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Abstract—We consider the optimal power scheduling problem
for the decentralized estimation of a noise-corrupted determin-
istic signal in an inhomogeneous sensor network. Sensor observa-
tions are first quantized into discrete messages, then transmitted
to a fusion center where a final estimate is generated. Supposing
that the sensors use a universal decentralized quantization/esti-
mation scheme and an uncoded quadrature amplitude modulated
(QAM) transmission strategy, we determine the optimal quanti-
zation and transmit power levels at local sensors so as to mini-
mize the total transmit power, while ensuring a given mean squared
error (mse) performance. The proposed power scheduling scheme
suggests that the sensors with bad channels or poor observation
qualities should decrease their quantization resolutions or simply
become inactive in order to save power. For the remaining active
sensors, their optimal quantization and transmit power levels are
determined jointly by individual channel path losses, local observa-
tion noise variance, and the targeted mse performance. Numerical
examples show that in inhomogeneous sensing environment, sig-
nificant energy savings is possible when compared to the uniform
quantization strategy.

Index Terms—Distributed estimation, inhomogeneous quantiza-
tion, power scheduling, sensor networks.

I. INTRODUCTION

RECENT technological advances in wireless sensor net-
works (WSN) have led to the emergence of small, inex-

pensive, and low-power sensor devices with limited on-board
processing and communication capabilities. When suitably pro-
grammed and deployed in large scale, such networked sensors
can cooperate to accomplish various high-level tasks. Sensor
networks of this type are well-suited for situation awareness
applications such as environmental monitoring (air, water, and
soil), smart factory instrumentation, military surveillance, preci-
sion agriculture, intelligent transportation and space exploration
[1]–[3], to name a few.
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Since sensors have only small-size batteries whose replace-
ment can be costly if not impossible, sensor network operations
must be energy efficient in order to maximize network lifespan
[4]. A main objective of current sensor network research is to
design energy-efficient devices and algorithms to support all as-
pects of network operations. The AMP’s project [5] at MIT
and the PicoRadio project [6] at Berkeley focus on energy-con-
strained radios and their impact on ultralow power sensor nodes
and networking. Various energy-efficient algorithms have been
proposed for network coverage [7], data gathering [8], and pro-
tocols of medium access control [9] and routing [10] (see also
the survey paper [1] and the references therein). These refer-
ences focus on collaborative strategies and cross-layer designs
for distributed data collection, processing, and communication
in an energy-efficient manner.

A common WSN architecture consists of a fusion center and
a number of geographically distributed sensors. Such network
architecture can be used to accomplish a joint signal processing
task such as decentralized estimation and detection. In this
paper, we consider decentralized estimation of an unknown by
a set of distributed sensor nodes and a fusion center. The sen-
sors collect real-valued data, perform a local data compression
and send the resulting discrete messages to the fusion center,
while the latter combines the received messages to produce
a final estimate of the observed signal [11]. The problem of
decentralized estimation has been extensively studied, first in
the context of distributed control [12], and later in tracking [13]
and data fusion [14]; see [15] for a more complete reference
list. Most of these work assume that the joint distribution of
sensor observations is known and that real-valued messages
can be sent from sensors to the fusion center without distortion.
These assumptions are unrealistic for practical sensor networks
since the wireless links between the sensors and the fusion
center invariably suffer from adverse channel effects such
as attenuation and fading. Moreover, the characterization of
probability distributions of sensor observations can be difficult
for a large scale sensor network operating in a time-varying
environment. In an effort to remove some of these restrictive
assumptions, several recent work [11], [15]–[17] has proposed
universal decentralized estimation schemes (DES) in which
the local sensor messages and the final estimation formula are
independent of the probability distribution of sensor observa-
tions. These universal DESs let each sensor send to the fusion
center a short discrete message whose length is determined
by the local signal-to-noise ratio (SNR), while guaranteeing
a mean squared estimation error (mse) performance that is
within a constant factor of that achieved by the centralized
best linear unbiased estimator (BLUE). However, the work of
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[11], [15]–[17] still assumes that the wireless channels between
sensors and the fusion center are ideal, and all messages are
received by the fusion center without any distortion.

In this paper, we model the wireless links between sensors
and the fusion center as additive white Gaussian noise (AWGN)
channels under suitable channel path loss. We adopt a uni-
versal decentralized quantization/estimation scheme and an
uncoded quadrature amplitude modulated (QAM) transmission
strategy for each sensor node. We derive an upper bound on
the mse distortion of the universal DESs, and the target mse
performance is then ensured by imposing the deduced upper
bound to be within the desired distortion level. To minimize
the total energy consumption under such a proposed distortion
constraint, we optimally choose the number of quantization
levels and transmit power for all sensors by taking into account
both their local SNRs and individual channel path losses.
Our approach is based on combining the recently proposed
universal DESs [11], [15]–[17] with the energy models for the
coded and uncoded -QAM transmissions [18]–[20] so as to
minimize the total sensor transmission power. We formulate
this power scheduling problem as a convex program and derive
its optimal solution analytically. The analytical form of the
optimal power scheduling scheme suggests that the sensors
with bad channels or poor observation qualities should decrease
their quantization resolutions or simply become inactive in
order to save energy. For the active sensors, their quantization
and transmit power levels are determined jointly by individual
channel path losses, local observation noise variance, and the
targeted MSE performance. Computer simulations show that
for an inhomogeneous sensing environment our power sched-
uling scheme can save substantial amount of sensor energy as
compared to the simple uniform power scheduling strategy,
thus dramatically increasing the sensor network lifespan.

Our paper is organized as follows. Section II describes the
power scheduling problem based on a universal DES and the
QAM transmission strategy. In Section III, we optimize the
number of quantization bits and the local transmit power level
for local sensors based on their local SNR’s and channel path
losses. Section IV shows some numerical results illustrating the
energy savings when compared to the uniform power sched-
uling scheme, and Section V gives some concluding remarks.

II. DECENTRALIZED ESTIMATION IN WSNs

Consider a set of distributed sensors, each making obser-
vations on a deterministic source signal . The observations are
corrupted by additive noises and are described by

(1)

We assume noises are zero mean, spa-
tially uncorrelated with variance , but otherwise unknown. By
a suitable linear scaling, the above data model (1) is equivalent
to the one where sensors observe with different attenuation,
namely, . Indeed, if we let and

, then which is identical to (1) with
equivalent noise variances .

Suppose sensors and the fusion center wish to jointly estimate
based on the sensor observations . We will use mse to

measure the quality of an estimator. If the fusion center has the

Fig. 1. A decentralized estimation scheme by a WSN with a fusion center.

knowledge of sensor noise variances and the sensors can send
the observations to the fusion center
without distortion, then the fusion center can simply perform
the linear combination of sensor observations to recover . This
is the concept of the centralized BLUE [21]

(2)

A simple calculation shows that this estimator has an mse of

(3)

The above scheme is only applicable in a centralized esti-
mation situation where observations ’s are either centrally
located, or can be transmitted to a central location without
distortion. Neither of these requirements is realistic in a WSN
where the data are spatially distributed and the communication
links between the fusion center and sensor nodes are power
constrained and subject to the usual pathloss. As a result, we
propose the following decentralized estimation scheme (see
Fig. 1). First, each sensor performs a local quantization of
and generates a discrete message of bits, where
the quantizer is to be designed. Each
discrete message is then transmitted to the fusion center through
a separate AWGN channel with a known pathloss coefficient,
and the fusion center generates the final estimate based on the
received signals. The independent AWGN channels between
sensors and the fusion center can be realized by any of the
well-known multiaccess techniques such as TDMA, FDMA, or
CDMA.

The main purpose of this paper is to investigate adaptive
quantization of sensor observations and its impact on energy
saving. More specifically, we will adopt certain specific quan-
tization and transmission strategies for each sensor, and decide
the optimal message lengths and its corresponding transmit
power levels. Due to the lack of noise pdf knowledge, we take

to be a uniform randomized quantizer
[15]. This quantization scheme works universally for all noise
pdf, and it generates unbiased message functions. In addition,
we adopt uncoded QAM transmission [19], [20] of the quan-
tized bits. The estimator at the fusion center is a generalized
version of the BLUE estimator (2) which weighs the message
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functions linearly with weights decided by both the observation
noise and the quantization noise. We will optimally choose
quantization and transmit power levels at local sensors so as to
minimize the total transmit power, while ensuring a targeted
mse performance.

A. Probabilistic Quantization of a Bounded Random Variable

Suppose is the signal range that sensors can ob-
serve, that is, , where is a known
parameter decided by the sensors’ dynamic range, and is the
unknown signal to be estimated. The noise has zero mean
and variance , but is otherwise unknown. Suppose we want
to quantize into bits regardless of the probability distribu-
tion of . This can be achieved by uniformly dividing
into intervals of length , and rounding

to the neighboring endpoints of these small intervals in a
probabilistic manner (see Fig. 2). More specifically, suppose

where , then is
quantized to according to

with . Notice that is
chosen so that the quantization is unbiased,
namely, , where denotes expectation
taken with respect to the probabilistic quantization noise.
It is easy to see that assumes discrete values

which can be represented in bits. The quantization noise
can be viewed as a Bernoulli random

variable taking values at and , i.e.,

In terms of the quantization noise can be
written as

(4)

where and are independent. Next lemma, whose proof
can be found in [15], shows that this message function is an
unbiased estimator of with a variance approaching at an
exponential rate as increases.

Lemma 1: Let be an -bit quantization of
as defined. Then is an unbiased estimator of

and

where the expectation is taken with respect to both the sensor
observation noise and quantization noise.

Now suppose the bit budget for sensor is for .
With the strategy described above, we design local independent
quantizers , where is a

Fig. 2. A probabilistic uniform quantization scheme.

discrete message of bits. According to (4), can be repre-
sented as

(5)

where the quantization noise across sensors
are independent because quantizations are performed locally
at each sensor without coordination. By Lemma 1, we have

and

(6)

where

denotes an upper bound of the quantization noise variance.
These message functions are then transmitted to the fusion
center where they are combined to generate a final estimate
of .

B. Fusion Function: Quasi-BLUE

Our goal is to construct a linear estimator of from
such that the mse is minimized. Recall

from the property of BLUE (2) that the optimal weight of
is proportional to . Therefore, according to (6) we
can set the weight for as , giving rise to the
following estimator

(7)

Notice that is an unbiased estimator of since every is
an unbiased quantization of . Moreover, it has an mse

where the third step follows from the fact that
and [see (5)] are uncorrelated for , and

for all as shown in Lemma 1, while the final
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inequality results from the application of (6) to each term in the
sum.

So far we have assumed that the sensor messages
are perfectly received by the fusion center. When

each is transmitted to the fusion center through a nonper-
fect channel with finite power, bit error occurs, which further
impacts on the estimation accuracy at the fusion center. We will
model each sensor’s channel to the fusion center as a memo-
ryless binary symmetric channel, the following lemma (whose
proof is given in Appendix A) analyzes the contribution of bit
error rate (BER) to the mse performance.

Lemma 2 (MSE due to BER): Suppose the probability of bit
error achieved by sensor is , and is the decoded version
of at the receiver. Let denote the mse achieved by the es-
timator (7) based on the received messages .
If satisfy (for some )

(8)

then

Lemma 2 shows that the actual achieved mse is at most a
constant factor away from what is achievable with perfect
sensor channels, provided that each sensor’s BER is bounded
above (8).

III. POWER SCHEDULING

We assume that the channel between each sensor and the
fusion center is corrupted with additive white Gaussian noise
whose double-sided power spectrum density is given by .
In addition, the channel between sensor and the fusion center
experiences a pathloss proportional to , where is
the transmission distance and is the passloss exponent. We
further assume that sensors follow a time division multiple ac-
cess scheme to send data to the fusion center. If sensor sends

bits with quadrature amplitude modulation with constella-
tion size at a bit error probability , then the total amount
of required transmission energy [19], [20] is given by

(9)

with

(10)

where is the receiver noise figure, is the single-sided
thermal noise spectral density, and is a system constant de-
fined in the same way as in [19], [20].

In addition, we suppose that sensor first samples the ob-
served signal at rate , and then quantizes each sample to

bits. The transmission symbol rate is equal to the sampling
rate , and we take the QAM constellation size to be in
order to minimize the delay. Neglecting circuit power, the av-
erage transmit power consumption of node is .

Our primary goal is to minimize the total power consumption
while meeting a target overall mse performance. A secondary
goal is to maintain fairness in the power scheduling among sen-
sors. For any , the -norm of the power vector

is defined as

Minimizing the total power consumption implies minimizing
the -norm of , while minimizing the maximum of the
individual power values implies minimizing the -norm of

. In our paper, we make a design compromise by choosing

to minimize the -norm of . In
this way, we can penalize the large terms in the power vector
while still keeping the total power consumption reasonably
low. The -norm also allows an easier analytical treatment of
the power scheduling problem, and helps us to obtain a closed
form solution.

With the goal of minimizing the -norm of the sensor power
vector, we obtain the following formulation of the power sched-
uling problem

(11)

where and are the achieved and target mse performance
respectively.

Assume that the constants [cf. (10)] and are the same
for all nodes, and that the same target BER is chosen for all sen-
sors. To ensure that , we use the upper bound of
deduced in Lemma 2. In addition, applying (9), we can refor-
mulate (11) as

(12)

where is the quantization noise variance, is the range
for the sensed signal, is an integer signifying the number
of quantized bits per sample at sensor . To facilitate the
subsequent analysis, we will relax the integer condition
to . However, even with this relaxation, the above
problem remains nonconvex in . Fortunately, we show next
that the problem (12) can be reformulated as a convex one by
performing a change of variables.

Let us define . We see that
and can both be replaced by functions of as
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Therefore, the problem (12) can be transformed into a problem
with variables shown as follows:

(13)

where . The upper limit on is given by
the fact that and . It is easy to check
that the optimization problem (13) is convex with respect to the
new variables .

Though the convex problem (13) is efficiently solvable by
numerical methods, we show below that it can actually be solved
analytically. In particular, we can write the Lagrangian function

as

which gives the following Karush-Kuhn-Tucker (KKT)
conditions [22]

(14)

(15)

(16)

We notice that, if , then (14) would imply for
all ; Combining this with (16) shows for all , which
violates the condition (15). Thus, we must have , which
further implies .

We proceed to solve the above KKT system. Without loss of
generality, we assume that , and define

(17)

Let be such that

(18)

We show in Appendix B that such is unique unless
for all , in which case we take . Simple

manipulations of the KKT system lead to

(19)

where equals 0 when , and otherwise is equal to .
By definition, we have

Thus, (19) implies that the optimal value of is

(20)

where

The transmission power for node is given as

Notice that when , or , we have , and
therefore . Since is the channel loss factor (inverse
of the channel gain), this implies that when the channel quality
for sensor is worse than the threshold , we should discard
its observation in order to save energy. In the simulations, we
can see that in some cases, a large number of sensors with bad
channel qualities or poor observations shut off (see Figs. 3 and
4). The message length formula in (20) is intuitively appealing
as it indicates that the message length should be proportional to
the logarithm of local SNR scaled by channel path gain. This
is in the same spirit as the message length formula when the
channel is distortionless; see [17]. For example, if the channel
quality is very poor (indicated by ), the message length
formula (20) may still assign , even if the sensor has
good quality observation (i.e., small ). This again conforms
with intuition.

To implement the described power scheduling scheme, the
central node (fusion center) needs to broadcast the threshold

whose value is based on the collected network information.
Local sensors then decide the quantization message length
according to its own local information ( and ) and [cf.
(20)]. In particular, sensors with should be inactive.
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Fig. 3. Number of active sensors decreases as the target mse increases.

Fig. 4. Number of active sensors decreases as the channel path losses become
more heterogeneous.

IV. NUMERICAL RESULTS

According to (18), the number of active sensors de-
pends on the target mse , the distribution of channel path
losses as well as sensor noise variances. This dependence
will be illustrated by numerical results in this section. In all
simulations, the total number of sensors . We gen-
erate sensor noise variances according to the distribution

, where is the Chi-square distribution of
degree 1. Also, the channel path loss coefficients are
generated by a uniformly distributed (the distance
between sensor and the fusion center), and some passloss
exponent . With different choices of and , we can generate

and to model
different sensing environments.

For a positive random variable , we define

which will be used as a measure of the absolute heterogeneity
of . The purpose of our simulations is to observe how the per-
centage of active sensors, and amount of energy saving vary
over the heterogeneity of sensor noise variances or channel path
losses.

According to (17), when target increases or when channel
path losses become more diverse, more sensors will become in-
active. Such inactive sensors neither perform quantization nor
transmit any messages to the fusion center in order to conserve
energy. Fig. 3 plots the percentage of active sensors versus some
target mse when the distribution of channel path
losses and sensor noise variance are kept fixed by choosing

. In Fig. 4, the percentage of active sensors
versus the normalized deviation of channel path losses is plotted
by keeping distribution of local sensor noise variances fixed
choosing , and the target mse where

is the mse of the centralized BLUE defined in (3). Sim-
ilar curve can be obtained if we plot the percentage of active
sensors versus the normalized deviation of sensor noise vari-
ances by keeping the target and channel path losses fixed.

Since can only take integer values, the original problem
(12) is actually a nonconvex integer programming problem. We
have relaxed to take real values to make the problem convex.
Therefore, the optimal power consumption obtained by allowing

to take on real values is a lower bound (denoted as ) of
the actual power consumption. If we round the up to the
closest integer that is larger than , we can obtain an
upper bound (denoted as ) of the actual power consumption.

However, even the approximate solution can achieve
significant energy saving compared with the following two
strategies:

• Uniform quantization: each sensor quantizes the observa-
tion into the minimal same number of bits to achieve the
target mse distortion ;

• Uniform power scheduling: each sensor schedules the
minimal identical amount of power to achieve the target
mse distortion .

Notice that the uniform power scheduling can also be ob-
tained by solving (11) with objective function replaced by

. The comparison is shown in Figs. 5
and 6. In Fig. 5, we suppose there is no fading and all channel
path losses take the same value 1, and observe how the
percentage of energy savings varies over the standard deviation
of observation noise variances . In such a case, the uniform
quantization strategy coincides with the uniform power sched-
uling strategy due to the same path losses. In Fig. 6, all
take the same value 0.1 as the normalized deviation of
increases. We conclude that when compared to either uniform
power scheduling or uniform quantization scheme, the amount
of energy savings of our proposed strategy becomes more
significant when either the local noise variances or channel
path losses become more heterogeneous.

V. CONCLUDING REMARKS

In this paper we have derived a power scheduling strategy for
decentralized estimation in wireless sensor networks, whereby
sensor nodes are assumed to adopt a uniform randomized
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Fig. 5. Percentage of energy saving increases when sensor noise variances
become more heterogeneous.

Fig. 6. Percentage of energy saving increases when channel path losses
become more heterogeneous.

quantization scheme as well as an uncoded QAM transmission
scheme. Our design minimizes the total energy consumption
subject to the constraint that the worst distortion is within a
given level. We show that the optimal quantization level and
transmission power for each sensor can be determined jointly
in terms of the channel path losses and the local observation
noise levels. When the channel quality is below a (computable)
threshold, the corresponding sensor will be completely shut off
to save energy. In contrast, when the channel quality is good
and the observation noise is low, the corresponding sensor
will be active: it will first quantize its observation to a specific
(computable) number of bits and then transmit them to the fu-
sion center using an appropriate amount of transmission power.
Numerical examples show that in an inhomogeneous sensing
environment, our design can achieve a significant amount of
energy saving when compared to the uniform quantization
strategy in which each sensor generates the same number of
bits regardless of its channel quality.

To obtain the desired quantization and transmit power levels,
we have assumed in this paper that the fusion center knows

. This assumption is reasonable
in cases where the network condition and the signal being
estimated change slowly in a quasistatic manner. Thus, once

are acquired by the fusion center,
they can be used for a reasonably long period of time. Also,
our approach can be generalized to the estimation of a memo-
ryless discrete-time random process . Due to the temporal
memoryless property of the source and sensor observations, we
can impose sample-by-sample estimation without significant
estimation performance loss, but obtain important features such
as easy implementation and no coding and estimation delay.

For future work, we wish to extend the current work to the
vector signal model: , for all , where is
the vector of unknown parameters, is the vector of sensor
observations. Our initial investigation shows the corresponding
energy minimization problem becomes nonconvex, which
makes the optimal power scheduling difficult to compute. We
also plan to explore tighter universal source coding bounds and
other energy-efficient coded transmission schemes for decen-
tralized estimation in wireless sensor networks. It is likely that
joint source and channel coding approaches can achieve higher
energy efficiency than the strategy considered in this paper.
Moreover, designing a completely distributed algorithm for
optimal power scheduling which does not require local sensor
information at the fusion center
is also part of our future work.

APPENDIX

A. Proof of Lemma 2

The quantized message has bits and can be written as

where is the first most significant
bit (MSB) of , and is the second MSB, etc.

Suppose the BER of sensor is , and are the decoded
version of at the fusion center. Let , then the
estimator based on the received messages
is

Notice that we may have for some . In this case,
, indicating that the corresponding

weight of such message is . Therefore, such
sensors do not participate the estimation in order to save energy,
and will have no contribution in the final mse.

We now analyze the mse of by taking into account the
bit error caused by the channel. To transmit , the binary bits

must be sent. Suppose the decoded bits at the
fusion center are . Let denote the event that
the first bit decoded incorrectly is , i.e., , but
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for all , and denote the event that all bits are
decoded correctly. Then for any , we have

(21)

When the event happens, it holds that

(22)

where the second and the third steps follow from
for , and for . Thus, we
can obtain from (21) and (22) that

Similarly, we have

Since the above bounds are independent of , we obtain the
following estimates for the unconditioned means

(23)

Let be the mse of the centralized BLUE [defined in (7)]

(24)

Now we calculate the part of mse due to the channel distortion.
We ignore the terms in the estimators and when
because the corresponding terms vanish in both estimators

In the above derivation, we have used (23) in step 3. A factor of
is introduced in step 2 since error term does not

have zero mean in general.
Choose such that for any

(25)

then

Let be the mse of . Then we can combine the above bound
with (24) to obtain

where the third term in the second line does not vanish because
due to the possible bias caused

by BER. We bound this term by
using the Cauchy-Schwartz inequality. According to (25), the
constant can be chosen as

This completes the Proof of Lemma 2.
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B. Uniqueness of

Lemma 3: For defined in (17), i.e.,

where . Suppose for some
, then there exists a unique such that

and , where .
Proof: It is easy to see that

We find the smallest such that (the exis-
tence of such follows from the assumption). We claim that

for any . This can be proved by showing
that if , then . Specifically, suppose

for some , then we have

where the last inequality is due to the fact that

Specifically, we can make the following identification

and use the fact that .
Since for any , it follows that there is

a unique satisfying and , and
. The proof is complete.
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