codewords,
weighted by their “distances” to visual words in the im-
age. Hard assignment based encoding and average pooling
are adopted in their method. They show promising perfor-
mance, but the simple averaging strategy does not allow the
use of raw-image-patches as features. A very large code-
book with approximately 300, 000 codewords is required to
achieve good performance. The use of Gabor-filter based
features and a large codebook also makes this method com-
putationally expensive. Furthermore, they use a subset of
labeled data to construct the codebook. In comparison,
CORNIA does not require labels for codebook construction
and a relatively small codebook is sufficient to obtain accu-
rate quality estimation.

Natural scene statistics (NSS) based approaches [13, 14,
17, 18] have been extensively studied and applied to the
NR-IQA problem. Statistics of wavelet transform coef-
ficients are explored in [13, 14], while Saad and Bovik
[17, 18] use DCT coefficient statistics for representing im-
ages. These methods require deep domain knowledge and
may not be well adapted to quality assessment problem in
other domains. Instead of designing and discovering fea-
tures that are highly correlated with image quality, we con-
centrate on designing suitable feature extraction architec-
ture and show that with a proper architecture, highly effi-
cient features can be learned automatically and state-of-the-
art NR-IQA can be achieved using raw image patches as
local image descriptors.

2.2. Unsupervised Feature Learning

With the increasing availability of computational re-
sources in recent years, there has been an emphasis on
unsupervised feature learning. The goal of unsupervised
feature learning is to automatically learn a good represen-
tation of the input from unlabeled data instead of hand-
engineering feature representation. In recent years, there
have been many attempts to use unsupervised feature learn-
ing in computer vision. Raina et al. [16] used sparse cod-
ing (SC) to construct high-level features from raw image
patches and showed that the resulting sparse representations
perform much better than conventional representations for
image classification. Coates et al. [3] showed the success
of applying unsupervised feature learning in detecting text
and recognizing characters in scene images. Most previous
work has focused on applying unsupervised feature learning
to classification problem. This paper applies it to NR-IQA,
a regression problem and serves as a case study for apply-
ing unsupervised feature learning to regression problems in
general.
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Figure 1. Codebook based framework

3. Learning Framework for NR-IQA
The learning framework adopted in this work is illus-

trated in Fig.1. Key components in this framework include
(1) Local feature extraction, (2) Codebook construction, (3)
Local feature encoding and (4) Feature pooling. We de-
scribe these components in more detail in the following sec-
tions.

3.1. Local feature extraction

Given an image I , local descriptorsX = [x1, x2, ..., xN ]
are extracted from a set ofB×B image patches, where xk ∈
Rd, d = B × B. To obtain X , we uniformly and randomly
sample N different B × B image patches from I . Each
patch is normalized by subtracting the mean and dividing
by the standard deviation of its elements. Additionally, we
perform Zero Components Analysis (ZCA) whitening to the
normalized patches [4].

3.2. Codebook Construction

The visual codebook is constructed by performing K-
means clustering on local features extracted from unlabeled
training images. A matrix Dd×K = [D1, D2, ..., DK ] de-
notes a visual codebook, where Di(i=1,...K) are centroids
of clusters learned by K-means clustering. More complex
training methods such as sparse coding (SC) have been
proposed to perform codebook construction (or dictionary
learning) to improve system performance. But the use of
K-means clustering in our work is motivated by the recent
work of Coates et al. [5], where they found that a good
encoding scheme is more critical than dictionary learning.

The learned codebook is normalized so that each of the
bases has unit length. The normalized codebook is denoted
as D̃d×K = [D̃1, D̃2, ..., D̃K ]. Examples of learned code-
words are shown in Fig. 2. Codewords with the “dot”
patterns come from patches with salt-pepper noise, while
“smooth” codewords correspond to blurred patches and
codewords with horizontal and vertical line patterns corre-
spond to patches with “blockiness”. As shown in Fig. 2,
some codewords learned in this way resemble Gabor filters.

3.3. Local Feature Encoding

Soft-assignment coding: We perform soft-assignment cod-
ing using a normalized codebook D̃. Distances between

Figure 2. Randomly selected centroids trained on CSIQ database
using K-means.

local descriptors and visual codewords in D̃ are computed
using dot-products. Let sij being the similarity metric be-
tween the ith local descriptor xi and the jth base D̃j , then
sij = xi·D̃j . The code for local descriptor xi can be written
as follows:

ci = [max(si1, 0), ...,max(siK , 0),
max(−si1, 0), ...,max(−siK , 0)]T

(1)

The soft-assignment function used here can be consid-
ered as a special case of the soft threshold function in [5]
where we set the adjustable threshold to zero. The posi-
tive and negative components of s are split to obtain code
c. This kind of rectification has been shown to improve the
discriminative power of features [5].

3.4. Feature Pooling

The encoding step provides us with a coefficient
matrix C2K×N = [c1, c2, ..., cN ], where ci =
[ci,1, ci,2, ..., ci,2K ]T . In order to learn a regression model
we need a fixed-length feature vector. In many image qual-
ity assessment algorithms [12, 18], “percentile pooling” has
been adopted and it is motivated by the observation that hu-
mans tend to perceive “poor” regions in an image and these
“poor” regions heavily affect the subjective impression. In
image classification problems, however, max-pooling has
demonstrated higher performance in image classification
than average-pooling (or sum-pooling) [10, 28]. We em-
pirically observed that max-pooling performs consistently
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better than average-pooling in our problem. It can be con-
sidered as a special case of “percentile pooling”, where we
always take responses from the “worst” regions.
Max-pooling: The image-level feature using max-pooling
is given as:

β̂ = Ψmax(C) (2)

where Ψmax is defined on each row of C to obtain β̂ ∈
R2K whose ith element is given by:

β̂i = max{c1i, c2i, ..., cNi} (3)

β̂i is the input to regression program.

4. Experimental Results

4.1. Protocol

Database for evaluation: To test the proposed framework,
the following two IQA databases were used.

(1) LIVE IQA database: LIVE IQA database [20, 21]
has been widely used for evaluating the performance of IQA
systems. It consists of 29 reference images each with five
different types of distortions - JPEG2k, JPEG, white Gaus-
sian noise (WN), Gaussian blurring (BLUR) and fast fading
channel distortion (FF), at 5 to 6 different levels. differential
mean opinion score (DMOS) associated with distorted im-
ages are provided. DMOS is generally in the range [0, 100],
where lower DMOS indicates higher quality.

(2)TID2008 database: TID2008 [15] consists of 25 ref-
erence images and 1700 distorted images with 17 differ-
ent distortions at 4 levels. The 17 types of distortions
include: Additive Gaussian noise (WN), Additive noise
in color components (WNC), Spatially correlated noise
(SCN), Masked noise (MN), High frequency noise (HFN),
Impulse noise (IN), Quantization noise (QN), Gaussian
blur (BLUR), Image denoising (IDN), JPEG compression
(JPEG), JPEG2000 compression (JPEG2K), JPEG trans-
mission errors (JPEGTE), JPEG2000 transmission errors
(JP2KTE), Non eccentricity pattern noise (NEPN), Local
block-wise distortions of different intensity (LBD), Inten-
sity shift (IS) and Contrast change (CC). Mean Opinion
Score (MOS) is provided for each distorted images in this
database. Higher value of MOS (0 - minimal, 9 - maximal)
corresponds to higher visual quality of the image. It is worth
noting that one of the 25 reference images in the TID2008
database is not natural scene image and it is included in our
experiments. We will report results on the first 13 distor-
tions in the TID2008 database. We do not evaluate the last
four types of distortions, since they are not dealt with this
work. For example, intensity shift and contrast change can
be inherent properties of an image and it’s a highly subjec-
tive task for people to tell their preference, especially when
we want to compare images with different content.

Codebook Construction: For codebook construction, we
used the CSIQ database [6]. CSIQ database consists of 30
reference images and their degraded versions with 6 differ-
ent types of distortions at 4 to 5 different levels. There is no
overlap between images in the CSIQ database and images
in the LIVE and the TID2008 databases. We used images
with four types of distortions present in the CSIQ database
including JPEG compression, JPEG-2000 compression, ad-
ditive pink Gaussian noise, and Gaussian blurring. Addi-
tionally, we produced images with some new types of dis-
tortions which include speckle noise, Poisson noise, Salt-
pepper noise and zero-mean Gaussian white noise with an
intensity-dependent variance 1. Normalized and whitened
B-by-B raw image patches are extracted from these im-
ages and then clustered to construct the codebook. ZCA
whitening parameters are computed using randomly sam-
pled patches from the CSIQ database.
Regression: In this work, we intend to use a simple re-
gression method for quality estimation and we employed
the Support-vector regression with linear kernel. Other re-
gression methods may be explored to further improve the
performance.
Evaluation: We evaluate our system performance using
Linear Correlation Coefficient (LCC) and Spearman Rank
Order Correlation Coefficient (SROCC). LCC can be con-
sidered as a measure of prediction accuracy of a model.
SROCC is used to evaluate how well the relationship be-
tween the predicted quality score and true quality score can
be described using a monotonic function. By default, all re-
sults reported in this section are obtained by 1000 train-test
iterations with randomly selected 80% of the reference im-
ages and their associated distorted versions as training set
and the remaining 20% of the reference images and their
associated distorted versions as testing set. For the LIVE
database, we use the realigned DMOS scores [20] and re-
port results only on the distorted images. For the TID2008
database, MOS scores are used as a regression target and
for both training and testing we use only distorted images.

4.2. Analysis

To show the effectiveness of the proposed feature extrac-
tion strategy, we compute SROCC and LCC between each
one of the features and the DMOS in the LIVE database.
The top five correlation coefficients for each distortion sub-
set and the entire LIVE database are tabulated in Table 1.
The high correlations shown in Table 1 demonstrates that
our method can capture highly effective features. To give
some intuitive idea about how these features are related
to different distortions, examples of the most informative
codewords for the five different types of distortions in the
LIVE IQA database are shown in Fig. 3.

1We found that by adding these new distortions for constructing code-
book, quality estimation performance can be further improved.
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LIVE subset Top five SROCC Top five LCC
JPEG2K 0.8096, 0.8061, 0.7970, 0.7917, 0.7899 0.7951, 0.7867, 0.7823, 0.7812, 0.7810

JPEG 0.7826, 0.7646, 0.7516, 0.7463, 0.7423 0.7842, 0.7739, 0.7450 , 0.7309, 0.7281
WN 0.9358, 0.9269, 0.9261, 0.9248, 0.9245 0.9421, 0.9286, 0.9282, 0.9279, 0.9255

BLUR 0.9508, 0.9456, 0.9447, 0.9444, 0.9440 0.9416, 0.9371, 0.9361, 0.9350, 0.9342
FASTFADING 0.8435, 0.8420, 0.8415, 0.8388, 0.8386 0.8529, 0.8405, 0.8393, 0.8342, 0.8332

ALL 0.6962, 0.6889, 0.6839, 0.6805, 0.6791 0.6736, 0.6664, 0.6641, 0.6604, 0.6601

Table 1. Top five largest SROCC and LCC correlations between DMOS and each one of the feature values. (Parameters: patch size = 7×7,
codebook size = 10, 000).

JPEG2K JPEG WN BLUR FF 

Figure 3. Codewords corresponding to features with the highest SROCC for five different types of distortions in the LIVE database.

4.3. Impact of algorithm parameters

The proposed framework include a number of parame-
ters that can be changed: (1) the number of patches ex-
tracted from each image; (2) the number of codewords in
the codebook; (3) the size of raw image patch and (4) the
encoding method. In this section, we focus on the effect of
choosing different codebook sizes and encoders. Number
of patches extracted from each image is fixed at 10, 000 and
patch size is fixed to 7-by-7. Results reported in this section
are obtained on the LIVE database.
Effect of codebook size: We considered codebook size of
200, 400, 800, 1200, 2500, 5000 and 10000. As shown in
Fig. 4, performance of this system improves as we increase
the number of codewords in codebook.
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Figure 4. Effect of codebook size (tested on the LIVE database).

Effect of encoding methods: In addition to soft-
assignment coding, we also tried using sparse coding (SC)

[28], locality-constrained linear coding (LLC) [24], “Local-
ized” soft-assignment coding (LSA) [10] and conventional
hard-assignment coding (HA) for encoding in our experi-
ment. SC, soft-assignment (SA) and LSA was used with
rectification and max pooling; LLC was used with max
pooling but no rectification 2 and HA was used with av-
erage pooling and no rectification 3. In LLC and LSA,
we need to specify the number of nearest neighbors used
for encoding, we used five for both. Results are shown in
Fig. 5. Surprisingly, we found that the simple SA encod-
ing slightly outperforms the other four encoding methods,
especially that LLC, LSA and SC have shown better perfor-
mance than conventional SA in image classification prob-
lem. Similar results were presented in [5], where a variation
of soft-assignment coding strategy was consistently able to
compete with sparse coding in image classification.

4.4. Comparison with Full-Reference and No-
Reference IQA Algorithms

Two FR-IQA measures: peak-signal-to-noise-ratio
(PSNR) and the structural similarity index (SSIM) are
tested for comparison. These results of FR-IQA measures
are obtained as described above for obtaining results of our
method. Specifically, in the training stage, parameters of
a logistic function are learned and then applied to testing
set to find the final quality score. We also report the per-
formance of two recent state-of-the-art NR-IQA measures:
DIIVINE [14] and BLIINDS-II [18]. Results for DIIVINE
and BLIINDS-II were taken from the original paper, where

2We found that using LLC without rectification performs better than
with rectification.

3The way we compute HA code gives a vector with elements non-
negative, thus no rectification can be performed
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experiments were performed the same way as we did here.
Parameters: In the following experiments, for the LIVE
database, we used patch size of 7-by-7 and for the TID2008
database, we used patch size of 5-by-5. For both databases,
the number of patches extracted from each image is 10, 000
and codebook size is fixed as 10, 000.
Distortion-specific experiment: First, we performed a
distortion-specific (DS) experiment on different distortion
subsets in the LIVE database and the TID2008 database.
The objective of DS experiment is to see how the algorithm
will perform if we only have images with one particular type
of distortion. Results on the LIVE database are shown in Ta-
ble 2 and 3 and results on the TID2008 database are shown
in Table 4 and Table 5.
Non-distortion-specific experiment: In the non-
distortion-specific (NDS) experiment, each train-test
run is performed on images with all types of distortions
under consideration. Results on the LIVE database are
shown in the last column in Table 2 and 3. In these tables,
you may also find results of PSNR, SSIM, BLIINDS-II
and DIIVINE. And results on the TID2008 database are
shown in Table 4 and Table 5. DIVINE and BLIINDS-II
were not tested on the TID2008. The box plot of SROCC
distributions of different quality measures from 1000 runs
of experiments on the LIVE database are shown in Fig. 6.
It is clear that on the LIVE database, CORNIA performs
the best among the five measures under consideration.
Although on the TID2008 database, CORNIA does not
outperform SSIM, it still significantly outperforms PSNR.
It is worth noting that PSNR and SSIM use reference image
for quality estimation, while CORNIA predicts quality
score given only the degraded image. We are unaware of
any other general purpose NR-IQA algorithms that have
reported NDS experimental results on so many different
types of distortions in TID2008.

The standard deviation of the SROCC and LCC obtained

JP2K JPEG WN BLUR FF ALL
PSNR 0.872 0.885 0.941 0.764 0.875 0.867
SSIM 0.939 0.946 0.965 0.909 0.941 0.914

DIIVINE 0.913 0.910 0.984 0.921 0.863 0.916
BLIINDS-II 0.929 0.942 0.969 0.923 0.889 0.931

CORNIA 0.943 0.955 0.976 0.969 0.906 0.942

Table 2. Median SROCC with 1000 iterations of experiments on
the LIVE database. (Italicized algorithms are NR-IQA algorithms,
others are FR-IQA algorithms.)

JP2K JPEG WN BLUR FF ALL
PSNR 0.873 0.874 0.928 0.774 0.869 0.855
SSIM 0.920 0.955 0.982 0.891 0.939 0.906

DIIVINE 0.922 0.921 0.988 0.923 0.888 0.917
BLIINDS-II 0.935 0.968 0.980 0.938 0.896 0.930

CORNIA 0.951 0.965 0.987 0.968 0.917 0.935

Table 3. Median LCC with 1000 iterations of experiments on the
LIVE database. (Italicized algorithms are NR-IQA algorithms,
others are FR-IQA algorithms.)
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Figure 6. Box plot of SROCC distributions of algorithms from
1000 runs of experiments on the LIVE database.

PSNR SSIM BLIINDS-II CORNIA
SROCC 0.0348 0.0159 0.0277 0.0150

LCC 0.0326 0.0167 0.0252 0.0174

Table 6. Standard deviation of SROCC and LCC for 1000 itera-
tions of experiments on the LIVE database.

from the 1000 runs of experiments on the LIVE database
are reported in Table 6. This shows the consistency of the
performance of CORNIA.
Statistical significance testing: We performed a two sam-
ple T-test with 95% confidence level between SROCC gen-
erated by PSNR, SSIM, single-scale BLIIND-II4 and our
algorithms in 1000 iterations of experiments on the LIVE
database. Test results are shown in Table 7. From this table,
we can see that CORNIA is statistically superior to PSNR,

4A multi-scale extension of the single scale measure was also reported
in [18], however, we were not be able to obtain code for that part and
similar multi-scale extension can also be done for our work, so t-test was
only performed on single-scale DIIVINE-II.
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WN WNC SCN MN HFN IN QN BLUR IDN JPEG JPEG2K JPEGTE JP2KTE ALL
PSNR 0.920 0.914 0.931 0.868 0.935 0.928 0.898 0.928 0.941 0.922 0.884 0.808 0.804 0.669
SSIM 0.854 0.837 0.847 0.813 0.901 0.727 0.878 0.958 0.959 0.934 0.961 0.872 0.878 0.878

CORNIA 0.913 0.928 0.868 0.879 0.921 0.924 0.886 0.932 0.887 0.929 0.919 0.726 0.785 0.813

Table 4. Median SROCC with 1000 iterations of experiments on the TID2008 database. (Italicized algorithms are NR-IQA algorithms,
others are FR-IQA algorithms.)

WN WNC SCN MN HFN IN QN BLUR IDN JPEG JPEG2K JPEGTE JP2KTE ALL
PSNR 0.944 0.933 0.962 0.889 0.975 0.920 0.911 0.912 0.951 0.928 0.907 0.798 0.798 0.652
SSIM 0.827 0.852 0.827 0.845 0.871 0.699 0.837 0.953 0.967 0.963 0.971 0.886 0.846 0.857

CORNIA 0.911 0.932 0.852 0.886 0.933 0.922 0.892 0.932 0.908 0.963 0.929 0.732 0.762 0.837

Table 5. Median LCC with 1000 iterations of experiments on the TID2008 database. (Italicized algorithms are NR-IQA algorithms, others
are FR-IQA algorithms.)

PSNR SSIM BLIINDS-II CORNIA
PSNR 0 -1 -1 -1
SSIM 1 0 1 -1

BLIINDS-II 1 -1 0 -1
CORNIA 1 1 1 0

Table 7. Results of the two sample T-test performed between
SROCC values obtained by different measures. 1 (-1) indicates
the algorithm in the row is statistically superior (inferior) than the
algorithm in the column. 0 indicates the algorithm in the row is
statistically equivalent to the algorithm in the column.

PSNR SSIM CORNIA
SROCC 0.817 0.903 0.880

LCC 0.776 0.901 0.890

Table 8. Database independence test: CORNIA was trained on
LIVE and tested on TID2008.

SSIM and single-scale BLIINDS-II.
Database Independence: Additionally, we tested COR-
NIA by performing training on the LIVE database and test-
ing on the TID2008 database. With trained model on LIVE,
the output quality score is in the range from around 0 to
100. But MOS in TID2008 is in the range from 0 to 9. We
perform similar nonlinear mapping using a logistic function
which is usually applied to FR-measure to obtain a consis-
tent quality measure in certain range. Specifically, we esti-
mate parameters in logistic function using 80% of TID2008
data and then test on the rest 20% of data. (Results of PSNR
and SSIM were also obtained in this way.) Since only four
types of distortions in the TID2008 database have examples
in the LIVE database, we only report results on this four
distortions - JPEG2k, JPEG, WN and BLUR. SROCC and
LCC are reported in Table 8.
Failure modes: CORNIA works well on distortions which
are spatially independent since codewords extracted from a
distorted image are treated equally in our framework. Most
commonly occurring distortions have such property. How-
ever, this is not true for JPEGTE and JP2KTE in TID2008
where distortions may be localized spatially appearing, for
example as transmission artifacts or ghosting effects.

BLIINDS-II (1-scale) DIIVINE CORNIA
Time 81.08 29.88 1.59

Table 9. Feature extraction time (in seconds).

4.5. Algorithm Complexity

In this section, we present an informal analysis on the
speed of CORNIA. Suppose the number of patches ex-
tracted from each image is N , patch size is d and the size
of codebook is K. Then the computational complexity of
CORNIA is at the order of O(Nd2K)

Time taken for extracting feature of a 512 × 768 image
is about 1.59 seconds. This result is obtained by running
an un-optimized matlab program on SunFire x4170 with
2.80GH processor. Speed test has also been performed for
DIIVINE and single-scale BLIINDS-II on the same ma-
chine, where codes for these two algorithms are down-
loaded from the author’s web site. For all three methods,
we only consider time used for feature extraction, time for
SVM training and prediction are negligible. Time taken for
loading codebook and SVM model to memory is also negli-
gible, since if we have a large number of images to process,
we only need to load these data once. As is shown in Ta-
ble 9, CORNIA is much faster than the other two NR-IQA
algorithms.

5. Conclusion

We have presented a simple, efficient and effective al-
gorithm for NR-IQA problem, which advances the state-of-
the-art. The proposed algorithm is computationally appeal-
ing since we use raw-image-patches as local descriptors and
soft-assignment coding for encoding. The proposed algo-
rithm has shown good performance on both LIVE database
and TID2008 database. On LIVE database, it is outperform-
ing PSNR and SSIM and is comparative to state-of-the-art
general-purpose NR-IQA algorithms in predicting human
perceived quality. Furthermore, it is much faster than cur-
rent state-of-the-art general-purpose NR-IQA algorithms.
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