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ABSTRACT

HEIL, D. P., S. BRAGE, and M. P. ROTHNEY. Modeling Physical Activity Outcomes from Wearable Monitors. Med. Sci. Sports

Exerc., Vol. 44, No. 1S, pp. S50–S60, 2012. Although the measurement of physical activity with wearable monitors may be consid-

ered objective, consensus guidelines for collecting and processing these objective data are lacking. This article presents an algorithm

embodying best practice recommendations for collecting, processing, and reporting physical activity data routinely collected with

accelerometry-based activity monitors. This algorithm is proposed as a linear series of seven steps within three successive phases. The

Precollection Phase includes two steps. Step 1 defines the population of interest, the type and intensity of physical activity behaviors

to be targeted, and the preferred outcome variables, and identifies the epoch duration. In Step 2, the activity monitor is selected, and

decisions about how long and where on the body the monitor is to be worn are made. The Data Collection Phase, Step 3, consists

of collecting and processing activity monitor data and is dependent on decisions made previously. The Postcollection Phase con-

sists of four steps. Step 4 involves quality and quantity control checks of the activity monitor data. In Step 5, the raw data are

transformed into physiologically meaningful units using a calibration algorithm. Step 6 involves summarizing these data according

to the target behavior. In Step 7, physical activity outcome variables based on time, energy expenditure, or movement type are

generated. Best practice recommendations include the full disclosure of each step within the algorithm when reporting monitor-derived

physical activity outcome variables in the research literature. As such, those reading and publishing within the research literature,

as well as future users, will have the best chance for understanding the interactions between study methodology and activity monitor

selection, as well as the best possibility for relating their own monitor-derived physical activity outcome variables to the research

literature. Key Words: ACCELEROMETRY, ACTIVITY MONITOR, ALGORITHM, ENERGY EXPENDITURE, MODERATE-

TO-VIGOROUS, PHYSICAL ACTIVITY

A
ssessment of free-living physical activity (PA) has
greatly improved with the use of wearable moni-
tors to objectively measure one or more biosig-

nals, such as positioning and acceleration of a limb or the
body, heart rate, and various measures of temperature (e.g.,
positioning and acceleration of a limb or the body, heart rate,
and various measures of temperature). A common problem
with all current wearable monitors is processing and sum-
marizing data into PA outcome variables once the data are
collected. Specifically, different methods for handling the
same data can result in dramatically different values for
the same outcome variables (11,15). Given the number of
users (e.g., biostatisticians, laboratory technicians, research
scientists) making decisions that affect the collection and

processing of free-living wearable monitor data, the lack of
congruence between PA outcome measures from different
monitors within the same study should be expected. Thus,
although the measurement of PA with wearable monitors may
be considered objective, consensus guidelines for collecting
and processing these objective data are lacking (26).

The goal of this article is to provide best practice
recommendations for the future collection, processing, and
reporting of PA data routinely collected with accelerometry-
based activity monitors. Common commercial examples of
activity monitors include the ActiGraph (ActiGraph, Fort
Walton Beach, FL), Tritrac RT3 (StayHealthy, Monrovia,
CA), Actical (Philips Respironics, Bend, OR), and the
Actiheart (Metrisense, Bend, OR). This article’s focus on
these types of wearable monitors is primarily a function of
their prevalent use in clinical and research settings, as well
as their historical significance to the field of free-living PA
assessment.

The target audience for this article includes anyone re-
sponsible for making decisions about collecting, process-
ing, or summarizing wearable monitor data before writing
a report, research manuscript, or grant proposal. All of these
users will have made decisions that influence the values of
the PA outcome variables.
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A STANDARD SEVEN-STEP ALGORITHM

The best practice recommendations described here are
embodied in a series of functional and analytical steps used
to predict PA outcome variables with wearable monitors,
called a data collection and processing algorithm, or simply
an algorithm. The essence of this algorithm is to translate
the information measured from one or more biosignals into
a summarized variable or variables that predict one or more
types of PA outcome variables (i.e., based on time, energy
expenditure, or activity type). Although the steps described
in this algorithm should be similar for many wearable mon-
itors, even when collecting different biosignals, the options
available within each step will depend on each device. This
article will focus on what we are calling a standard seven-

step algorithm (Fig. 1), a linear series of steps that cascade
from a Precollection Phase (Steps 1–2) to the Collection
(Step 3) and Postcollection phases (Steps 4–7). The presen-
tation of this algorithm is intended to serve as one example
of how to conceptualize an algorithm and is targeted at users
who are planning to collect data soon.

Step 1: Define the Data Collection Strategy

The first step of the PA assessment algorithm is to clearly
define the criteria on which a wearable monitor is selected,
which should include, at a minimum: 1) the population of
interest, 2) the intensity and type of PA behaviors that
are targeted, 3) the preferred PA outcome variables, and 4)
the epoch duration. Once these criteria have been defined,

FIGURE 1—The standard seven-step algorithm conceptualizing the collection, processing, and summarization of PA data collected with wearable
monitoring systems. As presented, the algorithm applies most accurately to the use of accelerometry-based activity monitors for free-living PA
assessments. The solid-lined arrows depict this series of steps using traditional activity monitor data, whereas the dashed-lined arrows depict how
previously collected data can be reevaluated when new postcollection data processing components become available in the literature.
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the user will be ready to select an instrument that can meet
the majority of the study’s needs.

Population of interest. The population of interest
should be defined in terms of characteristics such as sex,
age, adiposity, disease pathology (e.g., diabetes, cardiovas-
cular disease), or other grouping characteristic of interest
(e.g., functional capacity, living environment, socioeconomic,
or employment status). Each of these descriptions may be
an important determinant of other PA algorithm parameters,
such as monitor wearing location (Step 2), the availability of
data transformation algorithms (Step 5), and data summari-
zation characteristics (Step 6), or the expected types and
intensity of PA behaviors to be monitored.

Intensity and type of PAs. The four domains that tra-
ditionally characterize any PA include duration, frequency,
intensity (i.e., sedentary, light, moderate, and vigorous), and
activity type (or mode). Although most activity monitors are
theoretically capable of operating over a broad range of in-
tensities, research has traditionally been biased toward iden-
tifying moderate-to-vigorous intensity PAs (MVPAs). For
instance, a common health promotion goal has been to change
participants’ behavior so that MVPA increases regardless of
the type of activity. Physical activity intervention studies
also have focused on increasing the occurrence of particu-
lar PA behaviors, such as the amount of habitual walking or
daily lifestyle activities that also satisfy MVPA health pro-
motion guidelines (3,9,28). Some weak evidence suggests
that traditional activity monitors may be used to grossly cat-
egorize locomotor versus nonlocomotor PAs (6,10). Howev-
er, an accurate classification of activity types (e.g., sitting,
standing, walking, lifestyle activities) or the actual identifi-
cation of specific activities (standing quietly vs standing and
washing dishes) will require the use of more sophisticated
wearable monitors, such as those based on artificial neural
networks (24,25,33,34).

Most recently, activity monitors have been applied to
the study of sedentary behaviors without an adjustment
for acceleration range sensitivity (19). Although this
strategy is convenient because monitors are already available
to study MVPAs, it also may compromise the accuracy of PA

outcome variables focused on sedentary behaviors. Regard-
less, the burden is on the user to determine whether the study
should focus on identifying the intensity of PAs, identifying or
classifying PA types, or some combination of both, as well as
which instrument satisfies these criteria for the population of
interest.

Physical activity outcome variable(s) of interest.
The most important factors dictating choice of biosig-
nal measurement should be the user’s ability to accurately
transform that biosignal into PA outcome variables of in-
terest and the feasibility of measuring that biosignal within
the population of interest. Table 1 can be used as a start-
ing point for guiding activity monitor users from the PA
behavior-related question to an outcome variable as derived
from an activity monitor. Research questions related to mea-
suring the specific types of activity (e.g., Tae Kwon Do),
however, should be considered an emerging field that will
evolve dramatically in the next 5–10 yr.

Epoch duration. An epoch is a user-defined time in-
terval over which the activity monitor information is sum-
marized. The background details on these computations
have been described (5) and reviewed (27) previously. This
choice is intimately related to the choice of PA outcome
variables and thus must be defined before data collection.
The traditional epoch length for energy expenditure–based
studies in adults has been 60 s, which is a direct reflec-
tion of the standard 60-s sample interval used with indirect
calorimetry procedures to measure submaximal steady-state
oxygen consumption (V̇O2). Most published calibration
studies have used the 60-s epoch to establish relationships
between activity monitor outputs (the result of Step 3) with
energy expenditure. Some research in children, in con-
trast, has shown that shorter epochs (e5 s) better capture
their behavior preference for short bursts of vigorous in-
tensity activity (17). In contrast, wearable monitors that rely
on neural network models simply use the raw data col-
lected at high frequency (10–40 Hz) as modeling inputs to
the PA algorithm rather than summarizing these data into
epochs. Thus, although steady-state energy expenditure–
based outcomes may be represented reasonably well with

TABLE 1. Linking the PA outcome variables of interest with the types of information typically derived from wearable monitoring (WM) systems and the PA behavior-related question
or topic.

Variables Derived from
WM Systems

Examples of PA Outcome
Variables

Example Commercial WMs for
AssessmentaPA Behavior-Related Question/Topics

Have the ACSM/AHA guidelines for weekly PA been
satisfied?

PA intensity as determined
by O2, METs, EE, or AEE.

Time in MVPA ActiGraph, Actical, Actiheart,
Tritrac RT3, Sensewear Pro 2

PA intervention study to increase the number
of 10-min or longer bouts of moderate-intensity PA.

PA intensity as determined
by O2, METs, EE, or AEE.

Number of MVPA bouts;
time in MVPA

Influence of energy expenditure on energy balance
and body weight maintenance?

Energy expenditure as
determined by EE or AEE.

TEE and PAL ActiGraph, Actical, Actiheart,
Tritrac RT3, Sensewear Pro 2

Walking activity intervention study PA activity classification
or identification

Time spent walking; total steps
from pedometry

IDEEA
Digiwalker Pedometer

Lifestyle intervention study PA activity classification or
identification

Time spent performing
lifestyle activities

IDEEA

a Company name and location information for commercial brand names listed are provided in the text.
AEE, activity energy expenditure (EEj RMR, or RMR); BMR, basal metabolic rate; EE, energy expenditure; METs, metabolic equivalents (V̇O2/3.5); PAL, physical activity level (TEE/BMR);
TEE, total daily energy expenditure; V̇O2, oxygen uptake.
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60-s epochs, outcomes related to activity type are almost
completely lost. As a general recommendation, activity mon-
itor data should be collected over the shortest possible epoch
to retain as much information as possible about the original
PA-related biosignal.

Step 2: Select Monitor and Design Protocol

Users are asked to combine criteria from Step 1 with ad-
ditional methodological criteria to select an activity monitor.
Additional criteria include how the monitoring system can
(or must) be worn, the amount of time the monitor should be
worn, and timing constraints on when the activity monitor
is actually worn. Collectively, the decisions (Steps 1 and 2)
play a critical role in all downstream algorithm steps because
they constrain the available data and analysis strategies to
which a user will have access.

Monitor wearing location. The primary issues driv-
ing the selection of the monitor wearing location are wear-
ing compliance and design characteristics of the monitor
itself. Some commercial devices, such as the Sensewear Pro
2 Armband (BodyMedia, Pittsburgh, PA) and the IDEEA
monitor (Intelligent Device for Energy Expenditure and
Physical Activity; MiniSun LLC, Fresno, CA) are worn
only in one way owing to the sensors’ characteristics. In
contrast, many of the watch-sized activity monitors have
been evaluated for wear at several different locations, the
most common of which is the waistline (i.e., hip-worn
monitors) (27). Although the hip offers a theoretical ad-
vantage (measuring acceleration near the subject’s center-
of-mass), historically, wearing compliance has been poor.
This is especially true in large studies or studies with long
monitoring durations, where significant personal contact by
the study team may not be possible. Unfortunately, an ac-
curate assessment of the scope and magnitude of this com-
pliance problem is not possible because researchers have
been reluctant to report these data along with the data suc-
cessfully collected. Responding, in part, to this compliance
problem, other wearing locations for the same hip-worn
monitors, especially the ankle or wrist, have been evaluated
for use in free-living PA assessments (10–12). Limb-worn
monitors may be contraindicated for populations at risk for
swelling in the extremities, while some people simply dis-
like wearing a watch-like band for long periods.

Monitor wearing duration. Behavioral reliability re-
fers to the minimum number of days that monitors should
be worn to ensure that daily averages for PA outcome var-
iables accurately reflect habitual PA. A previous review
indicates that 3–5 d of monitoring for adults, and 7 d for
children, should be sufficient to reliably estimate habitual
PA with hip-worn monitors (27). However, the very premise
of the current article is that different data processing
algorithms applied to the same data set will result in differ-
ent PA outcome values. Mâsse et al. (15), for example, used
four different PA algorithms to analyze the same activity
monitor data set on adults and found that nearly every

outcome variable was influenced regardless of intensity cate-
gory (sedentary, light, or MVPA). Clearly, this topic needs to
be addressed more systematically in the research literature to
better understand the potential interaction of wear duration and
location on measures of behavioral reliability.

Timing of monitor wear. Studies should be designed
so that monitors can be worn continuously while avoid-
ing periods in which individuals’ activity behavior is altered
from their ‘‘typical’’ 7-d weekly routine (e.g., holidays, vaca-
tions, scheduled surgery). The phrase ‘‘continuous wearing’’
often refers to a specific predetermined period in which
everyone wears the monitors. Alternatively, subjects could
be given a window of time, such as 4 wk, in which to con-
tinuously wear the activity monitor for a period of 7–10 d.

Step 3: Collect and Process On-board Biosignals

Decisions made within Steps 1 and 2 cannot be altered
once data collection with an activity monitor has begun.
The on-board processing and summarizing of biosignals by
commercial monitors actually involve both collecting and
processing data. On-board data summarization generally
means converting a relatively high-frequency ‘‘raw’’ signal
into a single positive value for each user-defined epoch.
In the case of activity monitors, a common result of this
transformation is an activity count value. This processing
step can be avoided only if raw biosignal data are stored by
the monitor, but this currently is not an option for many
commercial activity monitors. Each brand of monitor has a
slightly different approach to this data-filtering step, and the
peer-reviewed literature offers substantial insights into the
filtering strategies used by the makers of the most common
monitors (5). Very little can be done to change this on-board
data processing routine, but it is important for users to realize
that this is the first data processing step and thus may affect
downstream analyses because the information stored by the
activity monitor will be less than what is actually measured
(i.e., the sample interval, or epoch, is always less than the
monitor’s sampling frequency of the biosignal). This feature
and its limitations need to be understood at the time of ac-
tivity monitor selection.

Step 4: Conduct Immediate Data Processing

This processing step has three goals: 1) identify raw
data points that may not accurately represent the PA be-
havior, 2) decide how to handle these data, and 3) fully
disclose the process and outcomes for these steps when
publishing. Collectively, these quality and quantity control
checks are performed before Step 5. Outcomes from Step 4
include the reporting of the total number of data files suc-
cessfully collected, the number of files not included with
those used for statistical analyses, a summary of reasons why
files were not included in the analyses (e.g., failed monitors,
subjects did not wear the monitor, not enough complete
measurement days), and user errors (e.g., new files were
saved with the same name as older files). This will help
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future users evaluate the success of the methodology, as
well as understand the challenges to expect when using this
instrumentation in the future.

Quality control checks. Sometimes called ‘‘data
cleaning,’’ this step involves identifying spuriously high
and/or low values according to predetermined threshold
values using a combination of quantitative and qualitative
assessment techniques. A common quantitative check has
been to screen the raw data, either visually or with automated
methods, to identify data points that exceed a predetermined
threshold. For example, activity monitor data exceeding a
20,000-counts-per-minute threshold has been used to indicate
spuriously high data points or monitor failure. The exact
value of these thresholds will vary between monitoring
devices and may be established by physiological expec-
tations, commonly reported values from the literature, or
known limitations to the measurement device itself. An ef-
fective qualitative method includes the visual assessment of

time-based graphic plots. Regardless of what software is used
to generate these plots, the experienced user can visually
identify spurious biosignal values, unexpected periods of non-
wear, and monitor malfunctions.

Quantity control checks. Two common activity mon-
itor quantity control checks are 1) identifying nonwear times
and 2) ensuring that enough data were collected to satisfy
the minimal requirements for behavioral reliability. Nonwear
times are periods within a monitoring day during which the
activity monitor was purposely removed and then reattached
by the subject, when the activity monitor was accidentally
disconnected from the subject, or periods when the activity
monitor was not worn enough to represent a full monitor-
ing day. Nonwear times create missing or incomplete data,
meaning that the recorded activity monitor data do not fully
describe the subject’s actual PA behavior for the intended
monitoring period (4). While the analytical procedures
for handling missing data have been described previously

FIGURE 2—Depiction of several common quantity and quality control issues that are easily observed with a time-based graphic plot of raw data from
an accelerometry-based activity monitor. Each graph shows four successive days from a 7-d collection period using a hip-worn activity monitor. Each
graph is for a different subject, but all subjects were part of the same PA intervention study. Plot A is an example of someone with perfect compliance
(i.e., good monitor wearing habits) during all 4 d. This subject’s habits include similar monitor wear time (14.5–16 hIdj1), similar monitor donning
time each day (7:00 a.m.), and no discernable nonwear (NW) periods or short wear days. Plot B, in contrast, shows a person with good compliance
during the weekdays but evidence of short wear days on the weekend (i.e., late to don and early to doff monitors). Weekend donning was after noon,
while weekday donning was 3–4 h earlier. Plot C is a good example of someone with mixed nonwear time issues, with evidence of multiple 1–1.5 h
nonwear times on 1 d, extended nonwear times (93 h) on two other days, and a fourth ‘‘short wear’’ day (Thursday). Plot D shows what a monitor
failure can look like, a result that likely has nothing to do with the subject’s wearing habits. Although some of these data patterns may resemble PA,
data are saturated, which means that a large range of true data points have recorded the same spuriously high value.
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(4,14,29), the underlying principle of this step is that these
procedures should be planned, systematic, and thoroughly
described in formal reports.

Several common decision rules for handling missing
data have been used as a starting point to decide whether
more advanced data imputation procedures are needed. It is
common, for instance, to allow a single 1- to 2-h midday
period of apparent nonwear time during each measure-
ment day. Another common rule is to establish a minimum
amount of continuous activity monitor wear time to define
a full monitoring day. Described as such, this procedure
allows for an individual to have different monitor wear
times each day and thus accounts for some variances in day-
to-day sleep patterns. Large deviations from a full moni-
toring day can be identified visually as short wear days (e.g.,
6 h vs the usual 10–12 h). A related issue is the minimum
number of wear days needed to ensure sufficient behavior
reliability (from Step 2). Thus, although the standard for
reliability was established in Step 2, the verification of sat-
isfying the reliability standard occurs in Step 4. Using data
from the research literature (32), Figure 2 illustrates several
types of the quality and quantity control issues from a study
collecting activity monitor data at the hip during seven
successive days (31). These examples include perfect com-
pliance (Fig. 2A), nonwear times on weekends versus week-
days (Fig. 2B), multiple nonwear time issues (Fig. 2C), and
output from a faulty activity monitor (Fig. 2D).

Step 5: Transform Data

The raw activity monitor data are typically transformed
into one or more new physiologically meaningful variables.
These transformations, hereafter called calibration algorithms,
have used a variety of analytical techniques, such as simple
linear regression (7,20), multiple regression (22,23), which
are multistep evaluations that involve the use of threshold
values, one or more regression lines (2,6,10), and artificial
neural networks (25,33,34). Derived from what the research
literature calls calibration studies (8,16), these calibration
algorithms typically transform the raw activity monitor data
into predicted energy expenditure or are used to identify ac-
tivity types. Although much of the earlier PA research liter-
ature has previously emphasized the reporting of summarized
raw activity monitor data (e.g., reporting summed counts for
an intensity category), this is no longer considered appro-
priate because only studies that have used the exact same
monitor can be compared directly. Transforming the raw data
into a commonly reported physiological energy expenditure
unit, however, allows monitors based on current and new
technologies to be compared directly. Given that the devel-
opment and use of calibration algorithms is a highly active
research field, the burden is truly on the user to determine
what algorithms are available and considered appropriate
for each wearable monitor by the current research literature.

Transformation to energy expenditure units. Pre-
vious calibration study reviews (8,16) have highlighted the

fact that no universal standard exists for transforming raw
activity monitor data into units of energy expenditure. For
example, calibration studies in children have generated ca-
libration algorithms that predict oxygen uptake V̇O2, or
mLIkgj1Iminj1), metabolic equivalents (METs, or V̇O2/3.5),
total energy expenditure (TEE, or kcalIkgj1Iminj1), PA en-
ergy expenditure (PAEE, or TEE j RMR [resting metabolic
rate]), and the PA ratio (PAR, or TEE/BMR [basal metabolic
rate]). Adult calibration studies have been just as varied but
with greater emphasis on predicting METs and V̇O2. Al-
though calibration algorithms have historically been domi-
nated by MET prediction algorithms for adults and children,
recent research has tended to focus on predicting PAEE.

Complicating this translation step are issues such as the
fact that each calibration algorithm is specific to each brand
of activity monitor and the wearing location at which the
activity monitor was originally validated (i.e., calibrated).
Moreover, each calibration algorithm is considered valid
only for populations that are similar to that for which the
algorithm was originally derived. Researchers interested in
using the Actical monitor, for instance, can predict PAEE
in both adults and children at several wearing locations
(10,22), but users wanting to predict PA levels can only do
so in children with the Actical worn at the hip (23). Thus,
issues related to population and EE variables of interest,
monitor wearing location, available calibration algorithms
from calibration studies, and choice of activity monitor
brand (discussed in Step 2) are inexorably linked.

Transformation to activity type. Because of the
limitations with PA inferences when predicting energy ex-
penditure, recent calibration algorithms have begun to in-
corporate some degree of activity type classification and/or
identification. The simplest of these algorithms have used
various approaches for fitting different regression lines to
locomotion versus nonlocomotion calibration data (6,10).
Artificial neural network algorithms, sometimes called pat-
tern recognition software, are ‘‘trained’’ to identify activity
types based on numerous channels of information to either
predict energy expenditure and/or predict specific types of
activity (classification) or the activity itself (identification)
(24,25,33,34).

Proprietary calibration algorithms. Some commer-
cial monitors use software to automatically transform the
raw data after they have been downloaded from the com-
puter. From the perspective of the seven-step algorithm
(Fig. 1), proprietary algorithms combine Steps 3 and 5, may
eliminate the ability to screen raw data (Step 4), and ef-
fectively limit, or even eliminate, some of the typical Step
6 postprocessing options (Fig. 3). An advantage of using
monitors with proprietary algorithms is that many compu-
tational portions of the seven-step algorithm are automated,
which simplifies the task of processing and summarizing PA
data. A disadvantage, of course, is that the user will have
limited choices about how to handle the data after collection.
Another major disadvantage is that it may not be possible
to reexamine the raw data when the monitor manufacturer,
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or the research literature, provides new or updated calibra-
tion algorithms.

Step 6: Summarize Data Characteristics

Completing Step 5 results in a string of energy expenditure–
based numbers. In Step 6, these numbers are typically sum-
marized according to intensity thresholds and the definition
of a bout, both of which define the dose of PA experienced
by the body (9). General conclusions from this section in-
clude 1) the traditional use and development of cut points
to summarize activity monitor data be avoided in future
studies, 2) the traditional use of 1-min bouts to determine
outcome variables should be avoided when the data are in-
tended to relate to PA guidelines in adults, and 3) the rec-
ognition of MVPA bouts within activity monitor data using
an algorithm requires the use of both time–intensity and
MET-minute bout definitions (9).

Intensity thresholds. Physical activity intensity is tra-
ditionally classified as one of four intensity thresholds:
sedentary, light, moderate, and vigorous (9,18). Given that it
is now recommended that activity monitor data be prefer-
entially transformed into units of PAEE, it seems prudent
to reinterpret the traditional MET-based intensity thresh-
olds for use with PAEE data. Because PAEE is computed
as energy expenditure minus RMR, PAEE-based thresholds

will depend on population differences in measured RMR.
When expressed in units relative to body mass (e.g.,
mLIkgj1Iminj1 or kcalIkgj1Iminj1), measured RMR will
tend to decrease with maturation through childhood, de-
crease with advancing age through adulthood, and decrease
with an increase in adiposity independent of age. Thus, an
emerging component of the standard algorithm is the need
for population-specific PAEE-based intensity thresholds.
Some specific values for both MET- and PAEE-based in-
tensity thresholds as reported in the literature are provided
in Table 2.

A common goal within PA-related physiological and
epidemiological studies is the need to relate raw activity
monitor data to the time spent within the MVPA intensity
range. There are two general analytical approaches to this
issue. The standard approach is to collect, screen, transform,
and then summarize data according to a defined PA bout and
MVPA intensity threshold (i.e., Q3.0 METs)—i.e., the stan-
dard seven-step algorithm (Fig. 1). A large portion of the
research literature, however, follows the traditional ap-
proach, which is characterized by avoiding the transfor-
mation of activity monitor data with a calibration algorithm
(skip Step 5) by simply associating an activity monitor
cut point with the MVPA intensity threshold. The activity
monitor data are then summarized in the same manner as

FIGURE 3—A modified PA data analysis and summarization algorithm for wearable monitors that incorporates a proprietary data transformation
algorithm at Step 3. This depiction represents a combination of Steps 3 and 5 shown in the standard seven-step algorithm (Fig. 1). The most noticeable
influence of the proprietary algorithm is a reduced number of postcollection analytic options because the original raw data are lost within the Step 3
transformations. Note that Steps 1 and 2 are the same as those presented for the standard seven-step algorithm.
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that described for the standard approach (Steps 6 and 7). Use
of the traditional approach requires at least three major as-
sumptions: 1) the relationship between activity monitor data
and the transformed data can be modeled with simple linear
regression throughout the intensity range of interest, 2) an
energy expenditure–based definition of a bout can be accu-
rately recognized using nontransformed activity monitor data,
3) activity monitor data and measures of energy expendi-
ture are relatively similar regardless of the type of activities
being performed. With regard to the first assumption, many
calibration studies have reported linear relationships between
activity monitor data and measures of energy expenditure
(7,20), but most of the recent calibration studies have con-
sistently described these relationships with nonlinear regres-
sion, multiple regression, or multiple nonoverlapping linear
regression (2,6,10,22,23). Because the second assumption
regarding bout definitions relies on the validity of the line-
arity assumption, the second assumption also is invalid. The
third assumption, as thoroughly discussed in the literature
(8,16), also is invalid because the relationship between raw
activity monitor data and energy expenditure depends on
more than just PA intensity (i.e., the linearity assumption).
Other factors include population demographics (e.g., age,
sex, and body size) and the types of activities on which the
monitor cut point evaluation was based (i.e., treadmill walk-
ing and jogging vs simulated household activities). Al-
though the scope and impact of the cut point problem (8,16),
as well as alternative strategies for computing cut points
(30), have been thoroughly acknowledged in the literature, an
appropriate alternative analytical strategy has yet to be well
defined.

Physical activity bout definition. Public health rec-
ommendations for PA define a bout as a minimum of 10
successive minutes (9,28), but this definition has not been
consistently applied to the evaluation of activity monitor
data. In fact, the traditional use of 1-min recording epochs

seems to have been used as the de facto bout definition. It is
likely that the common use of the 1-min bout definition has
been prevalent because of the ease with which summary
variables are determined by statistical or spreadsheet pro-
grams versus the need to recognize and summarize 10-min
bouts. However, when the goal of evaluating activity mon-
itor data is to relate PA behavior with PA guideline com-
pliance (9,28), the use of a 1-min bout definition should be
completely avoided in favor of the 10-min definition. Ac-
cording to Haskell et al. (9), there are two complementary
methods for recognizing an MVPA bout: 1) time–intensity,
which defines an activity bout as lasting Q10 consecutive
minutes at a moderate intensity (Q3.0 METs), and 2) MET-
minutes, which defines an activity bout as the accumula-
tion of Q30 METImin (10-min bout � 3.0 METs) over Q10
consecutive minutes.

The potential complexity of PA bout recognition is illus-
trated by five PA bouts shown in Figure 4. The first bout
(B1) shows several 1-min PA spikes above 3 METs, which
may be clinically relevant for specific PA behaviors, such
as fidgeting (14). However, they are not considered rele-
vant to the accumulation of MVPA bouts according to
PA guidelines. The classic square-wave MVPA bout (Fig. 4,
B2; 3.5 METs for 10 min, or 35 METImin) satisfies both
time–intensity and MET-minute definitions, but free-living
PA behavior often demonstrates 1- to 2-min breaks in ac-
tivity bouts (i.e., bout interruptions, such as stopping at a
signal crossing, or tying a shoelace), as well as the natural
variability around the average intensity. Although not ex-
plicitly outlined by past or present PA guidelines (9,19,28),
both bout interruptions and PA variability are accounted
for within the MVPA bout definitions. For example, a
10-min square-wave PA bout with a 2-min bout interruption

TABLE 2. Intensity thresholds based on METs and AEE reported in the literature for
adults and children.

Intensity Threshold
Categories Sedentary Light Moderate Vigorous

MET based
Intensity thresholds
Adultsa G1.6 METs 1.6–2.9 METs 3.0–5.9 METs Q6.0 METs

AEE based
Intensity thresholds
Childrenb G0.0100 0.0100–0.0390 0.0400–0.0900 Q0.1000
Adultsc G0.0075 0.0075–0.0309 0.0310–0.0831 Q0.0832
Adultsd G0.0147 0.0147–0.0384 0.0385–0.0895 Q0.0896

The MET-based thresholds are those commonly cited in literature for use with adults.
Units for METs are dimensionless, whereas those for AEE are in kilocalories per kilo-
gram per minute (kcalIkgj1Iminj1).
MET (dimensionless) = oxygen consumption V̇O2, mLIkg

j1Iminj1)/(3.5 mLIkgj1Iminj1);
AEE = EE (kcalIkgj1Iminj1) – RMR (kcalIkgj1Iminj1).
a Intensity thresholds reported by both Haskell et al. (9) and Pate et al. (19).
b Thresholds were used for classification of AEE for a mix of overweight and non-
overweight ethnically diverse children (7–18 yr) (23).
c Thresholds were based on physically active, healthy, nonoverweight Caucasian adults
(18–49 yr) (10).
d Thresholds were based on healthy overweight and obese African American women
(26–59 yr) (13).

FIGURE 4—Graphic illustration of five PA bouts (B1–B5) where only
those that are shaded (B2, B3, and B5) actually qualify as MVPA bouts
according to the PA guidelines for adults. Each of the five bouts illus-
trates the interaction of bout duration, average bout intensity, and bout
interruptions relative to the MVPA bout definition. Horizontal dashed
lines at 3.0 and 6.0 METs represent the most common PA intensity
thresholds for moderate and vigorous intensities in adults, respectively.
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(Fig. 4, B3) satisfies both satisfies neither the time-intensity
definition nor the MET-minute definition (32 METImin)
bout definitions. Thus, despite the obvious interruption of
the bout, the PA guidelines would recognize this as an
MVPA bout. In contrast, a similar bout at a lower intensity
(10 min at 3.0-MET average) satisfies neither the time-
intensity definition nor the MET-minute definition (28.8
METImin) because of the same 2-min bout interruption
(Fig. 4, B4). When PA bouts average at much higher inten-
sities (Fig. 4, B5), interruptions have a relatively small in-
fluence on both bout definitions. Thus, 1- to 2-min bout
interruptions should be allowed when defining MVPA bouts
in activity monitor data as recommended previously (15,29),
so long as both time–intensity and MET-minute definitions
are satisfied. It should be noted that, while the interaction of
bout duration, bout intensity, and bout interruptions seems
reasonable when explained with overly simplified illus-
trations (Fig. 4), actual activity monitor and energy expen-
diture data tend to have considerably more variability as a
result of natural variation within the most repetitive of
motions. Thus, a rigorous definition of an activity bout is
critical to the eventual summarization of outcome variables.

Step 7: Generate Physical Activity
Outcome Variables

Finally, the data summarization characteristics (Step 6)
are applied to the transformed data from Step 5 to generate
PA outcome variables. Generally, four types of outcome
variables are of interest. These are variables based on 1)
movement, 2) time, 3) energy expenditure, and 4) activity
type. Currently, the best strategy is to minimally report
both time- and energy expenditure–based outcome variables
using a commonly reported metric (e.g., MVPA minIwkj1)
so that the results can be directly compared with as many
activity monitor studies as possible. However, many studies
using existing data sets, as well as in-place longitudinal
studies, also may need to report movement-based variables.

Movement-based variables. The movement-based
term is used to indicate that an activity monitor has recorded
data because of sensed movement without any attempt to
transform the data into physiological units. Traditionally,
movement-based PA variables reported in the literature
are derived from activity monitors and reported as daily
(counts per day) or intensity-based summed counts (MVPA
counts). Future activity monitor studies, however, should not
rely solely on the use of count-based outcome vari-
ables because the unit of measurement is specific to the brand
of activity monitor being used and typically rely on the use of
activity monitor cut points. For those needing to report their
activity monitor data as a movement-based variable (e.g., a
longitudinal study in progress), a reasonable compromise
would be to include other variable types (i.e., those based on
time, energy expenditure, or activity type). In the near
future, commercial monitors may allow users to return

to a movement-based outcome variable with the adoption of a
common metric, such as acceleration in standard units.

Time-based variables. The time-based outcome var-
iables are one of the most commonly reported because of
the direct relationship to PA guidelines (9,28). For example,
accumulated time spent within specific PA categories, such
as average MVPA minutes per day or minutes per day of
sedentary time, are common metrics that can be derived
from any commercial monitor.

Energy expenditure–based variables. The energy
expenditure–based outcome variables are increasingly com-
mon as monitors are incorporated into longitudinal weight
management studies with targeted PA components. Com-
mon variables can include both daily (total kcalIdj1 or PAEE
per day) and intensity-based (TEE or PAEE during MVPA)
outcomes.

Activity type–based variables. This type of variable
summarizes a metric relative to a type of activity (e.g.,
summed steps by a pedometer for locomotion-based activi-
ties) or a specific activity (e.g., weekly time spent jogging).
Activity type–based variables are less frequently reported
as a PA outcome variable because the most commonly used
monitors have been unable to accurately identify specific
activities or types of activities. However, as described in
the next section, this is an emerging area in the development
of new activity monitors that takes advantage of more so-
phisticated technology and algorithms. Users should expect
activity type–based variables to become more prevalent in
the reporting of PA outcome variables.

FUTURE DIRECTIONS

Although the dominant trend with activity monitors is
to predict energy expenditure, the classification of activity
types and identification of specific activities are also possible
with pattern recognition and machine learning approaches.
Such approaches have been addressed in the literature
(24,25,33,34), but their use is not yet widespread. This is
probably due to a combination of poor feasibility for long-
term monitoring and a relatively high cost per monitoring
system. However, these types of systems are likely to become
cheaper and less invasive for long-term monitoring and will
likely replace the ubiquitous use of single-channel monitors
for smaller clinical and research studies. Regardless, these
advanced systems are already being used as field-based cri-
terion measures for predicting both energy expenditure and
activity types (11,31).

The new generation of wearable monitoring systems will
likely be small, easy to wear for extended periods, and have
the capacity to store raw data instead of filtered or processed
data. These characteristics are as much a function of what
systematic advances in technology are allowing at a rea-
sonable price, as what past experience with simpler de-
vices has taught researchers about what is really needed in
a wearable monitor. Manufacturers of the earliest activity
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monitors, for example, created the user-defined epoch as a
means of summarizing a complex analog biosignal while not
exhausting the activity monitor’s on-board memory. As
newer monitors emerged onto the market, the old epoch-
based model was replicated because it was viewed as an
acceptable (and successful) procedure to users. However, it
is now generally recognized that this epoch-based system
of activity monitor data processing and storage actually
limits the accuracy of predicting energy expenditure and
almost eliminates the ability to predict activity types. Thus,
the newest monitors with the most potential will be those
with the ability to store the raw biosignal during long peri-
ods (at least seven successive days) so that predicting both
EE and activity types is possible.

Analytical procedures for postprocessing of data will
likely become considerably more sophisticated and com-
plex, so much so in fact that common use of proprietary or
open-source software will become necessary for routine PA
data evaluations. Indeed, the availability of such data pro-
cessing software is generally considered a limitation to the
common adoption of advanced analytical strategies by ac-
tivity monitor users. The process of identifying PA bouts,
or PA doses, from activity monitor data also will evolve to
more accurately reflect the dynamic changes in energy ex-
penditure observed with true free-living behavior. Lastly,
the influence of body size on the expression of energy
expenditure–based outcome measures from activity mon-
itors has been almost completely ignored by the research
literature. Although it is well known that body size does
not proportionally influence the energy cost of locomotion
versus nonlocation activities (21), it is likely that daily
measures of energy expenditure as outcome variables also
will vary nonproportionally with body size (1).

Finally, although the standard seven-step algorithm has
been described here as most applicable to most of today’s
commercial activity monitors, the essence of the algorithm
will be the same for emerging technologically and analyti-
cally advanced wearable monitors. Decisions will always
have to be made within a Precollection Phase, for example,
and these decisions will affect the nature and precision of the
downstream PA outcome variables. A Data Collection Phase
in which decisions from the previous phase are merged with
the actual collection of data according to a predefined plan
also always will exist. A Postcollection Phase also will exist,
but users should expect that the sophistication of options
available would continue to evolve at an accelerating pace.

CONCLUSIONS

The standard seven-step algorithm presented in this ar-
ticle should be viewed as a starting point, rather than the
end point, for conceptualizing and implementing the col-
lection, processing, and summarization of objective PA data
with wearable monitors. It is worth noting that the applica-
tion of this type of algorithm is intended for the develop-
ment of new activity monitor studies rather than an attempt
to dictate changes to studies and analyses already in prog-
ress. In addition, the seven-step algorithm is intended to be a
detailed example of how to conceptualize this process and
not the only possible algorithm.

Assuming the use of the seven-step (or similar) algorithm
and given the dependence of PA outcome variables on the
interaction of upstream decisions in the algorithm, best prac-
tice reporting standards should include a full disclosure of
the algorithm used to conceptualize, collect, transform, and
summarize data into PA outcome variables. Using the seven-
step algorithm and the preceding discussion of activity
monitors as an example, this disclosure should minimally
include:

� Precollection Phase—Population of interest, the type
and intensity of PA behaviors targeted by the investi-
gator, the intended PA outcome variables, how an ep-
och was defined, monitoring wearing characteristics
(wearing location, duration, and timing of monitor
wear).

� Collection Phase—A complete description of the on-
board biosignal collection and processing character-
istics that ultimately dictate the raw activity monitor
data available to users. This should minimally include
functional characteristics of the biosignal monitor it-
self, the sampling frequency of the monitor’s analog
signal, and any other filtering or summarizing charac-
teristics of the biosignal.

� Postcollection Phase—The type and outcome of data
quality and quantity control checks, the use of cali-
bration algorithms (published or proprietary), specific
definition used for data summarization characteris-
tics (e.g., intensity thresholds, bout definition), and
the rationale for the choice of reported PA outcome
variables.

The authors report no conflicts of interest.
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