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Preface

This textbook evolved from a course in geophysical inverse methods taught dur-
ing the past decade at New Mexico Tech, first by Rick Aster and, for the last
five years, jointly between Rick Aster and Brian Borchers. The audience for
the course has included a broad range of first– or second–year graduate stu-
dents (and occasionally advanced undergraduates) from geophysics, hydrology,
mathematics, astronomy, and other disciplines. Cliff Thurber joined this col-
laboration during the past three years and has taught a similar course at the
University of Wisconsin.

Our principal goal for this text is to promote fundamental understanding of
parameter estimation and inverse problem philosophy and methodology, specifi-
cally regarding such key issues as uncertainty, ill–posedness, regularization, bias,
and resolution. We emphasize theoretical points with illustrative examples, and
MATLAB codes that implement these examples are provided on a companion
CD. Throughout the examples and exercises, a CD icon indicates that there is
additional material on the CD. Exercises include a mix of programming and
theoretical problems.

This book has necessarily had to distill a tremendous body of mathematics
and science going back to (at least) Newton and Gauss. We hope that it will find
a broad audience of students and professionals interested in the general problem
of estimating physical models from data. Because this is an introductory text
surveying a very broad field, we have not been able to go into great depth.
However, each chapter has a “notes and further reading” section to help guide
the reader to further exploration of specific topics. Where appropriate, we have
also directly referenced research contributions to the field.

Some advanced topics have been deliberately omitted from the book be-
cause of space limitations and/or because we expect that many readers would
not be sufficiently familiar with the required mathematics. For example, read-
ers with a strong mathematical background may be surprised that we consider
only inverse problems with discrete data and discretized models. By doing this
we avoid the much of the technical complexity of functional analysis. Some
advanced applications and topics that we have omitted include inverse scatter-
ing problems, seismic diffraction tomography, wavelets, data assimilation, and
expectation maximization (EM) methods.

We expect that readers of this book will have prior familiarity with cal-
culus, differential equations, linear algebra, probability, and statistics at the
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iv PREFACE

undergraduate level. In our experience, many students are in need of at least
a review of these topics, and we typically spend the first two to three weeks of
the course reviewing this material from Appendices A, B, and C.

Chapters 1 through 5 form the heart of the book, and should be covered
in sequence. Chapters 6, 7, and 8 are independent of each other, but depend
strongly on the material in Chapters 1 through 5. As such, they may be covered
in any order. Chapters 9 and 10 are independent of Chapters 6 through 8, but
are most appropriately covered in sequence. Chapter 11 is independent of the
specifics of Chapters 6 through 10, and provides an alternate view on, and
summary of, key statistical and inverse theory issues.

If significant time is allotted for review of linear algebra, vector calculus,
probability, and statistics in the appendices, there will probably not be time
to cover the entire book in one semester. However, it should be possible for
teachers to cover the majority of the material by selectively using material in
the chapters following Chapter 5.

We especially wish to acknowledge our own professors and mentors in this
field, including Kei Aki, Robert Parker, and Peter Shearer. We thank our
many colleagues, including our own students, who provided sustained encour-
agement and feedback, particularly James Beck, Elena Resmerita, Charlotte
Rowe, Tyson Strand, and Suzan van der Lee. Stuart Anderson, Greg Beroza,
Ken Creager, Ken Dueker, Eliza Michalopoulou, Paul Segall, Anne Sheehan,
and Kristy Tiampo deserve special mention for their classroom testing of early
versions of this text. Robert Nowack, Gary Pavlis, Randall Richardson, and
Steve Roecker provided thorough reviews that substantially improved the final
manuscript. We offer special thanks to Per Christian Hansen of the Technical
University of Denmark for collaboration in the incorporation of his Regulariza-
tion Tools, which we highly recommend as an adjunct to this text. We also thank
the editorial staff at Academic Press, especially Frank Cynar and Jennifer Hele,
for essential advice and direction. Suzanne Borchers and Susan Delap provided
valuable proofreading and graphics expertise. Brian Borchers was a visiting
fellow at the Institute for Pure and Applied Mathematics (IPAM) at UCLA,
and Rick Aster was partially supported by the New Mexico Tech Geophysical
Research Center during the preparation of the text.

Rick Aster, Brian Borchers, and Cliff Thurber
June, 2004
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Chapter 1

Introduction

Synopsis: General issues associated with parameter estimation and inverse prob-
lems are introduced through the concepts of the forward problem and its inverse
solution. Scaling and superposition properties that characterize linear systems
are given, and common situations leading to linear and nonlinear mathematical
models are discussed. Examples of discrete and continuous linear and nonlinear
parameter estimation problems to be revisited in more detail in later chapters
are shown. Mathematical demonstrations highlighting the key issues of solution
existence, uniqueness, and instability are presented and discussed.

1.1 Classification of Inverse Problems

Scientists and engineers frequently wish to relate physical parameters character-
izing a model, m to collected observations making up some set of data, d. We
will commonly assume that the fundamental physics are adequately understood,
so a function, G, may be specified relating m and d

G(m) = d . (1.1)

In practice, d may be a function of time and/or space, or may be a collection
of discrete observations. An important issue is that actual observations always
contain some amount of noise. Two common ways that noise may arise are un-
modeled influences on instrument readings or numerical round-off. We can thus
envision data as generally consisting of noiseless observations from a “perfect”
experiment, dtrue, plus a noise component η,

d = G(mtrue) + η (1.2)
= dtrue + η (1.3)

where dtrue exactly satisfies (1.1) for m equal to the true model, mtrue, and we
assume that the forward modeling is exact. We will see that it is commonly

1



2 CHAPTER 1. INTRODUCTION

mathematically possible, although practically undesirable, to also fit all or part
of η by (1.1). It may seem remarkable that it is often the case that a solution
for m that is influenced by even a small noise amplitude η can have little or no
correspondence to mtrue. Another key issue that may seem astounding at first
is that there are commonly an infinite number of models aside from mtrue that
fit the perfect data, dtrue.

When m and d are functions, we typically refer to G as an operator. G
will be called a function when m and d are vectors. The operator G can take
on many forms. In some cases G is an ordinary differential equation (ODE) or
partial differential equation (PDE). In other cases, G is a linear or nonlinear
system of algebraic equations.

Note that there is some inconsistency between mathematicians and other
scientists in modeling terminology. Applied mathematicians usually refer to
G(m) = d as the “mathematical model” and to m as the “parameters.” On
the other hand, scientists often refer to G as the “forward operator” and to m
as the “model.” We will adopt the scientific parlance and refer to m as the
“the model” while referring to the equations G(m) = d as the “mathematical
model.”

The forward problem is to find d given m. Computing G(m) might involve
solving an ODE or PDE, evaluating an integral, or applying an algorithm for
which there is no explicit analytical formula for G(m). Our focus in this text is
on the inverse problem of finding m given d. A third problem, not addressed
here, is the model identification problem of determining G given examples
of m and d.

In many cases, we will want to determine a finite number of parameters, n,
to define a model. The parameters may define a physical entity directly (e.g.,
density, voltage, seismic velocity), or may be coefficients or other constants in
a functional relationship that describes a physical process. In this case, we can
express the model parameters as an n element vector m. Similarly, if there are
a finite number of data points then we can express the data as an m element
vector d (Note that the use of the integer m here for the number of data points
is easily distinguishable from the model m by its context). Such problems are
called discrete inverse problems or parameter estimation problems. A
general parameter estimation problem can be written as a system of equations

G(m) = d . (1.4)

In other cases, where the model and data are functions of time and space,
the associated task of estimating m from d is called a continuous inverse
problem. A central theme of this book is that continuous inverse problems
can often be well–approximated by discrete inverse problems. The process of
discretizing a continuous inverse problem is discussed in Chapter 3.

We will generally refer to problems with small numbers of parameters as
“parameter estimation problems.” Problems with a larger number of param-
eters will be referred to as “inverse problems.” A key aspect of many inverse
problems is that they are ill–conditioned in a sense that will be discussed later
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in this chapter. In both parameter estimation and inverse problems we solve
for a set of parameters that characterize a model, and a key point of this text is
that the treatment of all such problems can be sufficiently generalized so that
the distinction is largely irrelevant. In practice, the distinction that is impor-
tant is the distinction between ill–conditioned and well conditioned parameter
estimation problems.

A class of mathematical models for which many useful results exist are linear
systems. Linear systems obey superposition

G(m1 + m2) = G(m1) + G(m2) (1.5)

and scaling
G(αm) = αG(m) . (1.6)

In the case of a discrete linear inverse problem, (1.4) can always be written
in the form of a linear system of algebraic equations. See Exercise 1.1.

G(m) = Gm = d . (1.7)

In a continuous linear inverse problem, G can often be expressed as a linear
integral operator, where (1.1) has the form∫ b

a

g(s, x) m(x) dx = d(s) (1.8)

and the function g(s, x) is called the kernel. The linearity of (1.8) is easily
seen because∫ b

a

g(s, x)(m1(x) + m2(x)) dx =
∫ b

a

g(s, x) m1(x) dx +
∫ b

a

g(s, x)m2(x) dx

(1.9)
and ∫ b

a

g(s, x) αm(x) dx = α

∫ b

a

g(s, x) m(x) dx . (1.10)

Equations in the form of (1.8), where m(x) is the unknown, are called Fred-
holm integral equations of the first kind (IFK). IFK’s arise in a surpris-
ingly large number of inverse problems. A key property of these equations is
that they have mathematical properties that make it difficult to obtain useful
solutions by straightforward methods.

In many cases the kernel in (1.8) can be written to depend explicitly on s−x,
producing a convolution equation∫ ∞

−∞
g(s− x) m(x) dx = d(s) . (1.11)

Here we have written the interval of integration as extending from minus infinity
to plus infinity, but other intervals can easily be accommodated by having g(s−
x) = 0 outside of the interval of interest. When a forward problem has the form
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of (1.11), determining d(s) from m(x) is called convolution, and the inverse
problem of ppdetermining m(x) from d(s) is called deconvolution.

Another IFK arises in the problem of inverting a Fourier transform

Φ(f) =
∫ ∞

−∞
e−ı2πfxφ(x) dx (1.12)

to obtain φ(x). Although there are many tables and analytic methods of ob-
taining Fourier transforms and their inverses, numerical estimates of φ(x) may
be of interest, such as where there is no analytic inverse, or where we wish to
estimate φ(x) from spectral data collected at discrete frequencies.

It is an intriguing question as to why linearity appears in many interesting
geophysical problems. One answer is that many physical systems encountered
in practice are accompanied by only small departures from equilibrium. An
important example is seismic wave propagation, where the stresses associated
with elastic fields are often very small relative to the elastic moduli that char-
acterize the medium. This situation leads to small strains and to a very nearly
linear stress-strain relationship. Because of this, seismic wave field problems in
many useful circumstances obey superposition and scaling. Other fields such
as gravity and magnetism, at the strengths typically encountered in geophysics,
also show effectively linear physics.

Because many important inverse problems are linear, and because linear
theory assists in solving nonlinear problems, Chapters 2 through 8 of this book
cover theory and methods for the solution of linear inverse problems. Nonlinear
mathematical models arise when the parameters of interest have an inherently
nonlinear relationship to the observables. This situation commonly occurs, for
example, in electromagnetic field problems where we wish to relate geometric
model parameters such as layer thicknesses to observed field properties. We
discuss methods for nonlinear parameter estimation and inverse problems in
Chapters 9 and 10, respectively.

1.2 Examples of Parameter Estimation Problems

Example 1.1

A canonical parameter estimation problem is the fitting of a func-
tion, defined by a collection of parameters, to a data set. In cases
where this function fitting procedure can be cast as a linear inverse
problem, the procedure is referred to as linear regression. An an-
cient example of linear regression is the characterization of a ballistic
trajectory. In a basic take on this problem, the data, y, are altitude
observations of a ballistic body at a set of times t. See Figure 1.1.
We wish to solve for a model, m, that contains the initial altitude
(m1), initial vertical velocity (m2), and effective gravitational accel-
eration (m3) experienced by the body during its trajectory. This
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and related problems are naturally of practical interest in rocketry
and warfare, but are also of fundamental geophysical interest, for ex-
ample, in absolute gravity meters capable of estimating g from the
acceleration of a falling object in a vacuum to accuracies approaching
one part in 109[87].

The mathematical model is a quadratic function in the (t, y) plane

y(t) = m1 + m2t− (1/2)m3t
2 (1.13)

that we expect to apply at all times of interest not just at the times,
ti when we happen to have observations. The data will consist of m
observations of the height of the body yi at corresponding times ti.
Assuming that the ti are measured precisely, and applying (1.13) to
each observation, we obtain a system of equations with m rows and
n = 3 columns that relates the data yi to the model parameters, mj

1 t1 − 1
2 t21

1 t2 − 1
2 t22

1 t3 − 1
2 t23

. . .

. . .

. . .
1 tm − 1

2 t2m


 m1

m2

m3

 =



y1

y2

y3

.

.

.
ym .


. (1.14)

Although the mathematical model of (1.13) is quadratic, the equa-
tions for the three parameters mi in (1.14) are linear, so solving for
m is a linear parameter estimation problem.

If there are more data points than model parameters in (1.14) (m >
n), then the m constraint equations in (1.14) will likely be incon-
sistent. In this case, it will typically be impossible to find a model
m that satisfies every equation exactly. Geometrically, the nonexis-
tence of a model that exactly satisfies the observations can be inter-
preted as being because there is no parabola that goes through all
of the observed (ti, yi) points. See Exercise 1.2.

Such a situation could arise in practice because of noise in the deter-
minations of the yi, and because the forward model of (1.13) is ap-
proximate (e.g., we have neglected the physics of atmospheric drag,
so the true trajectory is not exactly parabolic). In elementary linear
algebra, where an exact solution is expected, we might throw up our
hands and state that no solution exists. However, useful solutions
to such systems may be found by solving for model parameters that
satisfy the data in an approximate “best fit” sense.

A reasonable approach to finding the “best” approximate solution to an
inconsistent system of linear equations is to find an m that produces a minimum
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Figure 1.1: The parabolic trajectory problem.

misfit, or residual, between the data and the theoretical predictions of the
forward problem. A traditional strategy is to find the model that minimizes the
2–norm (or Euclidean length) of the residual

‖y −Gm‖2 =

√√√√ m∑
i=1

(yi − (Gm)i)2 . (1.15)

However, (1.15) is not the only misfit measure that can be applied in solving
such systems of equations. An alternative misfit measure that is better in many
situations is the 1–norm

‖y −Gm‖1 =
m∑

i=1

|yi − (Gm)i| . (1.16)

We shall see in Chapter 2 that a solution minimizing (1.16) is less sensitive
to data points that are wildly discordant with the mathematical model than
a solution minimizing (1.15). Solution techniques that are resistant to such
outliers are called robust estimation procedures.

Example 1.2

A classic nonlinear parameter estimation problem in geophysics is
determining an earthquake hypocenter in space and time specified
by the 4–vector

m =
[

x
τ

]
(1.17)
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where x is the three–dimensional earthquake location and τ is the
earthquake origin time. See Figure 1.2. The hypocenter model
sought is that which best fits a vector of seismic phase arrival
times, t, observed at an m-station seismic network. The mathe-
matical model is

G(m) = t (1.18)

where G models the physics of seismic wave propagation to map
a hypocenter into a vector of predicted seismic arrival times at m
stations. G depends on the seismic velocity structure, v(x) which
we assume is known.

Earthquake
Hypocenter

Seismic
Ray Paths

Seismographs

Figure 1.2: The earthquake location problem.

The earthquake location problem is nonlinear even if v(x) is a con-
stant, c. In this case, all of the ray paths in Figure 1.2 would be
straight, and the arrival time of the seismic signal at station i would
be

ti =
‖S·,i − x‖2

c
+ τ (1.19)

where the ith column of the matrix S, S·,i specifies the coordinates
for station i. Equation (1.19) is nonlinear with respect to the spatial
parameters xi in m, and thus the problem cannot be expressed as a
linear system of equations.

In a few special cases, a change of variables can convert a nonlinear problem
to a linear one. Nonlinear parameter estimation problems can often be solved
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by choosing a starting model and then iteratively improving it until a good so-
lution is obtained. General methods for solving nonlinear parameter estimation
problems are discussed in Chapter 9.

1.3 Examples of Inverse Problems

Example 1.3

In vertical seismic profiling we wish to know the vertical seis-
mic velocity of the material surrounding a borehole. A downward-
propagating seismic wavefront is generated at the surface by a source,
and seismic waves are sensed by a string of seismometers in the bore-
hole. See Figure 1.3.
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propagating
wavefront

medium with vertical
slowness s(z)

source

z

Figure 1.3: The vertical seismic profiling problem.

The arrival time of the seismic wavefront at each instrument is mea-
sured from the recorded seismograms. The problem is nonlinear if
expressed in terms of velocity parameters. However, we can lin-
earize it by parameterizing it in terms of slowness, s, the reciprocal
of the velocity v. The observed travel time at depth z is the definite
integral of the vertical slowness, s, from the surface to z

t(z) =
∫ z

0

s(ξ) dξ (1.20)

=
∫ ∞

0

s(ξ)H(z − ξ) dξ (1.21)
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where the kernel function H is the Heaviside step function, which
is equal to one when its argument is nonnegative and zero when its
argument is negative. The explicit dependence of the kernel on z−ξ
shows that (1.21) is a convolution.

In theory, we can solve (1.21) quite easily because, by the funda-
mental theorem of calculus,

t′(z) = s(z) . (1.22)

In practice, there will be noise present in the data, t(z), and simply
differentiating the observations will result a wildly noisy solution.

Example 1.4

A further instructive linear continuous inverse problem is the in-
version of a vertical gravity anomaly, d(s) observed at some height
h to estimate an unknown buried line mass density distribution,
m(x) = ∆ρ(x). See Figure 1.4. The mathematical model for this
problem can be written as an IFK, because the data are a super-
position of the vertical gravity contributions from the differential
elements comprising the line mass

d(s) = Γ
∫ ∞

−∞

h

((x− s)2 + h2)3/2
m(x) dx (1.23)

=
∫ ∞

−∞
g(x− s)m(x) dx (1.24)

where Γ is Newton’s gravitational constant. Note that the kernel has
the form g(x−s), and (1.24) is thus another example of convolution.
Because the kernel is a smooth function, d(s) will be a smoothed
transformation of m(x). Conversely, solutions for m(x) will be a
roughened transformation of d(s). For this reason we again need to
be wary of the possibly severe deleterious effects of noise in the data.

Example 1.5

Consider a variation on Example 1.4, where the depth of the line
density perturbation varies, rather than the density contrast. The
gravity anomaly is now attributable to a model describing variation
in the burial depth, m(x) = h(x), of a fixed line density perturba-
tion, ∆ρ. See Figure 1.5. The physics is the same as in Example
1.4, so the data are still given by the superposition of density per-
turbation contributions to the gravitational anomaly field, but the
mathematical model now has the form

d(s) = Γ
∫ ∞

−∞

m(x)

((x− s)2 + m2(x))3/2
∆ρ dx . (1.25)



10 CHAPTER 1. INTRODUCTION

h

d(x)

∆ρ(x)

Figure 1.4: A linear inverse problem; determine the density of a buried line
mass, ∆ρ(x), from gravity anomaly observations, d(x).

This equation is nonlinear in m(x) because (1.25) does not follow
the superposition and scaling rules (1.5) and (1.6).

Nonlinear inverse problems are generally far more difficult to solve than
linear ones. In special cases, they may be solvable by coordinate transformations
that linearize the problem or other clever special–case methods. In other cases
the problem cannot be linearized so nonlinear optimization techniques must
be applied. The essential differences in the treatment of linear and nonlinear
problems arise because, as we shall see in Chapters 2 through 4, all linear
problems can be generalized to be the “same” in an important sense. In contrast,
nonlinear problems tend to be nonlinear in mathematically different ways.

h(x)

d(x)

∆ρ

Figure 1.5: A nonlinear inverse problem; determine the depth to a buried line
mass density anomaly h(x) from observed gravity anomaly observations, d(x).

Example 1.6

An important and instructive inverse problem is tomography ,
from the Greek roots tomos, “to section” or “to cut” (the ancient
concept of an atom was that of an irreducible, uncuttable object)
and graphein, “to write.” Tomography is the general technique of
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determining a model from path–integrated properties such as atten-
uation (e.g., X–ray, radar, seismic), travel time (e.g., electromag-
netic, seismic, or acoustic), or source intensity (e.g., positron emis-
sion). Although tomography problems originally involved models
that were two–dimensional slices of three–dimensional objects, the
term is now commonly used in situations where the model is two– or
three–dimensional. Tomography has many applications in medicine,
engineering, acoustics, and Earth science. One important geophys-
ical example is cross–well tomography, where the sources are in a
borehole, and the signals are received by sensors in another bore-
hole. Another example is joint earthquake location/velocity struc-
ture inversion carried out on scales ranging from a fraction of a cubic
kilometer to global [165, 21].

The physical model for tomography in its most basic form assumes
that geometric ray theory (essentially the high–frequency limiting
case of the wave equation) is valid, so that wave energy traveling
between a source and receiver can be considered to be propagating
along narrow ray paths. The density of ray path coverage in a tomo-
graphic problem may vary significantly throughout the study region,
and may thus provide much better constraints on physical proper-
ties in some densely–sampled regions than in other sparsely–sampled
ones.

If the slowness at a point x is s(x), and the ray path ` is known,
then the travel time along that ray path is given by the line integral
along `

t =
∫

`

s(x(l)) dl . (1.26)

In general, ray paths can change direction due to refraction and/or
reflection. In the simplest case where such effects are negligible, ray
paths can be approximated as straight lines and the inverse problem
can be cast in a linear form. If the ray paths depend on the model
parameters (i.e., slowness), the inverse problem will be nonlinear.

A common way of discretizing the structure that we wish to estimate
in a tomographic problem is as uniform blocks. In this parameteri-
zation, the elements of G are just the lengths of the ray paths within
the individual blocks. Consider the example of Figure 1.6, where 9
homogeneous blocks with sides of unit length and unknown slowness
are intersected by 8 ray paths. For straight ray paths, the constraint
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equations in the mathematical model are

Gm =



1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1
1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1√
2 0 0 0

√
2 0 0 0

√
2

0 0 0 0 0 0 0 0
√

2





s1,1

s1,2

s1,3

s2,1

s2,2

s2,3

s3,1

s3,2

s3,3


=



t1
t2
t3
t4
t5
t6
t7
t8


.

(1.27)
Because there are 9 unknown parameters si,j in the model, but only 8
constraints, the G matrix is clearly rank deficient. In fact, rank(G)
is only 7. In addition, there is clearly redundant information in
(1.27), in that the slowness s3,3 is completely determined by t8, yet
s3,3 also influences the observations t3, t6, and t7.

t1 t2

t8

t4

t5

t6

t7t3

11

21

31

12 13

22 23

32 33

Figure 1.6: A simple tomography example.

1.4 Why Inverse Problems are Hard

Scientists and engineers need to be concerned with far more than simply finding
mathematically acceptable answers to parameter estimation and inverse prob-
lems. One reason is that there may be many models that adequately fit the
data. It is essential to characterize just what solution has been obtained, how
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“good” it is in terms of physical plausibility and fit to the data, and perhaps how
consistent it is with other constraints. Essential issues that must be considered
include solution existence, solution uniqueness, and instability of the
solution process.

1. Existence. There may be no model that exactly fits the data. This can
occur in practice because our mathematical model of the system’s physics
is approximate or because the data contain noise.

2. Uniqueness. If exact solutions do exist, they may not be unique, even
for an infinite number of exact data points. That is, there may be other
solutions besides mtrue that exactly satisfy G(m) = dtrue. This situation
commonly occurs in potential field problems. A classic example is the
external gravitational field from a spherically–symmetric mass distribu-
tion, which depends only on the total mass, and not on the radial density
distribution.

Nonuniqueness is a characteristic of rank deficient discrete linear inverse
problems because the matrix G has a nontrivial null space. In linear in-
verse problems, models, m0, that lie in the null space of G are solutions to
Gm0 = 0. By superposition, any linear combination of these null space
models can be added to a particular model that satisfies (1.7) and not
change the fit to the data. There are thus an infinite number of mathemat-
ically acceptable models in such cases. In practical terms, suppose that
there exists a nonzero model m0 which results in an instrument reading
of zero. We cannot discriminate this situation from the situation where
m0 is truly zero.

An important and thorny issue with problems that have nonunique solu-
tions is that an estimated model may be significantly smoothed or oth-
erwise biased relative to the true situation. Characterizing such bias is
essential to interpreting models in terms of their possible correspondence
to reality. This issue falls under the general topic of model resolution
analysis.

3. Instability.

The process of computing an inverse solution can be and often is extremely
unstable in that a small change in measurement (e.g., a small η in (1.3))
can lead to an enormous change in the estimated model. Inverse prob-
lems where this situation arises are referred to as ill–posed in the case
of continuous systems, or ill–conditioned in the case of discrete linear
systems. A key point is that it is commonly possible to stabilize the in-
version process by imposing additional constraints that bias the solution,
a process that is generally referred to as regularization. Regulariza-
tion is frequently essential to producing a usable solution to an otherwise
intractable ill–posed or ill–conditioned inverse problem.
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To examine existence, uniqueness, and instability issues, let us consider some
simple mathematical examples using an IFK∫ 1

0

g(s, x) m(x) dx = y(s) . (1.28)

First, consider the trivial case of

g(s, x) = 1 (1.29)

that produces the integral equation∫ 1

0

m(x) dx = y(s) . (1.30)

Because the left hand side of (1.30) is independent of s, this system has no
solution unless y(s) is a constant. Thus, there are an infinite number of math-
ematically conceivable data sets y(s) that are not constant and for which no
exact solution exists. This is an existence issue.

Where a solution to (1.30) does exist, the solution is nonunique because
there are an infinite number of functions that, when integrated over the unit
interval, produce the same constant and thus satisfy the IFK exactly. This is a
uniqueness issue.

A more subtle example of nonuniqueness can be seen by letting

g(s, x) = s sin(πx) (1.31)

in (1.28), so that the IFK becomes∫ 1

0

s · sin(πx) m(x) dx = y(s) . (1.32)

The functions sin(kπx) are orthogonal in the sense that∫ 1

0

sin(kπx) sin(lπx) dx =

− 1
2

∫ 1

0

cos(π(k + l)x)− cos(π(k − l)x) dx . (1.33)

∫ 1

0

sin(kπx) sin(lπx) dx =

− 1
2π

(
sin(π(k + l))

k + l
d− sin(π(k − l))

k − l

)
. (1.34)

∫ 1

0

sin(kπx) sin(lπx) dx = 0 (k 6= ±l; k, l 6= 0) . (1.35)
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Thus in (1.32) for k = ±2, ± 3, . . . we have∫ 1

0

g(s, x) sin(kπx) dx = 0 . (1.36)

Furthermore, because (1.32) is a linear system, we can add any function of
the form

m0(x) =
∞∑

k=2

αk sin(kπx) (1.37)

to a solution, m(x), and obtain a new model that fits the data equally well,
because∫ 1

0

s · sin(πx)(m(x) + m0(x)) dx =∫ 1

0

s · sin(πx) m(x) dx +
∫ 1

0

s · sin(πx) m0(x) dx . (1.38)

∫ 1

0

s · sin(πx)(m(x) + m0(x)) dx = ∫ 1

0

s · sin(πx) m(x) dx + 0 . (1.39)

There are thus an infinite number of very different solutions which fit the data
equally well.

Even if we do not encounter existence or uniqueness issues, instability is a
fundamental feature of IFK’s. In the limit as k goes to infinity,

lim
k−>∞

∫ ∞

−∞
g(s, t) sin kπt dt = 0 (1.40)

for all square–integrable functions g(s, t). This result is known as the Riemann–
Lebesgue lemma [138].

Without proving (1.40) rigorously, we can still understand why this occurs.
The “wiggliness” of the sine function is smoothed by integration with the kernel
g(s, t). For large k, the postive and negative values of the sine average out to 0.
The inverse problem has this situation reversed; an inferred model can be very
sensitive to small changes in the data, including random noise that has nothing
to do with the physical system that we are trying to study.

The unstable character of IFK solutions is similar to the situation encoun-
tered in solving linear systems of equations where the condition number of the
matrix is very large, or equivalently, where the matrix is nearly singular. In
both cases, the difficulty lies in the mathematical model itself, and not in the
particular algorithm used to solve the problem. Ill–posed behavior is a funda-
mental feature of many inverse problems because of the smoothing that occurs in
most forward problems and the corresponding roughening that occurs in solving
them.
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1.5 Exercises

1. Consider a mathematical model of the form G(m) = d, where m is a
vector of length n, and d is a vector of length m. Suppose that the model
obeys the superposition and scaling laws and is thus linear. Show that
G(m) can be written in the form

G(m) = Γm (1.41)

where Γ is an m by n matrix. What are the elements of Γ? Hint: Consider
the standard basis, and write m as a linear combination of the vectors in
the standard basis. Apply the superposition and scaling laws. Finally,
recall the definition of matrix–vector multiplication.

2. Can (1.14) be inconsistent, even with only m = 3 data points? How
about just m = 2 data points? If the system can be inconsistent, give an
example. If not, explain why not.

3. Find a journal article that discusses the solution of an inverse problem
in a discipline of special interest to you. What are the data? Are the
data discrete or continuous? Have the authors discussed possible sources
of noise in the data? What is the model? Is the model continuous or
discrete? What physical laws determine the forward operator G? Is G
linear or nonlinear? Do the authors discuss any issues associated with
existence, uniqueness, or instability of solutions?

1.6 Notes and Further Reading

Some important references on inverse problems in geophysics and remote sensing
include [23, 95, 126, 170, 56]. Instructive examples of ill–posed problems and
their solution can be found in the book edited by Tikhonov and Goncharsky
[167]. More mathematically oriented references on inverse problems include
[9, 41, 55, 61, 86, 91, 105, 101, 166, 162].

Tomography, and in particular tomography in medical imaging, is a very
large field. Some general references on tomography are [66, 80, 94, 96, 112, 119,
57].



Chapter 2

Linear Regression

Synopsis: Linear regression is introduced as a parameter estimation problem,
and least squares solutions are derived. Maximum likelihood is defined, and its
association with least squares solutions under normally distributed data errors
is demonstrated. Statistical tests based on χ2 that provide insight into least
squares solutions are discussed. The mapping of data errors into model errors
in the context of least squares is described. The determination of confidence in-
tervals using the model covariance matrix and the meaning of model parameter
correlations is discussed. The problems of estimating unknown data standard
deviations and recognizing proportional data errors are addressed. The issue of
data outliers and the concept of robust estimation is introduced, and 1–norm
minimization is introduced as a robust estimation technique. General propaga-
tion of errors between data and model using Monte Carlo methods is discussed
in the context of the iteratively reweighted least squares 1–norm minimization
algorithm.

2.1 Introduction to Linear Regression

The problem of finding a parameterized curve that approximately fits a set of
data is referred to as regression. When the regression model is linear in the
fitted parameters, then we have a linear regression problem. In this chapter
linear regression problems are analyzed as discrete linear inverse problems.

Consider a discrete linear inverse problem. We begin with a data vector,
d, of m observations, and a vector m of n model parameters that we wish to
determine. As we have seen, the inverse problem can be written as a linear
system of equations

Gm = d . (2.1)

Recall that if rank(G) = n, then the matrix has full column rank. In this

17
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chapter we will assume that the matrix G has full column rank. In Chapter 4
we will consider rank deficient problems.

For a full column rank matrix, it is frequently the case that no solution m
satisfies (2.1) exactly. This happens because the dimension of the range of G is
smaller than m and a noisy data vector can easily lie outside of the range of G.

A useful approximate solution may still be found by finding a particular
model m that minimizes some measure of the misfit between the actual data
and Gm. The residual vector, with elements that are frequently simply referred
to as the residuals, is

r = d−Gm . (2.2)

One commonly used measure of the misfit is the 2–norm of the residuals. A
model that minimizes this 2–norm is called a least squares solution. The
least squares or 2–norm solution is of special interest both because it is very
amenable to analysis and geometric intuition, and because it turns out to be
statistically the most likely solution if data errors are normally distributed.

The least squares solution is, from the normal equations (A.73),

mL2 = (GT G)−1GT d . (2.3)

It can be shown that if G is of full column rank then (GT G)−1 exists. See
Exercise A.17f.

A common linear regression problem is finding parameters m1 and m2 for a
line, y = m1 + m2x, that best fits a set of m > 2 data points. The system of
equations in this case is

Gm =


1 x1

1 x2

. .

. .

. .
1 xm


[

m1

m2

]
=


d1

d2

.

.

.
dm

 = d . (2.4)

Applying (2.3) to find a least squares solution gives

mL2 = (GT G)−1GT d (2.5)

=

[ 1 . . . 1
x1 . . . xm

] 1 x1

. . . . . .
1 xm

−1

·
[

1 . . . 1
x1 . . . xm

]
d1

d2

. . .
dm


=

[
m

∑m
i=1 xi∑m

i=1 xi

∑m
i=1 x2

i

]−1 [ ∑m
i=1 di∑m

i=1 xidi

]
=

1
m
∑m

i=1 x2
i − (

∑m
i=1 xi)2

[
−
∑m

i=1 x2
i −

∑m
i=1 xi

−
∑m

i=1 xi −m

] [ ∑m
i=1 di∑m

i=1 xidi

]
.
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2.2 Statistical Aspects of Least Squares

If we consider data points to be imperfect measurements that include random
errors, then we are faced with the problem of finding the solution which is
best from a statistical point of view. One approach, maximum likelihood
estimation, considers the question from the following perspective. Given that
we observed a particular data set, that we know the statistical characteristics
of these observations, and that we have a mathematical model for the forward
problem, what is the model from which these observations would most likely
arise?

Maximum likelihood estimation is a general method that can be applied to
any estimation problem where a joint probability density function (B.26) can
be assigned to the observations. The essential problem is to find the most likely
model, as characterized by the elements of the parameter vector m, for the set
of observations contained in the vector d. We will assume that the observations
are independent so that we can use the product form of the joint probability
density function (B.28).

Given a model m, we have a probability density function fi(di|m) for each
of the i observations. In general, these probability density functions will vary
depending on m, so probability densities are conditional on m. The joint prob-
ability density for a vector of independent observations d will be

f(d|m) = f1(d1|m) · f2(d2|m) · · · fm(dm|m) . (2.6)

Note that the f(d|m) are probability densities, not probabilities. We can
only compute the probability of observing data in some range for a given model
m by integrating f(d|m) over that range. In fact, the probability of getting any
particular set of data exactly is precisely zero! This conceptual conundrum can
be avoided by considering the probability of getting a data set that lies within a
small m-dimensional box around a particular data set d. This probability will
be nearly proportional to the probability density f(d|m).

In practice, we measure a particular data vector and wish to find the “best”
model to match it in the maximum likelihood sense. That is, d will be a fixed
set of observations, and m will be a vector of parameters to be estimated. The
likelihood function is

L(m|d) = f(d|m) (2.7)
= f1(d1|m) · f2(d2|m) · · · fm(dm|m) . (2.8)

For many possible models m the likelihood (2.8) will be extremely close to zero.
Such models would be very unlikely to produce the observed data set d. The
likelihood might be much larger for other models, and these would be relatively
likely to produce the observed data.

According to the maximum likelihood principle we should select the
model m that maximizes the likelihood function, (2.8). Model estimates ob-
tained in this manner have many desirable statistical properties [24, 35].
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It is particularly interesting that when we have a discrete linear inverse
problem and the data errors are independent and normally distributed, then
the maximum likelihood principle solution is the least squares solution. To show
this, assume that the data have independent random errors that are normally
distributed with expected value zero, and where the standard deviation of the
ith observation, di is σi. The probability density for di then takes the form of
(B.6)

fi(di|m) =
1

(2π)1/2σi
e−(di−(Gm)i)

2/2σ2
i . (2.9)

The likelihood function for the complete data set is the product of the indi-
vidual likelihoods

L(m|d) =
1

(2π)m/2Πm
i=1σi

Πm
i=1e

−(di−(Gm)i)
2/2σ2

i . (2.10)

The constant factor does not affect the maximization of L, so we can solve

max Πm
i=1e

−(di−(Gm)i)
2/2σ2

i . (2.11)

The logarithm is a monotonically increasing function, so we can equivalently
solve

max log Πm
i=1e

−(di−(Gm)i)
2/2σ2

i = max −
m∑

i=1

(di − (Gm)i)2

2σ2
i

. (2.12)

Finally, if we turn the maximization into a minimization by changing sign and
ignore the constant factor of 1/2, the problem becomes

min
m∑

i=1

(di − (Gm)i)2

σ2
i

. (2.13)

Aside from the distinct 1/σ2
i factors in each term, this is identical to the least

squares problem for Gm = d.
To incorporate the data point standard deviations into this solution, we

scale the system of equations to obtain a weighted system of equations. Let a
diagonal weighting matrix be

W = diag(1/σ1, 1/σ2, . . . , 1/σm) . (2.14)

Then let
Gw = WG (2.15)

and
dw = Wd . (2.16)

The weighted system of equations is then

Gwm = dw . (2.17)
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The normal equations (A.73) solution to (2.17) is

mL2 = (GT
wGw)−1GT

wdw . (2.18)

Now,

‖dw −Gwmw‖22 =
m∑

i=1

(di − (Gmw)i)2/σ2
i . (2.19)

Thus the least squares solution to Gwm = dw is the maximum likelihood
solution.

The sum of the squares of the residuals also provides useful statistical infor-
mation about the quality of model estimates obtained with least squares. The
chi–square statistic is

χ2
obs =

m∑
i=1

(di − (GmL2)i)2/σ2
i . (2.20)

Since χ2
obs depends on the random measurement errors in d, it is itself a random

variable. It can be shown that under our assumptions, χ2
obs has a χ2 distribution

with ν = m− n degrees of freedom [24, 35].
The probability density function for the χ2 distribution is

fχ2(x) =
1

2ν/2Γ(ν/2)
x

1
2 ν−1e−x/2 . (2.21)

See Figure B.5. The χ2 test provides a statistical assessment of the assumptions
that we used in finding the least squares solution. In this test, we compute
χ2

obs and compare it to the theoretical χ2 distribution with ν = m − n degrees
of freedom.

The probability of obtaining a χ2 value as large or larger than than the
observed value is

p =
∫ ∞

χ2
obs

fχ2(x) dx . (2.22)

This is called the p–value of the test. When data errors are independent
and normally distributed, and the mathematical model is correct, it can be
shown that the p–value will be uniformly distributed between zero and one.
See Exercise 2.4. In practice, particular p–values that are very close to either
extreme indicate that one or more of these assumptions are incorrect.

There are three general cases.

1. The p–value is not too small and not too large. Our least squares solution
produces an acceptable data fit and our statistical assumptions of data
errors are consistent. Practically, p does not actually have to be very large
to be deemed marginally “acceptable” in many cases (e.g. p ≈ 10−2), as
truly “wrong” models will typically produce extraordinarily small p–values
(e.g. 10−12) because of the short-tailed nature of the normal distribution.
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Because the p–value will be uniformly distributed when we have a correct
mathematical model and our statistical data assumptions are valid, it is
inappropriate to conclude anything based on the differences between p–
values in this range. For example, one should not conclude that a p–value
of 0.7 is “better” than a p–value of 0.2.

2. The p–value is very small. We are faced with three non–exclusive possi-
bilities, but something is clearly wrong.

(a) The data truly represent an extremely unlikely realization. This is
easy to rule out for p–values very close to zero. For example, suppose
an experiment produced a data realization where the probability of
a worse fit was 10−9. If the model was correct, then we would have
to perform on the order of a billion experiments to get a comparably
poor fit to the data. It is far more likely that something else is wrong.

(b) The mathematical model Gm = d is incorrect. Most often this
happens because we have left some important aspect of the physics
out of the mathematical model.

(c) The data errors are underestimated or not normally distributed. In
particular, we may have underestimated the σi.

3. The p–value is very large (very close to one). The fit of the model pre-
dictions to the data is almost exact. We should investigate the possibility
that we have overestimated the data errors. A more sinister possibility is
that a very high p–value is indicative of data fraud, such as might happen
if data were cooked–up ahead of time to fit a particular model!

A rule of thumb for problems with a large number of degrees of freedom,
ν, is that the expected value of χ2 approaches ν. This arises because, by the
central limit theorem, B.6, the χ2 random variable, which is itself a sum of
random variables, will become normally distributed as the number of terms in
the sum becomes large. The mean of the resulting distribution will approach ν
and the standard deviation will approach (2ν)1/2.

In addition to examining χ2
obs, it is important to examine the residuals cor-

responding to a model. They should be roughly normally distributed with
standard deviation one and should show no obvious patterns. In some cases
where an incorrect model has been fitted to the data, the residuals will reveal
the nature of the modeling error. For example, in linear regression to a line, it
might be that all of the residuals are negative for small and large values of the
independent variable x but positive for intermediate values of x. This would
suggest that perhaps an additional quadratic term is required in the regression
model.

Parameter estimates obtained via linear regression are linear combinations
of the data. See (2.18). If the data errors are normally distributed, then the pa-
rameter estimates will also be normally distributed because a linear combination
of normally distributed random variables is normally distributed [5, 24]. To de-
rive the mapping between data and model covariances, consider the covariance



2.2. STATISTICAL ASPECTS OF LEAST SQUARES 23

of a data vector, d, of normally distributed, independent random variables,
operated on by a general linear transformation specified by a matrix, A. Recall
from (B.65) in Appendix A that the appropriate covariance mapping is

Cov(Ad) = ACov(d)AT . (2.23)

The least squares solution has A = (GT
wGw)−1GT

w. Since the weighted data
have an identity covariance matrix, the covariance for the model parameters is

Cov(mL2) = (GT
wGw)−1GT

wImGw(GT
wGw)−1 = (GT

wGw)−1 . (2.24)

In the case of independent and identically distributed normal data errors, so
that the data covariance matrix Cov(d) is simply the variance σ2 times the m
by m identity matrix, Im, (2.24) simplifies to

Cov(mL2) = σ2(GT G)−1 . (2.25)

Note that the covariance matrix of the model parameters is typically not a
diagonal matrix, indicating that the model parameters are correlated. Because
elements of least squares models are each constructed from linear combinations
of the data vector elements, this statistical dependence between the elements of
m should not be surprising.

The expected value of the least squares solution is

E[mL2 ] = (GT G)−1GT E[d] . (2.26)

Because E[d] = dtrue, and Gmtrue = dtrue, we have

GT Gmtrue = GT dtrue . (2.27)

Thus

E[mL2 ] = (GT G)−1GT Gmtrue (2.28)
= mtrue . (2.29)

In statistical terms, the least squares solution is said to be unbiased.
We can compute 95% confidence intervals for individual model parameters

using the fact that each model parameter mi has a normal distribution with
mean given by the corresponding element of mtrue and variance Cov(mL2)i,i.
The 95% confidence intervals are given by

mL2 ± 1.96 · diag(Cov(mL2))
1/2 (2.30)

where the 1.96 factor arises from

1
σ
√

2π

∫ 1.96σ

−1.96σ

e−
x2

2σ2 dx ≈ 0.95 . (2.31)
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Example 2.1

Let us recall Example 1.1 of linear regression of ballistic observations
to a quadratic model, where the regression model is

y(t) = m1 + m2t− (1/2)m3t
2 . (2.32)

Here y is measured in the upward direction, and the minus sign
is applied to the third term because gravitational acceleration is
downward. Consider a synthetic data set with m = 10 observations
and independent normal data errors (σ = 8 m), generated using

mtrue = [10 m, 100 m/s, 9.8 m/s2]T . (2.33)

See Table 2.1.

t (s) 1 2 3 4 5
y (m) 109.4 187.5 267.5 331.9 386.1
t (s) 6 7 8 9 10
y (m) 428.4 452.2 498.1 512.3 513.0

Table 2.1: Data for the ballistics example.

To obtain the least squares solution, we construct the G matrix.
The ith row of G is given by

Gi,· = [1, ti, − (1/2)t2i ] (2.34)

so that

G =



1 1 −0.5
1 2 −2.0
1 3 −4.5
1 4 −8.0
1 5 −12.5
1 6 −18.0
1 7 −24.5
1 8 −32.0
1 9 −40.5
1 10 −50.0


. (2.35)

We solve for the parameters using the weighted normal equations,
(2.18), to obtain a model estimate

mL2 = [16.4 m, 97.0 m/s, 9.4 m/s2]T . (2.36)

Figure 2.1 shows the observed data and the fitted curve. The model
covariance matrix associated with mL2 is

Cov(mL2) =

 88.53 −33.60 −5.33
−33.60 15.44 2.67
−5.33 2.67 0.48

 . (2.37)
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Figure 2.1: Data and model predictions for the ballistics example.

In our example, n = 10 and p = 3, so (2.30) gives

mL2 = [16.42± 18.44 m, 96.97± 7.70 m/s, 9.41± 1.36 m/s2]T .
(2.38)

The χ2 value for this regression is about 4.2, and the number of
degrees of freedom is ν = m−n = 10−3 = 7, so the p–value, (2.22),
is

p =
∫ ∞

4.20

1
27/2Γ(7/2)

x
5
2 e−

x
2 dx ≈ 0.76 (2.39)

which is in the realm of plausibility. This means that the fitted
model is consistent with the modeling and data uncertainty assump-
tions.

If we consider combinations of model parameters, the interpretation of the
uncertainty in the model parameters becomes more complex. To characterize
model uncertainty more effectively, we can examine 95% confidence regions
for pairs or larger sets of parameters. When joint parameter confidence regions
are projected onto the coordinate axes, mi, we obtain intervals for parame-
ters that may be significantly larger than we would estimate when considering
parameters individually, as in (2.38).

For a vector of estimated model parameters characterized by an n–dimensional
multivariate normal (MVN; B.62) distribution with mean mtrue and covariance



26 CHAPTER 2. LINEAR REGRESSION

matrix C,
(m−mL2)

T C−1(m−mL2) (2.40)

can be shown to have a χ2 distribution with n degrees of freedom [79]. Thus if
∆2 is the 95th percentile of the χ2 distribution with n degrees of freedom, the
95% confidence region is defined by the inequality

(m−mL2)
T C−1(m−mL2) ≤ ∆2 . (2.41)

The confidence region defined by this inequality is an n–dimensional ellipsoid.
If we wish to find an error ellipsoid for a lower dimensional subset of the

model parameters, we can project the n–dimensional error ellipsoid onto the
lower dimensional space by taking only those rows and columns of C and ele-
ments of m which correspond to the dimensions that we want to keep [2]. In
this case, the number of degrees of freedom in the associated χ2 calculation,
n, should also be reduced to match the number of model parameters in the
projected error ellipsoid.

Since the covariance matrix and its inverse are symmetric and positive defi-
nite, we can diagonalize C−1 using (A.79) as

C−1 = PT ΛP (2.42)

where Λ is a diagonal matrix of positive eigenvalues and the columns of P
are orthonormal eigenvectors. The semiaxes defined by the columns of P are
referred to as error ellipsoid principal axes, where the ith semimajor error
ellipsoid axis direction is defined by P·,i and has length ∆/

√
Λi,i .

Because the model covariance matrix is typically not diagonal, the princi-
pal axes are typically not aligned in the mi axis directions. However, we can
project the appropriate confidence ellipsoid onto the mi axes to obtain a “box”
which includes the entire 95% error ellipsoid, along with some additional exter-
nal volume. Such a box provides a conservative confidence interval for a joint
collection of model parameters.

Correlations for parameter pairs (mi, mj) are measures of the inclination of
the error ellipsoid with respect to the parameter axes. A correlation approaching
+1 means the projection is needle-like with its long principal axis having a pos-
itive slope, a zero correlation means that the projection has principal axes that
are aligned with the axes of the (mi, mj) plane, and a correlation approaching
-1 means that the projection is needle–like with its long principal axis having a
negative slope.

Example 2.2

The parameter correlations for Example 2.1 are

ρmi, mj
=

Cov(mi, mj)√
Var(mi) ·Var(mj)

(2.43)

which give
ρm1,m2 = −0.91 (2.44)
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ρm1,m3 = −0.81 (2.45)

ρm2,m3 = 0.97 . (2.46)

The three model parameters are highly statistically dependent, and
the error ellipsoid is thus inclined at an angle. Figure 2.2 shows the
95% confidence ellipsoid.

Diagonalization of (2.37) shows that the directions of the semiaxis
lengths for the error ellipsoid are

P = [P·,1, P·,2, P·,3] ≈

 −0.03 −0.93 0.36
−0.23 0.36 0.90

0.97 0.06 0.23

 (2.47)

with corresponding eigenvalues

[λ1, λ2, λ3] ≈ [104.7, 0.0098, 0.4046] . (2.48)

The corresponding 95% confidence ellipsoid semiaxis lengths are√
F−1

χ2,3(0.95)[1/
√

λ1, 1/
√

λ2, 1/
√

λ3] ≈ [0.24, 24.72, 3.85] (2.49)

where F−1
χ2,3(0.95) ≈ 2.80 is the 95th percentile of the χ2 distribution

with three degrees of freedom.

Projecting the 95% confidence ellipsoid into the (m1, m2, m3) coor-
dinate system we obtain 95% confidence intervals for the parameters
considered jointly

[m1,m2,m3] = [16.42±23.03 m, 96.97±9.62 m/s, 9.41±1.70 m/s2]
(2.50)

that are about 40% broader than the single parameter confidence
estimates obtained using only the diagonal covariance matrix terms
in (2.38). Note that there is actually a greater than 95% probability
that the box defined by (2.50) will include the true values of the pa-
rameters. The reason is that these intervals, considered together as a
region, include many points which lie outside of the 95% confidence
ellipsoid.

It is insightful to note that the covariance matrix (2.25) contains information
only about where and how often we made measurements, and on what the
standard deviations of those measurements were. Covariance is thus exclusively
a characteristic of experimental design that reflects how much influence the noise
in a general data set will have on a model estimate. Conversely, it does not
depend upon particular data values from an individual experiment. This is why
it is essential to evaluate the p–value, or some other “goodness–of–fit” measure
for an estimated model. Examining the solution parameters and the covariance
matrix alone does not reveal whether we are fitting the data adequately.
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Figure 2.2: Projections of the 95% error ellipsoid onto model axes. a) Projec-
tions in perspective; b) projections onto the parameter axis planes.

2.3 Unknown Measurement Standard Deviations

Suppose that we do not know the standard deviations of the measurement errors
a priori. In this case, if we assume that the measurement errors are independent
and normally distributed with expected value 0 and standard deviation σ, then
we can perform the linear regression and estimate σ from the residuals.

First, we find the least squares solution to the unweighted problem Gm = d,
and let

r = d−GmL2 . (2.51)

To estimate the standard deviation from the residuals, let

s =

√√√√ 1
n−m

m∑
i=1

r2
i . (2.52)

As you might expect, there is a statistical cost associated with not knowing the
true standard deviation. If the data standard deviations are known ahead of
time, then the model errors

m′
i =

mi −mtruei

σ
(2.53)

have the standard normal distribution. If instead of a known σ, we have an
estimate of σ, s obtained from (2.52), then the model errors

m′
i =

mi −mtrue

s
(2.54)
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have a Student’s t distribution (B.12) with ν = n − m degrees of freedom.
For smaller degrees of freedom this produces appreciably broader confidence
intervals, but as ν becomes large, s becomes an increasingly better estimate
of σ. Confidence ellipsoids for these problems can also be computed, but the
formula is somewhat more complicated than in the case of known standard
deviations [35].

A problem arises in that we can no longer use the χ2 test of goodness–of–fit
in this case. The χ2 test was based on the assumption that the data errors were
normally distributed with known standard deviations σi. If the actual residuals
were too large relative to the σi, then χ2 would be large, and we would reject the
linear regression fit based on a very small p–value. If we substitute the estimate
(2.52) into (2.20), we find that χ2

obs = ν, so such a model will always pass the
χ2 test.

Example 2.3

Consider the analysis of a linear regression problem in which the
measurement errors are assumed to be independent and normally

distributed, with equal but unknown standard deviations, σ. We are
given a set of x and y data that appear to follow a linear relationship.

In this case,

G =


1 x1

1 x2

. .

. .

. .
1 xn

 (2.55)

and we want to find the least squares solution to

Gm = y . (2.56)

The least squares solution has

y = −1.03 + 10.09x . (2.57)

Figure 2.3 shows the data and the linear regression line. Our es-
timate of the standard deviation of the measurement errors is s =
30.74. The estimated covariance matrix for the fitted parameters is

C = s2(GT G)−1 =
[

338.24 −4.93
−4.93 0.08

]
. (2.58)

The parameter confidence intervals, evaluated for each parameter
separately, are

m1 = −1.03±
√

338.24tn−2,0.975 = −1.03± 38.05 (2.59)
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and

m2 = 10.09±
√

0.08tn−2,0.975 = 10.09± 0.59 . (2.60)

Since the actual standard deviation of the measurement errors is
unknown, we cannot perform a χ2 test of goodness–of–fit. However,
we can still examine the residuals. Figure 2.4 shows the residuals.
It is clear that although they appear to be random, the standard
deviation seems to increase as x and y increase. This is a common
phenomenon in linear regression, called a proportional effect. One
possible way that such an effect might occur is if the size of mea-
surement errors were proportional to the measurement magnitude
due to characteristics of the instrument used.

We will address the proportional effect by assuming that the stan-
dard deviation is proportional to y. We then rescale the system of
equations (2.56) by dividing each equation by yi, to obtain

Gwm = yw . (2.61)

For this weighted system, we obtain a revised least squares estimate
of

y = −12.24 + 10.25x (2.62)

with 95% parameter confidence intervals, evaluated in the same
manner as (2.59) and (2.60), of

m1 = −12.24± 22.39 (2.63)

and
m2 = 10.25± 0.47 . (2.64)

Figure 2.5 shows the data and least squares fit. Figure 2.6 shows
the scaled residuals. Note that there is now no obvious trend in
the magnitude of the residuals as x and y increase, as there was in
Figure 2.4. The estimated standard deviation is 0.045, or 4.5% of
the y value. In fact, these data were generated according to the true
model y = 10x + 0, using standard deviations for the measurement
errors that were 5% of the y value.

2.4 L1 Regression

Least squares solutions are highly susceptible to even small numbers of discor-
dant observations, or outliers. Outliers are data points that are highly incon-
sistent with the other data. Outliers may arise from procedural measurement
error, for example from incorrectly recording the position of a decimal point
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in a floating point number. Outliers should be investigated carefully, since the
data may actually be showing us that the form of the mathematical model that
we are trying to fit is incorrect. However, if we conclude that there are only a
small number of outliers in the data due to incorrect measurements, we need to
analyze the data in a way which minimizes their effect on the estimated model.

We can readily appreciate the strong effect of outliers on least squares solu-
tions from a maximum likelihood perspective by noting the very rapid fall–off
of the tails of the normal distribution. For example, for a normally distributed
error, the probability of a single data point occurring more than 5 standard
deviations away from its expected value is less than one in a million

P (|X − E[X]| ≥ 5σ) =
2√
2π

∫ ∞

5

e−
1
2 x2

dx ≈ 6× 10−7 . (2.65)

If an outlier occurs in the data set due to a non–normal error process, the least
squares solution will go to great lengths to accommodate it, and thus prevent
its contribution to the total likelihood (2.10) from being vanishingly small.

As an alternative to least squares, consider the solution that minimizes the
1–norm of the residual vector,

µ(1) =
m∑

i=1

|di − (Gm)i|
σi

= ‖dw −Gwm‖1 . (2.66)

The 1–norm solution, mL1 , will be more outlier resistant, or robust, than the
least squares solution, mL2 , because (2.66) does not square each of the terms in
the misfit measure, as (2.13) does. The 1–norm solution mL1 also has a maxi-
mum likelihood interpretation; it is the maximum likelihood estimator for data
with errors distributed according to a double–sided exponential distribution

f(x) =
1
2σ

e−|x−µ|/σ . (2.67)

Data sets distributed as (2.67) are unusual. Nevertheless, it is often worthwhile
to consider a solution where (2.66) is minimized rather than (2.13), even if most
of the measurement errors are normally distributed, if there is reason to suspect
the presence of outliers. This solution strategy may be useful if the data outliers
occur for reasons that do not undercut our belief that the mathematical model
is otherwise correct.

Example 2.4

We can demonstrate the advantages of 1–norm minimization using
the quadratic regression example discussed earlier. Figure 2.7 shows
the original sequence of independent data points with unit standard
deviations, where one of the points (d4) is now an outlier for a math-
ematical model of the form (2.32). It is the original data point with
200 m subtracted from it. The least-squares model for this data set
is

mL2 = [26.4 m, 75.6 m/s, 4.9 m/s2]T (2.68)



34 CHAPTER 2. LINEAR REGRESSION

The least squares solution is skew away from the majority of data
points in trying to accommodate the outlier and is a poor estimate
of the true model. We can also see that (2.68) fails to fit these data
acceptably because of its huge χ2 value (≈ 1109). This is clearly as-
tronomically out of bounds for a problem with 7 degrees of freedom,
where the χ2 value should not be far from 7. The corresponding
p–value for χ2 = 1109 is effectively zero.
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Figure 2.7: L1 (upper) and L2 (lower) solutions for a parabolic data set with
an outlier at t = 4 s.

The upper curve in Figure 2.7

mL1 = [17.6 m, 96.4 m/s, 9.3 m/s2]T (2.69)

is obtained using the 1–norm solution that minimizes (2.66). The
data prediction from (2.69) faithfully fits the quadratic trend for the
majority of the data points and ignores the outlier at t = 4. It is
also much closer than (2.68) to the true model (2.33), and to the
least squares model for the data set without the outlier (2.36).

In examining the differences between 2– and 1–norm models, it is instructive
to consider the almost trivial regression problem of estimating the value of a
single parameter from repeated measurements. The system of equations Gm =
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d is 

1
1
1
.
.
.
1


m =



d1

d2

d3

.

.

.
dm


. (2.70)

The least squares solution to (2.70) can be seen from the normal equations
(A.73) to be simply the observational average

mL2 = (GT G)−1GT d = m−1
m∑

i=1

di . (2.71)

Finding the 1–norm solution is more complicated. The problem is that the
1-norm of the residual vector

f(m) = ‖d−Gm‖1 =
m∑

i=1

|di −m| (2.72)

is a nondifferentiable function of m at each point where m = di. The good
news is that f(m) is a convex function of m. Thus any local minimum point
is also a global minimum point. We can proceed by finding f ′(m) at those
points where it is defined, and then separately consider the points at which
the derivative is not defined. Every minimum point must either have f ′(m)
undefined or f ′(m) = 0.

At those points where f ′(m) is defined, it is given by

f ′(m) =
n∑

i=1

sgn(di −m) . (2.73)

where the signum function, sgn(x) is -1 if its argument is negative, 1 if its
argument is positive, and 0 if its argument is zero. The derivative (2.73) is zero
when exactly half of the data are less than m and half of the data are greater
than m. Of course, this can only happen when the number of observations, m,
is even. In this case, any value of m lying between the two middle observations
is a 1–norm solution. When there are an odd number of data, the median data
point is the unique 1–norm solution. Even an extreme outlier will not have a
large effect on the median of an otherwise clustered set of observations. This
illuminates the reason for the robustness of the 1–norm solution.

The general problem of finding solutions that minimize ‖d−Gm‖1 is com-
plex. One practical way is iteratively reweighted least squares, or IRLS
[144]. The IRLS algorithm solves a sequence of weighted least squares problems
whose solutions converge to a 1–norm minimizing solution. Beginning with the
residual vector

r = d−Gm (2.74)
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we want to minimize

f(m) = ‖r‖1 =
m∑

i=1

|ri| . (2.75)

The function in (2.75), like the function in (2.72), is nondifferentiable at any
point where one of the elements of r is zero. Ignoring this issue for a moment,
we can go ahead and compute the derivatives of f at other points.

∂f(m)
∂mk

=
m∑

i=1

∂|ri|
mk

=
m∑

i=1

Gi,ksgn(ri) . (2.76)

Writing sgn(ri) as ri/|ri|, gives

∂f(m)
∂mk

=
m∑

i=1

Gi,k
1
|ri|

ri . (2.77)

The gradient of f is

∇f(m) = GT Rr = GT R(d−Gm) (2.78)

where R is a diagonal weighting matrix with diagonal elements that are just
the absolute values of the reciprocals of the residuals.

Ri,i = 1/|ri| . (2.79)

To find the 1–norm minimizing solution, we solve ∇f(m) = 0, which gives

GT R(d−Gm) = 0 (2.80)

or
GT RGm = GT Rd . (2.81)

Since R depends on m, (2.81) is a nonlinear system of equations that we
cannot solve directly. IRLS is a simple iterative algorithm to find the appropriate
weights. The algorithm begins with the least squares solution m0 = mL2 . We
calculate the corresponding residual vector r0 = d − Gm0. We then solve
(2.81) to obtain a new model m1 and associated residual vector r1. The process
is repeated until the model and residual vectors converge. A typical rule is to
stop the iteration when

‖mk+1 −mk‖2
1 + ‖mk+1‖2

< τ (2.82)

for some tolerance τ .
The procedure will fail if any element of the residual vector becomes zero.

A simple modification to the algorithm deals with this problem. We select
a tolerance ε below which we consider the residuals to be effectively zero. If
|ri| < ε, then we set Ri,i = 1/ε. With this modification it can be shown
that this procedure will always converge to an approximate 1–norm minimizing
solution.
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As with the χ2 misfit measure for least squares solutions, there is a corre-
sponding p–value that can be used under the assumption of normal data errors,
but for the assessment of 1–norm solutions [124]. Let

µ
(1)
obs = ‖GmL1 − d‖ (2.83)

be the observed 1–norm misfit. For a 1–norm misfit measure given by (2.83), the
probability that a worse misfit could have occurred given independent indepen-
dent and normally distributed data and ν degrees of freedom is approximately
given by

p(1)(y, ν) = P (µ(1) > µ
(1)
obs) = S(x)− γZ(2)(x)

6
(2.84)

where

S(x) =
1

σ1

√
2π

∫ x

−∞
e
− ξ2

2σ2
1 dξ (2.85)

σ1 = (1− 2/π)ν (2.86)

γ =
2− π/2

(π/2− 1)3/2
ν

1
2 (2.87)

Z(2)(x) =
x2 − 1√

2π
e−

x2
2 (2.88)

x =
µ(1) −

√
2/π ν

σ1
. (2.89)

2.5 Monte Carlo Error Propagation

For solution techniques that are nonlinear and/or algorithmic, such as the IRLS,
there is typically no simple way to propagate uncertainties in the data to un-
certainties in the estimated model parameters. In such cases, one can apply
Monte Carlo error propagation techniques, in which we simulate a collec-
tion of noisy data vectors and then examine the statistics of the resulting models.
We can obtain an approximate covariance matrix by first forward–propagating
the L1 solution into an assumed noise–free baseline data vector

GmL1 = db . (2.90)

We next re–solve the IRLS problem many times for 1–norm models correspond-
ing to independent data realizations, obtaining a suite of q 1–norm solutions to

GmL1,i = db + ηi (2.91)

where ηi is the ith noise vector realization. Let A be a q by m matrix where the
ith row contains the difference between the ith model estimate and the average
model

Ai,· = mT
L1,i − m̄T

L1
. (2.92)
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Then an empirical estimate of the covariance matrix is

Cov(mL1) =
AT A

q
. (2.93)

Example 2.5

Recall Example 2.1. An estimate of Cov(mL1) using 10,000 itera-
tions of the Monte Carlo procedure is

Cov(mL1) =

 122.52 −46.50 −7.37
−46.50 21.49 3.72
−7.37 3.72 0.68

 (2.94)

which is about 1.4 times as large as the covariance matrix elements
found from the least squares solution. Although we have no reason to
believe that the model parameters will be normally distributed given
that this solution was obtained with the IRLS algorithm, we can
compute approximate 95% confidence intervals for the parameters.

mL1 = [17.6± 21.8 m, 96.4± 7.70 m/s, 9.3± 1.4 m/s2]T . (2.95)

2.6 Exercises

1. A seismic profiling experiment is performed where the first arrival times
of seismic energy from a mid–crustal refractor are observed at distances
(in kilometers) of

x =


6.0000

10.1333
14.2667
18.4000
22.5333
26.6667

 (2.96)

from the source, and are found to be (in seconds after the source origin
time)

t =


3.4935
4.2853
5.1374
5.8181
6.8632
8.1841

 . (2.97)

A two–layer flat Earth structure gives the mathematical model

ti = t0 + s2xi (2.98)
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where the intercept time, t0 depends on the thickness and slowness of
the upper layer, and s2 is the slowness of the lower layer. The estimated
noise in the first arrival time measurements is believed to be independent
and normally distributed with expected value 0 and standard deviation
σ = 0.1 s.

(a) Find the least squares solution for the model parameters t0 and s2.
Plot the data, the fitted model, and the residuals.

(b) Calculate and comment on the parameter correlation matrix. How
are the correlations reflected in the appearance of the error ellipsoid
in (t0, s2) space?

(c) Plot the error ellipsoid in the (t0, s2) plane and calculate conserva-
tive 95% confidence intervals for t0 and s2. Hint: The following
MATLAB code will plot a two–dimensional covariance ellipse, where
covm is the covariance matrix and m is the 2-vector of model pa-
rameters.

%diagonalize the covariance matrix
[u,lam]=eig(inv(covm));
%generate a vector of angles from 0 to 2*pi
theta=(0:.01:2*pi)’;
%calculate the x component of the ellipsoid for all angles
r(:,1)=(delta/sqrt(lam(1,1)))*u(1,1)*cos(theta)+...

(delta/sqrt(lam(2,2)))*u(1,2)*sin(theta);
%calculate the y component of the ellipsoid for all angles
r(:,2)=(delta/sqrt(lam(1,1)))*u(2,1)*cos(theta))+...

(delta/sqrt(lam(2,2)))*u(2,2)*sin(theta);
%plot(x,y), adding in the model parameters
plot(m(1)+r(:,1),m(2)+r(:,2))

(d) Evaluate the p–value for this model. You may find the MATLAB
Statistics Toolbox function chi2cdf to be useful here.

(e) Evaluate the value of χ2 for 1000 Monte Carlo simulations using the
data prediction from your model perturbed by noise that is consistent
with the data assumptions. Compare a histogram of these χ2 values
with the theoretical χ2 distribution for the correct number of degrees
of freedom. You may find the MATLAB Statistical Toolbox function
chi2pdf to be useful here.

(f) Are your p–value and Monte Carlo χ2 distribution consistent with
the theoretical modeling and the data set? If not, explain what is
wrong.

(g) Use IRLS to find 1–norm estimates for t0 and s2. Plot the data
predictions from your model relative to the true data and compare
with (a).

(h) Use Monte Carlo error propagation and IRLS to estimate symmetric
95% confidence intervals on the 1–norm solution for t0 and s2.



40 CHAPTER 2. LINEAR REGRESSION

(i) Examining the contributions from each of the data points to the 1–
norm misfit measure, can you make a case that any of the data points
are statistical outliers?

2. In this chapter we have assumed that the measurement errors are inde-
pendent. Suppose instead that the measurement errors have an MVN
distribution with expected value 0 and a known covariance matrix CD.
It can be shown that the likelihood function is then

L(m|d) =
1

(2π)m/2

1√
det(CD)

e−(Gm−d)T C−1
D (Gm−d)/2 . (2.99)

(a) Show that the maximum likelihood estimate can be obtained by solv-
ing the minimization problem

min (Gm− d)T C−1
D (Gm− d) . (2.100)

(b) Show that (2.100) can be solved by the system of equations

(GT C−1
D G)mL2 = GT C−1

D d . (2.101)

(c) Show that (2.100) is equivalent to the linear least squares problem

min ‖C−1/2
D Gm−C−1/2

D d‖2 . (2.102)

3. Use MATLAB to generate 10,000 realizations of a data set of m = 5
points d = a + bx + η, where x = [1, 2, 3, 4, 5]T , the n = 2 true model
parameters are a = b = 1, and η is an m-element vector of independent
N(0, 1) noise.

(a) Assuming that the noise standard deviation is known a priori to be
1, solve for the least squares parameters for your realizations and
histogram them in 100 bins.

(b) Calculate the parameter covariance matrix, C = (GT G)−1, assuming
independent N(0, 1) data errors, and give standard deviations, σa

and σb, for your estimates of a and b,

(c) Calculate the standardized parameter estimates

a′ =
a− ā

σ
√

C1,1

(2.103)

and

b′ =
b− b̄

σ
√

C2,2

(2.104)

and demonstrate using a Q–Q plot that your estimates for a′ and b′

are distributed as N(0, 1).
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(d) Show using a Q–Q plot that the squared residual lengths

‖r‖22 = ‖d−Gm‖22 (2.105)

for your solutions in (a) are distributed as χ2 with m − n = ν = 3
degrees of freedom.

(e) Assume that the noise standard deviation for the synthetic data set
is not known, and estimate it for each realization as

s =

√√√√ 1
n−m

m∑
i=1

r2
i . (2.106)

Histogram your standardized solutions

a′ =
a− ā

s
√

C1,1

(2.107)

and

b′ =
b− b̄

s
√

C2,2

(2.108)

where each solution is normalized by its respective standard devia-
tion estimate.

(f) Demonstrate using a Q–Q plot that your estimates for a′ and b′ are
distributed as the Student’s t distribution with ν = 3 degrees of
freedom.

4. Suppose that we analyze a large number of data sets d in a linear regres-
sion problem and compute p–values for each data set. The χ2

obs values
should be distributed according to a χ2 distribution with m − n degrees
of freedom. Show that the corresponding p–values will be uniformly dis-
tributed between 0 and 1.

5. Use linear regression to fit a polynomial of the form

y = a0 + a1x + a2x
2 + . . . + a19x

19 (2.109)

to the noise–free data points

(xi, yi) = (−0.95, − 0.95), (−0.85, − 0.85), . . . , (0.95, 0.95) . (2.110)

Use the normal equations to solve the least squares problem.

Plot the data and your fitted model, and list the parameters, ai obtained
in your regression. Clearly, the correct solution has a1 = 1, and all other
ai = 0. Explain why your answer differs.
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2.7 Notes and Further Reading

Linear regression is a major subfield within statistics, and there are literally
hundreds of associated textbooks. Many of these references focus on applications
of linear regression in the social sciences. In such applications, the primary focus
is often on determining which variables have an effect on response variables
of interest (rather than on estimating parameter values for a predetermined
model). In this context it is important to compare alternative regression models
and to test the hypothesis that a predictor variable has a nonzero coefficient
in the regression model. Since we normally know which predictor variables
are important in the physical sciences, the approach commonly differs. Useful
linear regression references from the standpoint of estimating parameters in the
context considered here include [35, 108].

Robust statistical methods are an important topic. Huber discusses a variety
of robust statistical procedures [73]. The computational problem of computing a
1–norm solution has been extensively researched. Techniques for 1–norm mini-
mization include methods based on the simplex method for linear programming,
interior point methods, and iteratively reweighted least squares [7, 27, 128, 144].
The IRLS method is the simplest to implement, but interior point methods can
be the most efficient approaches for very large problems. Watson reviews the
history of methods for finding p–norm solutions including the 1–norm case [178].

We have assumed that G is known exactly. In some cases elements of this
matrix might be subject to measurement error. This problem has been studied
as the total least squares problem [74]. An alternative approach to least
squares problems with uncertainties in G that has recently received considerable
attention is called robust least squares [11, 39].



Chapter 3

Discretizing Continuous
Inverse Problems

Synopsis: Techniques for discretizing continuous inverse problems characterized
by Fredholm integral equations of the first kind are discussed. Discretization
based on quadrature formulas of numerically approximating integrals are intro-
duced, and examples are given. Alternative methods of discretization based on
expanding the model as a linear combination of basis functions are presented.
The method of Backus and Gilbert is introduced.

3.1 Integral Equations

Consider problems of the form

d(s) =
∫ b

a

g(s, x)m(x) dx . (3.1)

Here d(s) is a known function, typically representing observed data. The func-
tion g(s, t) is considered to be proscribed, and encodes the physics that relates
the unknown model m(x) to the observed d(s). The interval [a, b] may be
finite, in which case the analysis is somewhat easier, or the interval may be
infinite. The function d(s) might in theory be known over an entire interval but
in practice we will only have measurements of d(s) at a finite set of points.

We wish to solve for the unknown function m(x). This type of linear equa-
tion, which we previously saw in Chapter 1, is called a Fredholm integral equa-
tion of the first kind or IFK. For reasons that were introduced in Chapter 1, a
surprisingly large number of inverse problems can be written as Fredholm inte-
gral equations of the first kind. Unfortunately, IFK’s can have properties that
can make them very difficult to solve.

43
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3.2 Quadrature Methods

To obtain useful numerical solutions to IFK’s, we will frequently seek to dis-
cretize them into forms that are tractably solvable using linear algebra methods.
We first assume that d(s) is known at a finite number of points s1, s2, . . ., sm.
For a finite number of data points we can write the inverse problem as

di = d(si) =
∫ b

a

g(si, x)m(x) dx i = 1, 2, . . . , m (3.2)

or as

di =
∫ b

a

gi(x)m(x) dx i = 1, 2, . . . , m (3.3)

where gi(x) = g(si, x). The functions gi(t) are referred to as representers or
data kernels.

In the quadrature approach to discretizing an IFK, we use a quadrature
rule or numerical integration scheme to numerically approximate (3.3). Note
that, although quadrature methods are applied in this Chapter to linear integral
equations, they will also have utility in the discretization of nonlinear problems.
The simplest quadrature rule is the midpoint rule, where we divide the interval
[a, b] into n subintervals, and pick points x1, x2, . . ., xn in the middle of each
interval. The points are given by

xi = a +
∆x

2
+ (i− 1)∆x (3.4)

where
∆x =

b− a

n
. (3.5)

The integral (3.3) is then approximated by

di =
∫ b

a

gi(x)m(x) dx ≈
n∑

j=1

gi(xj)m(xj) ∆x . i = 1, 2, . . . , m . (3.6)

See Figure 3.1. If we let

Gi,j = gi(xj)∆t

(
i = 1, 2, . . . , m
j = 1, 2, . . . , n

)
(3.7)

and
mj = m(xj) j = 1, 2, . . . , n (3.8)

then we obtain a linear system of equations Gm = d.
The approach of using the midpoint rule to approximate the integral is

known as simple collocation. Of course, there are also more sophisticated
quadrature rules for numerically approximating integrals (e.g. the trapezoidal
rule, or Simpson’s rule). In each case, we end up with a similar linear system
of equations but the formulas for evaluating the elements of G will be different.
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a x1 x2 xn b

Figure 3.1: Grid for the midpoint rule.

Example 3.1

Consider the vertical seismic profiling example where we wish to
estimate vertical seismic slowness using travel time measurements
of downward propagating seismic waves. See Figure 3.2. The data
in this case are integrated values of the model parameters. We dis-
cretize the forward problem (1.21) for m observations taken at times
ti and at depths yi equally spaced at intervals of ∆y. The model is
discretized at n model depths zi, equally spaced at intervals of ∆z.
The discretization is shown in Figure 3.2.

The discretized problem has

ti =
n∑

j=1

H(yi − zj)sj ∆z . (3.9)

where n/m = ∆y/∆z. The rows of the matrix Gi,· each consist of
i · n/m elements ∆z on the left and n− (i · n/m) zeros on the right.
For n = m, G is a lower triangular matrix with each nonzero entry
equal to ∆z.

Example 3.2

Another instructive example is an optics experiment in which light
passes through a thin slit. See Figure 3.3. This problem was studied
by Shaw [147]. The data, d(s), are measurements of diffracted light
intensity as a function of outgoing angle −π/2 ≤ s ≤ π/2. Our goal
is to find the intensity of the incident light on the slit m(θ), as a
function of the incoming angle −π/2 ≤ θ ≤ π/2.
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propagating
wavefront

interval
slownesses, sj

source

z

sensor
locations, yi

s2

s3

sn

y2

y1

ym

s1

Figure 3.2: Discretization of the vertical seismic profiling problem (n/m = 2).

slit

d(s)

m(q)

q
s

Figure 3.3: The Shaw problem (3.10), with example model and data plotted as
functions of angles θ, and s.
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The mathematical model relating d and m is

d(s) =
∫ π/2

−π/2

(cos(s) + cos(θ))2
(

sin(π(sin(s) + sin(θ)))
π(sin(s) + sin(θ))

)2

m(θ) dθ .

(3.10)

To discretize (3.10) we apply the method of simple collocation with
n = m equally sized intervals for the model and data functions,
where n is even. For simplicity, we additionally define the model
and data points at the same n angles

si = θi =
(i− 0.5)π

n
− π

2
i = 1, 2, . . . , n . (3.11)

Discretizing the data and model into n-length vectors

di = d(si) i = 1, 2, . . . , n (3.12)

and
mj = m(θj) j = 1, 2, . . . , n (3.13)

leads to a discrete linear system Gm = d, where

Gi,j = ∆s(cos(si) + cos(θj))2
(

sin(π(sin(si) + sin(θj)))
π(sin(si) + sin(θj))

)2

(3.14)

and
∆s =

π

n
. (3.15)

The MATLAB Regularization Tools contain a routine shaw that
computes the G matrix along with a sample model and data for this
problem for n = m [60].

Example 3.3

In this example we consider the problem of recovering the history
of ground water pollution at a source site from later measurements
of the contamination at downstream wells to which the contami-
nant plume has been transported by advection and diffusion. See
Figure 3.4. This “source history reconstruction problem” has been
considered by a number of authors [115, 150, 151, 180].

The mathematical model for contaminant transport is an advection–
diffusion equation

∂C

∂t
= D

∂2C

∂x2
− v

∂C

∂x
(3.16)

C(0, t) = Cin(t)
C(x, t) → 0 as x →∞
C(x, 0) = C0(x)
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0
x

flow

Figure 3.4: The contaminant plume source history reconstruction problem.

where D is the diffusion coefficient, and v is the velocity of ground
water flow. The solution to (3.17) at time T is the convolution

C(x, T ) =
∫ T

0

Cin(t)f(x, T − t) dt , (3.17)

where Cin(t) is the time history of contaminant injection at x = 0,
and the kernel is

f(x, T − t) =
x

2
√

πD(T − t)3
exp

(
− [x− v(T − t)]2

4D(T − t)

)
. (3.18)

We assume that the parameters of (3.18) are known. We wish to
estimate Cin(t) from simultaneous observations at some later time
T . The convolution (3.17) for C(x, T ) is discretized as

d = Gm (3.19)

where d is a vector of sampled concentrations at different well loca-
tions, x, at a time T , m is a vector of Cin values to be estimated,
and

Gi,j = f(xi, T − tj)∆t (3.20)

=
xi

2
√

πD(T − tj)3
exp

(
− [xi − v(T − tj)]

2

4D(T − tj)

)
∆t .(3.21)
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3.3 Expansion in Terms of Representers

In the Gram matrix technique for discretizing a linear inverse problem, a
continuous model m(x) is written as a linear combination of the m representers
(3.3)

m(x) =
m∑

j=1

αjgj(x) . (3.22)

where the αj are coefficients to be determined. The representers form a basis
for a subspace of the space of all functions on the interval (a,b). Substituting
(3.22) into (3.3) gives

d(si) =
∫ b

a

gi(x)
m∑

j=1

αjgj(x) dx (3.23)

=
m∑

j=1

αj

∫ b

a

gi(x)gj(x) dx i = 1, 2, . . . , m . (3.24)

Recall from Appendix A that an m by m matrix Γ with elements

Γi,j =
∫ b

a

gi(x)gj(x) dx i = 1, 2, . . . , m (3.25)

is called a Gram matrix. The IFK can thus be discretized as an m by m linear
system of equations

Γα = d (3.26)

Once (3.26) is solved for the vector of coefficients α, the corresponding model
is given by (3.22). If the representers and Gram matrix are analytically express-
ible, then the Gram matrix formulation produces a continuous solution. Where
only numerical representations for the representers exist, the method can still
be applied, although the integrals in (3.25) must be obtained by numerical in-
tegration.

It can be shown that if the representers gj(x) are linearly independent, then
the Gram matrix will be nonsingular. See Exercise 3.3. As we will see in
Chapter 4, the Gram matrix tends to become very badly conditioned as m
increases. On the other hand, we want to use as large as possible a value of m
so as to increase the accuracy of the discretization. Thus there is a trade–off
between the discretization error and ill–conditioning.

It can be shown that the model obtained by solving (3.26) minimizes ‖m(x)‖22 =∫ b

a
m(x)2dx for all models that match the data [98]. However, this result is of

more theoretical than practical interest, since we typically do not want to match
noisy data exactly.
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3.4 Expansion in Terms of Orthonormal Basis
Functions

In Section 3.3, we approximated m(x) as a linear combination of m representers.
Generalizing this approach, suppose we are given suitable functions h1(x), h2(x),
. . ., hn(x) that form a basis for a function space H. We could then approximate
m(x) by

m(x) =
n∑

j=1

αjhj(x) . (3.27)

Substituting this approximation into (3.3) gives

d(si) =
∫ b

a

gi(x)
n∑

j=1

αjhj(x) dx (3.28)

=
n∑

j=1

αj

∫ b

a

gi(x)hj(x) dx i = 1, 2, . . . , m . (3.29)

This leads to an m by n linear system

Gα = d (3.30)

where

Gi,j =
∫ b

a

gi(x)hj(x) dx . (3.31)

If we define the dot product or inner product of two functions to be

f · g =
∫ b

a

f(x)g(x) dx (3.32)

then the corresponding norm is

‖f‖2 =

√∫ b

a

f(x)2 dx . (3.33)

If the basis functions hj(x) are orthonormal with respect to this inner prod-
uct, then the projection of gi(x) onto the space H spanned by the basis is

projH gi(x) = (gi · h1)h1(x) + (gi · h2)h2(x) + . . . + (gi · hn)hn(x) . (3.34)

The elements in the G matrix are given by the same dot products

Gi,j = gi · hj . (3.35)

Thus we have effectively projected the original representers onto our function
space H.
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An important advantage of using an orthonormal basis is that it can be
shown that ‖m(x)‖2 = ‖α‖2. See Exercise 3.4. In Chapter 5, we will regularize
the solution of Gα = d by finding a vector α that minimizes ‖α‖2 subject to
a constraint on the misfit ‖Gα − d‖2. By using an orthonormal basis, we can
minimize ‖m(x)‖2 subject to the same constraint on the misfit.

3.5 The Method of Backus and Gilbert

The method of Backus and Gilbert [3, 126] is applicable to continuous linear
inverse problems of the form

d(s) =
∫ b

a

g(s, x)m(x) dx (3.36)

where we have observations at points s1, s2, . . ., sn. Let

dj = d(sj) j = 1, 2, . . . , m . (3.37)

Using (3.36), we can write dj as

dj =
∫ b

a

g(sj , x)m(x) dx (3.38)

=
∫ b

a

gj(x)m(x) dx . (3.39)

We want to estimate m(x) at some point x̂ given the m data values dj . Since
the only data that we have are the dj values, we will consider estimates of the
form

m(x̂) ≈ m̂ =
m∑

j=1

cjdj (3.40)

where the cj are coefficients to be determined.
Combining (3.37) and (3.39) gives

m̂ =
m∑

j=1

cj

∫ b

a

gj(x)m(x) dx (3.41)

=
∫ b

a

 m∑
j=1

cjgj(x)

m(x) dx (3.42)

=
∫ b

a

A(x)m(x) dx (3.43)

where

A(x) =
m∑

j=1

cjgj(x) . (3.44)
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The function A(x) is called an averaging kernel. Ideally, we would like the
averaging kernel to closely approximate a delta function

A(x) = δ(x− x̂) (3.45)

because assuming the data were exact, (3.43) would then produce exact agree-
ment (m̂ = m(x̂)) between the estimated and the true model. Since this is
not possible, we will instead select the coefficients so that the area under the
averaging kernel is one, and so that the width of the averaging kernel around
the x̂ is as small as possible.

In terms of the coefficients c, the unit area constraint can be written as∫ b

a

A(x) dx = 1 (3.46)∫ b

a

m∑
j=1

cjgj(x) dx = 1 (3.47)

m∑
j=1

cj

(∫ b

a

gj(x) dx

)
= 1 . (3.48)

Letting

qj =
∫ b

a

gj(x) dx (3.49)

the unit area constraint (3.48) can be written as

qT c = 1 . (3.50)

Averaging kernel widths can be usefully characterized in a variety of ways
[126]. The most commonly used measure is the second moment of A(x) about
x̂

w =
∫ b

a

A(x)2(x− x̂)2 dx . (3.51)

In terms of the coefficients c, this can be written as

w = cT Hc (3.52)

where

Hj,k =
∫ b

a

gj(x)gk(x)(x− x̂)2 dx . (3.53)

Now, the problem of finding the optimal coefficients can be written as

min cT Hc
cT q = 1 .

(3.54)

This can be solved using the Lagrange multiplier technique (See Appendix C).
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In practice, the data may be noisy, and the solution may be unstable because
of this noise. For measurements with independent errors, the standard deviation
of the estimate is given by

Var(m̂) =
m∑

j=1

c2
jσ

2
j (3.55)

where σj is the standard deviation of the jth observation.
The solution can be stabilized by adding a constraint on the variance to

(3.54)
min cT Hc

qT c = 1∑n
j=1 c2

jJσ2
j ≤ ∆ .

(3.56)

Again, this problem can be solved by the method of Lagrange multipliers.
Smaller values of ∆ decrease the variance of the estimate but restrict the choice
of coefficients so that the width of the averaging kernel increases. There is a
trade–off between stability of the solution and the width of the averaging kernel.

The method of Backus and Gilbert produces an estimate of the model at a
particular point x̂. It is possible to use the method to compute estimates on a
grid of points x1, x2, . . ., xn. However, since the averaging kernels at these points
may not be well localized around the grid points, and may overlap in complicated
ways, this is not equivalent to the simple collocation method discussed earlier.
Furthermore, this requires the computationally intensive solution of (3.56) for
each point. For these reasons the method of Backus and Gilbert is no longer
used as extensively as it once was.

Example 3.4

For a a spherically symmetric Earth model, the mass Me, and mo-
ment of inertia Ie are determined by the radial density ρ(r), where

Me =
∫ Re

0

(
4πr2

)
ρ(r) dr (3.57)

and

Ie =
∫ Re

0

(
8
3
πr4

)
ρ(r) dr . (3.58)

Using Re = 6.3708 × 106 m as the radius of a spherical Earth, and
supposing that from astronomical measurements we can infer that
Me = 5.973± 0.0005× 1024 kg and Ie = 8.02± 0.005× 1037 kg ·m2,
we will estimate the density of the Earth in the lower mantle (e.g.
at r = 5000 km), and core (e.g. at r = 1000 km).

Equations (3.57) and (3.58) include terms that span an enormous
numerical range. Scaling so that

r̂ = r/Re ρ̂ = ρ/1000 Îe = Ie/1031 M̂e = Me/1024
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gives

M̂e = 0.2586
∫ 1

0

(
4πr̂2

)
ρ̂(r̂) dr̂ (3.59)

and

Îe = 1.0492
∫ 1

0

(
8
3
πr̂4

)
ρ̂(r̂) dr̂ . (3.60)

Applying (3.54) for r = 5000 km gives the numerical coefficient
values cT = [1.1809, − 0.1588] and a corresponding model density
of 5.8 g/cm3. This is not too bad of an estimate for this radius where
standard Earth models estimated using seismological methods [93]
have densities of approximately 5 g/cm3. The associated standard
deviation (3.55) is 0.001 g/cm3, so there is very little sensitivity to
data uncertainty.

At r = 1000 km, we obtain the numerical coefficients cT = [2.5537, −
1.0047] and a corresponding density estimate of 7.2 g/cm3. This is
not a very accurate estimate for the density of the inner core, where
standard Earth models have densities of around 13 g/cm3. The cor-
responding standard deviation is just 0.005 g/cm3, so this inaccuracy
is not related to instability in the inverse problem.

Figure 3.5 shows the averaging kernels corresponding to these model
element estimates, and explains both the successful mantle and failed
core density estimates. In the mantle case, the averaging kernel has
much of its area near the targeted radius of 5000 km. In the core case,
however, the averaging kernel has most of its area at much greater r,
and little area near the target radius of 1000 km. The fundamental
reason for this situation is that both the mass and moment of inertia
are insensitive to the density of the innermost Earth.

3.6 Exercises

1. Consider the data in Table 3.1. These data can also be found in the file
ifk.mat.

The function d(y), 0 ≤ y ≤ 1 is related to an unknown function m(x),
0 ≤ x ≤ 1 by the mathematical model

d(y) =
∫ 1

0

xe−xym(x) dx . (3.61)

(a) Using the data provided, discretize the integral equation using simple
collocation and solve the resulting system of equations.

(b) What is the condition number for this system of equations? Given
that the data d(y) are only accurate to about 4 digits, what does this
tell you about the accuracy of your solution?
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Figure 3.5: Averaging kernels for target radii of 1000 and 5000 km.

y 0.0250 0.0750 0.1250 0.1750 0.2250
d(y) 0.2388 0.2319 0.2252 0.2188 0.2126
y 0.2750 0.3250 0.3750 0.4250 0.4750
d(y) 0.2066 0.2008 0.1952 0.1898 0.1846
y 0.5250 0.5750 0.6250 0.6750 0.7250
d(y) 0.1795 0.1746 0.1699 0.1654 0.1610
y 0.7750 0.8250 0.8750 0.9250 0.9750
d(y) 0.1567 0.1526 0.1486 0.1447 0.1410

Table 3.1: Data for Exercise 3.1.
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2. Use the Gram matrix technique to discretize the integral equation from
problem 3.1.

(a) Solve the resulting linear system of equations, and plot the resulting
model.

(b) What was the condition number of Γ? What does this tell you about
the accuracy of your solution?

3. Show that if the representers gi(t) are linearly independent, then the Gram
matrix Γ is nonsingular.

4. Show that if the basis functions in (3.27) are orthonormal, then ‖m(x)‖2 =
‖α‖2. Hint: Expand ‖m(x)‖22 using (3.33), and then simplify using the
orthogonality of the basis functions.

5. Recall the polynomial regression problem from Exercise 2.5. Instead of
using the polynomials 1, x, . . ., x19, we will use the basis of Legendre
polynomials which are orthogonal on the interval [−1, 1]. These polyno-
mials are generated by the recurrence relation

pn+1(x) =
(2n + 1)xpn(x)− npn−1(x)

n + 1
(3.62)

starting with
p0(x) = 1 (3.63)

and
p1(x) = x . (3.64)

The next two Legendre polynomials are p2(x) = (3x2 − 1)/2 and p3(x) =
(5x3 − 3x2)/2. This recurrence relation can be used both to compute
coefficients of the Legendre polynomials and to compute values of the
polynomials for particular values of x.

Use the first 20 Legendre polynomials to fit a polynomial of degree 19 to
the data from Exercise 2.5. Express your solution as a linear combination
of the Legendre polynomials and also as a regular polynomial. How well
conditioned was this system of equations? Plot your solution and compare
it with your solution to Exercise 2.5.

3.7 Notes and Further Reading

Techniques for discretizing integral equations are discussed in [41, 126, 170,
179]. A variety of basis functions have been used to discretize integral equations
including sines and cosines, spherical harmonics, B-splines, and wavelets. In
selecting the basis functions, it is important to select a basis that can reasonably
represent likely models. The basis functions must be linearly independent, so
that a function can be written in terms of the basis functions in exactly one way,
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and (3.27) is thus unique. As we have seen, the use of an orthonormal basis has
the further advantage that ‖α‖2 = ‖m(x)‖2.

The selection of an appropriate basis for a particular problem is a fine art
that requires detailed knowledge of the problem as well as of the behavior of
the basis functions. Beware that a poorly selected basis may not adequately
approximate the solution, resulting in an estimated model m(x) that is very
wrong. The choice of basis can also have a very large effect on the condition
number of the discretized problem, potentially making it very ill–conditioned.

An important theoretical question is whether the solutions to discretized
versions of a continuous inverse problem with noise free data will converge to a
solution of the continuous inverse problem. Engl, Hanke, and Neubauer provide
an explicit example showing that nonconvergence of a discretization scheme is
possible [41]. They also provide conditions under which convergence is guaran-
teed. For Fredholm integral equations of the first kind, the Gram matrix scheme
discussed in section 3.3.3 can be shown to be convergent [41].

Using a more coarse mesh in the discretization of an inverse problem typ-
ically results in a better conditioned linear system of equations. By carefully
selecting the grid size, it is possible to produce a well conditioned linear sys-
tem of equations. Of course, this also typically reduces the spatial or temporal
resolution of the inverse solution. This process is known as regularization by
discretization [41].
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Chapter 4

Rank Deficiency and
Ill–Conditioning

Synopsis: The characteristics of rank deficient and ill–conditioned linear prob-
lems are explored using the singular value decomposition. The connection be-
tween model and data null spaces and solution uniqueness and ability to fit data
is examined. Model and data resolution matrices are defined. The relationship
between singular value size and singular vector roughness, and its connection to
the effect of noise on solutions are discussed in the context of the fundamental
trade–off between model resolution and instability. Specific manifestations of
these issues in rank deficient and ill–conditioned discrete problems are shown in
several examples.

4.1 The SVD and the Generalized Inverse

A method of analyzing and solving least squares problems that is of particular
interest in ill–conditioned and/or rank deficient systems is the singular value
decomposition, or SVD. In the SVD [51, 90, 158] an m by n matrix G is
factored into

G = USVT (4.1)

where

• U is an m by m orthogonal matrix with columns that are unit basis
vectors spanning the data space, Rm.

• V is an n by n orthogonal matrix with columns that are basis vectors
spanning the model space, Rn.

• S is an m by n diagonal matrix with diagonal elements called singular
values.

59
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The SVD matrices can be computed in MATLAB with the svd command. It
can be shown that every matrix has a singular value decomposition [51].

The singular values along the diagonal of S are customarily arranged in
decreasing size, s1 ≥ s2 ≥ . . . ≥ smin(m, n) ≥ 0. Note that some of the singular
values may be zero. If only the first p singular values are nonzero, we can
partition S as

S =
[

Sp 0
0 0

]
(4.2)

where Sp is a p by p diagonal matrix composed of the positive singular values.
Expanding the SVD representation of G in terms of the columns of U and V
gives

G = [U·,1, U·,2, . . . , U·,m]
[

Sp 0
0 0

]
[V·,1, V·,2, . . . , V·,n]T (4.3)

= [Up, U0]
[

Sp 0
0 0

]
[Vp, V0]

T (4.4)

where Up denotes the first p columns of U, U0 denotes the last m−p columns of
U, Vp denotes the first p columns of V, and V0 denotes the last n− p columns
of V. Because the last m − p columns of U and the last n − p columns of V
in (4.4) are multiplied by zeros in S, we can simplify the SVD of G into its
compact form

G = UpSpVT
p . (4.5)

For any vector y in the range of G, applying (4.5) gives

y = Gx (4.6)
= Up

(
SpVT

p x
)

. (4.7)

Thus every vector in R(G) can be written as y = Upz where z = SpVT
p x.

Writing out this matrix vector multiplication, we see that any vector y in R(G)
can be written as a linear combination of the columns of Up

y =
p∑

i=1

ziU·,i . (4.8)

The columns of Up span R(G), are linearly independent, and form an orthonor-
mal basis for R(G). Because this orthonormal basis has p vectors, rank(G) = p.

Since U is an orthogonal matrix, the columns of U form an orthonormal
basis for Rm. We have already shown in (4.8) that the p columns of Up form an
orthonormal basis for R(G). By Theorem A.5, N(GT ) + R(G) = Rm, so the
remaining m− p columns of U0 form an orthonormal basis for the null space of
GT . We will sometimes refer to N(GT ) as the data null space. Similarly,
because GT = VpSpUT

p , the columns of Vp form an orthonormal basis for
R(GT ) and the columns of V0 form an orthonormal basis for N(G). We will
sometimes refer to N(G) as the model null space.
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Two other important SVD properties are similar to properties of eigenvalues
and eigenvectors. See page 267. Because the columns of V are orthonormal,

VT V·,i = ei. (4.9)

Thus

GV·,i = USVT V·,i (4.10)
= USei (4.11)
= siU·,i (4.12)

and

GT U·,i = VST UT U·,i (4.13)
= VST ei (4.14)
= siV·,i . (4.15)

There is a connection between the singular values of G and the eigenvalues
of GGT and GT G.

GGT U·,i = GsiV·,i (4.16)
= siGV·,i (4.17)
= s2

i U·,i . (4.18)

Similarly,
GT GV·,i = s2

i V·,i . (4.19)

These relations show that we could, in theory, compute the SVD by finding
the eigenvalues and eigenvectors of GT G and GGT . In practice, more efficient
specialized algorithms are used [33, 51, 169].

The SVD can be used to compute a generalized inverse of G, called the
Moore–Penrose pseudoinverse, because it has desirable inverse properties
originally identified by Moore and Penrose [103, 127]. The generalized inverse
is

G† = VpS−1
p UT

p . (4.20)

MATLAB has a pinv command that generates G†. This command allows the
user to select a tolerance such that singular values smaller than the tolerance
are not included in the computation.

Using (4.20), we define the pseudoinverse solution to be

m† = G†d (4.21)
= VpS−1

p UT
p d . (4.22)

Among the desirable properties of (4.22) is that G†, and hence m†, always exist.
In contrast, the inverse of GT G that appears in the normal equations (2.3) does
not exist when G is not of full column rank. We will shortly show that m† is a
least squares solution.

To encapsulate what the SVD tells us about our linear system, G, and the
corresponding generalized inverse system G†, consider four cases:
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1. Both the model and data null spaces, N(G) and N(GT ) are trivial. Up =
U and Vp = V are square orthogonal matrices, so that UT

p = U−1
p , and

VT
p = V−1

p . Equation (4.22) gives

G† = VpS−1
p UT

p (4.23)

= (UpSpVT
p )−1 (4.24)

= G−1 (4.25)

which is the matrix inverse for a square full rank matrix where m = n = p.
The solution is unique, and the data are fit exactly.

2. N(G) is nontrivial, but N(GT ) is trivial. UT
p = U−1

p and VT
p Vp = Ip. G

applied to the generalized inverse solution gives

Gm† = GG†d (4.26)
= UpSpVT

p VpS−1
p UT

p d (4.27)

= UpSpIpS−1
p UT

p d (4.28)
= d . (4.29)

The data are fit exactly, but the solution is nonunique, because of the
existence of the nontrivial model null space N(G).

We need to characterize the least squares solutions to Gm = d. If m is
any least squares solution, then it satisfies the normal equations. This is
shown in Exercise C.5.

(GT G)m = GT d . (4.30)

Since m† is a least squares solution, it also satisfies the normal equations.

(GT G)m† = GT d . (4.31)

Subtracting (4.30) from (4.31), we find that

(GT G)(m† −m) = 0 . (4.32)

Thus m†−m lies in N(GT G). In Exercise A.17f it is shown that N(GT G) =
N(G). This implies that m† −m lies in N(G).

The general solution is thus the sum of m† and an arbitrary vector in
N(G) that can be written as a linear combination of the basis vectors for
N(G)

m = m† + m0 (4.33)

= m† +
n∑

i=p+1

αiV·,i . (4.34)



4.1. THE SVD AND THE GENERALIZED INVERSE 63

Because the columns of V are orthonormal, the square of the 2–norm of
a general solution m is

‖m‖22 = ‖m†‖22 +
n∑

i=p+1

α2
i ≥ ‖m†‖22 (4.35)

where we have equality only if all of the model null space coefficients αi

are zero. The generalized inverse solution is thus a minimum length
solution.

We can also write this solution in terms of G and GT .

m† = VpS−1
p UT

p d (4.36)

= VpSpUT
p UpS−2

p UT
p d (4.37)

= GT (UpS−2
p UT

p )d (4.38)

= GT (GGT )−1d . (4.39)

In practice it is better to compute a solution using the SVD than to use
(4.39) because of numerical accuracy issues.

3. N(G) is trivial but N(GT ) is nontrivial and R(G) is a strict subset of
Rm. Here

Gm† = UpSpVT
p VpS−1

p UT
p (UpUT

p d) (4.40)

= UpUT
p d . (4.41)

The product UpUT
p d gives the projection of d onto R(G). Thus Gm† is

the point in R(G) that is closest to d, and m† is a least squares solution
to Gm = d. If d is actually in R(G), then m† will actually be a solution
to Gm = d.

We can see that this solution is exactly that obtained from the normal
equations because

(GT G)−1 = (VpSpUT
p UpSpVT

p )−1 (4.42)

= (VpS2
pV

T
p )−1 (4.43)

= VpS−2
p VT

p (4.44)

and

m† = G†d (4.45)
= VpS−1

p UT
p d (4.46)

= VpS−2
p VT

p VpSpUT
p d (4.47)

= (GT G)−1GT d . (4.48)

This solution is unique, but cannot fit general data exactly. As with (4.39),
it is better in practice to use the generalized inverse solution than to use
(4.48) because of numerical accuracy issues.
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4. Both N(GT ) and N(G) are nontrivial and p is less than both m and n.
In this case, the generalized inverse solution encapsulates the behavior of
both of the two previous cases, minimizing both ‖Gm− d‖2 and ‖m‖2.

As in case 3,

Gm† = UpSpVT
p VpS−1

p UT
p (UpUT

p d) (4.49)

= UpUT
p d (4.50)

= projN(G)d . (4.51)

Thus m† is a least squares solution to Gm = d.

As in case 2 we can write the model and its norm using (4.34) and (4.35).
Thus m† is the least squares solution of minimum length.

We have shown that the generalized inverse provides an inverse solution
(4.22) that always exists, is both least-squares and minimum length, and prop-
erly accommodates the rank and dimensions of G. Relationships between the
subspaces R(G), N(GT ), R(GT ), N(G), and the operators G and G†, are
schematically depicted in Figure 4.1. Table 4.1 summarizes the SVD and its
properties.

{    }    {    }{ 
R(GT ) }

{N(GT )}{ N(G) }

{ R(G) }

0 0

Model Space, V Data Space, U

G

G G

G

Figure 4.1: SVD model and data space mappings, where G† is the generalized
inverse. N(GT ) and N(G) are the data and model null spaces, respectively.

The existence of a nontrivial model null space (one that includes more than
just the zero vector) is at the heart of solution nonuniqueness. There are an
infinite number of solutions that will fit the data equally well, because model
components in N(G) have no effect on data fit. To select a particular preferred
solution from this infinite set thus requires more constraints (such as minimum
length or smoothing constraints) than are encoded in the matrix G.
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Object Size Properties
p scalar rank(G) = p
m scalar Dimension of the data space
n scalar Dimension of the model space
G m by n Forward problem matrix; G = USVT = UpSpVT

p

U m by m Orthogonal matrix; U = [Up, U0]
S m by n Diagonal matrix of singular values; Si,i = si

V n by n Orthogonal matrix. V = [Vp, V0]
Up m by p Columns form a basis for R(G)
Sp p by p Diagonal matrix of nonzero singular values
Vp n by p Columns form an orthonormal basis for R(GT )
U0 m by m− p Columns form an orthonormal basis for N(GT )
V0 n by n− p Columns form an orthonormal basis for N(G)
U·,i m by 1 Eigenvector of GGT with eigenvalue s2

i

V·,i n by 1 Eigenvector of GT G with eigenvalue s2
i

G† n by m Pseudoinverse of G; G† = VpS−1
p UT

p

m† m by 1 Generalized inverse solution; m† = G†d

Table 4.1: Summary of the SVD and its associated scalars and matrices.

To see the significance of the N(GT ) subspace, consider an arbitrary data
vector, d0, which lies in N(GT )

d0 =
m∑

i=p+1

βiU·,i . (4.52)

The generalized inverse operating on such a data vector gives

m† = VpS−1
p UT

p d0 (4.53)

= VpS−1
p

n∑
i=p+1

βiUT
p U·,i (4.54)

= 0 (4.55)
(4.56)

because the U·,i are orthogonal. N(GT ) is a subspace of Rm consisting of all
vectors d0 that have no influence on the generalized inverse model, m†. If p < n
there are an infinite number of potential data sets that will produce the same
model when (4.22) is applied.

4.2 Covariance and Resolution of the General-
ized Inverse Solution

The generalized inverse always gives us a solution, m†, with well–determined
properties, but it is essential to investigate how faithful a representation any
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model is likely to be of the true situation.
In Chapter 2, we found that under the assumption of independent and nor-

mally distributed measurement errors, the least squares solution was an unbi-
ased estimator of the true model, and that the estimated model parameters had
a multivariate normal distribution with covariance

Cov(mL2) = σ2(GT G)−1 . (4.57)

We can attempt the same analysis for the generalized inverse solution m†. The
covariance matrix would be given by

Cov(m†) = G†Cov(d)(G†)T (4.58)
= σ2G†(G†)T (4.59)
= σ2VpS−2

p VT
p (4.60)

= σ2

p∑
i=1

V·,iV
T
·,i

s2
i

. (4.61)

Notice that the variances of the model parameters increase as we increase p. By
truncating the SVD, we actually decrease the variance in our model estimate!

Unfortunately, unless p = n, the generalized inverse solution is not an unbi-
ased estimator of the true solution. This occurs because the true solution may
have nonzero projections onto those basis vectors in V that are unused in the
generalized inverse solution. In practice, the bias introduced by restricting the
solution to the subspace spanned by the columns of Vp is frequently far larger
than the uncertainty due to measurement error.

The concept of model resolution is an important way to characterize the
bias of the generalized inverse solution. In this approach we see how closely the
generalized inverse solution matches a given model, assuming that there are no
errors in the data. We begin with any model m. By multiplying G times m,
we can find a corresponding data vector d. If we then multiply G† times d, we
get back a generalized inverse solution m†

m† = G†Gm . (4.62)

We would obviously like to get back our original model m† = m. Since the
original model may have had a nonzero projection onto the model null space
N(G), m† will not in general be equal to m. The model resolution matrix
is

Rm = G†G (4.63)
= VpS−1

p UT
p UpSpVT

p (4.64)

= VpVT
p . (4.65)

If N(G) is trivial, then rank(G) = p = n, and Rm is the n by n identity
matrix. In this case the original model is recovered exactly and we say that
the resolution is perfect. If N(G) is a nontrivial subspace of Rn, then p =
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rank(G) < n, so that Rm is not the identity matrix. The model resolution
matrix is instead a symmetric matrix describing how the generalized inverse
solution smears out the original model, m, into a recovered model, m†. The
trace of Rm is often used as a simple quantitative measure of the resolution. If
Tr (Rm) is close to n, then Rm is relatively close to the identity matrix.

The model resolution matrix can be used to quantify the bias introduced
by the pseudoinverse when G does not have full column rank. We begin by
showing that the expected value of m† is Rmmtrue.

E[m†] = E[G†d] (4.66)
= G†E[d] (4.67)
= G†Gmtrue (4.68)
= Rmmtrue . (4.69)

Thus the bias in the generalized inverse solution is

E[m†]−mtrue = Rmmtrue −mtrue (4.70)
= (Rm − I)mtrue (4.71)

where

Rm − I = VpVT
p −VVT (4.72)

= −V0VT
0 . (4.73)

Notice that as p increases, Rm approaches I. Equations (4.61) and (4.73) reveal
an important trade–off associated with the value of p. As p increases, the
variance in the generalized inverse solution increases, but bias decreases.

We can formulate a bound on the norm of the bias (4.71)

‖E[m†]−mtrue‖ ≤ ‖Rm − I‖‖mtrue‖ . (4.74)

Computing ‖Rm − I‖ can give us some idea of how much bias has been intro-
duced by the generalized inverse solution. The bound is not very useful, since
we typically have no a priori knowledge of ‖mtrue‖.

In practice, the model resolution matrix is commonly used in two differ-
ent ways. First, we can examine diagonal elements of Rm. Diagonal elements
that are close to one correspond to parameters for which we can claim good
resolution. Conversely, if any of the diagonal elements are small, then the cor-
responding model parameters will be poorly resolved. Second, we can multiply
Rm times a particular test model m to see how that model would be resolved by
the inverse solution. This strategy is called a resolution test. One commonly
used test model is a spike model, which is a vector with all zero elements,
except for a single entry which is one. Multiplying Rm times a spike model
effectively picks out the corresponding column of the resolution matrix. These
columns of the resolution matrix are called resolution kernels. These are
similar to the averaging kernels in the method of Backus and Gilbert.
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We can multiply G† and G in the opposite order from (4.65) to obtain the
data space resolution matrix, Rd

d† = Gm† (4.75)
= GG†d (4.76)
= Rdd (4.77)

where

Rd = UpSpVT
p VpS−1

p UT
p (4.78)

= UpUT
p . (4.79)

If N(GT ) contains only the zero vector, then p = m, and Rd = I. In this
case, d† = d, and the generalized inverse solution m† fits the data exactly.
However, if N(GT ) is nontrivial, then p < m, and Rd is not the identity matrix.
In this case m† does not exactly fit the data.

Note that model and data space resolution matrices (4.65) and (4.79) do not
depend on specific data or models, but are exclusively properties of G. They
reflect the physics and geometry of a problem, and can thus be assessed during
the design phase of an experiment.

4.3 Instability of the Generalized Inverse Solu-
tion

The generalized inverse solution m† has zero projection onto N(G). However,
it may include terms involving column vectors in Vp with very small nonzero
singular values. In analyzing the generalized inverse solution it is useful to ex-
amine the singular value spectrum, which is simply the range of singular
values. Small singular values cause the generalized inverse solution to be ex-
tremely sensitive to small amounts of noise in the data. As a practical matter,
it can also be difficult to distinguish between zero singular values and extremely
small singular values. We can quantify the instabilities created by small singular
values by recasting the generalized inverse solution to make the effect of small
singular values explicit. We start with the formula for the generalized inverse
solution

m† = VpS−1
p UT

p d . (4.80)

The elements of the vector UT
p d are the dot products of the first p columns of

U with d

UT
p d =


(U·,1)T d
(U·,2)T d

.

.

.
(U·,p)T d

 . (4.81)
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When we left–multiply S−1
p times (4.81), we obtain

S−1
p UT

p d =



(U·,1)
T d

s1
(U·,2)

T d
s2

.

.

.
(U·,p)T d

sp


. (4.82)

Finally, when we left–multiply Vp times (4.82), we obtain a linear combination
of the columns of Vp that can be written as

m† = VpS−1
p UT

p d =
p∑

i=1

UT
·,id
si

V·,i . (4.83)

In the presence of random noise, d will generally have a nonzero projection
onto each of the directions specified by the columns of U. The presence of a very
small si in the denominator of (4.83) can thus give us a very large coefficient
for the corresponding model space basis vector V·,i, and these basis vectors can
dominate the solution. In the worst case, the generalized inverse solution is
just a noise amplifier, and the answer is practically useless. A measure of the
instability of the solution is the condition number. Note that the condition
number considered here for an m by n matrix is a generalization of the condition
number for an n by n matrix in (A.110), and that the two formulations are
equivalent when m = n.

Suppose that we have a data vector d and an associated generalized inverse
solution m† = G†d. If we consider a slightly perturbed data vector d′ and its
associated generalized inverse solution m′

† = G†d′, then

m† −m′
† = G†(d− d′) (4.84)

and
‖m† −m′

†‖2 ≤ ‖G†‖2‖d− d′‖2 . (4.85)

From (4.83), it is clear that the largest difference in the inverse models will occur
when d− d′ is in the direction U·,p. If

d− d′ = αU·,p (4.86)

then
‖d− d′‖2 = α . (4.87)

We can then compute the effect on the generalized inverse solution as

m† −m′
† =

α

sp
V·,p (4.88)
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with
‖m† −m′

†‖2 =
α

sp
. (4.89)

Thus, we have a bound on the instability of the generalized inverse solution

‖m† −m′
†‖2 ≤

1
sp
‖d− d′‖2 . (4.90)

Similarly, we can see that the generalized inverse model is smallest in norm
when d points in a direction parallel to V·,1. Thus

‖m†‖2 ≥
1
s1
‖d‖2 . (4.91)

Combining these inequalities, we obtain

‖m† −m′
†‖2

‖m†‖2
≤ s1

sp

‖d− d′‖2
‖d‖2

. (4.92)

The bound (4.92) is applicable to pseudoinverse solutions, regardless of what
value of p we use. If we decrease p and thus eliminate model space vectors as-
sociated with small singular values the solution becomes more stable. However,
this stability comes at the expense of reducing the dimension of the subspace of
Rn where the solution lies. As a result, the model resolution matrix for the sta-
bilized solution obtained by decreasing p becomes less like the identity matrix,
and the fit to the data worsens.

The condition number of G is the coefficient in (4.92)

cond(G) =
s1

sk
(4.93)

where k = min(m, n). The MATLAB command cond can be used to compute
(4.93). If G is of full rank, and we use all of the singular values in the
pseudoinverse solution (p = k), then the condition number is exactly (4.93). If
G is of less than full rank, then the condition number is effectively infinite. As
with the model and data resolution matrices ((4.65) and (4.79)), the condition
number is a property of G that can be computed in the design phase of an
experiment before any data are collected.

A condition that insures solution stability and arises naturally from consid-
eration of (4.83) is the discrete Picard condition [61]. The discrete Picard
condition is satisfied when the dot products of the columns of U and the data
vector decay to zero more quickly than the singular values, si. Under this con-
dition, we should not see instability due to small singular values. The discrete
Picard condition can be assessed by plotting the ratios of UT

i d to si across the
singular value spectrum.

If the discrete Picard condition is not satisfied, we may still be able to recover
a useful model by truncating (4.83) at some highest term p′ < p, to produce
a truncated SVD, or TSVD solution. One way to decide when to truncate
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(4.83) in this case is to apply the discrepancy principle. In the discrepancy
principle, we pick the smallest value of p′ so that the model fits the data to
some tolerance based on the length of the residual vector

‖Gwm− dw‖2 ≤ δ (4.94)

where Gw and dw are the weighted system matrix and data vector, respectively.
How should we select δ? We discussed in Chapter 2 that when we estimate

the solution to a full column rank least squares problem, ‖GwmL2−dw‖22 has a
χ2 distribution with m−n degrees of freedom. Unfortunately, when the number
of model parameters n is greater than or equal to the number of data m, this
formulation fails because there is no χ2 distribution with fewer than one degree
of freedom. In practice, a common heuristic is to require ‖Gwm − dw‖2 to be
smaller than

√
m, because the approximate median of a χ2 distribution with m

degrees of freedom is m.
A TSVD solution will not fit the data as well as solutions that do include the

model space basis vectors with small singular values. Perhaps surprisingly, this
is an example of the general approach for solving ill–posed problems with noise.
If we fit the data vector exactly or nearly exactly, we are in fact over–fitting
the data and may be letting the noise control major features of the model.

The TSVD solution is but one example of regularization, where solutions
are selected to sacrifice fit to the data in exchange for solution stability. Under-
standing the trade–off between fitting the data and solution stability involved
in regularization is of fundamental importance.

4.4 An Example of a Rank Deficient Problem

A linear least squares problem is said to be rank deficient if there is a clear
distinction between the nonzero and zero singular values and rank(G) is less
than n. Numerically computed singular values will often include some that are
extremely small but not quite zero, because of round–off errors. If there is a
substantial gap between the largest of these tiny singular values and the first
truly nonzero singular value, then it can be easy to distinguish between the two
populations. Rank deficient problems can often be solved in a straightforward
manner by applying the generalized inverse solution. After truncating the ef-
fectively zero singular values, a least squares model of limited resolution will be
produced, and stability will seldom be an issue.

Example 4.1

Using the SVD, let us revisit the straight ray path tomography ex-
ample that we considered earlier in Example 1.6. We introduced a
rank deficient system in which we were constraining a 9–parameter
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Figure 4.2: A simple tomography example (revisited).

slowness model with 8 travel time observations.

Gm =



1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1
1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1√
2 0 0 0

√
2 0 0 0

√
2

0 0 0 0 0 0 0 0
√

2





s11

s12

s13

s21

s22

s23

s31

s32

s33


=



t1
t2
t3
t4
t5
t6
t7
t8


.

(4.95)

The 8 singular values of G are, numerically evaluated,

diag(S) =



3.180
2.000
1.732
1.732
1.732
1.607
0.553
4.230× 10−16


. (4.96)

The smallest singular value, s8, is nonzero in numerical evaluation
only because of round–off error in the SVD algorithm (it is zero in an
analytical solution). s8 is clearly effectively zero relative to the other
singular values. The ratio of the largest to smallest nonzero singular
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values is about 6, and the generalized inverse solution (4.83) will thus
be stable in the presence of noise. Because rank(G) = p = 7, the
problem is rank deficient. The model null space, N(G), is spanned
by the two orthonormal vectors that form the 8th and 9th columns
of V

V0 = [V.,7, V.,8] =



−0.136 −0.385
0.385 −0.136

−0.249 0.521
−0.385 0.136

0.136 0.385
0.249 −0.521
0.521 0.249

−0.521 −0.249
0.000 0.000


. (4.97)

To obtain a geometric appreciation for the two model null space
vectors, we can reshape them into 3 by 3 matrices corresponding to
the geometry of the blocks (e.g. by using the MATLAB reshape
command) to plot their elements in proper physical positions.

reshape(V.,7, 3, 3) =

 −0.136 −0.385 0.521
0.385 0.136 −0.521

−0.249 0.249 0.000

 (4.98)

reshape(V.,8, 3, 3) =

 −0.385 0.136 0.249
−0.136 0.385 −0.249

0.521 −0.521 0.000

 . (4.99)

See Figures 4.3 and 4.4.

Recall that if m0 is in the model null space, then (because Gm0 = 0)
we can add such a model to any solution and not change the fit to
the data. When mapped to their physical locations, three common
features of the model null space basis vector elements in this example
stand out:

1. The sums along all rows and columns are zero

2. The upper left to lower right diagonal sum is zero

3. There is no projection in the m9 = s33 model space direction.

The zero sum conditions (1) and (2) arise because paths passing
through any three horizontal or vertical sets of blocks can only con-
strain the sum of those block values. The condition of zero value for
m9 (3) occurs because that model element is uniquely constrained by
the 8th ray, which passes exclusively through the s3,3 block. Thus,
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Figure 4.3: Image of the null space model V.,7.
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Figure 4.4: Image of the null space model V.,8.
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any variation in m9 will clearly affect the predicted data, and any
vector in the model null space must have a value of 0 in m9.

The single basis vector spanning the data null space in this example
is

U0 = U.,8 =



−0.408
−0.408
−0.408

0.408
0.408
0.408
0.000
0.000


. (4.100)

Recall that, even for noise–free data, we will not recover a general
mtrue in a rank deficient problem using (4.22), but will instead re-
cover a “smeared” model Rmmtrue. Because Rm for a rank deficient
problem is itself rank deficient, this smearing is irreversible. The
full Rm matrix dictates precisely how this smearing occurs. The
elements of Rm for this example are shown in Figure 4.5.
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Figure 4.5: The model resolution matrix elements, Rmi,j for the generalized
inverse solution.

Examining the entire n by n model resolution matrix becomes cum-
bersome in large problems. The n diagonal elements of Rm can be
examined more easily to provide basic information on how well re-
covered each model parameter will be. The reshaped diagonal of Rm
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from Figure 4.5 is

reshape(diag(Rm), 3, 3) =

 0.833 0.833 0.667
0.833 0.833 0.667
0.667 0.667 1.000

 . (4.101)

See Figure 4.6.
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Figure 4.6: Diagonal elements of the resolution matrix plotted in their respective
geometric model locations.

Figure 4.6 and (4.101) tell us that m9 is perfectly resolved, but that
we can expect loss of resolution (and hence smearing of the true
model into other blocks) for all of the other solution parameters.

We next assess the smoothing effects of limited model resolution by
performing a resolution test using synthetic data for a test model
of interest. The resolution test assesses the recovery of the test
model by examining the corresponding inverse solution. One syn-
thetic model that is commonly used in resolution tests is uniformly
zero except for a single perturbed model element. Examining the
inverse recovery using data generated by such a model is commonly
referred to as a spike or impulse resolution test. For this example,
consider the spike model consisting of the vector with its 5th element
equal to one and zeros elsewhere. This model is shown in Figure 4.7.
Forward modeling gives the predicted data set for mtest
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Figure 4.7: A spike test model.

dtest = Gmtest =



0
1
0
0
1
0
0√
2
0


(4.102)

and the corresponding (reshaped) generalized inverse model is the
5th column of Rm, which is

reshape(m†, 3, 3) =

 0.167 0 −0.167
0 0.833 0.167

−0.167 0.167 0.000

 . (4.103)

See Figure 4.8. The recovered model in this spike test shows that
limited resolution causes information about the central block slow-
ness to smear into some, but not all, of the adjacent blocks even for
noise–free data, with the exact form of the smearing dictated by the
model resolution matrix.

It is important to reemphasize that the ability to recover the true
model in practice is affected both by the bias caused by limited res-
olution, which is a characteristic of the matrix G and hence applies



78 CHAPTER 4. RANK DEFICIENCY AND ILL–CONDITIONING

j

i

1 2 3

1

2

3

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 4.8: The generalized inverse solution for the noise–free spike test.

even to noise–free data, and by the mapping of any data noise into
the model parameters. In practice, the error due to noise in the data
can also be very significant.

4.5 Discrete Ill-Posed Problems

In many problems the singular values decay gradually towards zero and do
not show an obvious jump between nonzero and zero singular values. This
happens frequently when we discretize Fredholm integral equations of the first
kind as in Chapter 3. In particular, as we increase the number of points in
the discretization, we typically find that G becomes more and more poorly
conditioned. Discrete inverse problems such as these cannot formally be called
ill–posed, because the condition number remains finite although very large. We
will refer to these as discrete ill–posed problems.

The rate of singular value spectrum decay can be used to characterize a
discrete ill–posed problem as mildly, moderately, or severely ill–posed. If sj =
O(j−α) for α ≤ 1, then we call the problem mildly ill–posed. If sj = O(j−α)
for α > 1, then the problem is moderately ill–posed. If sj = O(e−αj) then the
problem is severely ill–posed.

In addition to the general pattern of singular values which decay to 0, discrete
ill–posed problems are typically characterized by differences in the character
of the singular vectors V·,j [61]. For large singular values, the corresponding
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singular vectors are smooth, while for smaller singular values, the corresponding
singular vectors may be highly oscillatory. These oscillations become apparent in
the generalized inverse solution as more singular values and vectors are included.

When we attempt to solve such a problem with the TSVD, it is difficult to
decide where to truncate (4.83). If we truncate the sum too early, then our
solution will lack details that correspond to model vectors associated with the
smaller singular values. If we include too many of the terms, then the solution
becomes unstable in the presence of noise. In particular we can expect that more
oscillatory components of the generalized inverse solution may be most strongly
affected by noise [61]. Regularization is required to address this fundamental
issue.

Example 4.2

Consider an inverse problem where we have a physical process (e.g.
seismic ground motion) recorded by a linear instrument of limited
bandwidth (e.g. a vertical seismometer). The response of such a
device is commonly characterized by an instrument impulse re-
sponse, which is the response of the system to a delta function
input. Consider the instrument impulse response

g(t) =
{

g0te
−t/T0 (t ≥ 0)

0 (t < 0)
. (4.104)

Figure 4.9 shows the displacement response of a critically damped
seismometer with a characteristic time constant T0 to a unit area
(1 m/s2 · s) impulsive ground acceleration input, where g0 is a gain
constant. Assuming that the displacement of the seismometer is
electronically converted to output volts, we conveniently choose g0

to be T0e
−1 V/m · s to produce a 1 V maximum output value for the

impulse response, and T0 = 10 s.

The seismometer output (or seismogram), v(t), is a voltage record
given by the convolution of the true ground acceleration, mtrue(t),
with (4.104)

v(t) =
∫ ∞

−∞
g(τ − t) mtrue(τ) dτ . (4.105)

We are interested in the inverse deconvolution operation that will
remove the smoothing effect of g(t) in (4.105) and allow us to recover
the true ground acceleration mtrue.

Discretizing (4.105) using the midpoint rule with a time interval ∆t,
we obtain

d = Gm (4.106)

where

Gi,j =
{

(ti − tj)e−(ti−tj)/T0∆t (tj ≥ ti)
0 (tj < ti)

. (4.107)
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Figure 4.9: Example instrument response; seismometer output voltage in re-
sponse to a unit area ground acceleration impulse.

The rows of G in (4.107) are time–reversed, and the columns of G are
non–time–reversed, sampled versions of the impulse response g(t),
lagged by i and j, respectively. Using a time interval of [−5, 100] s,
outside of which (4.104) and any model, m, of interest are assumed
to be very small or zero, and a discretization interval of ∆t = 0.5 s
we obtain a discretized m by n system matrix G with m = n = 210.

The singular values of G are all nonzero and range from about 25.3
to 0.017, giving a condition number of ≈ 1480, and showing that this
discretization has produced a discrete system that is moderately ill–
posed. See Figure 4.10. However, adding noise at the level of 1 part
in 1000 will be sufficient to make the generalized inverse solution
unstable. The reason for the moderately large condition number
can be seen by examining successive rows of G, which are nearly
but not quite identical, with

Gi,·GT
i+1,·

‖Gi,·‖2‖Gi+1,·‖2
≈ 0.999 . (4.108)

Now, consider a true ground acceleration signal that consists of two
acceleration pulses with widths of σ = 2 s, centered at t = 8 s and
t = 25 s

mtrue(t) = e−(t−8)2/(2σ2) + 0.5e−(t−25)2/(2σ2) . (4.109)
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Figure 4.10: Singular values for the discretized convolution matrix.
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Figure 4.11: The true model.
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We sample mtrue(t) on the time interval [−5, 100] s to obtain a
210–element vector mtrue, and generate the noise–free data set

dtrue = Gmtrue (4.110)

and a second data set with independent N(0, (0.05 V)2) noise added.
The data set with noise is shown in Figure 4.12.
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Figure 4.12: Predicted data from the true model plus independent
N(0, (0.05 V)2) noise.

The recovered least squares model from the full (p = 210) generalized
inverse solution

m = VS−1UT dtrue (4.111)

is shown in Figure 4.13. The model in (4.111) fits its noiseless data
vector, dtrue, perfectly, and is essentially identical to the true model.

The least squares solution for the noisy data vector, dtrue + η,

m = VS−1UT (dtrue + η) (4.112)

is shown in Figure 4.14.

Although this solution fits its particular data vector, dtrue + η, ex-
actly, is worthless in divining information about the true ground mo-
tion. Information about mtrue is overwhelmed by the small amount
of added noise, amplified enormously by the inversion process.

Can a useful model be recovered by the truncated SVD? Using the
discrepancy principle as our guide and selecting a range of solutions
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Figure 4.13: Generalized inverse solution using all 210 singular values for the
noise–free data.
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Figure 4.14: Generalized inverse solution using all 210 singular values for the
noisy data of Figure 4.12.
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Figure 4.15: Solution using the 26 largest singular values for noisy data shown
in Figure 4.12.

with varying p′, we can in fact obtain an appropriate solution when
we keep p′ = 26 columns in V. See Figure 4.15.

Essential features of the true model are resolved in the solution of
Figure 4.15, but the solution technique introduces oscillations and
loss of resolution. Specifically, we see that the widths of the inferred
pulses are somewhat wider, and the inferred amplitudes somewhat
less, than those of the true ground acceleration. These effects are
both hallmarks of limited resolution, as characterized by a non–
identity model resolution matrix. An image of the model resolution
matrix in Figure 4.16 shows a finite-width central band and oscilla-
tory side lobes.

A typical (80th) column of the model resolution matrix quantifies the
smearing of the true model into the recovered model for the choice
of the p = 26 inverse operator. See Figure 4.17. The smoothing
is over a characteristic width of about 5 seconds, which is why our
recovered model, although it does a decent job of rejecting noise,
underestimates the amplitude and narrowness of the true model.
The oscillatory behavior of the resolution matrix is attributable to
our abrupt truncation of the model space. Each of the n columns of
V is an oscillatory model basis function, with j − 1 zero crossings,
where j is the column number.

When we truncate (4.83) after 26 terms to stabilize the inverse so-
lution, we place a limit on the most oscillatory model space basis
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Figure 4.16: The model resolution matrix elements, Rmi,j for the truncated
SVD solution including the 26 largest singular values.
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Figure 4.17: A column from the model resolution matrix, Rm for the truncated
SVD solution including the 26 largest singular values.
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vectors that we will allow in our solution. This truncation gives us a
model, and model resolution, that contain oscillatory structure with
around p− 1 = 25 zero crossings. We will examine this perspective
further in Chapter 8, where issues associated with highly oscilla-
tory model basis functions will be revisited in the context of Fourier
theory.

Example 4.3

Recall the Shaw problem from Example 3.2. The MATLAB Regular-
ization Tools contains a routine shaw that computes the G matrix
and an example model and data for this problem [60]. We computed
the G matrix for n = 20 and examined the singular values. Figure
4.18 shows the singular value spectrum, which is characterized by
very rapidly singular value decay to zero in an exponential fashion.
This is a severely ill–posed problem, and there is no obvious break
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Figure 4.18: Singular values of G for the Shaw example (n = 20).

point above which the singular values can reasonably be considered
to be nonzero and below which the singular values can be considered
to be 0. The MATLAB rank command gives p = 18, suggesting that
the last two singular values are effectively 0. The condition number
of this problem is enormous (larger than 1014).

The 18th column of V, which corresponds to the smallest nonzero
singular value, is shown in Figure 4.19. In contrast, the first column
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of V, which corresponds to the largest singular value, represent a
much smoother model. See Figure 4.20. This behavior is typical of
discrete ill–posed problems.
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Figure 4.19: V·,18.

Next, we will perform a simple resolution test. Suppose that the
input to the system is given by

mi =
{

1 i = 10
0 otherwise .

(4.113)

See Figure 4.21. We use the model to obtain noise–free data and
then apply the generalized inverse (4.22) with various values of p to
obtain TSVD inverse solutions. The corresponding data are shown
in Figure 4.22. If we compute the generalized inverse from these
data using MATLAB’s double–precision algorithms, we get fairly
good recovery of (4.113). See Figure 4.23.
However, if we add a very small amount of noise to the data in Figure
4.22, things change dramatically. Adding N(0, (10−6)2) noise to the
data of Figure 4.22 and computing a generalized inverse solution
using p = 18, produces the wild solution of Figure 4.24, which bears
no resemblance to the true model. Note that the vertical scale in
Figure 4.24 is multiplied by 106! Furthermore, the solution involves
negative intensities, which are not physically possible. This inverse
solution is even more sensitive to noise than that of the previous
deconvolution example, to the extent that even noise on the order
of 1 part in 106 will destabilize the solution.
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Figure 4.20: V·,1.
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Figure 4.21: The spike model.



4.5. DISCRETE ILL-POSED PROBLEMS 89

−2 −1 0 1 2
−0.5

0

0.5

1

1.5
In

te
ns

ity

s (radians)

Figure 4.22: Noise-free data predicted for the spike model.
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Figure 4.23: The generalized inverse solution for the spike model, no noise.
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Figure 4.24: Recovery of the spike model with noise (p = 18).

Next, we consider what happens when we use only the 10 largest
singular values and their corresponding model space vectors to con-
struct a TSVD solution. Figure 4.25 shows the solution using 10
singular values with the same noise as Figure 4.24. Because we
have cut off a number of singular values, we have reduced the model
resolution. The inverse solution is smeared out, but it is still possi-
ble to conclude that there is some significant spike-like feature near
θ = 0. In contrast to the situation that we observed in Figure 4.24,
the model recovery is now not visibly affected by the noise. The
trade–off is that we must now accept the imperfect resolution of this
solution and its attendant bias towards smoother models.

What happens if we discretize the problem with a larger number of
intervals? Figure 4.26 shows the singular values for the G matrix
with n = 100 intervals. The first 20 or so singular values are appar-
ently nonzero, while the last 80 or so singular values are effectively
zero.

Figure 4.27 shows the inverse solution for the spike model with n =
100 and p = 20. This solution is very similar to the solution shown
in Figure 4.24. In general, discretizing over more intervals does not
hurt as long as the solution is appropriately regularized and the
additional computation time is acceptable.

What about a smaller number of intervals? Figure 4.28 shows the
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Figure 4.25: Recovery of the spike model with noise (p = 10).
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Figure 4.26: Singular values of G for the Shaw example (n = 100).
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Figure 4.27: Recovery of the spike model with noise (n = 100, p = 20).

singular values of the G matrix with n = 6. In this case there are
no terribly small singular values. However, with only 6 elements in
this coarse model vector, we cannot hope to resolve the details of
a source intensity distribution with a complex intensity structure.
This is an example of regularization by discretization.

This example demonstrates the dilemma posed by small singular
values. If we include the small singular values, then our inverse
solution becomes unstable in the presence of data noise. If we do
not include the smaller singular values, then our solution is not as
sensitive to noise in the data, but we lose resolution and introduce
bias.



4.5. DISCRETE ILL-POSED PROBLEMS 93

1 2 3 4 5 6
10

−2

10
−1

10
0

10
1

i

s i

Figure 4.28: Singular values of G for the Shaw example (n = 6).
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4.6 Exercises

1. The pseudoinverse of a matrix G was originally defined by Moore and
Penrose as the unique matrix G† with the properties

(a) GG†G = G.

(b) G†GG† = G†.

(c) (GG†)T = GG†.

(d) (G†G)T = G†G.

Show that G† as given by (4.20) satisfies these four properties.

2. Another resolution test commonly performed in tomography studies is a
checkerboard test, which consists of using a test model composed of
alternating positive and negative perturbations. Perform a checkerboard
test on the tomography problem in Example 4.1. Compute the model
covariance matrix and correlation matrix for this example. What do the
correlations tell you?

3. A large north-south by east-west oriented, nearly square plan view, sand-
stone quarry block (16 m by 16 m) with a bulk P–wave seismic velocity
of approximately 3000 m/s is suspected of harboring higher-velocity di-
nosaur remains. An ultrasonic P–wave travel–time tomography scan is
performed in a horizontal plane bisecting the boulder, producing a data
set consisting of 16 E→W, 16 N→S, 31 SW→NE, and 31 NW→SE travel
times. See Figure 4.29. Each travel–time measurement has statistically
independent errors with estimated standard deviations of 15 µs.

The data files that you will need to load from your working directory into
your MATLAB program are: rowscan, colscan, diag1scan, diag2scan
containing the travel–time data, and std containing the standard devia-
tions of the data measurements. The travel time contribution from a uni-
form background model (velocity of 3000 m/s) has been subtracted from
each travel–time measurement for you, so you will be solving for pertur-
bations from a uniform slowness model of 3000 m/s. The row format of
each data file is (x1, y1, x2, y2, t) where the starting point coordinate of
each shot is (x1, y1), the end point coordinate is (x2, y2), and the travel
time along a ray path between the start and end points is a path integral
(in seconds)

t =
∫

l

s(x)dl (4.114)

where s is the slowness along the path, l, between source and receiving
points, and ∆lblock is the length of the ray in each block.

Parameterize the slowness structure in the plane of the survey by dividing
the boulder into a 16 by 16 grid of 256 1-m-square, N by E blocks to
construct a linear system for the problem. See Figure 4.29. Assume that
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Figure 4.29: Tomography exercise, showing block discretization, block number-
ing convention, and representative ray paths going east-west (a), north-south
(b), southwest-northeast (c), and northwest-southeast (d).

the ray paths through each homogeneous block can be well approximated
by straight lines, so that the travel time expression is

t =
∫

l

s(x) dl (4.115)

=
∑
blocks

sblock ·∆lblock (4.116)

where ∆lblock is 1 m for the row and column scans and
√

2 m for the
diagonal scans.

Use the SVD to find a minimum-length/least-squares solution, m†, for the
256 block slowness perturbations which fit the data as exactly as possible.
Perform two inversions:

(A) Using the row and column scans only, and

(B) Using the complete data set.

For each inversion:

(a) State and discuss the significance of the elements and dimensions of
the data and model null spaces.

(b) Note if there any model parameters that have perfect resolution.

(c) Note the condition number of your G matrix relating the data and
model.

(d) Note the condition number of your generalized inverse matrix.
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(e) Produce a 16 by 16 element contour or other plot of your slowness
perturbation model, displaying the maximum and minimum slowness
perturbations in the title of each plot. Anything in there? If so, how
fast or slow is it (in m/s)?

(f) Show the model resolution by contouring or otherwise displaying the
256 diagonal elements of the model resolution matrix, reshaped into
an appropriate 16 by 16 grid.

(g) Construct, and contour or otherwise display a nonzero model which
fits the trivial data set d = 0 exactly.

(h) Describe how one could use solutions of the type discussed in (g)
to demonstrate that very rough models exist which will fit any data
set just as well as a generalized inverse model. Show one such wild
model.

4. Find the singular value decomposition of the G matrix from Problem 3.1.
Taking into account the fact that the measured data are only accurate to
about four digits, use the truncated SVD to compute a solution to this
problem.

5. Revisiting Example 3.4, apply the generalized inverse to estimate the den-
sity of the Earth as a function of radius, using the given values of mass
and moment of inertia. Obtain a density model composed of 20 spherical
shells of equal thickness, and compare your results to a standard model.

4.7 Notes and Further Reading

The Moore–Penrose generalized inverse was independently discovered by Moore
in 1920 and Penrose in 1955 [103, 127]. Penrose is generally credited with first
showing that the SVD can be used to compute the generalized inverse [127].
Books that discuss the linear algebra of the generalized inverse in more detail
include [10, 22].

There was significant early work on the SVD in the 19th century by Beltrami,
Jordan, Sylvester, Schmidt, and Weyl [157]. However, the singular value decom-
position in matrix form is typically credited to Eckart and Young [36]. Some
books that discuss the properties of the SVD and prove its existence include
[51, 102, 158]. Lanczos presents an alternative, but not completely rigorous
derivation of the SVD [90]. Algorithms for the computation of the SVD are
discussed in [33, 51, 169]. Books that discuss the use of the SVD and truncated
SVD in solving discrete linear inverse problems include [61, 101, 159].

Resolution tests with spike and checkerboard models as in Example 4.1 are
very commonly used in practice. However, Leveque, Rivera, and Wittlinger
discuss some serious problems with such resolution tests [76].

Matrices like those in Example 4.2 in which the elements along diagonals
are constant are called Toeplitz matrices [71]. Specialized methods for regu-
larization of problems involving Toeplitz matrices are available [62].
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As we have seen, it is possible to effectively regularize the solution to a
discretized version of a continuous inverse problem by selecting a coarse dis-
cretization. This approach is analyzed in [41]. However, in doing so we lose
the ability to analyze the bias introduced by the regularization. In general, we
prefer to user a fine discretization and then explicitly regularize the discretized
problem.
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Chapter 5

Tikhonov Regularization

Synopsis: The method of Tikhonov regularization for stabilizing the solution
of inverse problems is introduced and illustrated with examples. Zeroth-order
Tikhonov regularization is explored, including its resolution, bias, and uncer-
tainty properties. The concepts of filter factors (which control the contribu-
tion of singular values and their corresponding singular vectors to the solution)
and the L–curve criterion (a strategy for selecting the regularization parameter)
are presented. Higher-order Tikhonov regularization techniques and their com-
putation by the generalized SVD (GSVD) and truncated GSVD are discussed.
Generalized cross validation is introduced as an alternative method for selecting
the regularization parameter. Schemes for bounding the error in the regularized
solution are discussed.

We saw in Chapter 4 that, given the SVD of G (4.1), we can express a
generalized inverse solution by (4.83)

m† = VpS−1
p UT

p d =
p∑

i=1

UT
·,id
si

V·,i . (5.1)

We also saw that the generalized inverse solution can become extremely unstable
when one or more of the singular values, si, is small. One fix for this difficulty
was to drop terms in the sum that were associated with smaller singular val-
ues. This stabilized, or regularized, the solution in the sense that it made the
result less sensitive to data noise. We paid a price for this stability in that the
regularized solution had reduced resolution and was no longer unbiased.

In this chapter we will discuss Tikhonov regularization, which is perhaps the
most widely used technique for regularizing discrete ill–posed problems. The
Tikhonov solution can be expressed quite easily in terms of the SVD of G. We
will derive a formula for the Tikhonov solution and see how it is a variant on the
generalized inverse solution that effectively gives greater weight to large singular
values in the SVD solution and gives less weight to small singular values.

99



100 CHAPTER 5. TIKHONOV REGULARIZATION

5.1 Selecting a Good Solution

For a general linear least squares problem there may be infinitely many least
squares solutions. If we consider that the data contain noise, and that there
is no point in fitting such noise exactly, it becomes evident that there can be
many solutions which can adequately fit the data in the sense that ‖Gm− d‖2
is small enough.

In Tikhonov regularization, we consider all solutions with ‖Gm− d‖2 ≤ δ,
and select from these solutions the one that minimizes the norm of m

min ‖m‖2
‖Gm− d‖2 ≤ δ .

(5.2)

Why select the minimum norm solution from among those solutions that
adequately fit the data? One intuitive explanation is that any nonzero feature
that appears in the regularized solution increases the norm of m. Such features
appear in the solution because they are necessary to fit the data. Conversely,
the minimization of ‖m‖2 should ensure that unneeded features will not appear
in the regularized solution.

Note that as δ increases, the set of feasible models expands, and the minimum
value of ‖m‖2 decreases. We can thus trace out a curve of minimum values of
‖m‖2 versus δ. See Figure 5.1. It is also possible to trace out this curve by

|| m ||

|| Gm - d ||
δ

Figure 5.1: A particular misfit norm, δ = ‖Gm− d‖2 and its associated model
norm, ‖m‖2.

considering problems of the form

min ‖Gm− d‖2
‖m‖2 ≤ ε .

(5.3)

As ε decreases, the set of feasible solutions becomes smaller, and the minimum
value of ‖Gm− d‖2 increases. Again, as we adjust ε we trace out the curve of
optimal values of ‖m‖2 and ‖Gm− d‖2. See Figure 5.2.
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|| m ||

|| Gm - d ||

ε

Figure 5.2: A particular model norm, ε = ‖m‖2, and its associated misfit norm,
‖Gm− d‖2.

A third option is to consider the damped least squares problem

min ‖Gm− d‖22 + α2‖m‖22 (5.4)

which arises when we apply the method of Lagrange multipliers to (5.2), where
α is a regularization parameter. It can be shown that for appropriate choices
of δ, ε, and α, the three problems (5.2), (5.3), and (5.4) yield the same solution
[61]. We will concentrate on solving the damped least squares form of the
problem (5.4). Solutions to (5.2) and (5.3) can be obtained using (5.4) by
adjusting the regularization parameter α until the constraints are just satisfied.

When plotted on a log–log scale, the curve of optimal values of ‖m‖2 versus
‖Gm−d‖2 often takes on a characteristic L shape. This happens because ‖m‖2
is a strictly decreasing function of α and ‖Gm − d‖2 is a strictly increasing
function of α. The sharpness of the “corner” varies from problem to problem,
but it is frequently well–defined. For this reason, the curve is called an L–curve
[59]. In addition to the discrepancy principle, another popular criterion for
picking the value of α is the L–curve criterion in which the value of α that
gives the solution closest to the corner of the L–curve is selected.

5.2 SVD Implementation of Tikhonov Regular-
ization

The damped least squares problem (5.4) is equivalent to the ordinary least
squares problem obtained by augmenting the least squares problem for Gm = d
in the following manner

min
∥∥∥∥[ G

αI

]
m−

[
d
0

]∥∥∥∥2

2

. (5.5)
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As long as α is nonzero, the last n rows of the augmented matrix in (5.5) are
obviously linearly independent. (5.5) is thus a full rank least squares problem
that can be solved by the method of normal equations, i.e.[

GT αI
] [ G

αI

]
m =

[
GT αI

] [ d
0

]
. (5.6)

Equation (5.6) simplifies to

(GT G + α2I)m = GT d (5.7)

which is the set of constraint equations for a zeroth–order Tikhonov Regu-
larization solution of Gm = d. Employing the SVD of G, (5.7) can be written
as

(VST UT USVT + α2I)m = (VST SVT + α2I)m (5.8)
= VST UT d . (5.9)

Since (5.9) is nonsingular, it has a unique solution. We will show that this
solution is

mα =
k∑

i=1

s2
i

s2
i + α2

(U·,i)T d
si

V·,i (5.10)

where k = min(m, n), so that all singular values are included. To show that
(5.10) is the solution to (5.9), we substitute (5.10) into the left hand side of
(5.9) to obtain

(VST SVT + α2I)
k∑

i=1

s2
i

s2
i + α2

(U·,i)T d
si

V·,i

=
k∑

i=1

s2
i

s2
i + α2

(U·,i)T d
si

(VST SVT + α2I)V·,i . (5.11)

(VST SVT + α2I)V·,i can be simplified by noting that VT V·,i is a standard
basis vector, ei. When we multiply ST S times a standard basis vector, we get
a vector with s2

i in position i and zeros elsewhere. When we multiply V times
this vector, we get s2

i V·,i. Thus

(VST SVT + α2I)
k∑

i=1

s2
i

s2
i + α2

(U·,i)T d
si

V·,i (5.12)

=
k∑

i=1

s2
i

s2
i + α2

UT
·,id
si

(s2
i + α2)V·,i (5.13)

=
k∑

i=1

si(UT
·,id)V·,i (5.14)

= VST UT d (5.15)
= GT d . (5.16)
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The objects

fi =
s2

i

s2
i + α2

(5.17)

are called filter factors. For si � α, fi ≈ 1, and for si � α, fi ≈ 0. For
singular values between these two extremes, as the si decrease, the fi produce
a monotonically decreasing contribution of corresponding model space vectors,
V·,i. A similar method (called the damped SVD method) uses the filter
factors

f̂i =
si

si + α
. (5.18)

This has a similar effect to using (5.17), but transitions more slowly with the
index i between including large and rejecting small singular values and their
associated model space vectors.

The MATLAB Regularization Tools [60] contains a number of useful com-
mands for performing Tikhonov regularization. These commands include l curve
for plotting the L–curve and estimating its corner using a smoothed spline in-
terpolation method, tikhonov for computing the solution for a particular value
of α, lsqi for solving (5.3), discrep for solving (5.2), picard for plotting sin-
gular values, and fil fac for computing filter factors. The package also includes
a routine regudemo that leads the user through a tour of the features of
the package. Note that the Regularization Tools package uses notation that is
somewhat different from that used in this book.

Example 5.1

We will now revisit the Shaw problem, which was previously intro-
duced in Example 3.2 and analyzed using the SVD in Example 4.3.
We begin by computing the L–curve and finding its corner. Figure
5.3 shows the L–curve. The corner of the curve is at α = 5.35×10−6.

Next, we compute the Tikhonov regularization solution correspond-
ing to this value of α. This solution is shown in Figure 5.4. Note
that this solution is much better than the wild solution obtained by
the TSVD with p = 18 shown in Figure 4.24.

We can also use the discrep command to find the appropriate α
to obtain a Tikhonov regularized solution. Because independent
N(0, (1× 10−6)2) noise was added to these m = 20 data points, we
search for a solution where the square of the norm of the residuals is
roughly 20×10−12, which corresponds to a misfit norm ‖Gm−d‖2
of roughly

√
20× 10−6 ≈ 4.47× 10−6.

The discrepancy principle results in a somewhat larger value of the
regularization parameter, α = 4.29×10−5, than that obtained using
the L–curve technique. The corresponding solution, shown in Figure
5.5, thus has a smaller model norm. However, the two models are
virtually indistinguishable.
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Figure 5.3: L–curve for the Shaw problem.
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Figure 5.4: Recovery of the spike model with noise, Tikhonov solution (α =
5.35× 10−6).
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Figure 5.5: Recovery of the spike model with noise, Tikhonov solution (α =
4.29× 10−5).

It is interesting to note that the misfit of the original spike model,
approximately 4.42×10−7, is actually smaller than the tolerance that
we specified in finding a solution by the discrepancy principle. Why
did discrep not recover the original spike model? This is because
the spike model has a norm of 1, while the solution obtained by
discrep has a norm of only 0.67. Since Tikhonov regularization
prefers solutions with smaller norms, we ended up with the solution
in Figure 5.5.

The Regularization Tools command picard can be used to produce
a plot of the singular values si, the values of |(U·,i)T d|, and the
ratios |(U·,i)T d|/si. Figure 5.6 shows the values for our problem.
|(U·,i)T d| reaches a noise floor of about 1× 10−6 after i = 11. The
singular values continue to decay. As a consequence, the ratios in-
crease rapidly. It is clear from this plot that we cannot expect to
obtain useful information from the singular values beyond p = 11.
The 11th singular value is ≈ 5.1× 10−6, which is comparable to the
values of α that we have been using.
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Figure 5.6: Picard plot for the Shaw problem.

5.3 Resolution, Bias, and Uncertainty in the Tikhonov
Solution

As in our earlier TSVD approach, we can compute a model resolution matrix
for the Tikhonov regularization method. Using equation (5.7) and SVD, the
solution can be written as

mα = (GT G + α2I)−1GT d (5.19)
= G]d (5.20)
= VFS†UT d . (5.21)

F is an n by n diagonal matrix with diagonal elements given by the filter factors
fi (5.17), and S† is the generalized inverse of S. G] is a generalized inverse
matrix that can be used to construct model and data resolution matrices as was
done for the SVD solution in (4.65) and (4.79). The resolution matrices are

Rm,α = G]G = VFVT (5.22)

and
Rd,α = GG] = UFUT . (5.23)

Note that Rm and Rd are dependent on the particular value of α used (5.21).
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Example 5.2

In our Shaw example, with α = 4.29 × 10−5, the model resolution
matrix has the following diagonal elements

diag(R) ≈



0.9076
0.4879
0.4484
0.3892
0.4209
0.4093
0.4279
0.4384
0.4445
0.4506
0.4506
0.4445
0.4384
0.4279
0.4093
0.4209
0.3892
0.4484
0.4879
0.9076



(5.24)

indicating that most model parameters are rather poorly resolved.
Figure 5.7 displays this poor resolution by applying R to the (true)
spike model (4.65). Recall that this is the model recovered when the
true model is a spike and there is no noise added to the data vector;
in practice, noise will result in a solution which is worse than this
ideal.

As in Chapter 2, we can compute a covariance matrix for the estimated
model parameters. Since

mα = G]d (5.25)

the covariance is
Cov(mα) = G]Cov(d)(G])T . (5.26)

Note that, as with the SVD solution of Chapter 4, the Tikhonov regularized
solution will generally be biased, and differences between the regularized solu-
tion values and the true model may actually be much larger than the confidence
intervals obtained from the covariance matrix of the model parameters. See
Figure 5.8.
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Figure 5.7: Resolution of the spike model, α = 5.36× 10−5.

Example 5.3

Recall our earlier example of the Shaw problem with the spike model
input. Figure 5.8 shows the true model, the solution obtained using
α = 4.29 × 10−5 chosen using the discrepancy principle, and 95%
confidence intervals for the estimated parameters. Note that the
confidence intervals are extremely tight, and that very few of the
true model parameters are included within the confidence intervals.
In this case, the regularization bias, which is not estimated by the
covariance matrix, is far larger than the propagated data uncertainty.

In fact what we are seeing here is caused almost entirely by regular-
ization. The solution shown in Figure 5.8 is essentially identical to
the product of Rm and mtrue shown in Figure 5.7.

5.4 Higher–Order Tikhonov Regularization

So far in our discussions of Tikhonov regularization we have minimized an ob-
jective function involving ‖m‖2. In many situations, we would prefer to obtain
a solution that minimizes some other measure of m, such as the norm of the
first or second derivative.
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Figure 5.8: Tikhonov solution and confidence intervals for the Shaw problem,
estimated using (5.26), where the true model is a spike. The regularization
parameter α = 4.29× 10−5 was chosen using the discrepancy principle.

For example, if we have discretized our problem using simple collocation
and our model is one dimensional, then we can approximate, to a multiplicative
constant, the first derivative of the model by Lm, where

L =


−1 1

−1 1
. . .

−1 1
−1 1

 . (5.27)

Matrices that are used to differentiate m for the purposes of regularization
are referred to as roughening matrices. In (5.27), Lm is a finite–difference
approximation that is proportional to the first derivative of m. By minimizing
‖Lm‖2, we will favor solutions that are relatively flat. Note that ‖Lm‖2 is
a seminorm because it is zero for any constant model, not just for m = 0.
In first–order Tikhonov regularization, we solve the damped least squares
problem

min ‖Gm− d‖22 + α2‖Lm‖22 (5.28)

using an L matrix like (5.27). In second–order Tikhonov regularization,
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we use

L =


1 −2 1

1 −2 1
. . .

1 −2 1
1 −2 1

 . (5.29)

Here Lm is a finite–difference approximation proportional to the second deriva-
tive of m, and minimizing the seminorm ‖Lm‖2 penalizes solutions that are
rough in a second derivative sense.

If our model is two or three dimensional then the roughening matrices de-
scribed here would not be appropriate. In such cases a finite difference approx-
imation to the Laplacian operator is often used. This is discussed in Exercise
5.3.

We have already seen how to apply zeroth–order Tikhonov regularization to
solve (5.28), where L = I, using the singular value decomposition (5.10). To
solve higher–order Tikhonov regularization problems, we employ the general-
ized singular value decomposition, or GSVD [61, 58]. The GSVD enables
the solution to (5.28) to be expressed as a sum of filter factors times generalized
singular vectors.

Unfortunately, the definition of the GSVD and associated notation are not
presently standardized. In the following, we will follow the conventions used by
the MATLAB Regularization Tools and its cgsvd command. One notational
difference is that we will use γi for the generalized singular value, while the Reg-
ularization Tools use σi for the generalized singular value. Note that MATLAB
also has a built in command, gsvd, which employs a different definition of the
GSVD.

Here, we will assume that G is an m by n matrix, and that L is a p by n
matrix, with m ≥ n ≥ p, that rank(L) = p, and that the null spaces of G and
L intersect only at the zero vector.

Under the above assumptions there exist matrices U, V, Λ, M and X with
the following properties and relationships:

• U is m by n with orthonormal columns.

• V is p by p and orthogonal.

• X is n by n and nonsingular.

• Λ is a p by p diagonal matrix, with

0 ≤ λ1 ≤ λ2 ≤ . . . ≤ λp ≤ 1 (5.30)

• M is a p by p diagonal matrix with

1 ≥ µ1 ≥ µ2 ≥ . . . ≥ µp > 0 (5.31)

• The λi and µi are normalized so that

λ2
i + µ2

i = 1 , i = 1, 2, . . . , p (5.32)
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• The generalized singular values are

γi =
λi

µi
(5.33)

where
0 ≤ γ1 ≤ γ2 ≤ . . . ≤ γp (5.34)

•
G = U

[
Λ 0
0 In−p

]
X−1 (5.35)

•
L = V [M 0]X−1 (5.36)

•
XT GT GX =

[
Λ2 0
0 I

]
(5.37)

•
XT LT LX =

[
M2 0
0 0

]
(5.38)

• When p < n, the matrix L will have a nontrivial null space for which the
vectors X·,p+1, X·,p+2, . . ., X·,n form a basis.

When G comes from an IFK, the GSVD typically has two properties that
were also characteristic of the SVD. First, the generalized singular values γi

(5.33) tend to zero without any obvious break in the sequence. Second, the vec-
tors U·,i, V·,i, and X·,i tend to become rougher as i increases and γi decreases.

Using the GSVD, the solution to (5.28) is

mα,L =
p∑

i=1

γ2
i

γ2
i + α2

UT
·,id
λi

X·,i +
n∑

i=p+1

(UT
·,id)X·,i (5.39)

where the factors
γ2

i

γ2
i + α2

(5.40)

are filter factors for the GSVD, analogous to those obtained earlier in the ex-
pression for the zeroth–order Tikhonov regularized solution (5.17).

Example 5.4

We return now the vertical seismic profiling example previously dis-
cussed in Example 1.3 and Example 3.1. In this case, for a 1–km deep
borehole experiment, the problem is discretized using m = n = 50
data and model points, corresponding to sensors every 20 m, and
20–m–thick, constant–slowness model layers. Figure 5.9 shows the
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Figure 5.9: A smooth test model for the VSP problem.
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Figure 5.10: Least squares solution for the VSP problem, with 95% confidence
intervals.
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test model that we will try to recover. A synthetic data set was
generated with N(0, (2× 10−4 s)2) noise added.

The discretized system of equations Gm = d has a condition num-
ber of 64. This happens in part because we have chosen a very
coarse discretization, which effectively regularizes the problem by
discretization. Another reason is that the vertical seismic profiling
problem is only mildly ill–posed [41]. Figure 5.10 shows the least
squares solution, together with 95% confidence intervals.

From the statistical point of view, this solution is completely ac-
ceptable. However, suppose that from other information, we believe
that the slowness should vary smoothly with depth. We will use
higher order Tikhonov regularization to obtain smooth solutions to
this problem.

Figure 5.11 shows the first–order Tikhonov regularization L–curve
for this problem obtained using the Regularization Tools commands
get l, cgsvd, l curve, and tikhonov. The L–curve has a distinct
corner near α ≈ 137. Figure 5.12 shows the corresponding solution.
The first–order regularized solution is much smoother than the least
squares solution, and is much closer to the true solution.
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Figure 5.11: L–curve for the VSP problem, first–order regularization.

Figure 5.13 shows the L–curve for second—order Tikhonov regular-
ization, which has a corner near α ≈ 2325. Figure 5.14 shows the
corresponding solution. This solution is smoother still compared to
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Figure 5.12: Tikhonov solution for the VSP problem, first–order regularization,
α = 137, shown in comparison with the true model.

the first–order regularized solution. Both the first– and second–order
solutions depart most from the true solution at shallow depths where
the true slowness has the greatest slope and curvature. This happens
because the regularized solutions are biased towards smoothness.

Figure 5.15 shows filter factors corresponding to these first– and
second–order solutions. Higher–order terms in (5.39) are severely
downweighted in both cases, particularly in the second–order case.
The rapid attenuation of the basis functions for these solutions arises
because the true solution is in fact quite smooth. Because of the
smoothness of the true model, the model seminorms can be reduced
considerably through the selection of relatively large regulariza-
tion parameters, α without attendant large data misfit increases.
In this example the 2–norms of the difference between the first–
and second–order solutions and the true model (discretized into 50
values) are approximately 1.21× 10−2 s/km and 1.18× 10−2 s/km,
respectively.
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Figure 5.13: L–curve for the VSP problem, second–order regularization.
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Figure 5.14: Tikhonov solution for the VSP problem, second–order regulariza-
tion, α = 2325, shown in comparison with the true model.
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Figure 5.15: Filter factors (5.17) for optimal first– and second–order Tikhonov
solutions to the VSP problem shown in Figures 5.12 and 5.14.

5.5 Resolution in Higher–Order Tikhonov Reg-
ularization

As with zeroth–order Tikhonov regularization, we can compute a resolution
matrix for higher–order Tikhonov regularization. For particular values of L and
α, the Tikhonov regularization solution can be written as

mα,L = G]d (5.41)

where
G] = (GT G + α2LT L)−1GT . (5.42)

Using properties of the GSVD we can simplify this expression to

G] = X
[

Λ2 + α2M2 0
0 I

]−1

XT X−T

[
ΛT 0
0 I

]
UT (5.43)

= X
[

Λ2 + α2M2 0
0 I

]−1 [ ΛT 0
0 I

]
UT (5.44)

= X
[

FΛ−1 0
0 I

]
UT (5.45)

where F is a diagonal matrix of GSVD filter factors

Fi,i =
γ2

i

γ2
i + α2

. (5.46)
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The resolution matrix is then

Rm,α,L = G]G = X
[

FΛ−1 0
0 I

]
UT U

[
Λ 0
0 I

]
X−1 (5.47)

= X
[

F 0
0 I

]
X−1 . (5.48)

Example 5.5

To examine the resolution of the Tikhonov-regularized inversions
of Example 5.4, we perform a spike test using (5.48). Figure 5.16
shows the effect of multiplying Rα,L times a unit amplitude spike
model (spike depth 500 m) under first– and second–order Tikhonov
regularization using α values of 137 and 2325, respectively. The
shapes of these curves shown in Figure 5.16 show how the regularized
solutions can recover abrupt changes in slowness halfway through the
model. Under first– or second–order regularization, the resolution of
various model features will depend critically on how smooth or rough
these features are in the true model. In this example, the higher–
order solutions recover the true model better because the true model
is smooth.
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Figure 5.16: The model resolution matrix Rα,L multiplied times the spike model
for each of the regularized solutions of Example 5.4.
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5.6 The TGSVD Method

In the Chapter 4 discussion of the SVD, we examined the TSVD method of
regularization. In the construction of a solution, the TSVD method rejects
model space basis vectors associated with smaller singular values. Equivalently,
this can be thought of as a damped SVD solution in which filter factors of one
are used for basis vectors associated with larger singular values and filter factors
of zero are used for basis vectors associated with smaller singular values. This
approach can be extended to the GSVD solution (5.39) to produce a truncated
generalized singular value decomposition or TGSVD solution. In the
TGSVD solution we simply assign filter factors (5.40) of one to the k largest
generalized singular values in (5.39) to obtain

mk,L =
p∑

i=p−k+1

(U·,i)T d
λi

X·,i +
n∑

i=p+1

((U·,i)T d)X·,i . (5.49)

Example 5.6

Applying the TGSVD method to the VSP problem from Example
1.3, we find L–curve corners near k = 8 in the first–order case
shown in Figure 5.17 and k = 3 in the second–order case shown
in Figure 5.18. Examining the filter factors obtained for the corre-
sponding Tikhonov solutions shown in Figure 5.15 we find that the
filter factors decline precipitously with decreasing index near these
locations. Figures 5.19 and 5.20 show the corresponding TGSVD
solutions. The model recovery is comparable to that obtained with
the Tikhonov method. The 2–norms of the difference between the
first– and second–order solutions and the true model are approxi-
mately 1.21× 10−2 s/km and 1.18× 10−2 s/km, respectively, which
are similar to the Tikhonov solution.
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Figure 5.17: TGSVD L–curve curve for the VSP problem as a function of k,
first–order regularization.
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Figure 5.18: TGSVD L–curve curve for the VSP problem as a function of k,
second–order regularization.
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Figure 5.19: TGSVD solution of the VSP problem, k = 8, first–order regular-
ization, shown in comparison with the true model.
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Figure 5.20: TGSVD solution of the VSP problem, k = 3, second–order regu-
larization.
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5.7 Generalized Cross Validation

Generalized cross validation (GCV) is an alternative method for selecting a reg-
ularization parameter, α, that has a number of desirable statistical properties.

In ordinary or “leave one out” cross validation, we consider the models that
are obtained by leaving one of the m data points out of the fitting process.
Consider the modified Tikhonov regularization problem in which we ignore a
data point dk,

min
∑
i 6=k

((Gm)i − di)2 + α2‖Lm‖22 . (5.50)

Call the solution to this problem m[k]
α,L, where the superscript indicates that

dk was left out of the computation. Ideally, the model m[k]
α,L would accurately

predict the missing data value dk. In the leave one out approach, we select the
regularization parameter α so as to minimize the predictive errors for all k

min V0(α) =
1
m

m∑
k=1

((Gm[k]
α,L)k − dk)2 . (5.51)

Unfortunately, computing V0(α) involves solving m problems of the form (5.50).
Generalized cross validation is a way to simplify this computation.

First, let

d̃i =

{
(Gm[k]

α,L)k i = k

di i 6= k .
(5.52)

Note that because (Gm[k]
α,L)k = d̃k, m[k]

α,L also minimizes

min ((Gm)k − d̃k)2 +
∑
i 6=k

((Gm)i − d̃i)2 + α2‖Lm‖22 (5.53)

which is equivalent to

min ‖Gm− d̃‖22 + α2‖Lm‖22 . (5.54)

This result is known as the leave one out lemma. By the leave one out lemma,

m[k]
α,L = G]d̃ . (5.55)

We will use (5.55) to eliminate m[k]
α,L from (5.51). It is easy to see that

(GG]d̃)k − (GG]d)k

d̃k − dk

= (GG])k,k . (5.56)

Subtracting both sides of the equation from one gives

d̃k − dk − (GG]d̃)k + (GG]d)k

d̃k − dk

= 1− (GG])k,k . (5.57)
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Since (GG]d)k = (Gmα,L)k, (GG]d̃)k = d̃k, and Gm[k]
α,L = d̃k, (5.57) simpli-

fies to
(Gmα,L)k − dk

(Gm[k]
α,L)k − dk

= 1− (GG])k,k . (5.58)

Substituting this formula into (5.50), we obtain

V0(α) =
1
m

m∑
k=1

(
(Gmα,L)k − dk

1− (GG])k,k

)2

. (5.59)

We can simplify the formula further by replacing the (GG])k,k with the average
value

(GG])k,k ≈
1
m

Tr(GG]) . (5.60)

Using (5.60), we have

V0(α) ≈ 1
m

m∑
i=1

((Gmα,L)k − dk)2

( 1
m (m− Tr(GG])))2

(5.61)

=
m‖Gmα,L − d‖22
Tr(I−GG])2

. (5.62)

In GCV we minimize (5.62).
It can be shown that under reasonable assumptions regarding the noise and

smoothness of mtrue, the value of α that minimizes (5.62) approaches the value
that minimizes E[Gmα,L−dtrue] as the number of data points m goes to infinity,
and that under the same assumptions, E[‖mtrue −mα,L‖2] goes to 0 as m goes
to infinity [32, 177]. In practice, the size of the data set is fixed in advance, so
the limit is not directly applicable. However, these results provide a theoretical
justification for using the GCV method to select the Tikhonov regularization
parameter.

Example 5.7

Figures 5.21 and 5.22 show V0(α) for the VSP test problem, us-
ing first– and second–order Tikhonov regularization, respectively.
The respective minima occur near α = 43 and α = 816, which are
significantly less than the α values estimated previously using the
L–curve. Figures 5.23 and 5.24 show the corresponding solutions.
The 2–norms of the difference between the first and second–order
solutions and the true model are approximately 1.53 × 10−2 s/km
and 9.72 × 10−3 s/km, respectively, making the second–order solu-
tion the closest to the true model of any of the models obtained
here.
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Figure 5.21: GCV curve for the VSP problem, first–order regularization.
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Figure 5.22: GCV curve for the VSP problem, second–order regularization.
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Figure 5.23: GCV solution for the VSP problem, first–order, α = 43.4, shown
in comparison with the true model.
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Figure 5.24: GCV solution for the VSP problem, second–order, α = 815.9,
shown in comparison with the true model.
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5.8 Error Bounds

We next present two theoretical results which help to address the accuracy of
Tikhonov regularization solutions. We will present these results in a simplified
form, covering only zeroth–order Tikhonov regularization.

The first question is whether for a particular value of the regularization
parameter α, we can establish a bound on the sensitivity of the regularized
solution to the noise in the observed data d and/or errors in the system matrix
G. This would provide a sort of condition number for the inverse problem.
Note that this does not tell us how far the regularized solution is from the
true model, since Tikhonov regularization has introduced a bias in the solution.
Under Tikhonov regularization with a nonzero α, we would not obtain the true
model even if the noise was 0.

The following theorem gives a bound for zeroth–order Tikhonov regular-
ization [61]. A slightly more complicated formula is available for higher–order
Tikhonov regularization [61].

Theorem 5.1

Suppose that the problems

min ‖Gm− d‖22 + α2‖m‖22 (5.63)

and
min ‖Ḡm− d̄‖22 + α2‖m‖22 (5.64)

are solved to obtain mα and m̄α. Then

‖mα − m̄α‖2
‖mα‖2

≤ κ̄α

1− εκ̄α

(
2ε +

‖e‖2
‖dα‖2

+ εκ̄α
‖rα‖2
‖dα‖2

)
(5.65)

where

κ̄α =
‖G‖2

α
(5.66)

E = G− Ḡ (5.67)

e = d− d̄ (5.68)

ε =
‖E‖2
‖G‖2

(5.69)

dα = Gmα (5.70)

and
rα = d− dα . (5.71)



126 CHAPTER 5. TIKHONOV REGULARIZATION

In the particular case when G = Ḡ, and the only difference between the two
problems is e = d− d̄, the inequality becomes even simpler

‖mα − m̄α‖2
‖mα‖2

≤ κ̄α
‖e‖2
‖dα‖2

. (5.72)

The condition number κ̄α is inversely proportional to α. Thus increasing α will
decrease the sensitivity of the solution to perturbations in the data. Of course,
increasing α also increases the error in the solution due to regularization bias
and decreases resolution.

The second question is whether we can establish any sort of bound on the
norm of the difference between the regularized solution and the true model. This
bound would incorporate both sensitivity to noise and the bias introduced by
Tikhonov regularization. Such a bound must of course depend on the magnitude
of the noise in the data. It must also depend on the particular regularization
parameter chosen. Tikhonov developed a beautiful theorem that addresses this
question in the context of inverse problems involving IFK’s [166]. More recently,
Neumaier has developed a version of Tikhonov’s theorem that can be applied
directly to discretized problems [113].

Recall that in a discrete ill–posed linear inverse problem, the matrix G has
a smoothing effect, in that when we multiply Gm, the result is smoother than
m. Similarly, if we multiply GT times Gm, the result will be smoother than
Gm. This smoothing is a consequence of the fact that the singular vectors
corresponding to the larger singular values of G are smooth vectors. This is not
a property of matrices that do not arise from discrete ill–posed linear inverse
problems. For example, if G is a matrix that approximates the differentiation
operator, then Gm will be rougher than m.

It should be clear that models in the range of GT form a relatively smooth
subspace of all possible models. Models in this subspace of Rn can be written
as m = GT w, for some weights w. Furthermore, models in the range of GT G
form a subspace of R(GT ), since any model in R(GT G) can be written as
m = GT (Gw) which is a linear combination of columns of GT . Because of
the smoothing effect of G and GT , we would expect these models to be even
smoother than the models in R(GT ). We could construct smaller subspaces of
Rn that contain even smoother models, but it turns out that with zeroth–order
Tikhonov regularization these are the only subspaces of interest.

There is another way to see that models in R(GT ) will be relatively smooth.
Recall that the vectors V··· ,1, V··· ,2, . . ., V··· ,p from the SVD of G form an
orthonormal basis for R(GT ). For discrete ill–posed problems, we know from
Chapter 4 that these basis vectors will be relatively smooth, so linear combina-
tions of these vectors in R(GT ) should be smooth.

The following theorem gives a bound on the total error including bias due
to regularization and error due to noise in the data for zeroth–order Tikhonov
regularization [113].
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Theorem 5.2

Suppose that we use zeroth–order Tikhonov regularization to solve
Gm = d and that mtrue can be be expressed as

mtrue =
{

GT w p = 1
GT Gw p = 2 (5.73)

and that
‖Gmtrue − d‖2 ≤ ∆‖w‖2 (5.74)

for some ∆ > 0. Then

‖mtrue −G]d‖2 ≤
(

∆
2α

+ γαp

)
‖w‖2 (5.75)

where

γ =
{

1/2 p = 1
1 p = 2 . (5.76)

Furthermore, if we begin with the bound

‖Gmtrue − d‖2 ≤ δ (5.77)

we can let
∆ =

δ

‖w‖2
. (5.78)

Under this condition the optimal value of α is

α̂ =
(

∆
2γp

) 1
p+1

= O(∆
1

p+1 ) . (5.79)

With this choice of α,

∆ = 2γpα̂p+1 (5.80)

and the error bound simplifies to

‖mtrue −G]
α̂d‖2 ≤ γ(p + 1)α̂p = O(∆

p
p+1 ) . (5.81)

This theorem tells us that the error in the Tikhonov regularization solution
depends on both the noise level ∆ and on the regularization parameter α. For
very large values of α, the error due to regularization will be dominant. For very
small values of α, the error due to noise in the data will be dominant. There
is an optimal value of α which balances these effects. Using the optimal α, we
can obtain an error bound of O(∆2/3) if p = 2, and an error bound of O(∆1/2)
if p = 1.

Of course, the above result can only be applied when our true model lives
in the restricted subspace of models in R(GT ). In practice, even if the model



128 CHAPTER 5. TIKHONOV REGULARIZATION

does lie in R(GT ), the vector w may have a very large norm, making the bound
useless. The result also depends on ∆, which we can approximate by ∆ ≈ δ.

Applying this theorem in a quantitative fashion is typically impractical.
However, the theorem does provide some useful rules of thumb. The first point is
that the accuracy of the regularized solution depends very much on the smooth-
ness of the true model. If mtrue is not smooth, then Tikhonov regularization
simply will not give an accurate solution. Furthermore, if the model mtrue is
smooth, then we can hope for an error in the Tikhonov regularized solution
which is O(δ1/2) or O(δ2/3). Another way of saying this is that we can hope at
best for an answer with about two thirds as many correct significant digits as
the data.

Example 5.8

Recall the Shaw problem previously considered in Example 3.2, Ex-
ample 4.3, and Example 5.1. Since GT is a nonsingular matrix, the
spike model should lie in R(GT ). However, GT is numerically sin-
gular, and since the spike model lies outside of the effective range of
GT , any attempt to find w simply produces a meaningless answer,
and Theorem 5.2 cannot be applied.

Figure 5.25 shows a smooth model that does lie in the range of GT .
For this model we constructed a synthetic data set with noise as
before at δ = 4.47 × 10−6. The theorem suggests using α = 8.0 ×
10−4. The resulting error bound is 8.0×10−4, while the actual norm
of the error is 6.6 × 10−4. Here the data were accurate to roughly
six digits, while the solution was accurate to roughly four digits.
Figure 5.26 shows the reconstruction of the model from the noisy
data. This example demonstrates the importance of smoothness
of the true model in determining how well it can be reconstructed
through Tikhonov regularization.

5.9 Exercises

1. Use the method of Lagrange Multipliers to derive the damped least squares
problem (5.4) from the discrepancy principle problem (5.2), and demon-
strate that (5.4) can be written as (5.5).

2. Consider the integral equation and data set from Problem 3.1. You can
find a copy of this data set in ifk.mat.

(a) Discretize the problem using simple collocation.

(b) Using the data supplied, and assuming that the numbers are accurate
to four significant figures, determine a reasonable bound δ for the
misfit.
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Figure 5.25: A smooth model in R(GT ).
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Figure 5.26: Reconstruction of the smooth model.
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(c) Use zeroth–order Tikhonov regularization to solve the problem. Use
GCV, the discrepancy principle and the L–curve criterion to pick
the regularization parameter. Estimate the norm of the difference
between your solutions and mtrue.

(d) Use first–order Tikhonov regularization to solve the problem. Use
GCV, the discrepancy principle and the L–curve criterion to pick
the regularization parameter.

(e) Use second–order Tikhonov regularization to solve the problem. Use
GCV, the discrepancy principle and the L–curve criterion to pick
the regularization parameter.

(f) Analyze the resolution of your solutions. Are the features you see
in your inverse solutions unambiguously real? Interpret your results.
Describe the size and location of any significant features in the solu-
tion.

3. Consider the following problem in cross–well tomography. Two vertical
wells are located 1600 meters apart. A seismic source is inserted in one
well at depths of 50, 150, ..., 1550 m. A string of receivers is inserted
in the other well at depths of 50 m, 150 m, ..., 1550 m. See Figure
5.27. For each source–receiver pair, a travel time is recorded, with a
measurement standard deviation of 0.5 msec. There are 256 ray paths
and 256 corresponding data points. We wish to determine the velocity
structure in the two–dimensional plane between the two wells.
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Figure 5.27: Cross–well tomography problem, showing block discretization,
block numbering convention, and one set of straight source–receiver ray paths.

Discretizing the problem into a 16 by 16 grid of 100 meter by 100 meter
blocks gives 256 model parameters. The G matrix and noisy data, d, for
this problem (assuming straight ray paths) are in the file crosswell.mat.

(a) Use the truncated SVD to solve this inverse problem. Plot the result.



5.9. EXERCISES 131

(b) Use zeroth–order Tikhonov regularization to solve this problem and
plot your solution. Explain why it is hard to use the discrepancy
principle to select the regularization parameter. Use the L–curve
criterion to select your regularization parameter. Plot the L–curve
as well as your solution.

(c) Use second–order Tikhonov regularization to solve this problem and
plot your solution. Because this is a two–dimensional problem, you
will need to implement a finite–difference approximation to the Lapla-
cian (second derivative in the horizontal direction plus the second
derivative in the vertical direction) in the roughening matrix. One
such L matrix can be generated using the following MATLAB code:

L=zeros(14*14,256);
k=1;
for i=2:15,
for j=2:15,
M=zeros(16,16);
M(i,j)=-4;
M(i,j+1)=1;
M(i,j-1)=1;
M(i+1,j)=1;
M(i-1,j)=1;
L(k,:)=(reshape(M,256,1))’;
k=k+1;

end
end

What, if any, problems did you have in using the L–curve criterion
on this problem? Plot the L–curve as well as your solution.

(d) Discuss your results. Can you explain the characteristic vertical
bands that appeared in some of your solutions?

4. Returning to the problem in Exercise 4.5, solve for the density distribution
within the earth using Tikhonov regularization. Use the L–curve to select
an optimal solution. How does it compare to your solution to Exercise 4.5?

5. In some situations it is appropriate to bias the regularized solution towards
a particular model m0. In this case, we would solve the damped least
squares problem

min ‖Gm− d‖22 + α2‖L(m−m0)‖22 (5.82)

Write this is an ordinary linear least squares problem. What are the
normal equations? Can you find a solution for this problem using the
GSVD?
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5.10 Notes and Further Reading

Hansen’s book [61] is a very complete reference on the linear algebra of Tikhonov
regularization. Arnold Neumaier’s tutorial [113] is also a very useful reference.
Two other useful surveys of Tikhonov regularization are [40, 41]. Vogel [176]
includes an extensive discussion of methods for selecting the regularization pa-
rameter. Hansen’s MATLAB Regularization Tools [60] is a very useful collection
of software for performing regularization within MATLAB.

The GSVD was first defined by Van Loan [97]. References on the GSVD
and algorithms for computing the GSVD include [4, 51, 58, 61].

Selecting the regularization parameter is an important problem in both the-
ory and practice. Much of the literature on functional analytic approaches
assumes that the noise level is known. When the noise level is known, the dis-
crepancy principle provides a scheme for selecting the regularization parameter
which is convergent in the sense that in the limit as the noise level goes to zero,
the regularized solution goes to mtrue [41].

In practice, the noise level is often unknown, so there has been a great deal
of interest in schemes for selecting the regularization parameter without prior
knowledge of the noise level. The two most popular approaches are the L–curve
method and GCV The L–curve method was introduced by Hansen [59, 61].
GCV was introduced by Craven and Wahba [32, 177]. The formula for GCV
given here is very expensive to compute for large problems. A GCV algorithm
for large scale problems is given by Golub and von Matt [50]. Vogel has shown
that the L–curve method can fail to converge [175]. It can be shown that no
scheme that depends only on the noisy data without knowledge of the noise
level can be convergent in the limit as the noise level goes to 0 [41].

Within statistics, badly conditioned linear regression problems are said to
suffer from “multicollinearity.” A method called “Ridge Regression,” which is
identical to Tikhonov regularization, is often used to deal with such problems
[35]. Statisticians also use a method called “Principal Components Regression”
(PCR) which is identical to the TSVD method [107].



Chapter 6

Iterative Methods

Synopsis: We present several techniques for solving inverse problems that are far
too large for the methods previously discussed to be practical. These methods are
iterative in that a sequence of solutions is generated that converges to a solution
to the inverse problem. Kaczmarz’s algorithm and the related ART and SIRT
methods form one class, while methods based on conjugate gradients form a
second class. When the method of conjugate gradients is applied to the normal
equations, the resulting CGLS method regularizes the solution of the inverse
problem. Illustrative examples involving tomography and image deblurring are
given.

6.1 Introduction

SVD–based pseudoinverse and Tikhonov regularization solutions become im-
practical when we consider larger problems in which G has tens of thousands of
rows and columns. Storing all of the elements in a large G matrix can require
a great deal of memory. If many of the elements in the G matrix are 0, then G
is a sparse matrix, and we can save storage by only storing the nonzero ele-
ments of G and their locations. The density of G is the percentage of nonzero
elements in the matrix. Dense matrices are matrices that contain enough
nonzero elements that sparse storage schemes are not efficient.

Methods for the solution of linear systems of equations that are based on
matrix factorizations such as the Cholesky factorization, QR factorization, or
SVD do not tend to work well with sparse matrices. The problem is that the
matrices that occur in the factorization of G are often more dense than G itself.
In particular, the U and V matrices in the SVD and the Q matrix in the QR
factorization are required to be orthogonal matrices. This typically makes these
matrices fully dense.

The iterative methods discussed in this chapter do not require the storage
of additional dense matrices. Instead, they work by generating a sequence of
models m that converge to an optimal solution. These steps typically involve

133
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multiplying G and GT times vectors, which can be done without additional
storage. Because iterative methods can take advantage of the sparsity commonly
found in the G matrix, they are often used for very large problems.

For example, consider a tomography problem in which the model is of size
256 by 256 (65536 model elements), and there are 100,000 ray paths. Most of
the ray paths miss most of the model cells, so the majority of the elements in G
are zero. The G matrix might have a density of less than 1%. If we stored G
as a dense matrix, it would require about 50 gigabytes of storage. Furthermore,
the U matrix would require 80 gigabytes of storage, and the V matrix would
require about 35 gigabytes. Using a sparse storage technique, G can be stored
in less than one gigabyte.

At the time this book was written, computers with one gigabyte of main
memory were quite common, while only computers classified as supercomput-
ers would have hundreds of gigabytes of main storage. The point at which it
becomes necessary to use sparse matrix storage depends on the computer that
we are using. The memory capacity of computers has been increasing steadily
for many years. However, we can safely say that there will always be problems
for which sparse matrix storage is required.

6.2 Iterative Methods for Tomography Problems

We will concentrate in this section on Kaczmarz’s algorithm and its ART and
SIRT variants. These algorithms were originally developed for tomographic
applications and are particularly effective for such problems.

Kaczmarz’s algorithm is an easy to implement algorithm for solving a linear
system of equations Gm = d. To understand the algorithm, note that each of
the m rows of the system Gi,.m = di defines an n–dimensional hyperplane in
Rm. Kaczmarz’s algorithm starts with an initial solution m(0), and then moves
to a solution m(1) by projecting the initial solution onto the hyperplane defined
by the first row in G. Next m(1) is similarly projected onto the hyperplane
defined by the second row in G, and so forth. The process is repeated until
the solution has been projected onto all m hyperplanes defined by the system
of equations. At that point, a new cycle of projections begins. These cycles
are repeated until the solution has converged sufficiently. Figure 6.1 shows an
example in which Kaczmarz’s algorithm is used to solve the system of equations

y = 1
−x +y = −1 .

(6.1)

To implement the algorithm, we need a formula to compute the projection of
a vector onto the hyperplane defined by equation i. Let Gi,· be the ith row of G.
Consider the hyperplane defined by Gi+1,·m = di+1. Because the vector GT

i+1,·
is perpendicular to this hyperplane, the update to m(i) from the constraint due
to row i + 1 of G will be proportional to GT

i+1,·.

m(i+1) = m(i) + βGT
i+1,· . (6.2)
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Figure 6.1: Kaczmarz’s algorithm on a system of two equations.

Using the fact that Gi+1,·m(i+1) = di+1 to solve for β, we obtain

Gi+1,·

(
m(i) + βGT

i+1,·

)
= di+1 (6.3)

Gi+1,·m(i) − di+1 = −βGi+1,·GT
i+1,· (6.4)

β = −Gi+1,·m(i) − di+1

Gi+1,·GT
i+1,·

. (6.5)

Thus, the update formula is

m(i+1) = m(i) − Gi+1,·m(i) − di+1

Gi+1,·GT
i+1,·

GT
i+1,· . (6.6)

Algorithm 6.1 Kaczmarz’s Algorithm

Given a system of equations Gm = d.

1. Let m = 0.

2. For i = 0, 1, . . . ,m, let

m = m− Gi+1,·m− di+1

Gi+1,·GT
i+1,·

GT
i+1,· . (6.7)
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3. If the solution has not yet converged, go back to step 2.

It can be shown that if the system of equations Gm = d has a unique
solution, then Kaczmarz’s algorithm will converge to this solution. If the system
of equations has many solutions, then the algorithm will converge to the solution
that is closest to the point m(0). In particular, if we start with m(0) = 0, we will
obtain a minimum length solution. If there is no exact solution to the system
of equations, then the algorithm will fail to converge, but will typically bounce
around near an approximate solution.

A second important question is how quickly Kaczmarz’s algorithm will con-
verge to a solution. If the hyperplanes described by the system of equations
are nearly orthogonal, then the algorithm will converge very quickly. However,
if two or more hyperplanes are nearly parallel to each other, convergence can
be extremely slow. Figure 6.2 shows a typical situation in which the algorithm
zigzags back and forth without making much progress towards a solution. As
the two lines become more nearly parallel, the problem becomes worse. This
problem can be alleviated by picking an ordering of the equations such that ad-
jacent equations describe hyperplanes that are nearly orthogonal to each other.
In the context of tomography, this can be done by ordering the equations so
that successive equations do not share common model cells.

x

y

y=(1/3)x

y=1

Figure 6.2: Slow convergence occurs when hyperplanes are nearly parallel.
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Example 6.1

Consider a tomographic reconstruction problem with the same ge-
ometry used in Exercise 4.3, in which the slowness structure is pa-
rameterized in homogeneous blocks of size l by l. The true model is
shown in Figure 6.3. Synthetic data were generated, with normally
distributed random noise added. The random noise had standard
deviation 0.01. Figure 6.4 shows the truncated SVD solution. The
two anomalies are apparent, but it is not possible to distinguish the
small hole within the larger of the two.

Figure 6.5 shows the solution obtained after 200 iterations of Kacz-
marz’s algorithm. This solution is extremely similar to the truncated
SVD solution and both solutions are about the same distance from
the true model.
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Figure 6.3: True model.

The algebraic reconstruction technique (ART) is a version of Kaczmarz’s
algorithm that has been modified especially for the tomographic reconstruction
problem. In (6.6), the updates to the solution always consist of adding a multiple
of a row of G to the current solution. The numerator in the fraction is the
difference between the right hand side of equation i + 1 and the value of the
i + 1 component of Gm. The denominator in (6.6) is simply the square of
the norm of Gi+1,·. Effectively, Kaczmarz’s algorithm is determining the error
in equation i + 1, and then adjusting the solution by spreading the required
correction over the elements of m which appear in equation i + 1.
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Figure 6.4: Truncated SVD solution.
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Figure 6.5: Kaczmarz’s algorithm solution.
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A crude approximation to the Kaczmarz update, used in ART, is to replace
all of the nonzero elements in row i + 1 of G with ones. We define

qi+1 =
∑

cell j in ray path i + 1

mj l (6.8)

as an approximation to the travel time along ray path i + 1. The difference
between qi+1 and di+1 is roughly the residual for the predicted travel time of
ray i + 1.

Examining (6.6) for the ART–modified G, we see that ART simply takes
the total error in the travel time for ray i + 1 and divides it by the number of
cells in ray path i+1, Ni+1, and by the cell dimension, l. This correction factor
is then multiplied by a vector that has ones in cells along the ray path i + 1.
This procedure has the effect of smearing the needed correction in travel time
equally over all of the cells in ray path i + 1.

The ART approximate update formula can thus be written as

m
(i+1)
j =

{
m

(i)
j − qi+1−di+1

lNi+1
cell j in ray path i + 1

m
(i)
j cell j not in ray path i + 1 .

(6.9)

The approximation can be improved by taking into account that the ray
path lengths actually will vary from cell to cell. If Li+1 is the length of ray path
i+1, the corresponding improved update formula from (6.6) for the tomography
problem is

m
(i+1)
j =

{
m

(i)
j + di+1

Li+1
− qi+1

lNi+1
cell j in ray path i + 1

m
(i)
j cell j not in ray path i + 1 .

(6.10)

Algorithm 6.2 ART

Given a system of equations Gm = d arising from a tomography
problem.

1. Let m(0) = 0.

2. For i = 0, 1, . . . ,m, let Ni be the number of cells touched by
ray path i.

3. For i = 0, 1, . . . ,m, let Li be the length of ray path i.

4. For i = 0, 1, . . . ,m− 1, j = 1, 2, . . . , n, let

m
(i+1)
j =

{
m

(i)
j + di+1

Li+1
− qi+1

lNi+1
cell j in ray path i + 1

m
(i)
j cell j not in ray path i + 1 .

(6.11)

5. If the solution has not yet converged, let m(0) = m(m) and go
back to step 4. Otherwise, return the solution m = m(m).
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The main advantage of ART is that it saves storage. We need only store
information about which rays pass through which cells, and we do not need to
record the length of each ray in each cell. A second advantage of the method is
that it reduces the number of floating point multiplications required by Kacz-
marz’s algorithm. Although in current computers floating point multiplications
and additions require roughly the same amount of time, during the 1970’s when
ART was first developed, multiplication was slower than addition.

One problem with ART is that the resulting tomographic images tend to be
noisier than images produced by Kaczmarz’s algorithm (6.7). The Simultaneous
Iterative Reconstruction Technique (SIRT) is a variation on ART which gives
slightly better images in practice, at the expense of a slightly slower algorithm.
In the SIRT algorithm, all (up to m nonzero) updates using (6.9) are computed
for each cell j of the model, for each ray that passes through cell j. The set
of updates for cell j are then averaged before updating the appropriate model
element mj .

Algorithm 6.3 SIRT

Given a system of equations Gm = d arising from a tomography
problem.

1. Let m = 0.

2. For j = 0, 1, . . . , n, let Kj be the number of ray paths that pass
through cell j.

3. For i = 0, 1, . . . ,m, let Li be the length of ray path i.

4. For i = 0, 1, . . . ,m, let Ni be the number of cells touched by
ray path i.

5. Let ∆m = 0.

6. For i = 0, 1, . . . ,m− 1, j = 1, 2, . . . , n, let

∆mj = ∆mj +

{
di+1
Li+1

− qi+1
lNi+1

cell j in ray path i + 1
0 cell j not in ray path i + 1 .

(6.12)

7. For j = 1, 2, . . . , n, let

mj = mj +
∆mj

Kj
. (6.13)

8. If the solution has not yet converged, go back to step 5. Oth-
erwise, return the current solution.
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Example 6.2

Returning to our earlier tomography example, Figure 6.6 shows the
ART solution obtained after 200 iterations. Again, the solution is
very similar to the truncated SVD solution.
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Figure 6.6: ART solution.

Figure 6.7 shows the SIRT solution for our example tomography
problem after 200 iterations. This solution is similar to the Kacz-
marz’s and ART solutions.

6.3 The Conjugate Gradient Method

We next consider the conjugate gradient (CG) method for solving a sym-
metric and positive definite system of equations Ax = b. We will later apply
the CG method to solving the normal equations for Gm = d. Consider the
quadratic optimization problem

min φ(x) =
1
2
xT Ax− bT x (6.14)

where A is an n by n symmetric and positive definite matrix. We require A
be positive definite so that the function φ(x) will be convex and have a unique
minimum. We can calculate ∇φ(x) = Ax − b and set it equal to zero to find
the minimum. The minimum occurs at a point x that satisfies the equation

Ax− b = 0 (6.15)



142 CHAPTER 6. ITERATIVE METHODS

5 10 15

2

4

6

8

10

12

14

16
−0.2

0

0.2

0.4

0.6

0.8

1

Figure 6.7: SIRT solution.

or
Ax = b . (6.16)

Thus solving the system of equations Ax = b is equivalent to minimizing φ(x).
The conjugate gradient method approaches the problem of minimizing φ(x)

by constructing a basis for Rn in which the minimization problem is extremely
simple. The basis vectors p0, p1, . . ., pn−1 are selected so that

pT
i Apj = 0 when i 6= j. (6.17)

A collection of vectors with this property are said to be mutually conjugate
with respect to A. We express x in terms of these basis vectors as

x =
n−1∑
i=0

αipi (6.18)

so that

φ(α) =
1
2

(
n−1∑
i=0

αipi

)T

A

(
n−1∑
i=0

αipi

)
− bT

(
n−1∑
i=0

αipi

)
. (6.19)

The product xT Ax can be written as a double sum.

φ(α) =
1
2

n−1∑
i=0

n−1∑
j=0

αiαjpT
i Apj − bT

(
n−1∑
i=0

αipi

)
. (6.20)
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Since the vectors are mutually conjugate with respect to A, this simplifies to

φ(α) =
1
2

n−1∑
i=0

α2
i p

T
i Api − bT

(
n−1∑
i=0

αipi

)
(6.21)

or

φ(α) =
1
2

n−1∑
i=0

(
α2

i p
T
i Api − 2αibT pi

)
. (6.22)

Equation (6.22) shows that φ(α) consists of n terms, each of which is inde-
pendent of the other terms. Thus we can minimize φ(α) by selecting each αi to
minimize the ith term,

α2
i p

T
i Api − 2αibT pi . (6.23)

Differentiating with respect to αi and setting the derivative equal to zero, we
find that the optimal value for αi is

αi =
bT pi

pT
i Api

. (6.24)

This shows that if we have a basis of vectors that are mutually conjugate with
respect to A, then minimizing φ(x) is very easy. We have not yet shown how
to construct the mutually conjugate basis vectors.

Our algorithm will actually construct a sequence of solution vectors xi, resid-
ual vectors ri = b − Axi, and basis vectors pi. The algorithm begins with
x0 = 0, r0 = b, p0 = r0, and α0 = (rT

0 r0)/(pT
0 Ap0).

Suppose that at the start of iteration k of the algorithm we have constructed
x0, x1, . . ., xk, r0, r1, . . ., rk, p0, p1, . . ., pk and α0, α1, . . ., αk. We assume
that the first k + 1 basis vectors pi are mutually conjugate with respect to A,
the first k + 1 residual vectors ri are mutually orthogonal, and that rT

i pj = 0
when i 6= j.

We let
xk+1 = xk + αkpk . (6.25)

This effectively adds one more term of (6.18) into the solution. Next, we let

rk+1 = rk − αkApk . (6.26)

This correctly updates the residual, because

rk+1 = b−Axk+1 (6.27)
= b−A (xk + αkpk) (6.28)
= (b−Axk)− αkApk (6.29)
= rk − αkApk . (6.30)

We let

βk+1 =
rT

k+1rk+1

rT
k rk

(6.31)
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and
pk+1 = rk+1 + βk+1pk . (6.32)

In the following calculations, it will be useful to know that bT pk = rT
k rk.

This is shown by

bT pk = (rk + Axk)T pk (6.33)
= rT

k pk + pT
k Axk (6.34)

= rT
k (rk + βkpk−1) + pT

k Axk (6.35)
= rT

k rk + βkrT
k pk−1 + pT

k A (α0p0 + . . . αk−1pk−1) (6.36)
= rT

k rk + 0 + 0 (6.37)
= rT

k rk . (6.38)

We will now show that rk+1 is orthogonal to ri for i ≤ k. For every i < k,

rT
k+1ri = (rk − αkApk)T ri (6.39)

= rT
k ri − αkrT

i Apk . (6.40)

Since rk is orthogonal to all of the earlier ri vectors,

rT
k+1ri = 0− αkpT

k Ark . (6.41)

Because A is symmetric, pT
k Ark = rT

k Apk. Also, since pi = ri + βipi−1,

rT
k+1ri = 0− αk (pi − βipi−1)

T Apk . (6.42)

Both pi and pi−1 are conjugate with pk. Thus

rT
k+1ri = 0 . (6.43)

We also have to show that rT
k+1rk = 0.

rT
k+1rk = (rk − αkApk)T rk (6.44)

= rT
k rk − αk(pk − βkpk−1)T Apk (6.45)

= rT
k rk − αkpT

k Apk + αkβkpT
k−1Apk (6.46)

= rT
k rk − rT

k rk + αkβk0 (6.47)
= 0 . (6.48)

Next, we will show that rk+1 is orthogonal to pi for i ≤ k.

rT
k+1pi = rT

k+1 (ri + βipi−1) (6.49)

= rT
k+1ri + βirT

k+1pi−1 (6.50)

= 0 + βirT
k+1pi−1 (6.51)

= βi (rk − αkApk)T pi−1 (6.52)
= βirT

k pi−1 − αkpT
i−1Apk (6.53)

= 0− 0 = 0 . (6.54)
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Finally, we need to show that pT
k+1Api = 0 for i ≤ k. For i < k,

pT
k+1Api = (rk+1 + βk+1pk)T Api (6.55)

= rT
k+1Api + βk+1pT

k Api (6.56)

= rT
k+1Api + 0 (6.57)

= rT
k+1

(
1
αi

(ri − ri+1)
)

(6.58)

=
1
αi

(
rT

k+1ri − rT
k+1ri+1

)
(6.59)

= 0 . (6.60)

For i = k,

pT
k+1Apk = (rk+1 + βk+1pk)T

(
1
αk

(rk − rk+1)
)

(6.61)

=
1
αk

(
βk+1 (rk + βkpk−1)

T rk − rT
k+1rk+1

)
(6.62)

=
1
αk

(
βk+1rT

k rk + βk+1βkpT
k−1rk − rT

k+1rk+1

)
(6.63)

=
1
αk

(
rT

k+1rk+1 + βk+1βk0− rT
k+1rk+1

)
(6.64)

= 0 . (6.65)

We have now shown that the algorithm generates a sequence of mutually
conjugate basis vectors. In theory, the algorithm will find an exact solution to
the system of equations in n iterations. In practice, due to round–off errors
in the computation, the exact solution may not be obtained in n iterations.
In practical implementations of the algorithm, we iterate until the residual is
smaller than some tolerance that we specify. The algorithm can be summarized
as follows.

Algorithm 6.4 Conjugate Gradient Method

Given a positive definite and symmetric system of equations Ax = b,
and an initial solution x0, let β−1 = 0, p−1 = 0, r0 = b−Ax0, and
k = 0. Repeat the following steps until convergence.

1. Let pk = −rk + βk−1pk−1.

2. Let αk = ‖rk‖22
pT

k Apk
.

3. Let xk+1 = xk + αkpk.

4. Let rk+1 = rk + αkApk.

5. Let βk = ‖rk+1‖22
‖rk‖22

.

6. Let k = k + 1.
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A major advantage of the CG method is that it requires storage only for the
vectors xk, pk, rk and the matrix A. If A is large and sparse, then sparse matrix
techniques can be used to store A. Unlike factorization methods such as QR,
SVD, or Cholesky factorization, there will be no fill–in of the zero elements in A
at any stage in the solution process. Thus it is possible to solve extremely large
systems using CG in cases where direct factorization would require far too much
storage. In fact, the only way in which the algorithm uses A is in multiplications
of Apk. One such matrix vector multiplication must be performed in each
iteration. In some applications of the CG method, it is possible to perform
these matrix vector multiplications without explicitly constructing A.

6.4 The CGLS Method

The CG method by itself can only be applied to positive definite systems of
equations, and is thus not directly applicable to general least squares problems.
In the conjugate gradient least squares (CGLS) method, we solve a least
squares problem

min ‖Gm− d‖2 (6.66)

by applying CG to the normal equations

GT Gm = GT d . (6.67)

In implementing this algorithm it is important to avoid round–off errors.
One important source of error is the evaluation of the residual, GT Gm−GT d.
It turns out that this calculation is more accurate when we factor out GT and
compute GT (Gm−d). We will use the notation sk = Gmk−d, and rk = GT sk.
Note that we can compute sk+1 recursively from sk as follows

sk+1 = Gmk+1 − d (6.68)
= G(mk + αkpk)− d (6.69)
= (Gmk − d) + αkGpk (6.70)
= sk + αkGpk . (6.71)

With this trick, we can now state the CGLS algorithm.

Algorithm 6.5 CGLS

Given a system of equations Gm = d, Let k = 0, m0 = 0, p−1 = 0,
β−1 = 0, s0 = −d, and r0 = GT s0. Repeat the following iterations
until convergence

1. Let pk = −rk + βk−1pk−1.

2. Let αk = ‖rk‖22
(pT

k GT )(Gpk)
.

3. Let mk+1 = mk + αkpk.
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4. Let sk+1 = sk + αkGpk.

5. Let rk+1 = GT sk+1.

6. Let βk = ‖rk+1‖22
‖rk‖22

.

7. Let k = k + 1.

Notice that this algorithm only requires one multiplication of Gpk and one
multiplication of GT sk+1 per iteration. We never explicitly compute GT G,
which might require considerable time, and which might have far more nonzero
elements than G itself.

The CGLS algorithm has an important property that makes it particularly
useful for ill–posed problems. It can be shown that, at least for exact arithmetic,
‖mk‖2 increases monotonically, and that ‖Gmk −d‖2 decreases monotonically
[61]. We can use the discrepancy principle together with this property to obtain
a regularized solution. Simply stop the CGLS algorithm as soon as ‖Gmk −
d‖2 < δ. In practice, this algorithm typically gives good solutions after a very
small number of iterations.

An alternative way to use CGLS is to solve the Tikhonov regularization
problem (5.4) by applying CGLS to

min
∥∥∥∥[ G

αL

]
m−

[
d
0

]∥∥∥∥2

2

. (6.72)

For nonzero values of the regularization parameter α, this least squares problem
should be reasonably well–conditioned. By solving this problem for several
values of α, we can compute an L–curve. The disadvantage of this approach is
that the number of CGLS iterations for each value of α may be large, and we
need to solve the problem for several values of α. Thus the computational effort
is far greater.

Example 6.3

A commonly used mathematical model of image blurring involves
the two-dimensional convolution of the true image Itrue(x, y) with a
point spread function, Ψ(u, v) [14].

Iblurred(x, y) =
∫ ∞

−∞

∫ ∞

−∞
Itrue(x− u, y − v)Ψ(u, v)dudv. (6.73)

Here the point spread function shows how a point in the true image
is altered in the blurred image. A point spread function that is
commonly used to represent the blurring that occurs because an
image is out of focus is the Gaussian point spread function

Ψ(u, v) = e
u2+v2

2σ2 . (6.74)
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Here the parameter σ controls the relative width of the point spread
function. In practice, the blurred image and point spread function
are discretized into pixels. In theory, Ψ is nonzero for all values of
u and v. However, it becomes small quickly as u and v increase. If
we set small values of Ψ to 0, then the G matrix in the discretized
problem will be sparse. The Regularization Tools includes a com-
mand blur that can be used to construct the discretized blurring
operator.

Figure 6.8 shows an image that has been blurred and also has a
small amount of added noise. This image is of size 200 pixels by 200
pixels, so the G matrix for the blurring operator is of size 40,000
by 40,000. Fortunately, the blurring matrix G is quite sparse, with
less than 0.1% nonzero elements. The sparse matrix requires about
12 megabytes of storage. A dense matrix of this size would require
about 13 gigabytes of storage. Using the SVD approach to Tikhonov
regularization would require far more storage than most current
computers have. However, CGLS works quite well on this problem.

Figure 6.9 shows the L–curve for the solution of this problem by
CGLS without explicit regularization and by CGLS with explicit
regularization. The line with circles shows the solutions obtained by
CGLS without explicit regularization. For the first 30 or so itera-
tions of CGLS without explicit regularization, ‖Gm−d‖2 decreases
quickly. After that point, the improvement in misfit slows down,
while ‖m‖2 increases rapidly.

Figure 6.10 shows the CGLS solution without explicit regularization
after 30 iterations. The blurring has been greatly improved. Note
that 30 iterations is far less than the size of the matrix (n = 40, 000).
Unfortunately, further CGLS iterations do not significantly improve
the image. In fact, noise builds up rapidly, both because of the accu-
mulation of round–off errors and because the algorithm is converging
slowly towards an unregularized least squares solution. Figure 6.11
shows the CGLS solution after 100 iterations. In this image the
noise has been greatly amplified, with little or no improvement in
the clarity of the image.

We also computed CGLS solutions with explicit Tikhonov regular-
ization for 22 values of α. For each value of α, 200 iterations of CGLS
were performed. The resulting L–curve is shown in Figure 6.9 with
“x” markers for each regularized solution that was obtained. This
L–curve is slightly better than the L–curve from the CGLS solu-
tion without explicit regularization in that the values of ‖m‖2 and
‖Gm − d‖2 are smaller. However it required forty times as much
computational effort. The corner solution for α = 7.0 × 10−4 is
shown in Figure 6.12. This solution is similar to the solution shown
in Figure 6.10.
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Figure 6.8: Blurred image.
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Figure 6.9: L–curves for CGLS deblurring.
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Figure 6.10: CGLS solution after 30 iterations, no explicit regularization.

Figure 6.11: CGLS solution after 100 iterations, no explicit regularization.
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Figure 6.12: CGLS solution, explicit regularization, α = 7.0× 10−4.

6.5 Exercises

1. Consider the cross–well tomography problem of Exercise 5.3.

(a) Apply Kaczmarz’s algorithm to this problem.

(b) Apply ART to this problem.

(c) Apply SIRT to this problem.

(d) Comment on the solutions that you obtained.

2. A very simple iterative regularization method is the Landweber iter-
ation [61]. The algorithm begins with m0 = 0, and then follows the
iteration

mk+1 = mk − ω(Gmk − d) . (6.75)

To ensure convergence, the parameter ω must be selected so that 0 < ω <
2/s2

1, where s1 is the largest singular value of G.

In practice, the CGLS method generally works better than the Landweber
iteration. However, it is easier to analyze the performance of the Landwe-
ber iteration. It can be shown that the kth iterate of the Landweber
iteration is exactly the same as the SVD solution with filter factors of

fk
i = 1− (1− ωs2

i )
k . (6.76)

(a) Implement the Landweber iteration and apply it to the Shaw problem
from Example 4.3.

(b) Verify that m10 from the Landweber iteration matches the SVD
solution with filter factors given by (6.76).
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(c) Derive (6.76).

3. The Regularization Tools command blur computes the system matrix for
the problem of deblurring an image that has been blurred by a Gaussian
point spread function. The file blur.mat contains a particular G matrix
and a data vector d.

(a) How large is the G matrix? How many nonzero elements does it
have? How much storage would be required for the G matrix if all
of its elements were nonzero? How much storage would the SVD of
G require?

(b) Plot the raw image.
(c) Using CGLS, deblur the image. Plot your solution.

4. Show that if p0, p1, . . ., pn−1 are nonzero and mutually conjugate with
respect to an n by n symmetric and positive definite matrix A, then the
vectors are also linearly independent. Hint: Use the definition of linear
independence.

6.6 Notes and Further Reading

Iterative methods for the solution of linear systems of equations are an important
topic in numerical analysis. Some basic references include [6, 84, 139, 148].

Iterative methods for tomography problems including Kaczmarz’s algorithm,
ART, and SIRT are discussed in [80, 111, 168]. Parallel algorithms based on
ART and SIRT are discussed in [25]. These methods are often referred to as
row action methods because they access only one row of the matrix at a time.
This makes these methods relatively easy to implement in parallel. In practice,
the conjugate gradient method generally provides better performance than the
row action methods. There are some interesting connections between SIRT and
the conjugate gradient method [118, 153, 173].

Hestenes and Stiefel are generally credited with the invention of the conju-
gate gradient method [67]. However, credit is also due to Lanczos [89]. The
history of the conjugate gradient method is discussed in [52, 68].

Shewchuk’s technical report [148] provides an introduction to the Conju-
gate Gradient method with illustrations that help to make the geometry of the
method very clear. Filter factors for the CGLS method similar to those in
Exercise 2 can be determined. These are derived in [61]. The LSQR method
of Paige and Saunders [61, 122, 121] is an alternative way to apply the CG
method to the normal equations. The resolution of LSQR solutions is discussed
in [12, 13].

Schemes have been developed for using CGLS with explicit regularization
and dynamic adjustment of the regularization parameter α [82, 83, 100]. This
can potentially remove the computational burden of solving the problem for
many values of α. An alternative approach can be used to compute regularized
solutions for several values of α at once [46].
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The performance of the CG algorithm degrades dramatically on poorly con-
ditioned systems of equations. In such situations a technique called precondi-
tioning can be used to improve the performance of CG. Essentially, precondi-
tioning involves a change of variables x̄ = Cx. The matrix C is selected so that
the resulting system of equations will be better conditioned than the original
system of equations [33, 51, 169].

The conjugate gradient method can be generalized to nonlinear minimization
problems [110, 148]. This approach has been used to find 1–norm solutions to
very large linear systems of equations [137].

Inverse problems in image processing are a very active area of research. Some
books on inverse problems in imaging include [14, 111].

Several authors have developed specialized algorithms [38, 131, 135, 136, 181]
for the solution of quadratic optimization problems of the form

min 1
2x

T Ax + gT x
‖x‖2 ≤ ε .

(6.77)

These algorithms are used within trust–region methods for nonlinear optimiza-
tion, but they can also potentially be used to perform Tikhonov regularization
by solving (5.3). To date, these methods have not been widely used in practice.
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Chapter 7

Additional Regularization
Techniques

Synopsis: Three alternatives to Tikhonov regularization are introduced. Bounds
constraint methods allow the use of prior knowledge regarding the permissi-
ble range of parameter values. Maximum entropy regularization maximizes a
weighted entropy–like term that yields a nonnegative solution while imposing a
lesser penalty on sharply peaked solutions than Tikhonov regularization. Total
variation (TV) uses a regularization term based on the 1–norm of the model
gradient which does not penalize model discontinuities. A variant of TV allows
for prescribing the number of discontinuities in a piecewise–constant solution.

7.1 Using Bounds as Constraints

In many physical situations, bounds exist on the maximum and/or minimum
values of model parameters. For example, the model parameters may represent
a physical quantity such as density that is inherently nonnegative, establishing
a strict lower bound for model parameters of 0. The problem of solving for a
least squares solution that includes this constraint can be written as

min ‖Gm− d‖2
m ≥ 0 (7.1)

where m ≥ 0 means that every element of the vector m must be greater than
or equal to 0. This non–negative least squares problem can be solved by an
algorithm called NNLS that was originally developed by Lawson and Hanson
[91]. MATLAB includes a command, lsqnonneg, that implements the NNLS
algorithm.

We might also declare a strict upper bound, so that model parameters may
not exceed some value, for example, a density 3.5 grams per cubic centimeter for
crustal rocks in a particular region. Given the upper and lower bound vectors l

155
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and u, we can pose the bounded variables least squares (BVLS) problem

min ‖Gm− d‖2
m ≥ l
m ≤ u .

(7.2)

Stark and Parker developed an algorithm for solving the BVLS problem and
implemented their algorithm in Fortran [156]. A similar algorithm is given in
the 1995 edition of Lawson and Hanson’s book [91]. Given the BVLS algorithm
for (7.2), we can perform Tikhonov regularization with bounds.

A related optimization problem involves minimizing or maximizing a linear
function of the model subject to bounds constraints and a constraint on the
misfit. This problem can be formulated as

min cT m
‖Gm− d‖2 ≤ δ

m ≥ l
m ≤ u .

(7.3)

Stark and Parker developed an algorithm for solving the BVLS problem and
implemented their algorithm in Fortran [156]. A similar algorithm is given in
the 1995 edition of Lawson and Hanson’s book [91]. Given the BVLS algorithm
for (7.2), we can perform Tikhonov regularization with bounds.

A related optimization problem involves minimizing or maximizing a linear
function of the model subject to bounds constraints and a constraint on the
misfit. This problem can be formulated as

min cT m
‖Gm− d‖2 ≤ δ

m ≥ l
m ≤ u .

(7.4)

This problem can be solved by an algorithm given in Stark and Parker [156].
Solutions to this problem can be used to obtain bounds on the maximum and
minimum possible values of model parameters.

Example 7.1

Recall the source history reconstruction problem of Example 3.4,
where data are taken in concentration units, u, at spatial positions,
x, at a particular time, T . Figure 7.1 shows a hypothetical true
source history, and Figure 7.2 shows the corresponding samples as
a function of distance, x, at time T = 300, with N(0, 0.0012) noise
added.

Figure 7.3 shows the least squares solution, which has the extremely
large amplitudes and oscillatory behavior characteristic of an un-
regularized solution to an ill–posed problem. This solution is, fur-
thermore, physically unrealistic in having negative concentrations.
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Figure 7.4 shows the nonnegative least squares solution, which, al-
though certainly more realistic in having all of the concentration
values nonnegative, does not accurately reconstruct the true source
history, and is extremely rough. Suppose that the solubility limit
of the contaminant in water is known to be 1.1. This provides a
natural upper bound on model parameters. Figure 7.5 shows the
corresponding BVLS solution. Further regularization is required.

Figure 7.6 shows the L–curve for a second–order Tikhonov regular-
ization solution with bounds on the model parameter. Figure 7.7
shows the regularized solution for α = 0.0616. This solution cor-
rectly shows the two major input concentration peaks. As is typical
for cases of nonideal model resolution, the solution peaks are some-
what lower and broader than those of the true model. This solution
does not resolve the smaller subsidiary peak near t = 150.

We can use (7.4) to establish bounds on the values of the model
parameters. For example, we might want to establish bounds on the
average concentration from t = 125 to t = 150. These concentrations
appear in positions 51 through 60 of the model vector m. We let
ci be zero in positions 1 through 50 and 61 through 100, and let ci

be 0.1 in positions 51 through 60. The solution to (7.4) is then a
bound on the average concentration from t = 125 to t = 150. After
solving the optimization problem, we obtain a lower bound 0.36 for
the average concentration during this time period. Similarly, by
minimizing −cbm, we obtain an upper bound of 0.73 for the average
concentration during this time period.

7.2 Maximum Entropy Regularization

In maximum entropy regularization, we use a regularization function of
the form

∑n
i=1 mi ln(wimi), where the positive weights wi can be adjusted to

favor particular types of solutions. Maximum entropy regularization is only
used in problems where the model parameters are restricted to be positive, so
logarithms are defined.

The term “maximum entropy” comes from a Bayesian approach to selecting
a prior probability distribution, in which we select a discrete probability distri-
bution, that maximizes −

∑n
i=1 pi ln pi, subject to the constraint

∑n
i=1 pi = 1.

The quantity −
∑n

i=1 pi ln pi has the same form as entropy in statistical physics.
Because the model m is not itself a probability distribution, and because (7.5) in-
corporates the weights wi, maximum entropy regularization is distinct from the
maximum entropy approach to computing probability distributions discussed in
Chapter 11.

In the maximum entropy regularization approach, we maximize the entropy
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Figure 7.1: True source history.

0 50 100 150 200 250 300
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Distance

C
(x

,3
00

)

Figure 7.2: Concentration data as a function of position, x, taken at T = 300.
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Figure 7.4: NNLS source history solution.
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Figure 7.5: BVLS source history solution.
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at α = 0.0616.



7.2. MAXIMUM ENTROPY REGULARIZATION 161

0 50 100 150 200 250
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time

C
on

ce
nt

ra
tio

n

Figure 7.7: Second–order Tikhonov regularization source history solution, α =
0.0616.

of m subject to a constraint on the size of the misfit ‖Gm− d‖2

max −
∑n

i=1 mi ln(wimi)
‖Gm− d‖2 ≤ δ

m ≥ 0 .
(7.5)

Using a Lagrange multiplier in the same way that we did with Tikhonov regu-
larization, we can transform this problem into

min ‖Gm− d‖22 + α2
∑n

i=1 mi ln(wimi)
m ≥ 0 .

(7.6)

It can be shown that as long as α ≥ 0 the objective function is strictly con-
vex, and thus (7.6) has a unique solution. See Exercise 7.2. However, the
optimization problem can become badly conditioned as α approaches 0.

Figure 7.8 shows the maximum entropy regularization function f(x) = x ln(wx)
for three different values of w, along with the Tikhonov regularization func-
tion, x2. The function is zero at x = 0, decreases to a minimum, and then
increases. For large values of x, x2 grows faster than x ln(wx). Maximum
entropy regularization thus penalizes solutions with large 2–norms, but not as
heavily as zeroeth–order Tikhonov regularization. The minimum of f(x) occurs
at x = 1/ew. Maximum entropy regularization thus favors solutions with pa-
rameters, mi that are close to 1/(ewi), and penalizes parameters with smaller
or especially much larger values. The choice of the wi can thus exert significant
influence on the solution.
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Figure 7.8: The maximum entropy regularization function compared with the
2–norm regularization function.

Maximum entropy regularization is widely applied in astronomical image
processing [30, 109, 152]. Here the goal is to recover a solution which con-
sists of bright spots (stars, galaxies, or other astronomical objects) on a dark
background. The nonnegativity constraints in maximum entropy regularization
ensure that the resulting image will not include features with negative inten-
sities. While conventional Tikhonov regularization tends to broaden peaks in
the solution, maximum entropy regularization may not penalize sharp peaks as
much.

Example 7.2

We will apply maximum entropy regularization to the Shaw problem.
Our model shown in Figure 7.9 consists of two spikes superimposed
on a small random background intensity.

We will assume that the data errors are independent and normally
distributed with mean zero and standard deviation one. Following
the discrepancy principle, we will seek a solution with ‖Gm− d‖2
around 4.4.

For this problem, default weights of wi = 1 are appropriate, since
the background noise level of about 0.5 is close to the minimum
of the regularization term. We solved (7.6) for several values of
the regularization parameter α in (7.6). At α = 0.2, the misfit is
‖Gm − d‖2 = 4.4. The corresponding solution is shown in Figure



7.2. MAXIMUM ENTROPY REGULARIZATION 163

−2 −1 0 1 2

0

200

400

600

800

1000

1200

θ (radians)

In
te

ns
ity

Figure 7.9: True model for maximum entropy regularization.

7.10. The spike near θ = −0.5 is visible, but the magnitude of the
peak is incorrectly estimated. The second spike near θ = 0.7 is
poorly resolved.

For comparison, we applied zeroth–order Tikhonov regularization
with a nonnegativity constraint to this problem. Figure 7.11 shows
the Tikhonov solution. This solution is similar to the solution pro-
duced by maximum entropy regularization. This is consistent with
the results from a number of sample problems in [1]. It was found
that maximum entropy regularization was at best comparable to and
often inferior to Tikhonov regularization with nonnegativity con-
straints.
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Figure 7.10: Maximum entropy solution.
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Figure 7.11: Zeroeth–order Tikhonov regularization solution with nonnegativity
constraints.
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7.3 Total Variation

The Total Variation (TV) regularization function is appropriate for problems
where there we expect there to be be discontinuous jumps in the model. In the
one–dimensional case, the TV regularization function is

TV (m) =
n−1∑
i=1

|mi+1 −mi| (7.7)

= ‖Lm‖1 (7.8)

where

L =


−1 1

−1 1
. . .

−1 1
−1 1

 . (7.9)

In higher–dimensional problems, L is a discretization of the gradient operator.
In first and second–order Tikhonov regularization, discontinuities in the

model are smoothed out and do not show up well in the inverse solution. This
is because smooth transitions are penalized less by the regularization term than
sharp transitions. The particular advantage of TV regularization is that the
regularization term does not penalize discontinuous transitions in the model
any more than smooth transitions.

This approach has seen wide use in the problem of “denoising” a model
[120]. The denoising problem is a linear inverse problem in which G = I. In
denoising, the general goal is to take a noisy data set and remove the noise while
still retaining long term trends and even sharp discontinuities in the model.

We could insert the TV regularization term (7.8) in place of ‖Lm‖22 in the
Tikhonov regularization optimization problem to obtain

min ‖Gm− d‖22 + α‖Lm‖1 . (7.10)

However this is no longer a least squares problem, and the techniques for solving
such problems such as the SVD will no longer applicable. In fact, (7.10) is a
nondifferentiable optimization problem because of the absolute values in ‖Lm‖1.

One simple technique for dealing with this difficulty is to approximate the
absolute value with a smooth function that removes the derivative discontinuity,
such as

|x| ≈
√

x2 + β (7.11)

where β is a small positive parameter.
A simpler option is to switch to the 1–norm in the data misfit term of (7.10)

as well, to obtain
min ‖Gm− d‖1 + α‖Lm‖1 (7.12)
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which can be rewritten as

min
∥∥∥∥[ G

αL

]
m−

[
d
0

]∥∥∥∥
1

. (7.13)

A solution to this problem can be obtained using the iteratively reweighted
least squares (IRLS) algorithm discussed in Chapter 2.

Hansen has suggested yet another approach which retains the 2–norm of the
data misfit while incorporating the TV regularization term [61]. In the Piece-
wise Polynomial Truncated Singular Value Decomposition (PP-TSVD) method,
the SVD and the k largest singular values of G are used to obtain a rank k
approximation to G

Gk =
k∑

i=1

siU·,iVT
·,i . (7.14)

Note that the matrix Gk will be rank deficient. The point of the approximation
is to obtain a matrix with a well defined null space. The vectors V·,k+1, . . .,
V·,n form a basis for the null space of Gk. We will need this basis later, so let

Bk = [V·,k+1 . . . V·,n] . (7.15)

Using the model basis set [V·,1 . . . V·,k], the minimum length least squares
solution is, from the SVD,

mk =
k∑

i=1

UT
·,id
si

V·,i . (7.16)

Adding any vector in the null space of Gk to this solution will increase the
model norm ‖m‖2, but have no effect on ‖Gkm− d‖2.

We can use this formulation to find solutions that minimize some regular-
ization function with minimum misfit. For example, in the modified truncated
SVD (MTSVD) method, we seek a model that minimizes ‖Lm‖2 among those
models that minimize ‖Gkm−d‖2. Because all models minimizing ‖Gkm−d‖2
can be written as m = mk −Bkz for some vector z, the MTSVD problem can
be written as

min ‖L(mk −Bkz)‖2 (7.17)

or
min ‖LBkz− Lmk‖2 . (7.18)

This is a least squares problem that can be solved with the SVD, QR factor-
ization, or by the normal equations.

The PP-TSVD algorithm uses a similar approach. First, we minimize ‖Gkm−
d‖2. Let β be the minimum value of ‖Gkm − d‖2. Instead of minimizing the
2–norm of Lm, we minimize the 1–norm of Lm, subject to the constraint that
m must be a least squares solution.

min ‖Lm‖1
‖Gkm− d‖2 = β .

(7.19)
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Any least squares solution can be expressed m = mk −Bkz, so the PP-TSVD
problem can be reformulated as

min ‖L(mk −Bkz)‖1 (7.20)

or
min ‖Lmk − LBkz‖1 (7.21)

which is a 1–norm minimization problem that can be solved by IRLS.
Note that LBk in (7.21) has n−1 rows and n−k columns. In general, when

we solve this 1–norm minimization problem, we can find a solution for which
n − k of the equations are satisfied exactly. Thus, at most, k − 1 elements in
the vector L(mk − Bkz) will be nonzero. Since each of these nonzero entries
corresponds to a model discontinuity, there will be at most k− 1 discontinuities
in the solution. Furthermore, the zero elements of L(mk − Bkz) correspond
to points at which the model is constant. Thus, the solution will consist of
k constant segments separated by k − 1 discontinuities, some of which may
be small. For example, if we use k = 1, we will get a flat model with no
discontinuities. For k = 2, we can obtain a model with two flat sections and
one discontinuity, and so on.

The PP-TSVD method can also be extended to piecewise linear functions
and to piecewise higher order polynomials by using a matrix L which approxi-
mates the second– or higher–order derivatives. The MATLAB function pptsvd,
available from Hansen’s web page implements the PP-TSVD algorithm.

Example 7.3

In this example we consider the Shaw problem with a true model
that consists of a step function. The true model is shown in Figure
7.12.

Figure 7.13 shows the zeroth–order Tikhonov regularization solu-
tion and Figure 7.14 shows the second–order Tikhonov regulariza-
tion solution. Both solutions show a the discontinuity as a smooth
transition because the regularization term penalizes model discon-
tinuities. The relative error (‖mtrue − m‖2/‖mtrue‖2) is about 9%
for the zeroth–order solution and about 7% for the second–order
solution.

Next, we solved the problem by minimizing the 1–norm misfit with
TV regularization. Because independent N(0, 0.0012) noise was
added, we expected the 2–norm of the residual to be about 0.0045
for the 20 data points. Using α = 1.0, we obtained a solution with
‖Gm − d‖2 = 0.0039. This solution is shown in Figure 7.15. The
solution is extremely good, with ‖mtrue −m‖2/‖mtrue‖2 < 0.0005.

Next, we solved the problem with pptsvd. The PP-TSVD solution
with k = 2 is shown in Figure 7.16. Again, we get a very good
solution, with ‖mtrue−m‖2/‖mtrue‖2 < 0.00007. Of course, the PP-
TSVD method with k = 2 is certain to produce a solution with a
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Figure 7.12: The true model.
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Figure 7.13: Zeroth–order Tikhonov regularization solution.
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Figure 7.14: Second–order Tikhonov regularization solution.
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Figure 7.15: TV regularized solution.
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single discontinuity. It is not clear how we can identify the appro-
priate number of discontinuities for the solution of a more general
inverse problem.
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Figure 7.16: PP-TSVD solution, k = 2.

7.4 Exercises

1. Using the method of Lagrange multipliers, develop a formula that can be
used to solve

min cT m
‖Gm− d‖22 ≤ δ2 .

(7.22)

2. In this exercise, you will show that (7.6) is a convex minimization problem.

(a) Compute the gradient of the function being minimized in (7.6).

(b) Compute the Hessian of the function in (7.6).

(c) Show that for α 6= 0, the Hessian is positive definite for all m > 0.
Thus the function being minimized is strictly convex, and there is a
unique minimum.
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3. In applying maximum entropy regularization in image processing, it is
common to add a constraint to (7.5) that

n∑
i=1

mi = c (7.23)

for some constant c. Show how this constraint can be incorporated into
(7.6) using a second Lagrange multiplier.

4. Returning to the problem in Exercise 4.5, solve for the density profile
using total variation regularization. How does your solution compare to
the solutions obtained in Exercise 4.5 and Exercise 5.4?

7.5 Notes and Further Reading

Methods for bounded variables least squares problems and minimizing a linear
function subject to a bound on the misfit are given in [156]. Some applications
of these techniques can be found in [69, 123, 125, 154, 155].

The maximum entropy method is widely applied in deconvolution and de-
noising of astronomical images from radio telescope data. Algorithms for max-
imum entropy regularization are discussed in [30, 109, 141, 152, 163]. More
general discussions can be found in [1, 61]. Another widely used deconvolution
algorithm in radio astronomy is the “CLEAN” algorithm [26, 70]. Briggs [19]
compares the performance of CLEAN, Maximum Entropy regularization and
NNLS.

Methods for total variation regularization are discussed in [120, 176]. The
PP-TSVD method is discussed in [63, 61].
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Chapter 8

Fourier Techniques

Synopsis: The formulation of a general linear forward problem as a convolution
is derived. The Fourier transform, Fourier basis functions, and the convolution
theorem are introduced for continuous– and discrete–time systems. The inverse
problem of deconvolution is explored in the context of the convolution theorem.
Water level regularization is used to solve the deconvolution problem.

8.1 Linear Systems in the Time and Frequency
Domains

A remarkable feature of linear time–invariant systems is that the forward prob-
lem can generally be described by a convolution (1.11),

d(t) =
∫ ∞

−∞
m(τ)g(t− τ) dτ . (8.1)

Inverse problems involving such systems can be solved by deconvolution. Here,
the independent variable t is time and the data d, model m, and system kernel g
are all time functions. However, the results here are equally applicable to spatial
problems (e.g. Example 8.1) and are also generalizable to higher dimensions.
We will overview the essentials of Fourier theory in the context of performing
convolutions and deconvolutions.

Consider a linear time–invariant operator, G, that converts an unknown
model, m(t) into an observable data function d(t)

d(t) = G[m(t)] (8.2)

that follows the principles of superposition (1.5)

G[m1(t) + m2(t)] = G[m1(t)] + G[m2(t)] (8.3)

173
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and scaling (1.6)
G[αm(t)] = αG[m(t)] (8.4)

where α is a scalar.
To show that the operation of any system satisfying (8.3) and (8.4) can be

cast in the form of (8.1), we utilize the sifting property of the impulse or
delta function, δ(t). The delta function can be conceptualized as the limiting
case of a pulse as its width goes to zero, its height goes to infinity, and its area
stays constant and equal to one, e.g.

δ(t) = lim
τ→0

τ−1Π(t/τ) (8.5)

where τ−1Π(t/τ) is a unit-area rectangle function of height τ−1 and width τ .
The sifting property allows us to extract the value of a function at a particular
point from within an integral,∫ b

a

f(t)δ(t− t0) dt =
{

f(t0) a ≤ t0 ≤ b
0 elsewhere (8.6)

for any f(t) continuous at finite t = t0. The impulse response, or Green’s
function of a system, where the model and data are related by the operator
G, is defined as the output produced when the input is a delta function

g(t) = G[δ(t)] . (8.7)

Note that any input signal, m(t), can clearly be written as a summation of
impulse functions by invoking (8.6)

m(t) =
∫ ∞

−∞
m(τ)δ(t− τ)dτ . (8.8)

Thus, a general linear system response d(t) to an arbitrary input m(t) can be
written as

d(t) = G

[∫ ∞

−∞
m(τ)δ(t− τ) dτ

]
(8.9)

or, from the definition of the integral as a limit of a quadrature sum of ∆t–width
rectangular areas as ∆t goes to zero,

d(t) = G

[
lim

∆τ→0

∞∑
n=−∞

m(τn)δ(t− τn)∆τ

]
. (8.10)

Because G characterizes a linear process, we can apply (8.3) to move the oper-
ator inside of the summation in (8.10). Furthermore using the scaling relation
(8.4), we can factor out the m(τn), to obtain

d(t) = lim
∆τ→0

∞∑
n=−∞

m(τn)G[δ(t− τn)]∆τ (8.11)
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Taking the limit, (8.11) defines the integral

d(t) =
∫ ∞

−∞
m(τ)g(t− τ) dτ (8.12)

which is identical to (8.1), the convolution of m(t) and g(t), often abbreviated
as simply d(t) = m(t) ∗ g(t).

The convolution operation generally describes the transformation of models
to data in any linear, time–invariant, physical process, including the output of
any linear measuring instrument. For example, an unattainable perfect instru-
ment that recorded some m(t) with no distortion whatsoever would have a delta
function impulse response, perhaps with a time delay t0, in which case

d(t) = m(t) ∗ δ(t− t0) (8.13)

=
∫ ∞

−∞
m(τ)δ(t− t0 − τ) dτ (8.14)

= m(t− t0) . (8.15)

An important and useful relationship exists between the convolution opera-
tion and the Fourier transform, or spectrum

G(f) = F [g(t)] (8.16)

=
∫ ∞

−∞
g(t)e−ı2πft dt (8.17)

and its inverse operation

g(t) = F−1[G(f)] (8.18)

=
∫ ∞

−∞
G(f)eı2πft df (8.19)

where F denotes the Fourier transform operator, and F−1 denotes the inverse
Fourier transform operator. The impulse response g(t) is called the time–
domain response, when the independent variable characterizing the model is
time, and its Fourier transform, G(f), is commonly called the spectrum of g(t).
G(f) is also referred to as the frequency response or transfer function of the
system characterized by the impulse response g(t). The Fourier transform (8.17)
gives a formula for evaluating the spectrum, and the inverse Fourier transform
(8.19) says that the time–domain function g(t) can be exactly reconstructed by a
complex weighted integration of functions of the form eı2πft, where the weighting
is provided by G(f). The essence of Fourier analysis is the representation and
analysis of functions using Fourier basis functions of the form eı2πft.

It is important to note that, for a real–valued function g(t), the spectrum
G(f) will be complex. |G(f)| is called the spectral amplitude, and the angle
that G(f) makes in the complex plane

θ = tan−1

(
imag(G(f))
real(G(f))

)
(8.20)
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is called the spectral phase.
It should be noted that in physics and geophysics applications the sign con-

vention chosen for the complex exponentials in the Fourier transform and its
inverse may be reversed, so that the forward transform (8.17) has a plus sign in
the exponent and the inverse transform (8.19) has a minus sign in the exponent.
This alternative sign convention merely causes complex conjugation in the spec-
trum that is reversed when the corresponding inverse transform is applied. An
additional convention issue arises as to whether to express frequency in Hz (f)
or radians per second (ω = 2πf). Alternative Fourier transform formulations
using ω differ from (8.17) and (8.19) only by a simple change of variables, and
introduce scaling factors of 2π in the forward, reverse, or both transforms.

Consider the Fourier transform of the convolution of two functions

F [m(t) ∗ g(t)] =
∫ ∞

−∞

(∫ ∞

−∞
m(τ)g(t− τ) dτ

)
e−ı2πft dt . (8.21)

Reversing the order of integration, and introducing a change of variables, ξ =
t− τ , gives

F [m(t) ∗ g(t)] =
∫ ∞

−∞
m(τ)

(∫ ∞

−∞
g(t− τ)e−ı2πftdt

)
dτ (8.22)

=
∫ ∞

−∞
m(τ)

(∫ ∞

−∞
g(ξ)e−ı2πf(ξ+τ) dξ

)
dτ (8.23)

=
(∫ ∞

−∞
m(τ)e−ı2πfτ dτ

)(∫ ∞

−∞
g(ξ)e−ı2πfξ dξ

)
(8.24)

= M(f)G(f) . (8.25)

Equation (8.25) is called the convolution theorem. The convolution theorem
states that convolution of two functions in the time domain has the simple
effect of multiplying their Fourier transforms in the frequency domain. The
Fourier transform of the impulse response, G(f) = F [g(t)], thus characterizes
how M(f), the Fourier transform of the model, is altered in spectral amplitude
and phase by the convolution.

To understand the implications of the convolution theorem more explicitly,
consider the response of a linear system, characterized by an impulse response
g(t) in the time domain and the transfer function G(f) in the frequency domain,
to a single model Fourier basis function of frequency f0,

m(t) = eı2πf0t . (8.26)

The spectrum of eı2πtf0 can be shown to be δ(f − f0) by examining the corre-
sponding inverse Fourier transform (8.19) and invoking the sifting property of
the delta function (8.6)

eı2πf0 =
∫ ∞

−∞
δ(f − f0)eı2πft df . (8.27)
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The response of a linear system to the basis function model (8.26) is thus, by
(8.25),

F [eı2πf0 ]G(f) = δ(f − f0)G(f0) (8.28)

and the corresponding time–domain response is (8.19)∫ ∞

−∞
G(f0)δ(f − f0)eı2πft df = G(f0)eı2πf0 . (8.29)

Linear time–invariant systems thus map model Fourier basis functions (8.26)
to identical data functions, and can only alter them in spectral amplitude and
phase by the complex scalar G(f). Of particular interest is the result that model
basis function amplitudes at frequencies that are weakly mapped to the data
(frequencies where |G(f)| is small) and/or obscured by noise may be difficult or
impossible to recover in an inverse problem.

The transfer function can be expressed in a particularly useful analytical
form for the case where we can express the mathematical model in the form of
a linear differential equation

an
dny

dtn
+ an−1

dn−1y

dtn−1
+ · · ·+ a1

dy

dt
+ a0y =

bm
dmx

dtm
+ bm−1

dm−1x

dtm−1
+ · · ·+ b1

dx

dt
+ b0x (8.30)

where the ai and bi are constant coefficients. Because each term in (8.30) is linear
(there are no powers or other nonlinear functions of x, y, or their derivatives),
and because differentiation is itself a linear operation, (8.30) expresses a linear
time–invariant system obeying superposition (8.3) and scaling (8.4).

If a system of the form expressed by (8.30) operates on a model of the
form m(t) = eı2πft, (8.29) indicates that the corresponding output will be
d(t) = G(f)eı2πft. Inserting these functional forms for m(t) and d(t) into (8.30),
differentiating each term (a time derivative, d/dt, simply generates a multiplier
of 2πıf in this case), dividing the resulting equation on both sides by eı2πft,
and finally solving for G(f) gives

G(f) =
D(f)
M(f)

(8.31)

=

∑m
j=0 bj(2πıf)j∑n
k=0 ak(2πıf)k

. (8.32)

The transfer function (8.32) is thus a ratio of two complex polynomials in f
for any system expressible in the form of (8.30). The m+1 complex frequencies,
fz, where the numerator (and transfer function) of (8.32) are zero are referred
to as zeros of the transfer function G(f). The predicted data will be zero for
inputs of the form eı2πfzt, regardless of their amplitude. Any real–valued zero,
fr, corresponding to a Fourier model basis function, eı2πfrt, will thus lie in the
model null space and be unrecoverable by any inverse methodology. The n + 1



178 CHAPTER 8. FOURIER TECHNIQUES

complex frequencies, fp, for which the denominator of (8.32) is zero are called
poles. The system will be unstable when excited by model basis functions of the
form, eı2πfpt. Along with a scalar gain factor, the transfer function (and hence
the response) of a general linear system can thus be completely characterized
by the poles and zeros.

8.2 Deconvolution from a Fourier Perspective

In recovering a model, m(t), that has been convolved with some g(t) using
Fourier theory, we wish to recover the spectral amplitude and phase (the Fourier
components) of m by reversing the changes in spectral amplitude and phase
(8.25) caused by the convolution. As noted above, this may be difficult or
impossible at and near frequencies where the spectral amplitude of the transfer
function, |G(f)| is small (i.e., close in frequency to the zeros of G(f)).

Example 8.1

An illustrative and important physical example of an ill–posed in-
verse problem is the downward continuation of a vertical field.
In downward continuation we wish to estimate a field at a surface
using observations made at a height h above it. The corresponding
forward problem is upward continuation, depicted in Figure 8.1.
To understand the upward continuation problem, consider a point

h

sea surface

vertical gravity
observed at z = h

point mass M

seafloor

vertical gravity
observed at z = 0+

Figure 8.1: Upward continuation of a vertical gravitational field spatial impulse.

mass, M , located at the origin, that has a total gravitational field,
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expressed as a function of position, r = xx̂ + yŷ + zẑ,

gt(r) = (gx, gy, gz) (8.33)

=
−Mγr̂

‖r‖22
(8.34)

=
−Mγ(xx̂ + yŷ + zẑ)

‖x‖32
(8.35)

where γ is Newton’s gravitational constant. The vertical component
of (8.35) is

gz = ẑ · gt (8.36)

=
−Mγz

‖r‖32
. (8.37)

Integrating (8.37) across a horizontal plane at some height z, using
the polar substitution of variables ρ2 = x2 + y2, gives∫ ∞

−∞

∫ ∞

−∞
gz dx dy = −Mγz

∫ ∞

0

∫ ∞

0

dx dy

‖r‖32
(8.38)

= −2πMγz

∫ ∞

0

ρ dρ

(z2 + ρ2)3/2
(8.39)

= −2πMγz

(
−1

(z2 + ρ2)1/2

)∣∣∣∣∞
0

(8.40)

= −2πMγ (8.41)

which is, remarkably, independent of the height z, where the field is
integrated.

The vertical field at an infinitesimal distance z = 0+ above a point
mass located at the origin will have zero vertical component unless
we are directly above the origin. For z = 0+ the vertical field is thus
given by a delta function at the origin with a magnitude given by
(8.41)

gz|z=0+ = −2πMγδ(x, y) . (8.42)

Now consider z = 0 to be the ocean floor (or the surface of the
Earth) and suppose that gravity data are collected from a ship (or
aircraft, or spacecraft) at a height h, where there are no appreciable
mass variations contributing to field complexity on z ≥ 0. If we
normalize the response by the magnitude of the delta function at
z = 0+ (8.41), the vertical field observed at z = h will be

gz(h) =
h

2π(x2 + y2 + h2)3/2
. (8.43)

Because the vertical gravitational field obeys superposition and lin-
earity, upward continuation can be recognized as a linear problem
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where (8.43) is the impulse response for observations on a plane at
height z = h. Vertical field measurements obtained at z = h can con-
sequently be expressed by a two–dimensional convolution operation
in the (x, y) plane

gz(h, x, y) =
∫ ∞

−∞

∫ ∞

−∞
gz(0, ξ1 − x, ξ2 − y)

· h

2π(ξ2
1 + ξ2

2 + h2)3/2
dξ1 dξ2 . (8.44)

We can examine the effects of upward continuation from a Fourier
perspective by evaluating the transfer function corresponding to
(8.43) to see how sinusoidally–varying field components at z = 0+

are scaled when observed at z = h. Note that in characterizing the
spatial variation of a field, the model and data Fourier basis func-
tions are of the form eı2πkxx and eı2πkyy, where kx,y are spatial
frequencies analogous to the temporal frequency f encountered in
time–domain problems. The transfer function is the Fourier trans-
form of (8.43)

G(kx, ky) =
∫ ∞

−∞

∫ ∞

−∞

h · e−ı2πkxxe−ı2πkyy dx dy

2π(x2 + y2 + h2)3/2
(8.45)

= e−2πh(k2
x+k2

y)1/2
. (8.46)

The form of the upward continuation filter (8.46) shows that higher
frequency (larger k) spatial basis functions representing components
of the vertical field at z = 0+ have their amplitudes attenuated ex-
ponentially to greater degrees. The field thus become smoother as
it is observed at progressively greater heights. An operation that
preferentially attenuates high frequencies relative to low ones is gen-
erally referred to as a low–pass filter, and upward continuation is
thus a smoothing operator when applied to the field in the (x, y)
plane.

In solving the inverse problem of downward continuation by inferring
the field at z = 0+ using measurements made at z = h, we seek an
inverse filter to reverse the smoothing effect of upward continuation.
An obvious candidate is the reciprocal of (8.46)

[G(kx, ky)]−1 = e2πh(k2
x+k2

y)1/2
. (8.47)

Equation (8.47) is the transfer function of the deconvolution that
undoes the convolution encountered in the forward problem (8.44).
However, (8.47) grows without bound as spatial frequencies kx and
ky become large. Thus, small components of field data acquired at
high spatial frequencies in observations at (h � 1/k) could lead to
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enormously amplified estimated amplitudes for those components in
the field at z = 0+. Downward continuation is thus a roughening
operator when applied to the field in (x, y) space. Because of the
exponential character of (8.47), if the data are noisy, the inverse
operation will be severely ill–posed.

The ill–posed character of downward continuation seen in Example 8.1 at
high spatial frequencies is typical of forward problems characterized by smooth
kernel functions, and is recognizable as a manifestation of the Riemann-Lebesgue
lemma. This instability means that solutions obtained using Fourier method-
ologies will frequently require regularization to produce stable and meaningful
models.

8.3 Linear Systems in Discrete Time

We can readily approximate the continuous time transforms (8.17) and (8.19)
in discretized characterizations of physical problems by using the discrete
Fourier transform, or DFT. The DFT operates on a uniformly spaced (e.g.,
space or time) sequence. For example the DFT might operate on a vector m
consisting of uniformly spaced samples of a continuous function m(t). The fre-
quency, fs, at which the sampling occurs is called the sampling rate. The
forward discrete Fourier transform is

Mk = {DFT[m]}k (8.48)

=
n−1∑
j=0

mje
−ı2πjk/n (8.49)

and its inverse is

mj =
{
DFT−1[M]

}
j

(8.50)

=
1
n

n−1∑
k=0

Mkeı2πjk/n . (8.51)

Equations (8.49) and (8.51) use the common convention that the indices range
from 0 to n− 1, and implement the same exponential sign convention as (8.17)
and (8.19). Equation (8.51) states that a sequence mj can be expressed as a lin-
ear combination of the n discrete basis functions eı2πjk/n, where the complex
coefficients are the discrete spectral values Mk. The DFT operations (8.49)
and (8.51) are also widely referred to as the FFT and IFFT because a par-
ticularly efficient algorithm, the Fast Fourier transform, is widely used to
evaluate (8.49) and (8.51). They can be calculated in MATLAB using the fft
and ifft commands. In using MATLAB routines to calculate DFT’s, be sure
to remember that MATLAB indexing begins at k = 1, rather than at k = 0.
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DFT spectra, Mk, are complex, discrete, and periodic, where the period
is n. There is also an implicit assumption that the associated sequence, mj ,
also has period n. Because of these periodicities, DFT results can be stored
in complex vectors of length n without loss of information, although the DFT
definitions (8.49) and (8.51) are valid for any integer index k. For a real–valued
sequence, (8.49) exhibits Hermitian symmetry about k = 0 and k = n/2
where Mk = M∗

n−k. See Exercise 8.2. For n even, the positive frequencies,
lfs/n, where l = 1, . . . , n/2−1, correspond to indices k = 1, . . . , n/2−1, and the
negative frequencies, −lfs/n, correspond to indices k = n/2 + 1, . . . , n− 1. The
frequencies ±fs/2 have identical DFT values and correspond to index k = n/2.
For n odd, there is no integer k corresponding to exactly half of the sampling
rate. In this case positive frequencies correspond to indices 1 through (n− 1)/2
and negative frequencies correspond to indices (n + 1)/2 through n − 1. The
k = 0 (zero frequency) term is the sum of the sequence elements mj , or n times
the average sequence value. Figure 8.2 displays the frequency mapping with
respect to k for an n = 16-length DFT.

index

frequency

FFT phase

FFT magnitude
even symmetry

odd symmetry

0

1 2 n/2 n-2 n-10

2fs/nfs/n fs/2 -2fs/n -fs/n

DFT Frequency Mapping (n = 16, Sampling Rate = fs, Real Time Series)

Figure 8.2: Frequency and index mapping describing the DFT of a real–valued
sequence (n = 16) sampled at sampling rate fs. For the DFT to adequately
represent the spectrum of an assumed periodic sequence, fs must be greater
than or equal to the Nyquist frequency (8.52).

The Hermitian symmetry of the DFT means that, for a real–valued sequence,
the spectral amplitude, |M|, is symmetric and the spectral phase is antisym-
metric with respect to k = 0 and k = n/2. See Figure 8.2. For this reason it is
customary to only plot the positive frequency spectral amplitude and phase in
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depicting the spectrum of a real signal.
For a uniformly sampled sequence to accurately represent a continuous func-

tion containing appreciable spectral energy up to some maximum frequency
fmax, the function must be sampled at a frequency at least as large as the
Nyquist frequency

fN = 2fmax . (8.52)

Should (8.52) not be met, a nonlinear distortion called aliasing will occur.
Generally speaking, aliasing causes spectral energy at frequencies f > fs/2
to be folded and superimposed onto the DFT spectrum within the frequency
range −fs/2 ≤ f ≤ fs/2. Aliasing is irreversible, in the sense that the original
continuous time function cannot be reconstructed from its sampled time series
via an inverse Fourier transform.

The discrete convolution of two sequences with equal sampling rates fs =
1/∆t can be performed in two ways. The first of these is serial,

dj =
n−1∑
i=0

migj−i∆t (8.53)

where it is assumed that the shorter of the two sequences is zero for all indices
greater than m. In serial convolution the result has at most n + m− 1 nonzero
terms. The second type of discrete convolution is circular. Circular convolution
is applicable when the two series are of equal length. If the lengths differ, they
may be equalized by padding the shorter of the two with zeros. The result
of a circular convolution is as if each sequence had been joined to its tail and
convolved in circular fashion. Equivalently, the same result can be obtained by
making the sequences periodic, with period n, and calculating the convolution
sums over a single period. A circular convolution results from the application
of the discrete convolution theorem

di = DFT−1[DFT[m] ·DFT[g]]i∆t (8.54)
= DFT−1[M · G]i (8.55)

where Mi · Gi indicates element–by–element multiplication with no summation,
not the dot product. To avoid wrap–around effects that may arise due to
the assumed n-length periodicity of m and g, and thus obtain a result that is
indistinguishable from the serial convolution (8.53), it may be necessary to pad
both series with up to n zeros and to apply (8.55) on sequences of length up
to 2n. Because of the factoring strategy used in the FFT algorithm, it is also
desirable from the standpoint of computational efficiency to pad m and g to
lengths that are powers of two.

Consider the case where we have a theoretically known, or accurately esti-
mated, system impulse response, g(t), convolved with an unknown model, m(t).
We note in passing that, although we will examine a one–dimensional deconvolu-
tion problem for simplicity, these results are generalizable to higher dimensions.
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The forward problem is

d(t) =
∫ b

a

g(t− τ)m(τ) dτ . (8.56)

Uniformly discretizing this expression using simple collocation with a sampling
interval, ∆t = 1/fs, that is short enough to avoid aliasing (8.52) gives

d = Gm (8.57)

where d and m are appropriate length sequences (sampled approximations of
d(t) and m(t)), and G is a matrix with rows that are padded, time–reversed,
sampled impulse response vectors, so that

Gi,j = g(ti − τj)∆t . (8.58)

This time–domain representation of the forward problem was previously exam-
ined in Example 4.2.

An inverse solution using Fourier methodology can be obtained by first
padding d and g appropriately with zeros so that they are of equal and suf-
ficient length to render moot potential wrap–around artifacts associated with
circular convolution. Applying the DFT and (8.25) allows us to cast the forward
problem as a complex–valued linear system

D = G · M∆t (8.59)

where G in (8.59) is a diagonal matrix with

Gi,i = Gi (8.60)

where G is the discrete Fourier transform of the sampled impulse response, g,
D, is the discrete Fourier transform of the data vector, d, and M is the discrete
Fourier transform of the model vector, m.

Equation (8.59) suggests a straightforward solution by spectral division

m = DFT−1[M] = DFT−1
[
G−1 · D

]
. (8.61)

Equation (8.61) is appealing in its simplicity and efficiency. The application of
(8.25), combined with the efficient FFT implementation of the DFT, reduces
the necessary computational effort from solving a potentially very large linear
system of time–domain equations (8.57) to just three n–length DFT operations
and n complex divisions. If d and g are real, packing/unpacking algorithms exist
that allow the DFT operations to be further reduced to operations involving
complex vectors of just length n/2.

However, (8.61) does not avoid the instability potentially associated with
deconvolution because the reciprocals of any very small diagonal elements (8.60)
will become huge in the diagonal of G−1. Equation (8.61) will thus frequently
require regularization to be useful.
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8.4 Water Level Regularization

A straightforward and widely applied method of regularizing spectral division
is water level regularization. The water level strategy employs a modified
G matrix, Gw, in the spectral division, where

Gw,i,i =

 Gi,i (|Gi,i| > w)
wGi,i/|Gi,i| (0 < |Gi,i| ≤ w)
w (Gi,i = 0) .

(8.62)

The water level regularized model estimate is then

mw = DFT−1
(
G−1

w D
)

. (8.63)

The colorful name for this technique arises from the analogy of pouring water
into the holes of the spectrum of g until the spectral amplitude levels there reach
w. The effect in (8.63) is to prevent enormous amplifications, and attendant
instability, from occurring at frequencies where the spectral amplitudes of the
system transfer function are small.

An optimal water level value w will reduce the sensitivity to noise in the
inverse solution while still recovering important model features. As is typical of
the regularization process, it is possible to choose a “best” solution by assessing
the trade–off between the norm of the residuals (fitting the data) and the model
norm (smoothness of the model) as the regularization parameter w is varied. A
useful property in evaluating data misfit and model length for calculations in the
frequency domain is that the 2–norm of the Fourier transform vector (defined for
complex vectors as the square root of the sum of the squared complex element
amplitudes) is proportional to the 2–norm of the time–domain vector, where the
constant of proportionality depends on DFT conventions. One can thus easily
evaluate 2–norm trade–off metrics in the frequency domain without calculating
inverse Fourier transforms. The 2–norm of the water level-regularized solution,
mw, will thus decrease monotonically as w increases because |Gw,i,i| ≥ |Gi,i|.

Example 8.2

In Example 4.2, we investigated time–domain seismometer deconvo-
lution for uniformly sampled data with a sampling rate of fs = 2
Hz using the truncated SVD. Here, we solve this problem using
frequency-domain deconvolution regularized via the water level tech-
nique. The impulse response, true model, and noisy data for this
example are plotted in Figures 4.9, 4.11, and 4.12, respectively. We
first pad the 210–point data and impulse response vectors with 210
additional zeros to eliminate wrap–around artifacts, and apply the
Fast Fourier transform to both vectors to obtain corresponding dis-
crete spectra. The spectral amplitudes of the impulse response, data,
and noise are critical in assessing the stability of the spectral di-
vision solution. See Figure 8.3. The frequencies range from 0 to
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fs/2 = 1 Hz. Because spectral amplitudes for real–valued sequences
are symmetric about k = 0 and k = n/2 (Figure 8.2), only positive
frequencies are shown.
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Figure 8.3: Impulse response, noise–free data, and noisy data spectral am-
plitudes for the seismometer deconvolution problem plotted as a function of
frequency.

Examining the impulse response spectral amplitude, |Gk| in Fig-
ure 8.3, we note that it decreases by approximately three orders of
magnitude between very low frequencies and half of the sampling
frequency (fs/2 = 1 Hz). The convolution theorem (8.25) shows
that the forward problem convolution multiplies the spectrum of
the model by G(f) in mapping it to the data. Thus, the convo-
lution of a general signal with broad frequency content with this
impulse response will strongly attenuate higher frequencies. Figure
8.3 also shows that the spectral amplitudes of the noise–free data
fall off more quickly than the impulse response. This indicates that
spectral division will be a stable process for noise–free data in this
problem. Figure 8.3 also shows that the spectral amplitudes of the
noisy data dominate the signal at frequencies higher than f ≈ 0.1
Hz. Because of the small values of Gk at these frequencies, the spec-
tral division solution using the noisy data will be dominated by noise
(as was the case in the time–domain solution of Example 4.2; see Fig-
ure 4.14). Figure 8.4 shows the amplitude spectrum resulting from
spectral division using the noisy data. The resulting spectrum, the
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Fourier transform amplitude of Figure 4.14, is dominated by noise
at frequencies above about 0.1 Hz.
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Figure 8.4: Spectral amplitudes resulting from the Fourier transform of the
noisy data divided by the the Fourier transform of the impulse response (the
transfer function).

To regularize the spectral division solution, an optimal water level
is sought. Because w has units of spectral amplitude, Figure 8.3
shows that the optimal value of w to deconvolve the portion of the
data spectrum that is unobscured by noise (while suppressing the
amplification of higher frequency noise) is of order 1. However, such
a determination might be more difficult for real data with a more
complex spectrum, or where the distinction between signal and noise
is unclear. An adaptive way to select w is to examine the L–curve
constructed using a range of water level values. Figure 8.5 shows
the L–curve for this example, which suggests an optimal w close to
3. Figure 8.6 shows a corresponding range of solutions, and Figure
8.7 shows the solution for w = 3.16.

The solution shown in Figure 8.7, chosen from the corner of the
trade–off curve of Figure 8.5, shows the familiar features of reso-
lution reduction, typical in regularized solutions. In this case, the
reduction in resolution caused by regularization is manifested by re-
duced amplitude, oscillatory side lobes, and model spreading into
adjacent elements relative to the true model.
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Figure 8.5: L–curve for a logarithmically–distributed range of water level values.
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Figure 8.6: Models corresponding to the range of water level values used to
construct Figure 8.5. Dashed curves show the true model.
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Figure 8.7: Model corresponding to w = 3.16. Dashed curve shows the true
model.

A significant new idea introduced by the Fourier methodology is that it pro-
vides a set of model and data basis functions of the form of (8.26), the complex
exponentials, that have the property of passing through a linear system altered
in phase and amplitude, but not in functional character (8.29). This remarkable
fact is the essence of the convolution theorem (8.25). The spectrum of the im-
pulse response (such as in Figures 8.3 and 8.4) can thus be used to understand
what frequency components may exhibit instability in an inverse solution. The
information contained in the spectrum of Figure 8.3 is thus analogous to that
obtained with a Picard plot in the context of the SVD in Chapter 5. The Fourier
perspective also provides a link between linear inverse theory and the (vast) field
of linear filtering. The deconvolution problem in this context is identical to find-
ing an optimal inverse filter to recover the model while suppressing the influence
of noise. Because of the FFT algorithm and the convolution theorem, Fourier
methods can also be spectacularly computationally efficient relative to time–
domain deconvolution methods. This efficiency can become critically important
when larger and/or higher–dimensional models are of interest, a large number
of deconvolutions must be performed, or computational speed is critical, such
as in real–time applications.
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8.5 Exercises

1. Given that the Fourier transform of a real–valued linear system, g(t)

F [g(t)] = G(f) = real(G(f)) + imag(G(f)) = α(f) + ıβ(f) (8.64)

is Hermitian
G(f) = G∗(−f) (8.65)

show that convolving g(t) with sin(2πf0t) and cos(2πf0t) produces the
scaled and phase–shifted sinusoids

g(t) ∗ sin(2πf0t) = |G(f0)| · sin(2πf0t + θ(f0)) (8.66)

g(t) ∗ cos(2πf0t) = |G(f0)| · cos(2πf0t + θ(f0)) (8.67)

where the scale factor is the spectral amplitude

|G(f0)| = (α2(f0) + β2(f0))
1
2 (8.68)

and the phase–shift factor is the spectral phase

θ(f0) = tan−1

(
β(f0)
α(f0)

)
. (8.69)

2. (a) Demonstrate using (8.49) that the DFT of an n–point, real–valued
sequence, xj is Hermitian, i.e.,

Xn−k = X ∗
k (8.70)

(b) Demonstrate that the Hermitian symmetry shown in part (a) implies
that the N independent elements in a time series x produce N/2 + 1
independent elements (N even) or (N−1)/2+1 independent elements (N
odd) in the DFT X . As the DFT has an inverse (8.51) that reproduces x
from X , clearly information has not been lost in taking the DFT, yet the
number of independent elements in x and X differ. Explain this.

3. A linear damped vertical harmonic oscillator consisting of a mass sus-
pended on a lossy spring is affixed to the surface of a terrestrial planet to
function as a seismometer, where the recorded downwards displacement,
z(t) of the mass relative to its equilibrium position will depend on ground
motion. For an upwards ground displacement, u(t), the system can be
mathematically modeled in the form of (8.30) as

d2z

dt2
+

D

M

dz

dt
+

K

M
z =

d2u

dt2
(8.71)
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where the physical properties of the oscillator are defined by the mass M ,
the displacement–proportional spring force constant K, and the velocity–
proportional damping force constant D.

(a) Using u(t) = eı2πft and z(t) = G(f)eı2πft, obtain the transfer function
G(f) = Z(f)/U(f), where Z(f) and U(f) are the Fourier transforms of
z(t) and u(t), respectively.

In terms of M , K, and D:

(b) For what general frequency range of ground motion will the response
of this instrument be difficult to remove via a deconvolution?

(c) For what general frequency range of ground motion will the output of
this instrument be nearly identical to the true ground motion?

4. Consider a regularized deconvolution as the solution to

g ∗m = d (8.72)

subject to
wLm = 0 (8.73)

where g is an impulse response, L is an n by n roughening matrix, w is
a water level parameter, and all vectors are time series of length n with
unit sampling intervals.

(a) Show, by taking the Fourier transforms of (8.72) and (8.73) and sum-
ming constraints, that a water level regularization–like solution incorpo-
rating the diagonal matrix

Gw,i,i = Gi,i + w (8.74)

can be obtained when L = I.

(b) Show that, for L corresponding to a pth–order roughening matrix (e.g.
(5.27) and (5.29)), higher–order water level solutions may be obtained
where

Gw,i,i = Gi,i + (2πıfi)pw (8.75)

and fi is the frequency associated with the ith element of the n–length
discrete spectrum.

Hint: Apply the convolution theorem and note that the Fourier transform
of dg(t)/dt is 2πıf times the Fourier transform of g(t).

5. A displacement seismogram is observed from a large earthquake at a far-
field seismic station, from which the source region can be approximated
as a point. A much smaller aftershock from the main shock region is used
as an empirical Green’s function for this event. It is supposed that the
observed signal from the large event should be approximately equal to
the convolution of the main shock’s rupture history with this empirical
Green’s function.

The 256–point seismogram is in the file seis.mat. The impulse response of
the seismometer is in the file impresp.mat.
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(a) Deconvolve the impulse response from the observed main shock seis-
mogram using water level regularized deconvolution to solve for the
source time function of the large earthquake. Note that the source
time function is expected to consist of a nonnegative pulse or set
of pulses. Estimate the source duration in samples and assess any
evidence for subevents and their relative durations and amplitudes.
Approximately what water level do you believe is best for this data
set? Why?

(b) Perform the p = 2 order water level deconvolution of these data. See
Exercise 8.3.

(c) Recast the problem as a discrete linear inverse problem, as described
in the example for Chapter 4, and solve the system using second–
order Tikhonov regularization.

(d) Are the results in (c) better or worse than in (a) or (b)? How and
why? Compare the amount of time necessary to find the solution in
each case on your computing platform.

8.6 Notes and Further Reading

Gubbins [56] also explores connections between Fourier and inverse theory in a
geophysical context. Kak and Slaney [80] give an extensive treatment of Fourier–
based methods for tomographic imaging. Vogel [176] discusses Fourier methods
for image deblurring. Because of the tremendous utility of Fourier techniques,
there are numerous resources on their use in the physical sciences, engineering,
and pure mathematics. A basic text covering theory and some applications at
the approximate level of this text is [18], and a recommended advanced text on
the topic is [129].



Chapter 9

Nonlinear Regression

Synopsis: Common approaches to solving nonlinear regression problems are in-
troduced, extending the development of linear regression in Chapter 2. We be-
gin with a discussion of Newton’s method, which provides a general framework
for solving nonlinear systems of equations and nonlinear optimization problems.
Then we discuss the Gauss-Newton (GN) and Levenberg-Marquardt (LM) meth-
ods, which are versions of Newton’s method specialized for nonlinear regression
problems. The distinction between LM and Tikhonov regularization is also made.
Statistical aspects and implementation issues are addressed, and examples of
nonlinear regression are presented.

9.1 Newton’s Method

Consider a nonlinear system of m equations in m unknowns

F(x) = 0 . (9.1)

We will construct a sequence of vectors, x0, x1, . . ., which will converge to a
solution x∗. If F is continuously differentiable, we can construct a Taylor series
approximation about x0

F(x0 + ∆x) ≈ F(x0) +∇F(x0)∆x (9.2)

where ∇F(x0) is the Jacobian

∇F(x0) =


∂F1(x

0)
∂x1

· · · ∂F1(x
0)

∂xm

...
. . .

...
∂Fm(x0)

∂x1
· · · ∂Fm(x0)

∂xm

 . (9.3)

Using (9.2) we can obtain an approximate equation for the difference between
x0 and the unknown x∗

F(x∗) = 0 ≈ F(x0) +∇F(x0)∆x . (9.4)

193
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Solving (9.4) for the difference between x∗ and x0 gives

∇F(x0)∆x ≈ −F(x0) (9.5)

which leads to Newton’s method.

Algorithm 9.1 Newton’s Method

Given a system of equations F(x) = 0 and an initial solution x0,
repeat the following steps to compute a sequence of solutions x1,
x2, . . .. Stop if and when the sequence converges to a solution with
F(x) = 0.

1. Use Gaussian elimination to solve

∇F(xk)∆x = −F(xk) (9.6)

2. Let xk+1 = xk + ∆x.

3. Let k = k + 1.

The theoretical properties of Newton’s method are summarized in the fol-
lowing theorem. For a proof, see [34].

Theorem 9.1

If x0 is close enough to x∗, F(x) is continuously differentiable in
a neighborhood of x∗, and ∇F(x∗) is nonsingular, then Newton’s
method will converge to x∗. The convergence rate is quadratic in
the sense that there is a constant c such that for large k,

‖xk+1 − x∗‖2 ≤ c‖xk − x∗‖22 . (9.7)

In practical terms, quadratic convergence means that as we approach x∗, the
number of accurate digits in the solution doubles at each iteration. Unfortu-
nately, if the hypotheses in the above theorem are not satisfied, then Newton’s
method can converge very slowly or even fail altogether.

A simple modification to the basic Newton’s method often helps with con-
vergence problems. In the damped Newton’s method, we use the Newton’s
method equations at each iteration to compute a direction in which to move.
However, instead of simply taking the full step xi + ∆x, we search along the
line between xi and xi + ∆x to find the point that minimizes ‖F(xi + α∆x)‖2,
and take the step that minimizes the norm.
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Now suppose that we wish to minimize a scalar–valued function f(x). If we
assume that f(x) is twice continuously differentiable, we have a Taylor series
approximation

f(x0 + ∆x) ≈ f(x0) +∇f(x0)T ∆x +
1
2
∆xT∇2f(x0)∆x (9.8)

where ∇f(x0) is the gradient

∇f(x0) =


∂f(x0)

∂x1
...

∂f(x0)
∂xm

 (9.9)

and ∇2f(x0) is the Hessian

∇2f(x0) =


∂2f(x0)

∂x2
1

· · · ∂2f(x0)
∂x1∂xm

...
. . .

...
∂2f(x0)
∂xm∂x1

· · · ∂2f(x0)
∂x2

m

 . (9.10)

Note that we use ∇2 to denote the Hessian here, not the Laplacian operator.
A necessary condition for x∗ to be a minimum of f(x) is that ∇f(x∗) = 0.

We can approximate the gradient in the vicinity of x0 by

∇f(x0 + ∆x) ≈ ∇f(x0) +∇2f(x0)∆x . (9.11)

Setting the approximate gradient (9.11) equal to zero gives

∇2f(x0)∆x = −∇f(x0) . (9.12)

Solving (9.12) for successive solution steps leads to Newton’s method for
minimizing f(x).

Algorithm 9.2 Newton’s Method for Minimizing f(x)

Given a twice continuously differentiable function f(x), and an ini-
tial solution x0, repeat the following steps to compute a sequence of
solutions x1, x2, . . .. Stop if and when the sequence converges to a
solution with ∇f(x) = 0.

1. Solve ∇2f(xk) = −∇f(xk).
2. Let xk+1 = xk + ∆x.
3. Let k = k + 1.

The theoretical properties of Newton’s method for minimizing f(x) are sum-
marized in the following theorem. Since Newton’s method for minimizing f(x)
is exactly Newton’s method for solving a nonlinear system of equations applied
to ∇f(x) = 0, the proof follows immediately from the proof of Theorem 9.1.
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Theorem 9.2

If f(x) is twice continuously differentiable in a neighborhood of
a local minimizer x∗, there is a constant λ such that ‖∇2f(x) −
∇2f(y)‖2 ≤ λ‖x − y‖2 for every vector y in the neighborhood,
∇2f(x∗) is positive definite, and x0 is close enough to x∗, then
Newton’s method will converge quadratically to x∗.

Newton’s method for minimizing f(x) is very efficient when it works, but
the method can also fail to converge. As with Newton’s method for systems
of equations, the convergence properties of the algorithm can be improved in
practice by using a line search.

9.2 The Gauss–Newton and Levenberg–Marquardt
Methods

Newton’s method for systems of equations is not directly applicable to most
nonlinear regression and inverse problems. This is because we may not have
equal numbers of data points and model parameters and there may not be an
exact solution to G(m) = d. Instead, we will use Newton’s method to minimize
a nonlinear least squares problem.

Specifically, we consider the problem of fitting a vector of n parameters to
a data vector d. A vector of standard deviations σ for the measurements is
also given. The parameters and data are related through a nonlinear system of
equations G(m) = d. Our goal is to find values of the parameters that best fit
the data in the sense of minimizing the 2–norm of the residuals.

As with linear regression, if we assume that the measurement errors are nor-
mally distributed, then the maximum likelihood principle leads us to minimizing
the sum of squared errors normalized by their respective standard deviations
(2.13). We seek to minimize

f(m) =
m∑

i=1

(
G(m)i − di

σi

)2

. (9.13)

For convenience, we will let

fi(m) =
G(m)i − di

σi
i = 1, 2, . . . ,m (9.14)

and

F(m) =

 f1(m)
...

fm(m)

 . (9.15)

Thus

f(m) =
m∑

i=1

fi(m)2 (9.16)
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The gradient of f(m) can be written as the sum of the gradients of the
individual terms.

∇f(m) =
m∑

i=1

∇
(
fi(m)2

)
. (9.17)

The elements of the gradient are

∇f(m)j =
m∑

i=1

2∇fi(m)jF(m)j . (9.18)

The gradient of f(m) can be written in matrix notation as

∇f(m) = 2J(m)T F(m) (9.19)

where J(m) is the Jacobian

J(m) =


∂f1(m)

∂m1
· · · ∂f1(m)

∂mn

...
. . .

...
∂fm(m)

∂m1
· · · ∂fm(m)

∂mn

 . (9.20)

Similarly, we can express the Hessian of f(m) using the fi(m) terms to
obtain

∇2f(m) =
m∑

i=1

∇2(fi(m)2) (9.21)

=
m∑

i=1

Hi(m) (9.22)

where Hi(m) is the Hessian of fi(m)2. The j, k element of Hi(m) is

Hi
j,k(m) =

∂2(fi(m)2)
∂mj∂mk

(9.23)

=
∂

∂mj

(
2fi(m)

∂fi(m)
∂mk

)
(9.24)

= 2
(

∂fi(m)
∂mj

∂fi(m)
∂mk

+ fi(m)
∂2fi(m)
∂mj∂mk

)
. (9.25)

Thus
∇2f(m) = 2J(m)T J(m) + Q(m) (9.26)

where

Q(m) = 2
m∑

i=1

fi(m)∇2fi(m) . (9.27)

In the Gauss–Newton (GN) method, we simply ignore the Q(m) term
and approximate the Hessian by the first term of (9.26)

∇2f(m) ≈ 2J(m)T J(m) . (9.28)
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In the context of nonlinear regression, we expect that the fi(m) terms will be
reasonably small as we approach the optimal parameters m∗, so that this is a
reasonable approximation. This is not a reasonable approximation for nonlinear
least squares problems in which the values of fi(m) can be large.

Using (9.28) and dividing both sides by 2, the equations for successive iter-
ations in the GN method become

J(mk)T J(mk)∆m = −J(mk)T F(mk) . (9.29)

The matrix in this system of equations is symmetric and positive semidefinite.
If the matrix is actually positive definite then we can use the Cholesky factoriza-
tion to solve the system of equations. If the matrix is singular then the method
will fail.

Although the GN method often works well in practice, it is based on New-
ton’s method, and can thus fail for all of the same reasons as Newton’s method.
Furthermore, the method can fail when the matrix J(mk)T J(mk) is singular.

In the Levenberg–Marquardt (LM) method, the GN method equations
(9.29) are modified to

(J(mk)T J(mk) + λI)∆m = −J(mk)T F(mk) . (9.30)

Here the positive parameter λ is adjusted during the course of the algorithm to
insure convergence. One important reason for using a positive value of λ is that
the λI term ensures that the matrix is nonsingular. Since the matrix in this
system of equations is symmetric and positive definite, we can use the Cholesky
factorization to solve the system.

For very large values of λ,

J(mk)T J(mk) + λI ≈ λI (9.31)

and
∆m ≈ − 1

λ
∇f(m) . (9.32)

This is a steepest–descent step, meaning the algorithm simply moves down–
gradient to most rapidly reduce f(m). The steepest–descent approach provides
very slow, but certain convergence. Conversely, for very small values of λ, the
LM method reverts to the GN method (9.29), which gives potentially fast but
uncertain convergence.

One challenge associated with the LM method is determining the optimal
value of λ. The general strategy is to use small values of λ in situations where
the GN method is working well, but to switch to larger values of λ when the GN
method fails to make progress. A simple approach is to start with a small value
of λ, and then adjust it in every iteration. If the LM method leads to a reduction
in f(m), then take this step and decrease λ by a constant multiplicative factor
(say 2) before the next iteration. Conversely, if the LM method does not lead
to a reduction in f(m), then do not take the step, but instead increase λ by
a constant factor (say 2) and try again, repeating this process until a step is
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found which actually does decrease the value of f(m). Robust implementations
of the LM method use more sophisticated strategies for adjusting λ, but even
this simple strategy works surprisingly well.

In practice, a careful LM implementation offers the good performance of the
GN method as well as very good convergence properties. LM is the method of
choice for small to medium sized nonlinear least squares problems.

The λI term in the LM method looks a lot like Tikhonov regularization. It
is important to understand that this is not actually a case of Tikhonov regu-
larization. The λI term is used to stabilize the solution of the linear system
of equations which determines the search direction to be used. Because the λI
term is only used as a way to improve the convergence of the algorithm, and
does not enter into the objective function that is being minimized, it does not
regularize the nonlinear least squares problem. We discuss the regularization of
nonlinear problems in Chapter 10.

9.3 Statistical Aspects

Recall from Appendix B that if a vector d has a multivariate normal distribution,
and A is an appropriately sized matrix, then Ad also has a multivariate normal
distribution with an associated covariance matrix

Cov(Ad) = ACov(d)AT . (9.33)

We applied this formula to the least squares problem for Gm = d, which we
solved by the normal equations. The resulting formula for Cov(m) was

Cov(mL2) = (GT G)−1GT Cov(d)G(GT G)−1 . (9.34)

In the simplest case, where Cov(d) = σ2I, (9.34) simplified to

Cov(mL2) = σ2(GT G)−1 . (9.35)

For the nonlinear regression problem we no longer have a linear relationship
between the data and the estimated model parameters, so we cannot assume
that the estimated model parameters have a multivariate normal distribution,
and cannot use the above formulas.

Since we are interested in how small data perturbations result in small model
perturbations, we can consider a linearization of the misfit function F(m)

F(m∗ + ∆m) ≈ F(m∗) + J(m∗)∆m . (9.36)

Under this approximation, there is a linear relationship between changes in F
and changes in the parameters m

∆F ≈ J(m∗)∆m . (9.37)

In the sense that the Hessian can be approximated by (9.28), J(m∗) takes the
place of G in an approximate estimate of the covariance of the model parameters.
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Because we have incorporated the σi into the formula for f(m), Cov(d) is the
identity matrix so

Cov(m∗) ≈ (J(m∗)T J(m∗))−1 . (9.38)

Unlike linear regression, the parameter covariance matrix in nonlinear regres-
sion is not exact. In nonlinear regression, the covariance matrix and confidence
intervals depend critically on the accuracy of the linearization (9.37). If this
linearization is not accurate over the range of likely models then the resulting
confidence intervals will not be correct. The Monte Carlo approach discussed in
Section 2.5 provides a robust but computationally intensive alternative method
for estimating Cov(m∗).

As in linear regression, we can perform a χ2 test of goodness of fit. The
appropriateness of this test also depends on how well the full nonlinear model
is approximated by the Jacobian linearization for points near the optimal pa-
rameter values. In practice, this approximation is typically adequate unless the
data are extremely noisy.

As with linear regression, it is possible to apply nonlinear regression when
the measurement errors are independent and normally distributed and the
standard deviations are unknown but assumed to be equal. See Section 2.3. We
set the σi to 1 and minimize the sum of squared errors. If we define a residual
vector

ri = G(m∗)i − di i = 1, 2, . . . ,m (9.39)

our estimate of the measurement standard deviation is

s =

√∑m
i=1 r2

i

m− n
(9.40)

and the approximate covariance matrix for the estimated model parameters is

Cov(m∗) = s2(J(m∗)T J(m∗))−1 . (9.41)

Once we have m∗ and Cov(m∗), we can establish confidence intervals for the
model parameters exactly as we did in Chapter 2. Just as with linear regres-
sion, it is also important to examine the residuals for systematic patterns or
deviations from normality. If we have not estimated the measurement standard
deviation s, then it is also important to test the χ2 value for goodness of fit.

Example 9.1

A classic method in hydrology for determining the transmissivity
and storage coefficient of an aquifer is called the “slug test” [45].

A known volume Q of water (the slug) is injected into a well, and
the resulting effects on the head, h, at an observation well a distance
d away from the injection well are observed at various times t. The
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change in head measured at the observation well typically increases
rapidly and then decreases more slowly. We wish to determine the
storage coefficient S, and the transmissivity, T .

The mathematical model for the slug test is

h =
Q

4πTt
e−d2S/(4Tt) . (9.42)

We know the parameters Q = 50 m3 and d = 60 m, and the times t at
which the head h is measured. Our data are given in Table 9.1, where
head measurements were roughly accurate to 0.01 m (σi = 0.01 m).

t (hours) 5 10 20 30 40 50
h (m) 0.72 0.49 0.30 0.20 0.16 0.12

Table 9.1: Slug test data.

The optimal parameter values were S = 0.00207 and T = 0.585 m2/hr.
The observed χ2 value was 2.04, with a corresponding p–value of
73%. Thus this fit passes the χ2 test. The data points and fitted
curve are shown in Figure 9.1.

Using the Jacobian evaluated at the optimal parameter values, we
computed an approximate covariance matrix for the fitted parame-
ters. The resulting 95% confidence intervals for S and T were

S = 0.00207± 0.00012 (9.43)
T = 0.585± 0.029 m2/hr . (9.44)

A contour plot of the χ2 surface obtained by varying S and T is
shown in Figure 9.2. Note that, unlike our earlier linear regression
problems, the contours are not ellipses. This is a consequence of
the nonlinearity of the problem. If we zoom in to the region around
the optimal parameter values, we find that near the optimal param-
eters, contours of the χ2 surface are approximately elliptical. This
indicates that the linear approximation of G(m) around the optimal
parameter values is a good approximation for small perturbations.
Figure 9.3 shows the 95% confidence ellipse for the fitted param-
eters. For comparison, the individual confidence interval for S is
shown with dashed lines.

9.4 Implementation Issues

In this section we consider a number of important issues in the implementation
of the GN and LM methods.
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Figure 9.1: Data and fitted model for the slug test.
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Figure 9.2: χ2 contour plot for the slug test.
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Figure 9.3: Closeup of the χ2 contour plot for the slug test, showing the 95%
confidence ellipsoid and the 95% confidence interval for S.

The most important difference between the linear regression problems that
we solved in Chapter 2 and the nonlinear regression problems discussed in this
chapter is that in nonlinear regression we have a nonlinear function G(m). Our
iterative methods require the computation of the functions fi(m) and their
partial derivatives with respect to the model parameters mj . These partial
derivatives in turn depend on the derivatives of G

∂fi(m)
∂mj

=
1
σi

∂G(m)i

∂mj
. (9.45)

In some cases, we have explicit formulas for G(m) and its derivatives. In other
cases, G(m) exists only as a black box subroutine that we can call as required
to compute function values.

When an explicit formula for G(m) is available, and the number of param-
eters is relatively small, we can differentiate by hand or use a symbolic compu-
tation package. There are also automatic differentiation software packages
that can translate the source code of a program that computes G(m) into a
program that computes the derivatives of G(m).

Another approach is to use finite differences to approximate the first
derivatives of G(m)i. A simple first–order scheme is

∂G(m)i

∂mj
≈ G(m + hej)i −G(m)i

h
. (9.46)
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Finite difference derivative approximations such as (9.46) are inevitably less ac-
curate than exact formulas, and can lead to numerical difficulties in the solution
of a nonlinear regression problem. In particular, the parameter h must not be
too large, because (9.46) arises from a Taylor series approximation that be-
comes inaccurate as h increases. On the other hand, as h becomes very small,
significant round–off error in the numerator of (9.46) may occur. A good rule of
thumb is to set h =

√
ε, where ε is the accuracy of the evaluations of G(m)i. For

example, if the function evaluations are accurate to 0.0001, then an appropriate
choice of h would be about 0.01. Determining the actual accuracy of function
evaluations can be difficult, especially when G is a black box routine. One use-
ful assessment technique is to plot function values as a parameter of interest is
varied over a small range. These plots should be smooth at the scale of h.

When G is available only as a black box subroutine that can be called with
particular values of m, and the source code for the subroutine is not available,
then the only possible approach is to use finite differences.

In practice many difficulties in solving nonlinear regression problems can
be traced back to incorrect derivative computations. It is thus a good idea to
cross–check any available analytical formulas for the derivative with finite differ-
ence approximations. Many software packages for nonlinear regression include
options for checking the accuracy of derivative formulas.

A second important issue in the implementation of the GN and LM methods
is deciding when to terminate the iterations. We would like to stop when the
gradient ∇f(m) is approximately 0 and the values of m have stopped changing
substantially from one iteration to the next. Because of scaling issues, it is not
possible to set an absolute tolerance on ‖∇f(m)‖2 that would be appropriate
for all problems. Similarly, it is difficult to pick a single absolute tolerance on
‖mk+1 −mk‖2 or |f(mk+1)− f(mk)|.

The following convergence tests have been normalized so that they will work
well on a wide variety of problems. We assume that values of G(m) can be
calculated with an accuracy of ε. To ensure that the gradient of f(m) is ap-
proximately 0, we require that

‖∇f(mk)‖2 <
√

ε(1 + |f(mk)|) . (9.47)

To ensure that successive values of m are close, we require

‖mk −mk−1‖2 <
√

ε(1 + ‖mk‖2) . (9.48)

Finally, to make sure that the values of f(m) have stopped changing, we require
that

|f(mk)− f(mk−1)| < ε(1 + |f(mk)|) . (9.49)

There are a number of additional problems that can arise during the solution
of a nonlinear regression problem by the GN or LM methods related to the
functional behavior of f(m).

The first issue is that our methods assume that f(m) is a smooth function.
This means not only that f(m) must be continuous, but also that its first and



9.4. IMPLEMENTATION ISSUES 205

second partial derivatives with respect to the parameters must be continuous.
Figure 9.4 shows a function which is itself continuous, but has discontinuities
in the first derivative at m = 0.2 and the second derivative at m = 0.5. When
G(m) is given by an explicit formula, it is usually easy to verify this assumption,
but when G(m) is implemented as a black box routine, it can be very difficult.
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Figure 9.4: An example of a nonsmooth function.

A second issue is that the function f(m) may have a “flat bottom.” See
Figure 9.5. In such cases, there are many values of m that come close to
fitting the data, and it is difficult to determine the optimal m∗. In practice,
this condition is seen to occur when J(m∗)T J(m∗) is nearly singular. Because
of this ill–conditioning, computing accurate confidence intervals for the model
parameters can be effectively impossible. We will address this difficulty in the
next chapter by applying Tikhonov regularization.

The final problem that we will consider is that f(m) may be nonconvex and
therefore have multiple local minimum points. See Figure 9.6.

The GN and LM methods are designed to converge to a local minimum, but
depending on where we begin the search, there is no way to be certain that such
a solution will be a global minimum. Depending on the particular problem, the
optimization algorithm might well converge to a locally optimal solution.

Global optimization methods have been developed to deal with this issue
[20, 72, 130, 146]. Deterministic global optimization procedures can be used
on problems with a very small number of variables, while stochastic search
procedures can be applied to large–scale problems. Stochastic search procedures
can be quite effective in practice, even though they do not find a global optimum
with certainty.
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Figure 9.5: An example of a function with a flat bottom.

However, even a deterministic global optimization procedure is not a panacea.
In the context of nonlinear regression, if the nonlinear least squares problem has
multiple locally optimal solutions with similar objective function values, then
each of these solutions will correspond to a statistically likely solution. We
cannot simply report one globally optimal solution as our best estimate and
construct confidence intervals using (9.38), because this would mean ignoring
other likely solutions. However, if we could show that there is one globally opti-
mal solution and other locally optimal solutions have very small p–values, then it
would be appropriate to report the globally optimal solution and corresponding
confidence intervals.

Although a thorough discussion of global optimization is beyond the scope
of this book, we will discuss one simple global optimization procedure called
the multistart method. In this procedure, we randomly generate a large
number of initial solutions, and perform the LM method starting with each of
the random solutions. We then examine the local minimum solutions found by
the procedure, and select the one with the smallest value of f(m). If other local
minimum solutions are statistically unlikely, then it is appropriate to report the
global optimum as our solution. The multistart approach has two important
practical advantages. First, by finding many locally optimal solutions, we can
determine whether there is more than one statistically likely solution. Second,
we can make effective use of the fast convergence of the LM method to a locally
optimal solution.
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Figure 9.6: An example of a function with multiple local minima.

Example 9.2

Consider the problem of fitting

y = m1e
m2x + m3xem4x (9.50)

to a set of data. The true model parameters are m1 = 1.0, m2 =
−0.5, m3 = 1.0, and m4 = −0.75, and the x values are 25 evenly
spaced points between 1 and 7. We compute corresponding y values
and add independent normally distributed noise with a standard
deviation of 0.01 to obtain a synthetic data set.

We next use the LM method to solve the problem 20 times, using
random initial solutions with each parameter uniformly distributed
between -1 and 1. This produces a total of three different locally
optimal solutions. See Table 9.2. Since solution number 1 has the
best χ2 value, and the other two solutions have unreasonably large
χ2 values, we will analyze only the first solution.

The χ2 value of 17.39 has an associated p-value (based on 21 degrees
of freedom) of 0.69, so this regression fit passes the χ2 test. Figure
9.7 shows the data points with one–σ error bars and the fitted curve.

Figure 9.8 shows the normalized residuals for this regression fit. Note
that the majority of the residuals are within 0.5 standard deviations,
with a few residuals as large as 1.9 standard deviations. There is no
obvious trend in the residuals as x ranges from 1 to 7.
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Solution Number m1 m2 m3 m4 χ2 p-value
1 0.9874 -0.5689 1.0477 -0.7181 17.3871 0.687
2 1.4368 0.1249 -0.5398 -0.0167 40.0649 0.007
3 1.5529 -0.1924 -0.1974 -0.1924 94.7845 < 0.001

Table 9.2: Locally optimal solutions for the sample problem.
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Figure 9.7: Data points and fitted curve.
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Figure 9.8: Normalized residuals.

Next, we compute the approximate covariance matrix for the model
parameters using (9.38). The square roots of the diagonal elements
of the covariance matrix are standard deviations for the individual
model parameters. These are then used to compute 95% confidence
intervals for model parameters. The solution parameters with 95%
confidence intervals are

m1 = +0.98± 0.22 (9.51)
m2 = −0.57± 0.77 (9.52)
m3 = +1.05± 0.50 (9.53)
m4 = −0.72± 0.20 . (9.54)

The true parameters (1, -0.5, 1, and -0.75) are all covered by these
confidence intervals. However, there is a large degree of uncertainty.
This is an example of a poorly conditioned nonlinear regression prob-
lem in which the data do not constrain the parameter values very
well.

The correlation matrix provides some insight into the nature of the
ill–conditioning. For our preferred solution, the correlation matrix
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is

ρ =


1.00 −0.84 0.68 0.89

−0.84 1.00 −0.96 −0.99
0.68 −0.96 1.00 0.93
0.89 −0.99 0.93 1.00

 . (9.55)

Note the strong positive and negative correlation between pairs of
parameters that indicate strong correlations between parameter val-
ues. For example, the strong negative correlation between m1 and
m2 tells us that by increasing m1 and simultaneously decreasing m2

we can obtain a solution that is very nearly as good as our optimal
solution. There are also strong negative correlations between m2

and m3 and between m2 and m4.

9.5 Exercises

1. A recording instrument sampling at 50 Hz records a noisy sinusoidal volt-
age signal in a 40–s–long record. The data is to be modeled using

y(t) = A sin(2πf0t + φ) + c + dη(t) V (9.56)

where η(t) is believed to be unit standard deviation, independent, and nor-
mally distributed noise, and d is an unknown standard deviation. Using
the data in the file instdata, solve for the parameters (m1, m2, m3, m4) =
(A, f0, φ, c), using the LM method. Show that it is critical to choose a
good initial solution (suitable initial parameters can be found by exam-
ining a plot of the time series by eye). Once you are satisfied that you
have found a good solution, use it to estimate the noise amplitude d. Use
your solution and estimate of d to find corresponding covariance and cor-
relation matrices and 95% parameter confidence intervals. Which pair of
parameters is most strongly correlated? Are there multiple equally good
solutions for this problem?

2. In hydrology, the van Genuchten model is often used to relate the volu-
metric water content in an unsaturated soil to the head [174]. The model
is

θ(h) = θr +
θs − θr

(1 + (−αh)n)(1−1/n)
(9.57)

where θs is the volumetric water content at saturation, θr is the residual
volumetric water content at a very large negative head, and α and n are
two parameters which can be fit to laboratory measurements.

The file vgdata contains measurements for a loam soil at the Bosque
del Apache National Wildlife Refuge in New Mexico [64]. Fit the van
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Genuchten model to the data. The volumetric water content at satura-
tion is θs = 0.44, and the residual water content is θr = 0.09. You may
assume that the measurements of θ(h) are accurate to about 2% of the
measured values.

You will need to determine appropriate values for σi, write functions to
compute θ(h) and its derivatives, and then use the LM method to estimate
the parameters. In doing so, you should consider whether or not this
problem might have local minima. It will be helpful to know that typical
values of α range from about 0.001 to 0.02, and typical values of n run
from 1 to 10.

3. An alternative version of the LM method stabilizes the GN method by
multiplicative damping. Instead of adding λI to the diagonal of J(mk)T J(mk),
this method multiplies the diagonal of J(mk)T J(mk) by a factor of (1+λ).
Show that this method can fail by producing an example in which the mod-
ified J(mk)T J(mk) matrix is singular, no matter how large λ becomes.

4. A cluster of 10 small earthquakes occurs in a shallow geothermal reservoir.
The field is instrumented with nine seismometers, eight of which are at the
surface and one of which is 300 m down a borehole. The P–wave velocity of
the fractured granite medium is thought to be an approximately uniform
2 km/s. The station locations (in meters relative to a central origin) are
given in Table 9.3.

Station x (m) y (m) z (m)
1 500 -500 0
2 -500 -500 0
3 100 100 0
4 -100 0 0
5 0 100 0
6 0 -100 0
7 0 -50 0
8 0 200 0
9 10 50 -300

Table 9.3: Station locations for the earthquake location problem.

The arrival times of P–waves from the earthquakes are carefully measured
at the stations, with an estimated error of approximately 1 ms. The arrival
time estimates for each earthquake, ei at each station (in seconds, with
the nearest clock second subtracted) are given in Table 9.4.

These data can be found in eqdata.mat.

(a) Apply the LM method to this data set to estimate least squares
locations of the earthquakes.



212 CHAPTER 9. NONLINEAR REGRESSION

Station e1 e2 e3 e4 e5

1 0.8423 1.2729 0.8164 1.1745 1.1954
2 0.8680 1.2970 0.8429 1.2009 1.2238
3 0.5826 1.0095 0.5524 0.9177 0.9326
4 0.5975 1.0274 0.5677 0.9312 0.9496
5 0.5802 1.0093 0.5484 0.9145 0.9313
6 0.5988 1.0263 0.5693 0.9316 0.9480
7 0.5857 1.0141 0.5563 0.9195 0.9351
8 0.6017 1.0319 0.5748 0.9362 0.9555
9 0.5266 0.9553 0.5118 0.8533 0.8870

Station e6 e7 e8 e9 e10

1 0.5361 0.7633 0.8865 1.0838 0.9413
2 0.5640 0.7878 0.9120 1.1114 0.9654
3 0.2812 0.5078 0.6154 0.8164 0.6835
4 0.2953 0.5213 0.6360 0.8339 0.6982
5 0.2795 0.5045 0.6138 0.8144 0.6833
6 0.2967 0.5205 0.6347 0.8336 0.6958
7 0.2841 0.5095 0.6215 0.8211 0.6857
8 0.3025 0.5275 0.6394 0.8400 0.7020
9 0.2115 0.4448 0.5837 0.7792 0.6157

Table 9.4: Data for the earthquake location problem.
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(b) Estimate the uncertainties in x, y, z (in m) and origin time (in s)
for each earthquake using the diagonal elements of the appropriate
covariance matrix. Do the earthquake locations follow any sort of
discernible trend?

5. The Lightning Mapping Array is a portable system that has recently been
developed to locate the sources of lightning radiation in three spatial di-
mensions and time [132]. The system measures the arrival time of im-
pulsive radiation events. The measurements are made at nine or more
locations in a region 40 to 60 km in diameter. Each station records the
peak radiation event in successive 100 µs time intervals; from this, several
hundred to over a thousand radiation sources may be typically located per
lightning discharge.

Station t (s) x (km) y (km) z (km)
1 0.0922360280 -24.3471411 2.14673146 1.18923667
2 0.0921837940 -12.8746056 14.5005985 1.10808551
3 0.0922165500 16.0647214 -4.41975194 1.12675062
4 0.0921199690 0.450543748 30.0267473 1.06693166
6 0.0923199800 -17.3754105 -27.1991732 1.18526730
7 0.0922839580 -44.0424408 -4.95601205 1.13775547
8 0.0922030460 -34.6170855 17.4012873 1.14296361
9 0.0922797660 17.6625731 -24.1712580 1.09097830

10 0.0922497250 0.837203704 -10.7394229 1.18219520
11 0.0921672710 4.88218031 10.5960946 1.12031719
12 0.0921702350 16.9664920 9.64835135 1.09399160
13 0.0922357370 32.6468622 -13.2199767 1.01175261

Table 9.5: Data for the lightning mapping array problem.

(a) Data from the LMA are shown in Table 9.5. Use the arrival time at
station 1, 2, 4, 6, 7, 8, 10, and 13 to find the time and location of the
radio frequency source in the lightning flash. Assume that the radio
waves travel along straight paths at the speed of light (2.997 × 108

m/s).

(b) During lightning storms we record the arrival of thousands of events
each second. We use several methods to find which arrival times
are due to the same event. The above data were chosen as possible
candidates to go together. We require any solution to use time from
at least 6 stations. Find the largest subset of this data that gives a
good solution. See if it is the same subset suggested in part (a) of
this problem.
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9.6 Notes and Further Reading

Newton’s method is central to the field of optimization. Some references include
[34, 84, 85, 110, 117]. Because of its speed, Newton’s method is the basis for
most methods of nonlinear optimization. Various modifications to the basic
method are used to ensure convergence to a local minimum of f(x) [110, 117].
One important difficulty in Newton’s method is that for very large problems, it
may be impractical to store the Hessian matrix. Specialized methods have been
developed for the solution of such large scale optimization problems [110, 117].

The GN and LM methods are discussed in [16, 110, 117]. Statistical aspects
of nonlinear regression are discussed in [8, 35, 108]. A more detailed discussion
of the termination criteria for the LM method that we describe in Section 9.4
can be found in [110]. There are a number of freely available and commer-
cial software packages for nonlinear regression. Some freely available packages
include GaussFit [78], MINPACK [104], and ODRPACK [17]. Automatic dif-
ferentiation has applications in many areas of numerical computing, including
optimization and numerical solution of ordinary and partial differential equa-
tions. Two books that survey this topic are [29, 54]. Global optimization is a
large field of research. Some basic references include [20, 72, 130]. A survey of
global optimization methods in geophysical inversion is [146].



Chapter 10

Nonlinear Inverse Problems

Synopsis: The nonlinear regression approaches of Chapter 9 are generalized to
problems requiring regularization. The Tikhonov regularization and Occam’s
inversion approaches are introduced. Seismic tomography and electrical conduc-
tivity inversion examples are used to illustrate the application of these methods.

10.1 Regularizing Nonlinear Least Squares Prob-
lems

As with linear problems, the nonlinear least squares approaches can run into
difficulty with ill–conditioned problems. This typically happens as the number
of model parameters grows. Here, we will discuss regularization of nonlinear
inverse problems and algorithms for computing a regularized solution to a non-
linear inverse problem.

The basic ideas of Tikhonov regularization can be extended to nonlinear
problems. Suppose that we are given a nonlinear inverse problem involving a
discrete n point model m and discrete m point data vector d, that are related
by a nonlinear system of equations G(m) = d. For convenience, we will assume
that the nonlinear equations have been scaled to incorporate the measurement
standard deviations σi. We want to find the solution with smallest ‖Lm‖2 which
comes sufficiently close to fitting the data.

We can formulate this problem as

min ‖Lm‖2
‖G(m)− d‖2 ≤ δ .

(10.1)

Note that the form of the problem is virtually identical to that which was consid-
ered in the linear case (e.g., (5.28)), with the only difference being that we now
have a general function G(m) instead of a matrix–vector multiplication Gm.
As in the linear case, we can reformulate this problem in terms of minimizing

215
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the misfit subject to a constraint on ‖Lm‖2

min ‖G(m)− d‖2
‖Lm‖2 ≤ ε

(10.2)

or as a damped least squares problem

min ‖G(m)− d‖22 + α2‖Lm‖22 . (10.3)

All three versions of the regularized least squares problem can be solved by
applying standard nonlinear optimization software. In particular, (10.3) is a
nonlinear least squares problem, so we could apply the LM or GN methods to
it. Of course, any such approach will still have to deal with the possibility of

local minima that are not global minimum points. In some cases, it is possible
to show that the nonlinear least squares problem is convex, and thus has only
global minima. In other cases we will have to employ the multistart strategy to
determine whether there are local minima that are not global minima.

To apply the GN method to (10.3), we rewrite it as

min
∥∥∥∥ G(m)− d

αLm

∥∥∥∥2

2

. (10.4)

The Jacobian for this damped least squares problem for the kth iteration is

K(m(k)) =
[

J(m(k))
αL

]
(10.5)

where J(m(k)) is the Jacobian of G(m(k)). A GN model step is obtained by
solving

K(mk)T K(mk)∆m = −K(mk)T

[
G(mk)− d

αLmk

]
(10.6)

This can be simplified using (10.5) to

(J(mk)T J(mk) + α2LT L)∆m = −J(mk)T (G(mk)− d)− α2LT Lmk . (10.7)

Equation (10.7) resembles the LM method. However α in this formulation is
fixed in the objective function (10.4) being minimized. To further stabilize the
iterations as in the LM method, we could introduce a variable λI term to the
left hand side of (10.7). This is typically not necessary because the explicit
regularization of (10.7) makes the system of equations nonsingular.

Example 10.1

Consider a modified version of the cross–well tomography example
from the Chapter 5 exercises, where we introduce nonlinearity by
employing a more realistic forward model that incorporates ray path
refraction. The two–dimensional velocity structure is parameterized
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using a matrix of uniformly–spaced slowness nodes on an 8 by 8 grid
that spans a 1600 m by 1600 m region.
We apply an approximate ray bending technique to predict travel
times and to generate finite difference estimates of the partial deriva-
tives of travel times with respect to model parameters [172]. Figure
10.1 shows the true velocity model and the corresponding set of 64
ray paths. The true model consists of a background velocity of 2.9
km/s with embedded fast (+10%) and slow (-15%) Gaussian–shaped
anomalies. The data set consists of the 64 travel times between each
pair of opposing sources and receivers with N(0, (0.001 s)2) noise
added.
Note that refracted ray paths tend to avoid low–velocity regions
(dark shading) and are, conversely, attracted to high–velocity re-
gions (light shading) in accordance with Fermat’s least–time princi-
ple. In practice this effect makes low-velocity regions more difficult
to resolve in such studies.
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Figure 10.1: True velocity model and the corresponding ray paths for the bent–
ray cross–well tomography example.

A discrete approximation of the two–dimensional Laplacian operator
is used as the roughening matrix L for this problem. Iterative GN
(10.7) solutions were obtained for a range of 16 values of α ranging
logarithmically between approximately 4.9 to 367. Figure 10.2 shows
the suite of solutions after five iterations. An L–curve of seminorm
versus data misfit is plotted in Figure 10.3, along with the discrep-
ancy principle value (δ = 0.008) expected for 64 data points with the
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assigned noise level. Note that the point for α = 4.9007 is slightly
out of the expected position because the GN method is unable to
accurately solve the poorly conditioned least squares problem in this
case. The solution best satisfying the discrepancy principle corre-
sponds to α = 49. See Figure 10.4. Because we know the true

α = 4.9007 α = 6.5352 α = 8.7149 α = 11.6215

α = 15.4975 α = 20.6662 α = 27.5588 α = 36.7503

α = 49.0073 α = 65.3523 α = 87.1486 α = 116.2146

α = 154.9746 α = 206.662 α = 275.5882 α = 367.5028

Figure 10.2: Suite of GN (10.7), second–order regularized solutions, ranging
from least (upper left) to most (lower right) regularized, and associated α values.
The physical dimensions and grey scale are identical to those of Figures 10.1
and 10.4.

model in this example, it is instructive to examine how well the reg-
ularized solutions of Figure 10.2 compare to the true model. Figure
10.5 shows the 2–norm model misfit as a function of α, and demon-
strates that the discrepancy principle solution for this problem, and
for this particular noise realization, is indeed close to the minimum
in ‖m−mtrue‖2. Note that the solution shown in Figure 10.4 exhibits
artifacts that are common in regularized solutions, such as streaking,
side lobes, and underestimation of the variation in slowness.
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Figure 10.3: L–curve and corresponding α values for the solutions of Figure
10.2.
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Figure 10.4: Best solution velocity structure (m/s), α selected using the dis-
crepancy principle, α ≈ 49.
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Figure 10.5: Model misfit 2–norm as a function of regularization parameter α,
with preferred model highlighted.

10.2 Occam’s Inversion

Occam’s inversion is a popular algorithm for nonlinear inversion introduced by
Constable, Parker, and Constable [28]. The name refers to the 14th century
philosopher William of Ockham, who argued that simpler explanations should
always be preferred to more complicated explanations. A similar statement
occurs as Rule 1 in Newton’s “Rules for the Study of Natural Philosophy”
[116]). This principle has become known as “Occam’s razor.”

Occam’s inversion uses the discrepancy principle, and searches for the so-
lution that minimizes ‖Lm‖2 subject to the constraint ‖G(m)− d‖2 ≤ δ. The
algorithm is straightforward to implement, requires only the nonlinear forward
model G(m) and its Jacobian, and works well in practice.

We assume that our nonlinear inverse problem has been cast in the form of
(10.1). The roughening matrix L can be I to implement zeroth–order Tikhonov
regularization, or it can be a finite difference approximation of a first (5.27)
or second (5.29) derivative (9.46) for higher–order regularization. In practice,
Occam’s inversion is often used on two– or three–dimensional problems where
L is a discrete approximation of the Laplacian operator.

As usual, we will assume that the measurement errors in d are independent
and normally distributed. For convenience, we will also assume that the systems
of equations G(m) = d has been scaled so that the standard deviations σi are
equal.
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The basic idea behind Occam’s inversion is an iteratively applied local lin-
earization. Given a trial model mk, Taylor’s theorem is applied to obtain the
local approximation

G(mk + ∆m) ≈ G(mk) + J(mk)∆m (10.8)

where J(mk) is the Jacobian

J(mk) =


∂G1(m

k)
∂m1

. . . ∂G1(m
k)

mn

...
. . .

...
∂Gm(mk)

∂m1
. . . ∂Gn(mk)

∂mn

 (10.9)

Using (10.8), the damped least squares problem (10.3) becomes

min ‖G(mk) + J(mk)∆m− d‖22 + α2‖L(mk + ∆m)‖22 (10.10)

where the variable is ∆m and mk is constant. Reformulating this as a problem
in which the variable is mk+1 = mk + ∆m, and letting

d̂(mk) = d−G(mk) + J(mk)mk (10.11)

gives

min ‖J(mk)(mk + ∆m)− (d−G(mk) + J(mk)mk)‖22 + α2‖L(mk + ∆m)‖22
(10.12)

or
min ‖J(mk)mk+1 − d̂(mk)‖22 + α2‖L(mk+1)‖22 . (10.13)

Because J(mk) and d̂(mk) are constant, (10.13) is in the form of a damped
linear least squares problem that has the solution given by (5.7)

mk+1 = mk + ∆m =
(
J(mk)T J(mk) + α2LT L

)−1
J(mk)T d̂(mk) . (10.14)

It is worth noting that this method is similar to the GN method applied
to the damped least squares problem (10.3). See Exercise 10.1. The difference
is that in Occam’s inversion the parameter α is dynamically adjusted so that
the solution will not exceed the allowable misfit. At each iteration we pick the
largest value of α that keeps the χ2 value of the solution from exceeding the
bound on δ2 specified in (10.1). If this is impossible, we instead pick the value
of α that minimizes the χ2 value. At the end of the procedure, we should have
a solution with χ2 = δ2. We can now state the algorithm.

Algorithm 10.1 Occam’s inversion algorithm

Beginning with an initial solution m0, apply the formula

mk+1 =
(
J(mk)T J(mk) + α2LT L

)−1
J(mk)T d̂(mk) . (10.15)

In each iteration, pick the largest value of α such that χ2(mk+1) ≤
δ2. If no such value exists, then pick a value of α that minimizes
χ2(mk+1). Stop if and when the sequence converges to a solution
with χ2 = δ2.
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Example 10.2

We will consider the problem of estimating subsurface electrical con-
ductivities from above ground EM induction measurements. The in-
strument used in this example is the Geonics EM–38 ground conduc-
tivity meter. A description of the instrument and the mathematical
model of the response of the instrument can be found in [65]. The
mathematical model is quite complicated, but we will treat it as a
black box, and concentrate on the inverse problem.

Measurements are taken at heights of 0, 10, 20, 30, 40, 50, 75, 100,
and 150 cm above the surface, with the coils oriented in both the
vertical and horizontal orientations. There are a total of 18 ob-
servations. The data are shown in Table 10.1. We will assume
measurement standard deviations of 0.1 mS/m.

Height (cm) EMV (mS/m) EMH (mS/m)
0 134.5 117.4

10 129.0 97.7
20 120.5 81.7
30 110.5 69.2
40 100.5 59.6
50 90.8 51.8
75 70.9 38.2

100 56.8 29.8
150 38.5 19.9

Table 10.1: Data for the EM-38 example.

We discretize the subsurface electrical conductivity profile into 10
layers each 20 cm thick, with a semi–infinite layer below 2 m. Thus
we have 11 parameters to estimate.

The function G(m) is available to us in the form of a subroutine for
computing predicted data. Since we do not have simple formulas for
G(m), we cannot write down analytic expressions for the elements of
the Jacobian . However, we can use finite difference approximations
to estimate the necessary partial derivatives.

We first tried using the LM method to estimate the model parame-
ters. After 50 iterations, the LM method produced the model shown
in Figure 10.6. The χ2 value for this model is 9.62, with 9 degrees
of freedom, so the model actually fits the data adequately. Unfor-
tunately, the least squares problem is very badly conditioned. The
condition number of JT J is approximately 7.6× 1017. Furthermore,
this model is unrealistic because it includes negative electrical con-
ductivities and because it exhibits the high frequency oscillations
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that we have come to expect of under regularized solutions to in-
verse problems. Clearly a regularized solution is called for.

We next tried Occam’s inversion with second–order regularization
and δ = 0.4243. The resulting model is shown in Figure 10.7. Figure
10.8 shows the true model. The Occam’s inversion solution is a fairly
good reproduction of the true model.
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Figure 10.6: LM solution.
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Figure 10.7: Occam’s inversion solution.
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Figure 10.8: True model.
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10.3 Exercises

1. Show that the GN step (10.7) and the Occam’s inversion step (10.14) are
identical.

2. Recall Example 1.5, in which we had gravity anomaly observations above
a density perturbation of variable depth m(x), and fixed density ∆ρ. In
this exercise, you will use Occam’s inversion to solve an instance of this
inverse problem. Consider a gravity perturbation along a 1 km section,
with observations taken every 50 m, and density perturbation of 200 kg/m3

(0.2 g/cm3). The perturbation is expected to be at a depth of roughly 200
m.

The data file gravprob.mat contains a vector x of observation locations.
Use the same coordinates for your discretization of the model. The vector
obs contains the actual observations. Assume that the observations are
accurate to about 1.0× 10−12.

(a) Derive a formula for the elements of the Jacobian.

(b) Write MATLAB routines to compute the model predictions and the
Jacobian for this problem.

(c) Use the supplied implementation of Occam’s inversion to solve the
inverse problem.

(d) Discuss your results. What features in the inverse solution appear
to be real? What is the resolution of your solution? Were there any
difficulties with local minimum points?

(e) What would happen if the density perturbation was instead at about
1000 m depth?

3. Apply the GN method with explicit regularization to the EM inversion
problem in Example 10.2. Compare your solution with the solution ob-
tained by Occam’s inversion. Which method required more computational
effort?

4. Apply Occam’s inversion to a cross–well bent–ray tomography problem
with identical geometry to Example 10.1. Use the subroutine getj.m
to forward model travel times and the Jacobian. Travel–time data and
subroutine control parameters are contained in the file benddata.mat.
Start with the uniform 2900 m/s velocity 8 by 8 node initial velocity model
in bendata.mat, and assume independent and normally distributed data
errors with σ = 0.001 ms.

Hint: A search range of α2 between 10 and 105 is appropriate for this
problem.

The following MATLAB code constructs a suitable roughening matrix, L
that approximates a two–dimensional Laplacian operator.
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%construct a two-dimensional, second-order roughening matrix
%for a PSCALE by PSCALE square nodal model (with
% model wrap-around)
%
%diagonal elements
L=-4*eye(PSCALE*PSCALE);
%off-diagonal elements
%loop over the columns
for i=1:PSCALE^2
%cells to left, right, below, and above of the current node
ji=[i-PSCALE,i+PSCALE,i+1,i-1];

%grid wrap-around fix
for j=1:4
if ji(j) <= 0
ji(j)=ji(j)+PSCALE^2;

end
if ji(j) > PSCALE^2
ji(j)=ji(j)-PSCALE^2;

end
end
L(ji,i)=1;

end

10.4 Notes and Further Reading

In inverse problems with a large number of parameters, the most difficult com-
putational problem is often computing derivatives of G(m) with respect to the
parameters. Computation of analytic formulas is commonly impractical. Fi-
nite difference estimates require computational effort which increases with the
number of parameters and may become impractical for large problems. A use-
ful technique for problems in which the mathematical model is a differential
equation is the adjoint equation approach [160, 42]. An alternative approach
involves using the discretized differential equation as a set of constraints to be
added to the nonlinear least squares problem [15].

For large–scale problems, it may be impractical to use direct factorization
to solve the systems of equations (10.7) or (10.14) involved in computing the
GN or Occam step. One approach in this case is to use an iterative method
such as conjugate gradients to solve the linear systems of equations [110].
The conjugate gradient method can also be extended to minimize the nonlinear
objective function directly [110, 148].



Chapter 11

Bayesian Methods

Synopsis: Following a review of the classical least squares approach to solving
inverse problems, we introduce the Bayesian approach, which treats the model
as a random variable with a probability distribution that we seek to estimate. A
prior distribution for the model parameters is combined with the data to produce
a posterior distribution for the model parameters. In special cases, the Bayesian
approach produces solutions that are equivalent to the least squares, maximum
likelihood, and Tikhonov regularization solutions. The maximum entropy method
for selecting a prior distribution is discussed. Several examples of the Bayesian
approach are presented.

11.1 Review of the Classical Approach

In the classical approach to parameter estimation and inverse problems discussed
in previous chapters, we begin with a mathematical model of the form Gm = d
in the linear case or G(m) = d in the nonlinear case. We assume that there is
a true model mtrue, and a true data set dtrue such that Gmtrue = dtrue. We are
given an actual data set d, which is the sum of dtrue and measurement noise.
Our goal is to recover mtrue from the noisy data.

For well conditioned linear problems, under the assumption of independent
and normally distributed data errors, the theory is well developed. In Chapter
2 it was shown that the maximum likelihood principle leads to the least squares
solution. The least squares solution, mL2 , is found by minimizing the 2–norm
of the residual, ‖Gm− d‖2.

Since there is noise in the data, we should expect some misfit between the
data predictions of the forward model and the data, so that χ2 will not typically
be zero. We saw that the χ2 distribution can be used to set a reasonable bound
on ‖Gm−d‖2. This was used in the χ2 goodness–of–fit test. We were also able
to compute a covariance matrix for the estimated parameters

Cov(mL2) = (GT G)−1GT Cov(d)G(GT G)−1 (11.1)

227
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and to use it to compute confidence intervals for the estimated parameters and
correlations between the estimated parameters.

This approach works very well for linear regression problems in which the
least squares problem is well–conditioned. We found, however, that in many
cases the least squares problem is not well–conditioned. In such situations, the
set of solutions that adequately fits the data is large and diverse, and commonly
contain many physically unreasonable models.

In Chapters 4 through 8, we discussed a number of approaches to regularizing
the least squares problem. These approaches pick one “best” solution out of
the set of solutions that adequately fit the data. The different regularization
methods differ in what constitutes the best solution. For example, zeroth–order
Tikhonov regularization selects the model that minimizes the model 2–norm
‖m‖2 subject to the constraint ‖Gm − d‖2 < δ, while higher–order Tikhonov
regularization selects the model that minimizes ‖Lm‖2 subject to ‖Gm−d‖2 <
δ.

Regularization can be applied to both linear and nonlinear problems. For
relatively small linear problems the computation of the regularized solution
is generally done with the help of the SVD. This process is straightforward,
insightful, and robust. For large sparse linear problems iterative methods such
as CGLS can be used.

For nonlinear problems things are more complicated. We saw in Chapters 9
and 10 that the GN and LM methods could be used to find a local minimum
of the least squares problem. Unfortunately nonlinear least squares problems
may have a large number of local minimum solutions, and finding the global
minimum can be extremely difficult. Furthermore, if there are several local
minimum solutions with high likelihoods, then we cannot simply select a single
“best” solution. and a more sophisticated approach is required.

How can we justify selecting one solution from the set of models which
adequately fit the data? One justification is Occam’s razor; when we have
several different theories to consider, we should select the simplest theory. The
solutions selected by regularization are in some sense the simplest models which
fit the data. If fitting the data did not require a particular feature seen in the
regularized solution, then that feature would have been smoothed out by the
regularization. However, this answer is not entirely satisfactory because different
choices of the roughening matrix L can result in very different solutions. Why
should one regularized solution be preferred to another when the choice of the
roughening matrix is subjective?

Recall from Chapter 4 that, once we have regularized a least squares prob-
lem, we lose the ability to obtain statistically useful confidence intervals for the
parameters because regularization introduces bias in the solution. In particu-
lar this means that the expected value of a regularized solution is not the true
solution. Bounds on the error in Tikhonov regularized solution error were dis-
cussed in Section 5.8 but these require model assumptions that are difficult if
not impossible to justify in practice.
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11.2 The Bayesian Approach

The Bayesian approach is named after Thomas Bayes, an 18th century pioneer
in probability theory. The approach is based on philosophically different ideas.
However, as we will see, it often results in similar solutions.

The most fundamental difference between the classical and Bayesian ap-
proaches is in the nature of the solution. In the classical approach, there is
a specific but unknown model mtrue that we would like to discover. In the
Bayesian approach the model is a random variable, and the solution is a prob-
ability distribution for the model parameters. Once we have this probability
distribution, we can use it to answer probabilistic questions about the model,
such as, “What is the probability that m5 is less than 1?”. In the classical
approach such questions do not make sense, since the true model that we seek
is not a random variable.

A second very important difference between the classical and Bayesian ap-
proaches is that the Bayesian approach allows us to naturally incorporate prior
information about the solution that comes from other data or from experience
based intuition. This information is expressed as a prior distribution for m.
If no other information is available, then under the principle of indifference,
we may pick a prior distribution in which all model parameter values have equal
likelihood. Such a prior distribution is said to be uninformative.

It should be pointed out that if the parameters m are contained in the range
(−∞,∞), then the uninformative prior is not a proper probability distribution.
The problem is that there does not exist a probability distribution f(x) such
that ∫ ∞

−∞
f(x) dx = 1 (11.2)

and f(x) is constant. In practice, the use of this improper prior distribution
can be justified, because the resulting posterior distribution for m is a proper
distribution.

Once the data have been collected, they are combined with the prior dis-
tribution using Bayes’ theorem to produce a posterior distribution for the
model parameters.

One of the main objections to the Bayesian approach is that the method
is “unscientific” because it allows the analyst to incorporate subjective judg-
ments into the model that are not solely based on the data. Proponents of the
approach reply that there are also subjective aspects to the classical approach,
and that one is free to choose an uninformative prior distribution. Furthermore,
it is possible to complete the Bayesian analysis with a variety of prior distri-
butions and examine the effects of different prior distributions on the posterior
distribution.

We will denote the prior distribution by p(m), and assume that we can
compute the likelihood that, given a particular model, a data vector, d, will
be observed. We will use the notation f(d|m) for this conditional probability
distribution. We seek the conditional distribution of the model parameter(s)
given the data. We will denote the posterior probability distribution for the
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model parameters by q(m|d). Bayes’ theorem relates the prior and posterior
distributions in a way that makes the computation of q(m|d) possible. In the
form that will be used in this chapter, Bayes’ theorem can be stated as follows.

Theorem 11.1

q(m|d) =
f(d|m)p(m)∫

all models f(d|m)p(m) dm
(11.3)

=
f(d|m)p(m)

c
(11.4)

where

c =
∫
all models

f(d|m)p(m) dm . (11.5)

Note that the constant c in (11.4) simply normalizes the conditional distribution
q(m|d) so that its integral is one.

For many purposes, knowing c is not actually necessary. For example, we
can compare two models m̂ and m̄ by computing the likelihood ratio

LR =
q(m̂|d)
q(m̄|d)

=
f(d|m̂)p(m̂)
f(d|m̄)p(m̄)

. (11.6)

A very small likelihood ratio would indicate that the model m̄ is far more likely
than the model m̂. Because c is not always needed, (11.4) is sometimes written
as

q(m|d) ∝ f(d|m)p(m) . (11.7)

Unfortunately, there are many other situations in which knowing c in (11.4)
is required. In particular, c is need to compute any posterior probabilities.
Also, c is required to compute the expected value and variance of the posterior
distribution.

It is important to emphasize that the probability distribution q(m|d) does
not provide a single model that we can consider to be the “answer.” In cases
where we want to single out one model as the answer, it may be appropriate
to use the model with the largest value of q(m|d), which is referred to as the
maximum a posteriori (MAP) model. An alternative would be to use the
mean of the posterior distribution. In situations where the posterior distribution
is normal, the MAP model and the posterior mean model are identical.

In general, the computation of a posterior distribution can be problematic.
The chief difficulty lies in evaluating the integrals in (11.4). These are often
integrals in very high dimensions, for which numerical integration techniques
are computationally expensive. Fortunately, there are a number of special cases
in which computation of the posterior distribution is greatly simplified.
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One simplification occurs when the prior distribution p(m) is uninformative,
in which case (11.7), becomes

q(m|d) ∝ f(d|m) (11.8)

and the posterior distribution is precisely the likelihood function, L(m|d). Un-
der the maximum likelihood principle we would select the model mML that
maximizes L(m|d). This is exactly the MAP model.

A further simplification occurs when the noise in the measured data is in-
dependent and normally distributed with standard deviation σ. Because the
measurement errors are independent, we can write the likelihood function as
the product of the likelihoods of the individual data points.

L(m|d) = f(d|m) = f(d1|m) · f(d2|m) · · · f(dn|m) . (11.9)

Because the individual data points di are normally distributed with expected
values (G(m))i and standard deviation σ, we can write,

f(di|m) =
1

σ
√

2π
e−

((G(m))i−di)
2

2σ2 . (11.10)

Thus

L(m|d) =
(

1
σ
√

2π

)m

e−
Pm

i=1
((G(m))i−di)

2

2σ2 . (11.11)

We can maximize (11.11) by maximizing the exponent or equivalently minimiz-
ing the negative of the exponent.

min
m∑

i=1

((G(m))i − di)2

2σ2
. (11.12)

This is a nonlinear least squares problem. Thus we have shown that when we
have independent and normally distributed measurement errors and we use an
uninformative prior, the MAP solution is the least squares solution.

Example 11.1

Consider the very simple parameter estimation problem in which we
perform repeated weighings of a very small object. The measurement
errors are normally distributed with mean 0 and standard deviation
σ = 1 µg. Our goal is to estimate the mass of the object. This
problem was addressed as a linear regression problem in Chapter 2.

With this error model, we have

f(d|m) =
1√
2π

e−(m−d)2/2 . (11.13)
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Suppose we weigh the mass and obtain a measurement of d1 =
10.3 µg. What do we now know about m? An uninformative prior
distribution (11.8) gives

q(m|d1 = 10.3 µg) ∝ 1√
2π

e−(m−10.3)2/2 . (11.14)

Because this is itself a normal probability distribution, the constant
of proportionality in (11.4) is 1, and the posterior distribution is

q(m|d1 = 10.3 µg) =
1√
2π

e−(m−10.3)2/2 . (11.15)

This posterior distribution is shown in Figure 11.1.
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Figure 11.1: Posterior distribution q(m|d1 = 10.3 µg), uninformative prior.

Next, suppose that we obtain a second measurement of d2 = 10.1 µg.
We use the distribution (11.15) estimated from the first measurement
as the prior distribution and compute a revised posterior distribution
that incorporates information from both measurements,

q(m|d1 = 10.3 µg, d2 = 10.1 µg) ∝
f(d2 = 10.1 µg|m)q(m|d1 = 10.3 µg) . (11.16)

q(m|d1 = 10.3 µg, d2 = 10.1 µg) ∝
1√
2π

e−(m−10.1)2/2 1√
2π

e−(m−10.3)2/2 . (11.17)
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Adding the exponents and absorbing the 1/
√

2π factors into the
constant of proportionality gives

q(m|d1 = 10.3 µg, d2 = 10.1 µg) ∝ e−((m−10.3)2+(m−10.1)2)/2 .
(11.18)

Finally, we can simplify the exponent by combining terms and com-
pleting the square to obtain to obtain

(m− 10.3)2 + (m− 10.1)2 = 2(m− 10.2)2 + 0.02 . (11.19)

Thus

q(m|d1 = 10.3 µg, d2 = 10.1 µg) ∝ e−(2(m−10.2)2+0.02)/2 . (11.20)

The e−0.02/2 factor can be absorbed into the constant of proportion-
ality. We are left with

q(m|d1 = 10.3 µg, d2 = 10.1 µg) ∝ e−(10.2−m)2 . (11.21)

After normalization, we have

q(m|d1 = 10.3 µg, d2 = 10.1 µg) =
1

(1/
√

2)
√

2π
e
− (10.2−m)2

2(1/
√

2)2 (11.22)

which is a normal distribution with mean 10.2 µg and a standard
deviation of 1/

√
2 µg. This distribution is shown in Figure 11.2.

Since we used an uninformative prior and the measurement errors
were independent and normally distributed, the MAP solution is
precisely the least squares solution for this problem.

It is remarkable that in this example we started with a normal prior
distribution and took into account normally distributed data and
obtained a normal posterior distribution. The property that the
posterior distribution has the same form as the prior distribution is
called conjugacy. There are other families of conjugate distribu-
tions for various parameter estimation problems, but in general this
is a very rare property [48].

11.3 The Multivariate Normal Case

The idea that a normal prior distribution leads to a normal posterior distribution
can be extended to situations with many model parameters. When we have a
linear model Gm = d, the data errors have a multivariate normal distribution,
and the prior distribution for the model parameters is also multivariate normal,
the computation of the posterior distribution is relatively tractable [162].
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Figure 11.2: Posterior distribution q(m|d1 = 10.3 µg, d2 = 10.1 µg), uninfor-
mative prior.

Let dobs be the observed data, and let CD be the covariance matrix for
the data. Let mprior be the mean of the prior distribution and let CM be the
covariance matrix for the prior distribution. The prior distribution is

p(m) ∝ e−
1
2 (m−mprior)

T C−1
M (m−mprior) . (11.23)

The conditional distribution of the data given m is

f(d|m) ∝ e−
1
2 (Gm−d)T C−1

D (Gm−d) . (11.24)

Thus (11.7) gives

q(m|d) ∝ e−
1
2 ((Gm−d)T C−1

D (Gm−d)+(m−mprior)
T C−1

M (m−mprior)) . (11.25)

Tarantola shows that this can be simplified to

q(m|d) ∝ e−
1
2 (m−mMAP)T C−1

M′ (m−mMAP) (11.26)

where mMAP is the MAP solution, and

CM ′ = (GT C−1
D G + C−1

M )−1 . (11.27)

The MAP solution can be found by maximizing the exponent in (11.25), or by
minimizing its negative

min (Gm− d)T C−1
D (Gm− d) + (m−mprior)T C−1

M (m−mprior) . (11.28)
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The key to minimizing this expression is to rewrite it in terms of the matrix
square roots of C−1

M and C−1
D . Note that every covariance matrix is positive

definite and has a unique positive definite matrix square root. The matrix
square root can be computed from the SVD of the matrix. The MATLAB
command sqrtm can also be used to find the square root of a matrix. This
minimization problem can be reformulated as

min (C−1/2
D (Gm− d))T (C−1/2

D (Gm− d))+
(C−1/2

M (m−mprior))T (C−1/2
M (m−mprior))

(11.29)

or

min

∥∥∥∥∥
[

C−1/2
D G
C−1/2

M

]
m−

[
C−1/2

D d
C−1/2

M mprior

]∥∥∥∥∥
2

2

. (11.30)

This is a standard linear least squares problem.
In (11.30), notice that

Cov(C−1/2
D d) = C−1/2

D CD(C−1/2
D )T . (11.31)

This simplifies to
Cov(C−1/2

D d) = I . (11.32)

The multiplication of C−1/2
D times d in (11.30) can be thought of as a transfor-

mation of the data that effectively makes the data independent and normalizes
the standard deviations. In the model space, multiplication by C−1/2

M has a
similar effect.

It is worthwhile to consider what happens to the posterior distribution in
the most extreme case in which the prior distribution provides essentially no
information. Consider a prior distribution with a covariance matrix CM = α2I,
in the limit where α is extremely large. In this case, the diagonal elements
of C−1

M will be extremely small, and the posterior covariance matrix will be
well–approximated by

CM ′ ≈ (GT Cov(d)−1 G)−1 . (11.33)

If the data covariance matrix is σ2I, then

CM ′ ≈ σ2(GT G)−1 . (11.34)

This is precisely the covariance matrix for the model parameters in (11.1). Fur-
thermore, when we solve (11.30) to obtain the MAP solution, we find that
it simplifies to the least squares problem min ‖Gm − d‖22. Thus, under the
common assumption of normally distributed and independent data errors with
constant variance, a very broad prior distribution leads to the unregularized
least squares solution.

It also worthwhile to consider what happens in the special case where CD =
σ2I, and CM = α2I. In this case, (11.30) simplifies to

min (1/σ)2‖(Gm− d)‖22 + (1/α)2‖m−mprior‖22 . (11.35)
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This is simply zeroth–order Tikhonov regularization. In other words, the MAP
solution obtained by using a prior with independent and normally distributed
model parameters is precisely the Tikhonov regularized solution. However, this
does not mean that the Bayesian approach is entirely equivalent to Tikhonov
regularization, since the Bayesian solution is a probability distribution, while
the Tikhonov solution is a single model.

Once we have obtained the posterior distribution, it is straightforward to
generate model realizations, for instance to help assess likely or unlikely fea-
tures. Following the method outlined in Appendix B, we compute the Cholesky
factorization of the posterior distribution covariance matrix

CM ′ = RT R (11.36)

and then generate a random solution

m = RT s + mMAP (11.37)

where the vector s consists of independent and normally distributed random
numbers with zero mean and standard deviation one.

Example 11.2

We return to the Shaw problem that was previously considered in
Examples 3.3, 4.3, and 5.1.

For our first solution, we use a multivariate normal prior distribution
with mean 0.5 and standard deviation 0.5 for each model parameter,
with independent model parameters, so that CM = 0.25I. As in the
previous examples, the measurement noise has standard deviation
1.0 × 10−6, so that CD = 1.0 × 10−12I. Solving (11.30) produces
the mMAP solution shown in Figure 11.3. Figure 11.4 shows this
same solution with error bars. These error bars are not classical
95% confidence intervals. Rather, they are 95% probability intervals
calculated from the multivariate normal posterior distribution, so
that there is 95% probability that each model parameter lies within
the symmetric interval around mMAP.

Figure 11.5 shows a random solution generated from the posterior
distribution using. This solution varies considerably from the true
model, and demonstrates along with the large confidence intervals in
Figure 11.3 the large amount of uncertainty in the inverse solution.
The roughness of the solution is a consequence of the fact that the
prior distribution CM had zero covariances, and thus no preference
for smoothness.

For out second solution, we considered a broader prior distribution.
We used a prior mean of 0.5, but used variances of 25 in the prior
distribution of the model parameters instead of variances of 0.25.
Figure 11.6 shows the MAP model and error bars for this case. This
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Figure 11.3: The MAP solution and the true model for the Shaw example.
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Figure 11.4: The MAP solution with error bars.
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Figure 11.5: A model realization for the Shaw example.

solution is, not surprisingly, even worse than the model shown in
Figure 11.3. With a very unrestrictive prior, we have depended
mostly on the available data, which simply does not constrain the
solution well in this severely ill–posed problem.

This result illustrates a major issue with applying the Bayesian ap-
proach to poorly conditioned problems. To obtain a reasonably tight
posterior distribution, we have to make very strong assumptions
in the prior distribution. Conversely, if these assumptions are not
made, then we cannot obtain a “good” solution to the inverse prob-
lem.

To be fair, Tikhonov regularization also requires strong assump-
tions on the model (see Section 5.8) to produce a solution with error
bounds, and it is perhaps too easy to perform Tikhonov regulariza-
tion without computing error bounds.

The approach described in this section can be extended to nonlinear prob-
lems. To find the MAP solution, we solve the nonlinear least squares problem

min (G(m)− d)T C−1
D (G(m)− d) + (m−mprior)T C−1

M (m−mprior) . (11.38)

We then linearize, around the MAP solution to obtain the approximate posterior
covariance

CM ′ = (J(mMAP)T C−1
D J(mMAP) + C−1

M )−1 (11.39)
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Figure 11.6: The MAP solution for the Shaw example using a broader prior
distribution.

where J(m) is the Jacobian. As with other nonlinear optimizations, we must
consider the possibility of multiple local optima. If (11.38) has multiple solutions
with comparable likelihoods, then a single MAP solution and associated CM ′

from (11.39) will not accurately characterize the posterior distribution.

11.4 Maximum Entropy Methods

We have seen that an essential issue in the Bayesian approach is the selec-
tion of the prior distribution. In this section we consider maximum entropy
methods which can be used to select a prior distribution subject to available
information such as bounds on a parameter or an average value of a parameter.

Definition 11.1

The entropy of a discrete probability distribution

P (X = xi) = pi (11.40)

is given by
H(X) = −

∑
pi ln pi . (11.41)

The entropy of a continuous probability distribution

P (X ≤ a) =
∫ a

−∞
f(x) dx (11.42)
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is given by

H(X) = −
∫ ∞

−∞
f(x) ln f(x) dx . (11.43)

Under the maximum entropy principle, we select as our prior distribu-
tion one that has the largest possible entropy subject to constraints imposed by
available information.

For continuous random variables, optimization problems resulting from the
maximum entropy principle involve an unknown density function f(x). Such
problems can be solved using techniques from the calculus of variations [47].
Fortunately, maximum entropy distributions for a number of important cases
have already been worked out [81].

Example 11.3

Suppose we know that X takes on only nonnegative values, and
that the mean value of X is µ. It can be shown using the calculus of
variations that the maximum entropy distribution is an exponential
distribution [81]

fX(x) =
1
µ

e−x/µ x ≥ 0 . (11.44)

Definition 11.2

Given a discrete probability distribution

P (X = xi) = pi (11.45)

and an alternative distribution

P (X = xi) = qi (11.46)

the Kullback–Leibler cross–entropy is given by

D(p,q) =
∑

pi ln
pi

qi
. (11.47)

Given continuous distributions f(x) and g(x), the cross–entropy is

D(f, g) =
∫ ∞

−∞
f(x) ln

f(x)
g(x)

dx . (11.48)
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Cross–entropy is a measure of how close two distributions are. If the two dis-
tributions are identical, then the cross–entropy is zero.

Under the minimum cross–entropy principle, if we are given a prior
distribution p and some additional constraints on the distribution, we should
select a posterior distribution q which minimizes the cross–entropy of p and q
subject to the constraints. Note that this is not the same thing as using Bayes’
theorem to update a prior distribution.

In the Minimum Relative Entropy (MRE) method of Woodbury and
Ulrych, the minimum cross–entropy principle is applied to linear inverse prob-
lems of the form Gm = d subject to lower and upper bounds on the model
elements [114, 115, 171, 180]. First, a maximum entropy prior distribution is
computed using the lower and upper bounds and given mean values for the
model parameters. Then, a posterior distribution is selected to minimize the
cross–entropy subject to the constraint that the mean of the posterior distribu-
tion must satisfy the equations Gm = d.

Example 11.4

Recall the source history reconstruction problem discussed in Exam-
ples 3.2 and 7.1. We have previously determined a lower bound of 0
for the input concentration and an upper bound of 1.1. Suppose we
also have further reason to believe that most of the contamination
occurred around t = 150. We thus select a prior distribution with a
mean of

C(x, 0) = e−(t−150)2/800 . (11.49)

The true input concentration and mean of the prior distribution are
shown in Figure 11.7.

Figure 11.8 shows the MRE solution with a 90% probability interval.
Note that the information provided by the data was strong enough to
overcome the prior distribution. In the time period between t = 120
and t = 150, the prior mean is significantly lower than the posterior
mean, while this is reversed during the period from t = 150 to t =
200.

11.5 Epilogue

The main theme of this book has been obtaining, and statistically analyz-
ing, solutions to discretized parameter estimation problems using classical and
Bayesian approaches. We have discussed computational procedures for both
linear and nonlinear problems. Classical procedures produce estimates of the
parameters and their associated uncertainties. In Bayesian methods, the model
is a random variable, and the solution is its probability distribution. However,
there are a number of crucial issues that need to be considered in applying these
methods.
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Figure 11.7: True model and mean of the prior distribution for the source history
reconstruction example.
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Figure 11.8: MRE solution and 90% probability intervals for the source history
reconstruction example.
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When we discretize a continuous problem, the choice of the discretization
scheme, basis functions, and grid spacing can have large effects on the behav-
ior of the discretized problem and its solutions, and these effects will not be
reflected in the statistical analysis of the solution of the discretized problem.
The discretization errors in the solution could potentially be far larger than any
explicitly computed statistical uncertainty. Thus it is important to ensure that
the discretization provides an adequate approximation to the continuous prob-
lem. If no formal analysis is performed, it is at least desirable to see whether
varying the discretization has a significant effect on the solutions obtained.

For well–conditioned problems with normally distributed measurement er-
rors, we can use the classical least squares approach. This results in unbiased
parameter estimates and associated confidence intervals. For ill–conditioned
problems, and for problems where we have good reason to prefer a specific bias
in the character of the solution, Tikhonov regularization can be applied to ob-
tain a solution. Although this is computationally tractable, the regularization
introduces bias into the solution. We found that it is impossible to even bound
this bias without making additional assumptions about the model.

Although the Bayesian approaches are also applicable to well conditioned
problems, they are particularly interesting in the context of ill–conditioned
problems. By selecting a prior distribution we make our assumptions about
the model explicit. The resulting posterior distribution is not affected by regu-
larization bias. In the multivariate normal case for linear problems the Bayesian
approach is no more difficult computationally than the least squares approach.

Various attempts have been made to avoid the use of subjective priors in the
Bayesian approach. Principles such as maximum entropy can be used to derive
prior distributions which have been claimed to be, in some sense, “objective.”
However, we do not find these arguments completely convincing.

Both the classical and Bayesian approaches can be extended to nonlinear
inverse problems in a straightforward fashion. The computation of the esti-
mated model parameters become substantially more difficult in that we must
solve nonlinear optimization problems which may have multiple local minima.
In both approaches, the statistical analysis is typically performed approximately
by analyzing a linearization of the nonlinear model around the estimated pa-
rameters.

Inverse problems with non–normally distributed measurement noise are more
challenging. In such cases, the alternative to the least squares approach is
maximum likelihood estimation. The Bayesian approach can in theory be
applied when measurement errors are not normally distributed. However, in
practice, the associated computations can be difficult.

11.6 Exercises

1. Reanalyze the data in Example 11.1 using a prior distribution that is
uniform on the interval [9, 11]. Compute the posterior distribution after
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the first measurement of 10.3 µg and after the second measurement of 10.1
µg. What is the posterior mean?

2. In writing (11.30) we made use of the matrix square root.

(a) Suppose that A is a symmetric and positive definite matrix. Using
the SVD, find an explicit formula for the matrix square root. Your
square root should itself be a symmetric and positive definite matrix.

(b) Show that instead of using the matrix square roots of C−1
D and C−1

M ,
we could have used the Cholesky factorizations of C−1

D and C−1
M in

formulating the least squares problem.

3. Consider the following coin tossing experiment. We repeatedly toss a coin,
and each time record whether it comes up heads (0), or tails (1). The bias
b of the coin is the probability that it comes up heads. We have reason
to believe that this is not a fair coin, so we will not assume that b = 1/2.
Instead, we will begin with a uniform prior distribution p(b) = 1, for
0 ≤ b ≤ 1.

(a) What is f(d|b)? Note that the only possible data are 0 and 1, so this
distribution will involve delta functions at d = 0, and d = 1.

(b) Suppose that on our first flip, the coin comes up heads. Compute
the posterior distribution q(b|d1 = 0).

(c) The second, third, fourth, and fifth flips are 1, 1, 1, and 1. Find the
posterior distribution q(b|d1 = 0, d2 = 1, d3 = 1, d4 = 1, d5 = 1).
Plot the posterior distribution.

(d) What is your MAP estimate of the bias?
(e) Now, suppose that you initially felt that the coin was at least close

to fair, with
p(b) ∝ e−10(b−0.5)2 0 ≤ b ≤ 1 . (11.50)

Repeat the analysis of the five coin flips described above.

4. Apply the Bayesian method to Exercise 2 in Chapter 5. Select what you
consider to be a reasonable prior. How sensitive is your solution to the
prior mean and covariance?

5. Consider a conventional six–sided die, with faces numbered 1, 2, 3, 4, 5,
and 6. If each side were equally likely to come up, the mean value would
be 7/2. Suppose instead that the mean is 9/2. Formulate an optimization
problem that could be solved to find the maximum entropy distribution
subject to the constraint that the mean is 9/2. Use the method of Lagrange
multipliers to solve this optimization problem and obtain the maximum
entropy distribution.

6. Let X be a discrete random variable that takes on the values 1, 2, . . ., n.
Suppose that E[X] = µ is given. Find the maximum entropy distribution
for X.
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11.7 Notes and Further Reading

The arguments for and against the use of Bayesian methods in statistics and
inverse problems have raged for decades. Some classical references that provide
context for these arguments include [31, 37, 75, 77, 88, 142]. Sivia’s book [149] is
a good general introduction to Bayesian ideas for scientists and engineers. The
textbook by Gelman et al. [48] provides a more comprehensive introduction to
Bayesian statistics. An early paper by Tarantola and Vallete on the application
of the Bayesian approach was quite influential [161], and Tarantola’s book is
the standard reference work on Bayesian methods for inverse problems [162].
The book by Rodgers [134] focuses on application of the Bayesian approach
to problems in atmospheric sounding. The paper of Gouveia and Scales [53]
discusses the relative advantages and disadvantages of Bayesian and classical
methods for inverse problems. The draft textbook by Scales and Smith [143]
takes a Bayesian approach to inverse problems.

Sivia’s book includes a brief introduction to the maximum entropy principle
[149]. A complete survey of maximum entropy methods and results for partic-
ular distributions can be found in [81]. Other useful references on maximum
entropy methods include [31, 75, 88].

In recent years there has been great interest in computationally tractable ap-
proaches to Bayesian inference with distributions that do not fit into the multi-
variate normal framework. One approach to such problems that has excited wide
interest is the Markov chain Monte Carlo Method (MCMC) [49, 133, 140, 106].
In MCMC, we are able to simulate samples from the posterior probability dis-
tribution without explicitly computing the distribution. The resulting samples
can be statistically analyzed to estimate posterior probabilities of interest.

In many cases the solution to an inverse problem will be used in making a
decision, with measurable consequences for making the “wrong” decision. Sta-
tistical decision theory can be helpful in determining the optimal decision. The
paper by Evans and Stark provides a good introduction to the application of
statistical decision theory to inverse problems [44].
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Appendix A

Review of Linear Algebra

Synopsis: A summary of essential concepts, definitions, and theorems in linear
algebra used throughout this book.

A.1 Systems of Linear Equations

Recall that a system of linear equations can be solved by the process of Gaus-
sian elimination.

Example A.1

Consider the system of equations

x +2y +3z = 14
x +2y +2z = 11
x +3y +4z = 19 .

(A.1)

We eliminate x from the second and third equations by subtracting
the first equation from the second and third equations to obtain

x +2y +3z = 14
−z = −3

y +z = 5 .
(A.2)

We would like to eliminate y from the second equation, so we inter-
change the second and third equations

x +2y +3z = 14
y +z = 5

−z = −3 .
(A.3)

247
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Next, we eliminate y from the first equation by subtracting two times
the second equation from the first equation

x +z = 4
y +z = 5

−z = −3 .
(A.4)

We then multiply the third equation by −1 to get an equation for z

x +z = 4
y +z = 5

z = 3 .
(A.5)

Finally, we eliminate z from the first two equations

x = 1
y = 2

z = 3 .
(A.6)

The solution to the original system of equations is thus x = 1, y = 2,
z = 3. Geometrically the constraints specified by the three equations
of (A.1) describe three planes which, in this case, intersect in a single
point.

In solving (A.1), we used three elementary row operations: adding a
multiple of one equation to another equation, multiplying an equation by a
nonzero constant, and swapping two equations. This process can be extended
to solve systems of equations with an arbitrary number of variables.

In performing the elimination process, the actual names of the variables are
insignificant. We could have renamed the variables in the above example to
a, b, and c without changing the solution in any significant way. Because the
actual names of the variables are insignificant, we can save space by writing
down the significant coefficients from the system of equations in matrix form
as an augmented matrix. The augmented matrix form is also useful in solv-
ing a system of equations in computer algorithms, where the elements of the
augmented matrix are stored in an array.

In augmented matrix form (A.1) becomes 1 2 3 14
1 2 2 11
1 3 4 19

 . (A.7)

In augmented notation, the elementary row operations become adding a
multiple of one row to another row, multiplying a row by a nonzero constant,
and interchanging two rows. The Gaussian elimination process is essentially
identical to the process used in Example A.1, with the the final version of the
augmented matrix given by  1 0 0 1

0 1 0 2
0 0 1 3

 . (A.8)
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Definition A.1

A matrix is said to be in reduced row echelon form (RREF) if
it has the following properties:

1. The first nonzero element in each row is a one. The first nonzero
row elements of the matrix are called pivot elements. A col-
umn in which a pivot element appears is called a pivot col-
umn.

2. Except for the pivot element, all elements in pivot columns are
zero.

3. Any rows consisting entirely of zeros are at the bottom of the
matrix.

In solving a system of equations in augmented matrix form, we apply ele-
mentary row operations to reduce the augmented matrix to RREF and then
convert back to conventional notation to read off the solutions. The process of
transforming a matrix into RREF can easily be automated. In MATLAB, this
is done by the rref command.

It can be shown that any linear system of equations has either no solutions,
exactly one solution, or infinitely many solutions [92]. In a system of two dimen-
sions, for example, lines represented by the equations can fail to intersect (no
solution), intersect at a point (one solution) or intersect in a line (many solu-
tions). The following example shows how to determine the number of solutions
from the RREF of the augmented matrix.

Example A.2

Consider a system of two equations in three variables that has many
solutions

x1 +x2 +x3 = 0
x1 +2x2 +2x3 = 0 .

(A.9)

We put this system of equations into augmented matrix form and
then find the RREF, which is[

1 0 0 0
0 1 1 0

]
. (A.10)

We can translate this back into equation form as

x = 0
y +z = 0 .

(A.11)

Clearly, x must be 0 in any solution to the system of equations.
However, y and z are not fixed. We could treat z as a free variable
and allow it to take on any value. Whatever value z takes on, y must
be equal to −z. Geometrically, this system of equations describes the
intersection of two planes, where the intersection consists of points
on the line y = −z in the x = 0 plane.
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A linear system of equations may have more equation constraints than vari-
ables, in which case the system of equations is over–determined. Although
over–determined systems often have no solutions, it is possible for an over–
determined system of equations to have either many solutions or exactly one
solution.

Conversely, a system of equations with fewer equations than variables is
under–determined. Although in many cases under–determined systems of
equations have infinitely many solutions, it is also possible for such systems to
have no solutions.

A system of equations with all zeros on the right hand side is homogeneous.
Every homogeneous system of equations has at least one solution, the trivial
solution in which all of the variables are zero. A system of equations with a
nonzero right hand side is nonhomogeneous.

A.2 Matrix and Vector Algebra

As we have seen in the previous section, a matrix is a table of numbers laid out
in rows and columns. A vector is simply a matrix consisting of a single column
of numbers.

There are several important notational conventions used here for matrices
and vectors. Bold face capital letters such as A, B, . . . are used to denote
matrices. Bold face lower case letters such as x, y, . . . are used to denote
vectors. Lower case letters or Greek letters such as m, n, α, β, . . . will be used
to denote scalars.

At times we will need to refer to specific parts of a matrix. The notation
Ai,j denotes the element of the matrix A in row i and column j. We denote the
jth element of the vector x by xj . The notation A·,j is used to refer to column
j of the matrix A, while Ai,· refers to row i of A.

We can also build up larger matrices from smaller matrices. The notation
A = [B C] means that the matrix A is composed of the matrices B and C,
with matrix C beside matrix B.

If A and B are two matrices of the same size, we can add them by simply
adding corresponding elements. Similarly, we can subtract B from A by sub-
tracting the corresponding elements of B from those of A. We can multiply
a scalar times a matrix by multiplying the scalar times each vector element.
Because vectors are just n by 1 matrices, we can perform the same arithmetic
operations on vectors. A zero matrix 0, is a matrix composed of all zero el-
ements. A zero matrix plays the same role in matrix algebra as the scalar 0,
with

A + 0 = A (A.12)
= 0 + A . (A.13)

In general, matrices and vectors may contain complex numbers as well as real
numbers.
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Using vector notation, we can write a linear system of equations in vector
form.

Example A.3

Recall the system of equations (A.9)

x1 +x2 +x3 = 0
x1 +2x2 +2x3 = 0 (A.14)

from Example A.2. We can write this in vector form as

x1

[
1
1

]
+ x2

[
1
2

]
+ x3

[
1
2

]
=
[

0
0

]
. (A.15)

The expression on the left hand side of (A.2) where vectors are multiplied by
scalars and the results are summed together is called a linear combination.

If A is an m by n matrix, and x is an n element vector, we can multiply A
times x, where the product is defined by

Ax = x1A·,1 + x2A·,2 + . . . + xnA·,n . (A.16)

Example A.4

Given

A =
[

1 2 3
4 5 6

]
(A.17)

and

x =

 1
0
2

 (A.18)

then

Ax = 1
[

1
4

]
+ 0

[
2
5

]
+ 2

[
3
6

]
=
[

7
16

]
. (A.19)

The formula (A.16) for Ax is a linear combination much like the one that
occurred in the vector form of a system of equations. It is possible to write any
linear system of equations in the form Ax = b, where A is a matrix containing
the coefficients of the variables in the equations, b is a vector containing the
coefficients on the right hand sides of the equations, and x is a vector containing
the variables.
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Definition A.2

If A is a matrix of size m by n, and B is a matrix of size n by r,
then the product C = AB is obtained by multiplying A times each
of the columns of B and assembling the matrix vector products in
C

C = [AB·,1 AB·,2 . . . AB·,r] . (A.20)
This approach given in (A.20) for calculating a matrix–matrix prod-
uct will be referred to as the matrix–vector method.

Note that the product (A.20) is only possible if the two matrices are of
compatible sizes. If A has m rows and n columns, and B has n rows and r
columns, then the product AB exists and is of size m by r. In some cases, it is
thus possible to multiply AB but not BA. It is important to note that when
both AB and BA exist, AB is not generally equal to BA!

An alternate way to compute the product of two matrices is the row–
column expansion method, where the product element Ci,j is calculated
as the matrix product of row i of A and column j of B.

Example A.5

Let

A =

 1 2
3 4
5 6

 (A.21)

and

B =
[

5 2
3 7

]
. (A.22)

The product matrix C = AB will be of size 3 by 2. We compute
the product using both methods. First, using the matrix–vector
approach (A.20), we have

C = [AB·,1 AB·,2] (A.23)

=

5

 1
3
5

+ 3

 2
4
6

 2

 1
3
5

+ 7

 2
4
6

 (A.24)

=

 11 16
27 34
43 52

 . (A.25)

Next, we use the row–column approach

C =

 1 · 5 + 2 · 3 1 · 2 + 2 · 7
3 · 5 + 4 · 3 3 · 2 + 4 · 7
5 · 5 + 6 · 3 5 · 2 + 6 · 7

 (A.26)

=

 11 16
27 34
43 52

 . (A.27)
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Definition A.3

The n by n identity matrix In is composed of ones in the diagonal
and zeros in the off–diagonal elements.

For example, the 3 by 3 identity matrix is

I3 =

 1 0 0
0 1 0
0 0 1

 . (A.28)

We often write I without specifying the size of the matrix in situations where
the size of matrix is obvious from the context. It is easily show that if A is an
m by n matrix, then

AIn = A (A.29)
= ImA . (A.30)

Thus, multiplying by I in matrix algebra is similar to multiplying by 1 in con-
ventional scalar algebra.

We have not defined matrix division, but it is possible at this point to define
the matrix algebra equivalent of the reciprocal.

Definition A.4

If A is an n by n matrix, and there is a matrix B such that

AB = BA = I (A.31)

then B is the inverse of A. We write B = A−1.

How do we compute the inverse of a matrix? If AB = I, then

[AB·,1 AB·,2 . . . AB·,n] = I . (A.32)

Since the columns of the identity matrix and A are known, we can solve

AB·,1 =


1
0
.
.
.
0

 (A.33)

to obtain B1. We can find the remaining columns of the inverse in the same
way. If any of these systems of equations are inconsistent, then A−1 does not
exist.
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The inverse matrix can be used to solve a system of linear equations with n
equations and n variables. Given the system of equations Ax = b, and A−1,
we can multiply Ax = b on both sides by the inverse to obtain

A−1Ax = A−1b . (A.34)

Because

A−1Ax = Ix (A.35)
= x (A.36)

this gives the solution
x = A−1b . (A.37)

This argument shows that if A−1 exists, then for any right hand side b, a system
of equations has a unique solution. If A−1 does not exist, then the system of
equations may either have many solutions or no solution.

Definition A.5

When A is an n by n matrix, Ak is the product of k copies of A.
By convention, we define A0 = I.

Definition A.6

The transpose of a matrix A, denoted AT , is obtained by taking
the columns of of A and writing them as the rows of the transpose.
We will will also use the notation A−T for (A−1)T .

Example A.6

Let

A =
[

2 1
5 2

]
. (A.38)

Then

AT =
[

2 5
1 2

]
. (A.39)

Definition A.7

A matrix is symmetric if A = AT .
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Although many elementary textbooks on linear algebra consider only square
diagonal matrices, we will have occasion to refer to m by n matrices that have
nonzero elements only on the diagonal.

Definition A.8

An m by n matrix A is diagonal if Ai,j = 0 whenever i 6= j.

Definition A.9

An m by n matrix R is upper–triangular if Ri,j = 0 whenever
i > j. A matrix L is lower–triangular if LT is upper–triangular.

Example A.7

The matrix

S =

 1 0 0 0 0
0 2 0 0 0
0 0 3 0 0

 (A.40)

is diagonal, and the matrix

R =


1 2 3
0 2 4
0 0 5
0 0 0

 (A.41)

is upper–triangular.

Theorem A.1

The following statements are true for any scalars s and t and matrices
A, B, and C. It is assumed that the matrices are of the appropriate
size for the operations involved and that whenever an inverse occurs,
the matrix is invertible.

1. A + 0 = 0 + A = A.

2. A + B = B + A.

3. (A + B) + C = A + (B + C).

4. A(BC) = (AB)C.

5. A(B + C) = AB + AC.

6. (A + B)C = AC + BC.

7. (st)A = s(tA).
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8. s(AB) = (sA)B = A(sB).

9. (s + t)A = sA + tA.

10. s(A + B) = sA + sB.

11. (AT )T = A.

12. (sA)T = s(AT ).

13. (A + B)T = AT + BT .

14. (AB)T = BT AT .

15. (AB)−1 = B−1A−1.

16. (A−1)−1 = A.

17. (AT )−1 = (A−1)T .

18. If A and B are n by n matrices, and AB = I, then A−1 = B
and B−1 = A.

The first ten rules in this list are identical to rules of conventional alge-
bra, and you should have little trouble in applying them. The rules involving
transposes and inverses are new, but they can be mastered without too much
trouble.

Some students have difficulty with the following statements, which would
appear to be true on the surface, but that are in fact false for at least some
matrices.

1. AB = BA.

2. If AB = 0, then A = 0 or B = 0.

3. If AB = AC and A 6= 0, then B = C.

It is a worthwhile exercise to construct examples of 2 by 2 matrices for which
each of these statements is false.

A.3 Linear Independence

Definition A.10

The vectors v1, v2, . . ., vn are linearly independent if the system
of equations

c1v1 + c2v2 + . . . + cnvn = 0 (A.42)

has only the trivial solution c = 0. If there are multiple solutions,
then the vectors are linearly dependent.
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Determining whether or not a set of vectors is linearly independent is simple.
Just solve the above system of equations (A.42).

Example A.8

Let

A =

 1 2 3
4 5 6
7 8 9

 . (A.43)

Are the columns of A linearly independent vectors? To determine
this we set up the system of equations Ax = 0 in an augmented
matrix, and then find the RREF 1 0 −1 0

0 1 2 0
0 0 0 0

 . (A.44)

The solutions are

x = x3

 1
−2

1

 . (A.45)

We can set x3 = 1 and obtain the nonzero solution

x =

 1
−2

1

 . (A.46)

Thus, the columns of A are linearly dependent.

There are a number of important theoretical consequences of linear indepen-
dence. For example, it can be shown that if the columns of an n by n matrix A
are linearly independent, then A−1 exists, and the system of equations Ax = b
has a unique solution for every right hand side b [92].

A.4 Subspaces of Rn

So far, we have worked with vectors of real numbers in the n–dimensional space
Rn. There are a number of properties of Rn that make it convenient to work
with vectors. First, the operation of vector addition always works. We can take
any two vectors in Rn and add them together and get another vector in Rn.
Second, we can multiply any vector in Rn by a scalar and obtain another vector
in Rn. Finally, we have the 0 vector, with the property that for any vector x,
x + 0 = 0 + x = x.
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Definition A.11

A subspace W of Rn is a subset of Rn which satisfies the three
properties:

1. If x and y are vectors in W , then x + y is also a vector in W .

2. If x is a vector in W and s is any scalar, then sx is also a vector
in W .

3. The 0 vector is in W .

Example A.9

In R3, the plane P defined by the equation

x1 + x2 + x3 = 0 (A.47)

is a subspace of Rn. To see this, note that if we take any two vectors
in the plane and add them together, we get another vector in the
plane. If we take a vector in this plane and multiply it by any scalar,
we get another vector in the plane. Finally, 0 is a vector in the plane.

Subspaces are important because they provide an environment within which
all of the rules of matrix–vector algebra apply. An especially important subspace
of Rn that we will work with is the null space of an m by n matrix.

Definition A.12

Let A be an m by n matrix. The null space of A, written N(A), is
the set of all vectors x such that Ax = 0.

To show that N(A) is actually a subspace of Rn, we need to show that:

1. If x and y are in N(A), then Ax = 0 and Ay = 0. By adding these
equations, we find that A(x + y) = 0. Thus x + y is in N(A).

2. If x is in N(A) and s is any scalar, then Ax = 0. We can multiply this
equation by s to get sAx = 0. Thus A(sx) = 0, and sx is in N(A).

3. A0 = 0, so 0 is in N(A).

Computationally, the null space of a matrix can be determined by solving
the system of equations Ax = 0.

Example A.10
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Let

A =

 3 1 9 4
2 1 7 3
5 2 16 7

 . (A.48)

To find the null space of A, we solve the system of equations Ax =
0. To solve the equations, we put the system of equations into an
augmented matrix  3 1 9 4 0

2 1 7 3 0
5 2 16 7 0

 (A.49)

and find the RREF  1 0 2 1 0
0 1 3 1 0
0 0 0 0 0

 . (A.50)

From the augmented matrix, we find that

x = x3


−2
−3

1
0

+ x4


−1
−1

0
1

 . (A.51)

Any vector in the null space can be written as a linear combination
of the above vectors, so the null space is a two–dimensional plane
within R4.

Now, consider the problem of solving Ax = b, where

b =

 22
17
39

 (A.52)

and one particular solution is

p =


1
2
1
2

 . (A.53)

We can take any vector in the null space of A and add it to this
solution to obtain another solution. Suppose that x is in N(A).
Then

A(x + p) = Ax + Ap

A(x + p) = 0 + b

A(x + p) = b.
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For example,

x =


1
2
1
2

+ 2


−2
−3

1
0

+ 3


−1
−1

0
1

 (A.54)

is also a solution to Ax = b.

In the context of inverse problems, the null space is critical because the
presence of a nontrivial null space leads to nonuniqueness in the solution to a
linear system of equations.

Definition A.13

A basis for a subspace W is a set of vectors v1, . . ., vp such that

1. Any vector in W can be written as a linear combination of the
basis vectors.

2. The basis vectors are linearly independent.

A particularly simple and useful basis is the standard basis.

Definition A.14

The standard basis for Rn is the set of vectors e1, . . ., ep such that
the elements of ei are all zero, except for the ith element, which is
one.

Any nontrivial subspace W of Rn will have many different bases. For exam-
ple, we can take any basis and multiply one of the basis vectors by 2 to obtain a
new basis. It is possible to show that all bases for a subspace W have the same
number of basis vectors [92].

Theorem A.2

Let W be a subspace of Rn with basis v1, v2, . . ., vp. Then all bases
for W have p basis vectors, and p is the dimension of W .

It can be shown that the procedure used in the above example always pro-
duces a basis for N(A) [92].
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Definition A.15

Let A be an m by n matrix. The column space or range of A
(written R(A)) is the set of all vectors b such that Ax = b has at
least one solution. In other words, the column space is the set of all
vectors b that can be written as a linear combination of the columns
of A.

The range is important in the context of discrete linear inverse problems,
because R(G) consists of all vectors d for which there is a model m such that
Gm = d.

To find the column space of a matrix, we consider what happens when we
compute the RREF of [A | b]. In the part of the augmented matrix corre-
sponding to the left hand side of the equations we always get the same result,
namely the RREF of A. The solution to the system of equations may involve
some free variables, but we can always set these free variables to 0. Thus when
we are able to solve Ax = b, we can solve the system of equations by using
only variables corresponding to the pivot columns in the RREF of A. In other
words, if we can solve Ax = b, then we can write b as a linear combination of
the pivot columns of A. Note that these are columns from the original matrix
A, not columns from the RREF of A.

Example A.11

As in the previous example, let

A =

 3 1 9 4
2 1 7 3
5 2 16 7

 . (A.55)

We want to find the column space of A. We already know that the
RREF of A is  1 0 2 1

0 1 3 1
0 0 0 0

 . (A.56)

Thus whenever we can solve Ax = b, we can find a solution in
which x3 and x4 are 0. In other words, whenever there is a solution
to Ax = b, we can write b as a linear combination of the first two
columns of A

b = x1

 3
2
5

+ x2

 1
1
2

 . (A.57)

Since these two vectors are linearly independent and span R(A),
they form a basis for R(A). The dimension of R(A) is two.
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In finding the null space and range of a matrix A we found that the basis
vectors for N(A) corresponded to non pivot columns of A, while the basis
vectors for R(A) corresponded to pivot columns of A. Since the matrix A had
n columns, we obtain the theorem.

Theorem A.3

dim N(A) + dim R(A) = n . (A.58)

In addition to the null space and range of a matrix A, we will often work
with the null space and range of the transpose of A. Since the columns of AT

are rows of A, the column space of AT is also called the row space of A. Since
each row of A can be written as a linear combination of the nonzero rows of
the RREF of A, the nonzero rows of the RREF form a basis for the row space
of A. There are exactly as many nonzero rows in the RREF of A as there are
pivot columns. Thus we have the following theorem.

Theorem A.4

dim(R(AT )) = dim R(A) . (A.59)

Definition A.16

The rank of an m by n matrix A is the dimension of R(A). If
rank(A) = min(m, n), then A has full rank. If rank(A) = m, then
A has full row rank. If rank(A) = n, then A has full column
rank. If rank(A) < min(m, n), then A is rank deficient.

The rank of a matrix is readily found in MATLAB by using the rank command.

A.5 Orthogonality and the Dot Product

Definition A.17

Let x and y be two vectors in Rn. The dot product of x and y is

x · y = xT y = x1y1 + x2y2 + . . . + xnyn . (A.60)
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Definition A.18

Let x be a vector in Rn. The 2–norm or Euclidean length of x
is

‖x‖2 =
√

xT x =
√

x2
1 + x2

2 + . . . + x2
n . (A.61)

Later we will introduce two other ways of measuring the “length” of a vector.
The subscript 2 is used to distinguish this 2–norm from the other norms.

You may be familiar with an alternative definition of the dot product in
which x · y = ‖x‖‖y‖ cos(θ) where θ is the angle between the two vectors. The
two definitions are equivalent. To see this, consider a triangle with sides x, y,
and x − y. See Figure A.1. The angle between sides x and y is θ. By the law
of cosines,

‖x− y‖22 = ‖x‖22 + ‖y‖22 − 2‖x‖2‖y‖2 cos(θ)

(x− y)T (x− y) = xT x + yT y − 2‖x‖2‖y‖2 cos(θ)

xT x− 2xT y + yT y = xT x + yT y − 2‖x‖2‖y‖2 cos(θ)

−2xT y = −2‖x‖2‖y‖2 cos(θ)

xT y = ‖x‖2‖y‖2 cos(θ).
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Figure A.1: Relationship between the dot product and the angle between two
vectors.

We can also use this formula to compute the angle between two vectors.

θ = cos−1

(
xT y

‖x‖2‖y‖2

)
. (A.62)

Definition A.19

Two vectors x and y in Rn are orthogonal, or equivalently, per-
pendicular, (written x ⊥ y) if xT y = 0.
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Definition A.20

A set of vectors v1, v2, . . ., vp is orthogonal if each pair of vectors
in the set is orthogonal.

Definition A.21

Two subspaces V and W of Rn are orthogonal if every vector in
V is perpendicular to every vector in W .

If x is in N(A), then Ax = 0. Since each element of the product Ax can
be obtained by taking the dot product of a row of A and x, x is perpendicular
to each row of A. Since x is perpendicular to all of the columns of AT , it is
perpendicular to R(AT ). We have the following theorem.

Theorem A.5

Let A be an m by n matrix. Then

N(A) ⊥ R(AT ) . (A.63)

Furthermore,
N(A) + R(AT ) = Rn . (A.64)

That is, any vector x in Rn can be written uniquely as x = p + q
where p is in N(A) and q is in R(AT ).

Definition A.22

A basis in which the basis vectors are orthogonal is an orthogonal
basis. A basis in which the basis vectors are orthogonal and have
length one is an orthonormal basis.

Definition A.23

An n by n matrix Q is orthogonal if the columns of Q are orthog-
onal and each column of Q has length one.

With the requirement that the columns of an orthogonal matrix have length
one, using the term “orthonormal” would make logical sense. However, the
definition of “orthogonal” given here is standard and we will not try to change
standard usage.

Orthogonal matrices have a number of useful properties.
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Theorem A.6

If Q is an orthogonal matrix, then:

1. QT Q = QQT = I. In other words, Q−1 = QT .

2. For any vector x in Rn, ‖Qx‖2 = ‖x‖2 .

3. For any two vectors x and y in Rn, xT y = (Qx)T (Qy) .

A problem that we will often encounter in practice is projecting a vector x
onto another vector y or onto a subspace W to obtain a projected vector p. See
Figure A.2. We know that

xT y = ‖x‖2‖y‖2 cos(θ) (A.65)

where θ is the angle between x and y. Also,

cos(θ) =
‖p‖2
‖x‖2

. (A.66)

Thus

‖p‖2 =
xT y
‖y‖2

. (A.67)

Since p points in the same direction as y,

p = projyx =
xT y
yT y

y. (A.68)

The vector p is called the orthogonal projection or simply the projection
of x onto y.

yx

p

Figure A.2: The orthogonal projection of x onto y.
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Similarly, if W is a subspace of Rn with an orthogonal basis w1, w2, . . .,
wp, then the orthogonal projection of x onto W is

p = projW x =
xT w1

wT
1 w1

w1 +
xT w2

wT
2 w2

w2 + . . . +
xT wp

wT
p wp

wp . (A.69)

It is inconvenient that the projection formula requires an orthogonal basis.
The Gram–Schmidt orthogonalization process can be used to turn any
basis for a subspace of Rn into an orthogonal basis. We begin with a basis v1,
v2, . . ., vp. The process recursively constructs an orthogonal basis by taking
each vector in the original basis and then subtracting off its projection on the
space spanned by the previous vectors. The formulas are

w1 = v1

w2 = v2 −
vT

1 v2

vT
1 v1

v1

. . .

wp = vp −
wT

1 vp

wT
1 w1

w1 − . . .−
wT

p vp

wT
p wp

wp . (A.70)

Unfortunately, the Gram–Schmidt process is numerically unstable when applied
to large bases. In MATLAB the command orth provides a numerically stable
way to produce an orthogonal basis from a nonorthogonal basis. An important
property of orthogonal projection is that the projection of x onto W is the point
in W which is closest to x. In the special case that x is in W , the projection of
x onto W is x.

Given an inconsistent system of equations Ax = b, it is often desirable to
find an approximate solution. A natural measure of the quality of an approx-
imate solution is the norm of the difference between Ax and b, ‖Ax − b‖. A
solution which minimizes the 2–norm, ‖Ax − b‖2, is called a least squares
solution, because it minimizes the sum of the squares of the errors.

The least squares solution can be obtained by projecting b onto the range
of A. This calculation requires us to first find an orthogonal basis for R(A).
There is an alternative approach that does not require the orthogonal basis.

Let
Ax = p = projR(A)b . (A.71)

Then Ax − b is perpendicular to R(A). In particular, each of the columns of
A is orthogonal to Ax− b. Thus

AT (Ax− b) = 0 (A.72)

or
AT Ax = AT b . (A.73)

This last system of equations is referred to as the normal equations for the
least squares problem. It can be shown that if the columns of A are linearly
independent, then the normal equations have exactly one solution [92], and this
solution minimizes the sum of squared errors.
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A.6 Eigenvalues and Eigenvectors

Definition A.24

An n by n matrix A has an eigenvalue λ with an associated eigen-
vector x if x is not 0, and

Ax = λx . (A.74)

The eigenvalues and eigenvectors of a matrix A are important in analyzing
difference equations of the form

xk+1 = Axk (A.75)

and differential equations of the form

x′(t) = Ax(t) . (A.76)

To find eigenvalues and eigenvectors, we rewrite the eigenvector equation (A.74)
as

(A− λI)x = 0 . (A.77)

To find nonzero eigenvectors, the matrix A− λI must be singular. This leads
to the characteristic equation

det(A− λI) = 0 . (A.78)

where det denotes the determinant. For small matrices (2 by 2 or 3 by 3),
it is relatively simple to solve the characteristic equation (A.78) to find the
eigenvalues. The eigenvalues can be subsequently substituted into (A.77) and
the resulting system can be solved to find corresponding eigenvectors. Note that
the eigenvalues can, in general, be complex. For larger matrices, solving the
characteristic equation becomes impractical and more sophisticated numerical
methods are used. The MATLAB command eig can be used to find eigenvalues
and eigenvectors of a matrix.

Suppose that we can find a set of n linearly independent eigenvectors, vi of
a matrix A with associated eigenvalues λi. These eigenvectors form a basis for
Rn. We can use the eigenvectors to diagonalize the matrix as

A = PΛP−1 (A.79)

where
P =

[
v1 v2 . . . vn

]
(A.80)

and Λ is a diagonal matrix of eigenvalues

Λii = λi . (A.81)
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To see that this works, simply compute AP

AP = A
[

v1 v2 . . . vn

]
=

[
λ1v1 λ2v2 . . . λnvn

]
= PΛ .

Thus A = PΛP−1. Not all matrices are diagonalizable, because not all matrices
have n linearly independent eigenvectors. However, there is an important special
case in which matrices can always be diagonalized.

Theorem A.7

If A is a real symmetric matrix, then A can be written as

A = QΛQ−1 = QΛQT (A.82)

where Q is a real orthogonal matrix of eigenvectors of A and Λ is a
real diagonal matrix of the eigenvalues of A.

This orthogonal diagonalization of a real symmetric matrix A will be
useful later on when we consider orthogonal factorizations of general matrices.

The eigenvalues of symmetric matrices are particularly important in the
analysis of quadratic forms.

Definition A.25

A quadratic form is a function of the form

f(x) = xT Ax (A.83)

where A is a symmetric n by n matrix. The quadratic form f(x)
is positive definite (PD) if f(x) ≥ 0 for all x and f(x) = 0
only when x = 0. The quadratic form is positive semidefinite if
f(x) ≥ 0 for all x. Similarly, a symmetric matrix A is positive
definite if the associated quadratic form f(x) = xT Ax is positive
definite. The quadratic form is negative semidefinite if −f(x)
is positive semidefinite. If f(x) is neither positive semidefinite nor
negative semidefinite, then f(x) is indefinite.

Positive definite quadratic forms have an important application in analytic
geometry. Let A be a positive definite and symmetric matrix. Then the region
defined by the inequality

(x− c)A(x− c) ≤ δ (A.84)

is an ellipsoidal volume, with its center at c. We can diagonalize A as

A = PΛP−1 (A.85)
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where the columns of P are normalized eigenvectors of A, and Λ is a diagonal
matrix whose elements are the eigenvalues of A. It can be shown that the
ith eigenvector of A points in the direction of the ith semi major axis of the
ellipsoid, and the length of the ith semi major axis is given by

√
δ/λi [92].

An important connection between positive semidefinite matrices and eigen-
values is the following theorem.

Theorem A.8

A symmetric matrix A is positive semidefinite if and only if its eigen-
values are greater than or equal to 0.

This provides a convenient way to check whether or not a matrix is positive
semidefinite.

The Cholesky factorization provides an another way to determine whether
or not a symmetric matrix is positive definite.

Theorem A.9

Let A be an an n by n positive definite and symmetric matrix. Then
A can be written uniquely as

A = RT R (A.86)

where R is a nonsingular upper–triangular matrix. Furthermore,
A can be factored in this way only if it is positive definite.

The MATLAB command chol can be used to compute the Cholesky factor-
ization of a symmetric and positive definite matrix.

A.7 Vector and Matrix Norms

Although the conventional Euclidean length (A.61) is most commonly used,
there are alternative ways to measure the length of a vector.

Definition A.26

Any measure of vector length satisfying the following four conditions
is called a norm.

1. For any vector x, ‖x‖ ≥ 0

2. For any vector x and any scalar s, ‖sx‖ = |s|‖x‖
3. For any vectors x and y, ‖x + y‖ ≤ ‖x‖+ ‖y‖
4. ‖x‖ = 0 if and only if x = 0
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If ‖‖ satisfies conditions 1, 2, and 3, but does not satisfy condition
4, then ‖‖ is called a seminorm.

Definition A.27

The p–norm of a vector in Rn is defined for p ≥ 1 by

‖x‖p = (|x1|p + |x2|p + . . . + |xn|p)1/p . (A.87)

It can be shown that for any p ≥ 1, (A.7) satisfies the conditions of Definition
A.26 [51]. The conventional Euclidean length is just the 2–norm, but two other
p–norms are also commonly used. The 1–norm is the sum of the absolute
values of the elements in x. The ∞–norm is obtained by taking the limit as
p goes to infinity. The ∞–norm is the maximum of the absolute values of the
elements in x. The MATLAB command norm can be used to compute the
norm of a vector, and has options for the 1, 2, and infinity norms.

The 2–norm is particularly important because of its natural connection with
dot products and projections. The projection of a vector onto a subspace is the
point in the subspace that is closest to the vector as measured by the 2–norm.
We have also seen in (A.73) that the problem of minimizing ‖Ax− b‖2 can be
solved by computing projections or by using the normal equations. In fact, the
2–norm can be tied directly to the dot product by the formula

‖x‖2 =
√

xT x . (A.88)

The 1– and ∞–norms can also be useful in finding approximate solutions to
over–determined linear systems of equations. To minimize the maximum of the
errors, we minimize ‖Ax−b‖∞. To minimize the sum of the absolute values of
the errors, we minimize ‖Ax−b‖1. Unfortunately, these minimization problems
are generally more difficult to solve than least squares problems.

Definition A.28

Any measure of the size or length of an m by n matrix that satisfies
the following five properties can be used as a matrix norm.

1. For any matrix A, ‖A‖ ≥ 0

2. For any matrix A and any scalar s, ‖sA‖ = |s|‖A‖
3. For any matrices A and B, ‖A + B‖ ≤ ‖A‖+ ‖B‖
4. ‖A‖ = 0 if and only if A = 0

5. For any two matrices A and B of compatible sizes, ‖AB‖ ≤
‖A‖‖B‖
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Definition A.29

The p–norm of a matrix A is

‖A‖p = max
‖x‖p=1

‖Ax‖p (A.89)

where ‖x‖p and ‖Ax‖p are vector p–norms, while ‖A‖p is the matrix
p–norm of A.

Solving the maximization problem of (A.89) to determine a matrix p–norm
could be extremely difficult. Fortunately, there are simpler formulas for the
most commonly used matrix p–norms. See Exercises A.15, A.16, and C.4.

‖A‖1 = max
j

m∑
i=1

|Ai,j | (A.90)

‖A‖2 =
√

λmax(AT A) (A.91)

‖A‖∞ = max
i

n∑
j=1

|Ai,j | (A.92)

where λmax(AT A) denotes the largest eigenvalue of AT A.

Definition A.30

The Frobenius norm of an m by n matrix is given by

‖A‖F =

√√√√ m∑
i=1

n∑
j=1

A2
i,j . (A.93)

Definition A.31

A matrix norm and a vector norm are compatible if

‖Ax‖ ≤ ‖A‖‖x‖ . (A.94)

The matrix p–norm is by its definition compatible with the vector p–norm
from which it was derived. It can also be shown that the Frobenius norm of a
matrix is compatible with the vector 2–norm [102]. Thus the Frobenius norm
is often used with the vector 2–norm.

In practice, the Frobenius norm, 1–norm, and ∞–norm of a matrix are easy
to compute, while the 2–norm of a matrix can be difficult to compute for large
matrices. The MATLAB command norm has options for computing the 1, 2,
infinity, and Frobenius norms of a matrix.
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A.8 The Condition Number of a Linear System

Suppose that we want to solve a system of n equations in n variables

Ax = b . (A.95)

Suppose further that because of measurement errors in b, we actually solve

Ax̂ = b̂ . (A.96)

Can we get a bound on ‖x− x̂‖ in terms of ‖b− b̂‖? Starting with (A.95) and
(A.96) we have

A(x− x̂) = b− b̂ (A.97)

(x− x̂) = A−1(b− b̂) (A.98)

‖x− x̂‖ = ‖A−1(b− b̂)‖ (A.99)

‖x− x̂‖ ≤ ‖A−1‖‖b− b̂‖ . (A.100)
(A.101)

This formula provides an absolute bound on the error in the solution. It is also
worthwhile to compute a relative error bound.

‖x− x̂‖
‖b‖

≤ ‖A−1‖‖b− b̂‖
‖b‖

(A.102)

‖x− x̂‖
‖Ax‖

≤ ‖A−1‖‖b− b̂‖
‖b‖

(A.103)

‖x− x̂‖ ≤ ‖Ax‖‖A−1‖‖b− b̂‖
‖b‖

(A.104)

‖x− x̂‖ ≤ ‖A‖‖x‖‖A−1‖‖b− b̂‖
‖b‖

(A.105)

‖x− x̂‖
‖x‖

≤ ‖A‖‖A−1‖‖b− b̂‖
‖b‖

. (A.106)

(A.107)

The relative error in b is measured by

‖b− b̂‖
‖b‖

. (A.108)

The relative error in x is measured by

‖x− x̂‖
‖x‖

. (A.109)
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The constant
cond(A) = ‖A‖‖A−1‖ (A.110)

is called the condition number of A.
Note that nothing that we did in the calculation of the condition number

depends on which norm we used. The condition number can be computed using
the 1–norm, 2–norm, ∞–norm, or Frobenius norm. The MATLAB command
cond can be used to find the condition number of a matrix. It has options for
the 1, 2, infinity, and Frobenius norms.

The condition number provides an upper bound on how inaccurate the solu-
tion to a system of equations might be because of errors in the right hand side.
In some cases, the condition number greatly overestimates the error in the solu-
tion. As a practical matter, it is wise to assume that the error is of roughly the
size predicted by the condition number. In practice, floating point arithmetic
only allows us to store numbers to about 16 digits of precision. If the condition
number is greater than 1016, then by the above inequality, there may be no
accurate digits in the computer solution to the system of equations. Systems of
equations with very large condition numbers are called ill–conditioned.

It is important to understand that ill–conditioning is a property of the system
of equations and not of the algorithm used to solve the system of equations. Ill–
conditioning cannot be fixed simply by using a better algorithm. Instead, we
must either increase the precision of our arithmetic or find a different, better
conditioned system of equations to solve.

A.9 The QR Factorization

Although the theory of linear algebra can be developed using the reduced row
echelon form, there is an alternative computational approach that works bet-
ter in practice. The basic idea is to compute factorizations of matrices that
involve orthogonal, diagonal, and upper–triangular matrices. This alternative
approach leads to algorithms which can quickly compute accurate solutions to
linear systems of equations and least squares problems.

Theorem A.10

Let A be an m by n matrix. A can be written as

A = QR (A.111)

where Q is an m by m orthogonal matrix, and R is an m by n
upper–triangular matrix. This is called the QR factorization of
A.

The MATLAB command qr can be used to compute the QR factorization of a
matrix. In a common situation, A will be an m by n matrix with m > n and
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the rank of A will be n. In this case, we can write

R =
[

R1

0

]
(A.112)

where R1 is n by n, and
Q = [Q1 Q2] (A.113)

where Q1 is m by n and Q2 is m by m − n. In this case the QR factorization
has some important properties.

Theorem A.11

Let Q and R be the QR factorization of an m by n matrix A with
m > n and rank(A) = n. Then

1. The columns of Q1 are an orthonormal basis for R(A).

2. The columns of Q2 an orthonormal basis for N(AT ).

3. The matrix R1 is nonsingular.

Now, suppose that we want to solve the least squares problem

min ‖Ax− b‖2 . (A.114)

Since multiplying a vector by an orthogonal matrix does not change its length,
this is equivalent to

min ‖QT (Ax− b)‖2 . (A.115)

But
QT A = QT QR = R . (A.116)

So, we have
min ‖Rx−QT b‖2 (A.117)

or

min
∥∥∥∥ R1x−QT

1 b
0x−QT

2 b

∥∥∥∥
2

. (A.118)

Whatever value of x we pick, we will probably end up with nonzero error because
of the 0x − QT

2 b part of the least squares problem. We cannot minimize the
norm of this part of the vector. However, we can find an x that exactly solves
R1x = QT

1 b. Thus we can minimize the least squares problem by solving the
square system of equations

R1x = QT
1 b . (A.119)

The advantage of solving this system of equations instead of the normal equa-
tions (A.73) is that the normal equations are typically much more badly condi-
tioned than (A.119).
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A.10 Linear Algebra in Spaces of Functions

So far, we have considered only vectors in Rn. The concepts of linear algebra
can be extended to other contexts. In general, as long as the objects that we
want to consider can be multiplied by scalars and added together, and as long
as they obey the laws of vector algebra, then we have a vector space in which
we can practice linear algebra. If we can also define an vector product similar
to the dot product, then we have what is called an inner product space, and
we can define orthogonality, projections, and the 2–norm.

There are many different vector spaces used in various areas of science and
mathematics. For our work in inverse problems, a very commonly used vector
space is the space of functions defined on an interval [a, b].

Multiplying a scalar times a function or adding two functions together clearly
produces another function. In this space, the function z(x) = 0 takes the place
of the 0 vector, since f(x) + z(x) = f(x). Two functions f(x) and g(x) are
linearly independent if the only solution to

c1f(x) + c2g(x) = z(x) (A.120)

is c1 = c2 = 0.
We can define the dot product of two functions f and g to be

f · g =
∫ b

a

f(x)g(x)dx . (A.121)

Another commonly used notation for this dot product or inner product of f
and g is

f · g = 〈f, g〉 . (A.122)

It is easy to show that this inner product has all of the algebraic properties of
the dot product of two vectors in Rn. A more important motivation for defining
the dot product in this way is that it leads to a useful definition of the 2–norm
of a function. Following our earlier formula that ‖x‖2 =

√
xT x, we have

‖f‖2 =

√∫ b

a

f(x)2 dx . (A.123)

Using this definition, the distance between two functions f and g is

‖f − g‖2 =

√∫ b

a

(f(x)− g(x))2 dx . (A.124)

This measure is obviously zero when f(x) = g(x) everywhere, and is only zero
when f(x) = g(x) except possibly at some isolated points.

Using this inner product and norm, we can reconstruct the theory of lin-
ear algebra from Rn in our space of functions. This includes the concepts of
orthogonality, projections, norms, and least squares solutions.
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Definition A.32

Given a collection of functions f1(x), f2(x), . . ., fm(x) in an inner
product space, the Gram matrix of the functions is the m by m
matrix Γ, whose elements are given by

Γi,j = fi · fj . (A.125)

The Gram matrix has several important properties. It is symmetric and
positive semidefinite. If the functions are linearly independent, then the Gram
matrix is also positive definite. Furthermore, the rank of Γ is equal to size of
the largest linearly independent subset of the functions f1(x), . . ., fm(x).

A.11 Exercises

1. Is it possible for an under–determined system of equations to have exactly
one solution? If so, construct an example. If not, then explain why it is
not possible.

2. Let A be an m by n matrix with n pivot columns in its RREF. Can the
system of equations Ax = b have infinitely many solutions?

3. If C = AB is a 5 by 4 matrix, then how many rows does A have? How
many columns does B have? Can you say anything about the number of
columns in A?

4. Suppose that v1, v2 and v3 are three vectors in R3 and that v3 = −2v1 +
3v2. Are the vectors linearly dependent or linearly independent?

5. Let

A =

 1 2 3 4
2 2 1 3
4 6 7 11

 . (A.126)

Find bases for N(A), R(A), N(AT ) and R(AT ). What are the dimen-
sions of the four subspaces?

6. Let A be an n by n matrix such that A−1 exists. What are N(A), R(A),
N(AT ), and R(AT )?

7. Let A be any 9 by 6 matrix. If the dimension of the null space of A is 5,
then what is the dimension of R(A)? What is the dimension of R(AT )?
What is the rank of A?

8. Suppose that a nonhomogeneous system of equations with four equations
and six unknowns has a solution with two free variables. Is it possible to
change the right hand side of the system of equations so that the modified
system of equations has no solutions?
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9. Let W be the set of vectors x in R4 such that x1x2 = 0. Is W a subspace
of R4?

10. Let v1, v2, v3 be a set of three nonzero orthogonal vectors. Show that
the vectors are also linearly independent.

11. Show that if x ⊥ y, then

‖x + y‖22 = ‖x‖22 + ‖y‖22 . (A.127)

12. Prove the parallelogram law

‖u + v‖22 + ‖u− v‖22 = 2‖u‖22 + 2‖v‖22 . (A.128)

13. Suppose that a non singular matrix A can be diagonalized as

A = PΛP−1 . (A.129)

Find a diagonalization of A−1. What are the eigenvalues of A−1?

14. Suppose that A is diagonalizable and that all eigenvalues of A have ab-
solute value less than one. What is the limit as k goes to infinity of Ak?

15. In this exercise, we will derive the formula (A.90) for the 1–norm of a
matrix. Begin with the optimization problem

‖A‖1 = max
‖x‖1=1

‖Ax‖1 . (A.130)

(a) Show that if ‖x‖1 = 1, then

‖Ax‖1 ≤ max
j

m∑
i=1

|Ai,j | . (A.131)

(b) Find a vector x such that ‖x‖1 = 1, and

‖Ax‖1 = max
j

m∑
i=1

|Ai,j | . (A.132)

(c) Conclude that

‖A‖1 = max
‖x‖1=1

‖Ax‖1 = max
j

m∑
i=1

|Ai,j | . (A.133)

16. Derive the formula (A.92) for the infinity norm of a matrix.

17. Let A be an m by n matrix.
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(a) Show that AT A is symmetric.

(b) Show that AT A is positive semidefinite Hint: Use the definition of
positive semidefinite rather than trying to compute eigenvalues.

(c) Show that if rank(A) = n, then the only solution to Ax = 0 is x = 0.

(d) Use part c to show that if rank(A) = n, then AT A is positive definite.

(e) Use part d to show that if rank(A) = n, then AT A is nonsingular.

(f) Show that N(AT A) = N(A).

18. Show that
cond(AB) ≤ cond(A)cond(B) . (A.134)

19. Let A be a symmetric and positive definite matrix with Cholesky factor-
ization

A = RT R . (A.135)

Show how the Cholesky factorization can be used to solve Ax = b by
solving two systems of equations, each of which has R or RT as its matrix.

20. Let P3[0, 1] be the space of polynomials of degree less than or equal to 3
on the interval [0, 1]. The polynomials p1(x) = 1, p2(x) = x, p3(x) = x2,
and p4(x) = x3 form a basis for P3[0, 1], but they are not orthogonal with
respect to the inner product

f · g =
∫ 1

0

f(x)g(x) dx . (A.136)

Use the Gram–Schmidt orthogonalization process to construct an orthog-
onal basis for P3[0, 1]. Once you have your basis, use it to find the third
degree polynomial that best approximates f(x) = e−x on the interval
[0, 1].

A.12 Notes and Further Reading

Much of this and associated material is typically covered in sophomore level
linear algebra courses, and there are an enormous number of textbooks at this
level. One good introductory linear algebra textbook is [92]. At a slightly more
advanced level, [158] and [102] are both excellent. The book by Strang and
Borre [159] reviews linear algebra in the context of geodetic problems.

Fast and accurate algorithms for linear algebra computations are a somewhat
more advanced and specialized topic. A classic reference is [51]. Other good
books on this topic include [169] and [33].

The extension of linear algebra to spaces of functions is a topic in the subject
of functional analysis. Unfortunately, most textbooks on functional analysis
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assume that the reader has considerable mathematical background. One book
that is reasonably accessible to readers with limited mathematical backgrounds
is [98].
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Appendix B

Review of Probability and
Statistics

Synopsis: A brief review of the topics in classical probability and statistics that
are used throughout the book. Connections between probability theory and its
application to the analysis of data with random measurement errors are high-
lighted. Note that some very different philosophical interpretations of probability
theory are discussed in Chapter 11.

B.1 Probability and Random Variables

The mathematical theory of probability begins with an experiment, which has
a set S of possible outcomes. We will be interested in events which are subsets
A of S.

Definition B.1

The probability function P is a function defined on subsets of S
with the following properties:

1. P (S) = 1
2. For every event A ⊆ S, P (A) ≥ 0
3. If events A1, A2, . . . are pairwise mutually exclusive (that is, if

Ai ∩Aj is empty for all pairs i, j), then

P (∪∞i=1Ai) =
∞∑

i=1

P (Ai) . (B.1)

The probability properties given above are fundamental to developing the
mathematics of probability theory. However, applying this definition of proba-
bility to real world situations frequently requires ingenuity.

281
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Example B.1

Consider the experiment of throwing a dart at a dart board. We will
assume that our dart thrower is an expert who always hits the dart
board. The sample space S consists of the points on the dart board.
We can define an event A that consists of the points in the bullseye,
so that P (A) is the probability that the thrower hits the bullseye.

In practice, the outcome of an experiment is often a number rather than
an event. Random variables are a useful generalization of the basic concept of
probability.

Definition B.2

A random variable X is a function X(s) that assigns a value to
each outcome s in the sample space S.

Each time we perform an experiment, we obtain a particular value
of the random variable. These values are called realizations of the
random variable.

Example B.2

To continue our previous example, let X be the function that takes
a point on the dart board and returns the associated score. Suppose
that throwing the dart in the bullseye scores 50 points. Then for
each point s in the bullseye, X(s) = 50.

In this book we deal frequently with experimental measurements that can
include some random measurement error.

Example B.3

Suppose we measure the mass of an object five times to obtain the
realizations m1 = 10.1 kg, m2 = 10.0 kg, m3 = 10.0 kg, m4 = 9.9
kg, and m5 = 10.1 kg. We will assume that there is one true mass m,
and that the measurements we obtained varied because of random
measurement errors ei, so that

m1 = m+e1, m2 = m+e2, m3 = m+e3, m4 = m+e4, m5 = m+e5 .
(B.2)

We can treat the measurement errors as realizations of a random
variable E. Equivalently, since the true mass m is just a constant,
we could treat the measurements m1, m2, . . ., m5 as realizations of
a random variable M . In practice it makes little difference whether
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we treat the measurements or the measurement errors as random
variables.

Note that, in a Bayesian approach, the mass m of the object would
itself be a random variable. This is a viewpoint that we consider in
Chapter 11.

The relative probability of realization values for a random variable can be char-
acterized by a nonnegative probability density function (PDF), fX(x),
with

P (X ≤ a) =
∫ a

−∞
fX(x) dx . (B.3)

Because the random variable always has some value,∫ ∞

−∞
fX(x) dx = 1 . (B.4)

The following definitions give some useful random variables that frequently
arise in inverse problems.

Definition B.3

The uniform random variable on the the interval [a, b] has the
probability density function

fU (x) =


1

b−a a ≤ x ≤ b

0 x < a
0 x > b .

(B.5)

Definition B.4

The normal or Gaussian random variable has the probability den-
sity function

fN (x) =
1

σ
√

2π
e−

1
2 (x−µ)2/σ2

. (B.6)

See Figure B.2. The notation N(µ, σ2) is used to denote a nor-
mal distribution with parameters µ and σ. The standard normal
random variable, N(0, 1), has µ = 0 and σ = 1.
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Figure B.1: The PDF for the uniform random variable on [0,1].
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Figure B.2: The PDF of the standard normal random variable.
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Definition B.5

The exponential random variable has the probability density func-
tion

fexp(x) =
{

λe−λx x ≥ 0
0 x < 0 .

(B.7)

See Figure B.3.
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Figure B.3: The exponential probability density function (λ = 1).

Definition B.6

The double–sided exponential random variable has the probabil-
ity density function

fdexp(x) =
1

23/2σ
e−

√
2|x−µ|/σ . (B.8)

See Figure B.4.

Definition B.7

The χ2 random variable has the probability density function

fχ2(x) =
1

2ν/2Γ(ν/2)
x

1
2 ν−1e−x/2 (B.9)
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Figure B.4: The double–sided exponential probability density function (µ = 0,
λ = 1).

where the gamma function is

Γ(x) =
∫ ∞

0

ξx−1e−ξ dξ . (B.10)

and the parameter ν is called the number of degrees of freedom.
See Figure B.5.

It can be shown that for n independent random variables, Xi, (see
page 290) with standard normal distributions, the random variable

Z =
n∑

i=1

X2
i (B.11)

is a χ2 random variable with ν = n degrees of freedom [43].

Definition B.8

The Student’s t distribution with ν degrees of freedom has the
probability density function

ft(x) =
Γ((ν + 1)/2)

Γ(ν/2)
1√
νπ

(
1 +

x2

ν

)−(ν+1)/2

. (B.12)
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Figure B.5: The χ2 probability density function for several values of ν.

See Figure B.6. The Student’s t distribution is so named because W. S. Gosset
used the pseudonym “Student” in publishing the first paper in which the dis-
tribution appeared. In the limit as ν goes to infinity, Student’s t distribution
approaches a standard normal distribution.

The cumulative distribution function (CDF) FX(a) of a one–dimensional
random variable X is given by the definite integral of the associated PDF

FX(a) = P (X ≤ a) =
∫ a

−∞
f(x) dx . (B.13)

Note that FX(a) must lie in the interval [0, 1] for all a, and is a nondecreasing
function of a because of the unit area and non negativity of the PDF.

For the uniform PDF on the unit interval, for example, the CDF is a ramp
function

FU (a) =
∫ a

−∞
fu(z) dz (B.14)

FU (a) =

 0 a ≤ 0
a 0 ≤ a ≤ 1
1 a > 1 .

(B.15)

The PDF, fX(x), or CDF, FX(a), completely determine the probabilistic
properties of a random variable. The probability that a particular realization
of X will lie within a general interval [a, b] is

P (a ≤ X ≤ b) = P (X ≤ b)− P (X ≤ a) = F (b)− F (a) (B.16)
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Figure B.6: The Student’s t probability density function for ν = 1, 3, 100.

=
∫ b

−∞
f(x) dx−

∫ a

−∞
f(x) dx =

∫ b

a

f(x) dx . (B.17)

B.2 Expected Value and Variance

Definition B.9

The expected value of a random variable X, denoted by E[X] is

E[X] =
∫ ∞

−∞
xfX(x) dx . (B.18)

In general, if g(X) is some function of a random variable X, then

E[g(X)] =
∫ ∞

−∞
g(x)fX(x) dx . (B.19)

Some authors use the term “mean” for the expected value of a random
variable. We will reserve this term for the average of a set of data. Note that
the expected value of a random variable is not necessarily identical to the mode
(the value with the largest value of f(x)) nor is it necessarily identical to the
median, the value of x for which the value of the CDF is F (x) = 1/2.
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Example B.4

The expected value of an N(µ, σ) random variable X is

E[X] =
∫ ∞

−∞
x

1
σ
√

2π
e−

(x−µ)2

2σ2 dx (B.20)

∫ ∞

−∞

1
σ
√

2π
(x + µ)e−

x2

2σ2 dx (B.21)

= µ

∫ ∞

−∞

1
σ
√

2π
e−

x2

2σ2 dx +
∫ ∞

−∞

1
σ
√

2π
xe−

x2

2σ2 dx (B.22)

The first integral term is µ because the integral of the entire PDF is 1,
and the second term is zero because it is an odd function integrated
over a symmetric interval. Thus

E[X] = µ . (B.23)

Definition B.10

The variance of a random variable X, denoted by Var(X) or σ2
X ,

is given by

Var(X) = σ2
X = E[(X−µX)2] = E[X2]−µ2

X =
∫ ∞

−∞
(x−µX)2fX(x) dx .

(B.24)

The standard deviation of X, often denoted σX , is

σX =
√

Var(X) . (B.25)

The variance and standard deviation serve as measures of the spread of the
random variable about its expected value. Since the units of σ are the same as
the units of µ, the standard deviation is generally more practical as a measure of
the spread of the random variable. However, the variance has many properties
that make it more useful for certain calculations.

B.3 Joint Distributions

Definition B.11

If we have two random variables X and Y , they may have a joint
probability density function (JDF), f(x, y) with

P (X ≤ a and Y ≤ b) =
∫ a

−∞

∫ b

−∞
f(x, y) dy dx . (B.26)
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If X and Y have a joint probability density function, then we can use it to
evaluate the expected value of a function of X and Y . The expected value of
g(X, Y ) is

E[g(X, Y )] =
∫ a

−∞

∫ b

−∞
g(x, y)f(x, y) dy dx . (B.27)

Definition B.12

Two random variables X and Y are independent if a JDF exists
and is defined by

f(x, y) = fX(x)fY (y) . (B.28)

Definition B.13

If X and Y have a JDF, then the covariance of X and Y is

Cov(X, Y ) = E[(X − E[X])(Y − E[Y ])] = E[XY ]− E[X]E[Y ] .
(B.29)

If X and Y are independent, then E[XY ] = E[X]E[Y ], and Cov(X, Y ) = 0.
However if X and Y are dependent, it is still possible, given some particular
distributions, for X and Y to have Cov(X, Y ) = 0. If Cov(X, Y ) = 0, X and
Y are called uncorrelated.

Definition B.14

The correlation of X and Y is

ρXY =
Cov(X, Y )√
Var(X)Var(Y )

. (B.30)

Correlation is thus a scaled covariance.

Theorem B.1

The following properties of Var, Cov, and correlation hold for any
random variables X and Y and scalars s and a.

1. Var(X) ≥ 0

2. Var(X + a) = Var(X)

3. Var(sX) = s2Var(X)
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4. Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X, Y )

5. Cov(X, Y ) = Cov(Y, X)

6. ρ(X, Y ) = ρ(Y, X)

7. −1 ≤ ρXY ≤ 1

The following example demonstrates the use of some of these properties.

Example B.5

Suppose that Z is a standard normal random variable. Let

X = µ + σZ . (B.31)

Then
E[X] = E[µ] + σE[Z] (B.32)

so
E[X] = µ . (B.33)

Also,
Var(X) = Var(µ) + σ2Var(Z) = σ2 . (B.34)

Thus if we have a program to generate random numbers with the
standard normal distribution, we can use it to generate normal ran-
dom numbers with any desired expected value and standard devia-
tion. The MATLAB command randn generates independent real-
izations of an N(0, 1) random variable.

Example B.6

What is the CDF (or PDF) of the sum of two independent random
variables X + Y ? To see this, we write the desired CDF in terms of
an appropriate integral over the JDF, f(x, y), which gives

FX+Y (z) = P (X + Y ≤ z) (B.35)

=
∫ ∫

x+y≤z

f(x, y) dx dy (B.36)

=
∫ ∫

x+y≤z

fX(x)fY (y) dx dy (B.37)

=
∫ ∞

−∞

∫ z−y

−∞
fX(x)fY (y) dx dy (B.38)

=
∫ ∞

−∞

∫ z−y

−∞
fX(x) dx fY (y) dy (B.39)

=
∫ ∞

−∞
FX(z − y)fY (y) dy . (B.40)
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See Figure B.7. The associated PDF is

fX+Y (z) =
d

dz

∫ ∞

−∞
FX(z − y)fY (y) dy (B.41)

=
∫ ∞

−∞

d

dz
FX(z − y)fY (y) dy (B.42)

=
∫ ∞

−∞
fX(z − y)fY (y) dy (B.43)

= fX(z) ∗ fY (z) . (B.44)
(B.45)

Adding two independent random variables thus produces a new
random variable that has a PDF given by the convolution of the
PDF’s of the two individual variables.

Figure B.7: Integration of a joint probability density function for two indepen-
dent random variables, X, and Y , to evaluate the CDF of Z = X + Y .

The JDF can be used to evaluate the CDF or PDF arising from a gen-
eral function of jointly distributed random variables. The process is identical
to the previous example except that the specific form of the integral limits is
determined by the specific function.
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Example B.7

Consider the product of two independent, identically distributed,
standard normal random variables,

Z = XY (B.46)

with a JDF given by

f(x, y) = f(x)f(y) =
1

2πσ2
e−(x2+y2)/2σ2

. (B.47)

The CDF of Z is

F (z) = P (Z ≤ z) = P (XY ≤ z) . (B.48)

For z ≤ 0, this is the integral of the JDF over the exterior of the
hyperbolas defined by xy ≤ z ≤ 0, while for z ≥ 0, we integrate
over the interior of the complementary hyperbolas xy ≤ z ≥ 0. At
z = 0, the integral covers exactly half of the (x, y) plane (the 2nd

and 4th quadrants) and, because of the symmetry of the JDF, has
accumulated half of the probability, or 1/2.

The integral is thus

F (z) = 2
∫ 0

−∞

∫ ∞

z/x

1
2πσ2

e−(x2+y2)/2σ2
dy dx (z ≤ 0) (B.49)

and

F (z) = 1/2 + 2
∫ 0

−∞

∫ z/x

0

1
2πσ2

e−(x2+y2)/2σ2
dy dx (z ≥ 0) .

(B.50)
As in the previous example for the sum of two random variables, the
PDF may be obtained from the CDF by differentiating with respect
to z.

B.4 Conditional Probability

In some situations we will be interested in the probability of an event happening
given that some other event has also happened.

Definition B.15

The conditional probability of A given that B has occurred is
given by

P (A|B) =
P (A ∩B)

P (B)
. (B.51)
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Arguments based on conditional probabilities are often very helpful in com-
puting probabilities. The key to such arguments is the law of total probabil-
ity.

Theorem B.2

Suppose that B1, B2, . . ., Bn are mutually disjoint and exhaustive
events. That is, Bi ∩Bj = ∅ (the empty set) for i 6= j, and

∪n
i=1Bi = S (B.52)

then

P (A) =
n∑

i=1

P (A|Bi)P (Bi) . (B.53)

It is often necessary to reverse the order of conditioning in a conditional
probability. Bayes’ theorem provides a way to do this.

Theorem B.3

Bayes Theorem

P (B|A) =
P (A|B)P (B)

P (A)
. (B.54)

Example B.8

A screening test has been developed for a very serious but rare dis-
ease. If a person has the disease, then the test will detect the disease
with probability 99%. If a person does not have the disease, then
the test will give a false positive detection with probability 1%. The
probability that any individual in the population has the disease is
0.01%. Suppose that a randomly selected individual tests positive
for the disease. What is the probability that this individual actually
has the disease?

Let A be the event “the person tests positive.” Let B be the event
“the person has the disease.” We then want to compute P (B|A).
By Bayes theorem,

P (B|A) =
P (A|B)P (B)

P (A)
. (B.55)

We have that P (A|B) is 0.99, and that P (B) is 0.0001. To compute
P (A), we apply the law of total probability, considering separately
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the probability of a diseased individual testing positive and the prob-
ability of someone without the disease testing positive.

P (A) = 0.99× 0.0001 + 0.01× 0.9999 = 0.010098. (B.56)

Thus
P (B|A) =

0.99× 0.0001
0.010098

= 0.0098 . (B.57)

In other words, even after a positive screening test, it is still unlikely
that the individual will have the disease. The vast majority of those
individuals who test positive will in fact not have the disease.

The concept of conditioning can be extended from simple events to distribu-
tions and expected values of random variables. If the distribution of X depends
on the value of Y , then we can work with the conditional PDF fX|Y (x), the
conditional CDF FX|Y (a), and the conditional expected value E[X|Y ].
In this notation, we can also specify a particular value of Y by using the nota-

tion fX|Y =y, FX|Y =y, or E[X|Y = y]. In working with conditional distributions
and expected values, the following versions of the law of total probability can
be very useful.

Theorem B.4

Given two random variables X and Y , with the distribution of X
depending on Y , we can compute

P (X ≤ a) =
∫ ∞

−∞
P (X ≤ a|Y = y)fY (y) dy (B.58)

and
E[X] =

∫ ∞

−∞
E[X|Y = y]fY (y) dy. (B.59)

Example B.9

Let U be a random variable uniformly distributed on (1, 2). Let X
be an exponential random variable with parameter λ = U . We will
find the expected value of X.

E[X] =
∫ 2

1

E[X|U = u]fU (u) du. (B.60)

Since the expected value of an exponential random variable with
parameter λ is 1/λ, and the PDF of a uniform random variable on
(1, 2) is fU (u) = 1,

E[X] =
∫ 2

1

1
u

du = ln 2. (B.61)
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B.5 The Multivariate Normal Distribution

Definition B.16

If the random variables X1, . . ., Xn have a multivariate normal
distribution (MVN), then the joint probability density function is

f(x) =
1

(2π)n/2

1√
det(C)

e−(x−µ)T C−1(x−µ)/2 (B.62)

where µ = [µ1, µ2, . . . , µn]T is a vector containing the expected
values along each of the coordinate directions of X1, . . ., Xn, and C
contains the covariances between the random variables

Ci,j = Cov(Xi, Xj) . (B.63)

Notice that if C is singular, then the joint probability density func-
tion involves a division by zero, and is simply not defined.

The vector µ and the covariance matrix C completely characterize the
MVN distribution. There are other multivariate distributions that are not com-
pletely characterized by the expected values and covariance matrix.

Theorem B.5

Let X be a multivariate normal random vector with expected values
defined by the vector µ and covariance matrix C, and let Y = AX.
Then Y is also multivariate normal, with

E[Y] = Aµ (B.64)

and
Cov(Y) = ACAT . (B.65)

Theorem B.6

If we have an n–dimensional MVN distribution with covariance ma-
trix C and expected value µ, and the covariance matrix is of full
rank, then the quantity

Z = (X− µ)T C−1(X− µ) (B.66)

has a χ2 distribution with n degrees of freedom.



B.6. THE CENTRAL LIMIT THEOREM 297

Example B.10

We can generate vectors of random numbers according to an MVN
distribution with known mean and covariance matrix by using the
following process, which is very similar to the process for generating
random normal scalars.

1. Find the Cholesky factorization C = LLT .

2. Let Z be a vector of n independent N(0, 1) random numbers.

3. Let X = µ + LZ.

Because E[Z] = 0, E[X] = µ+L0 = µ. Also, since Cov(Z) = I and
Cov(µ) = 0, Cov(X) = Cov(µ + LZ) = LILT = C.

B.6 The Central Limit Theorem

Theorem B.7

Let X1, X2, . . ., Xn be independent and identically distributed (IID)
random variables with a finite expected value µ and variance σ2. Let

Zn =
X1 + X2 + . . . + Xn − nµ√

nσ
. (B.67)

In the limit as n approaches infinity, the distribution of Zn ap-
proaches the standard normal distribution.

The central limit theorem shows why quasi-normally distributed random
variables appear so frequently in nature; the sum of numerous independent ran-
dom variables produces an approximately normal random variable, regardless
of the distribution of the underlying IID variables. In particular, this is one rea-
son that measurement errors are often normally distributed. As we will see in
Chapter 2, having normally distributed measurement errors leads us to consider
least squares solutions to parameter estimation and inverse problems.

B.7 Testing for Normality

Many of the statistical procedures that we will use assume that data are nor-
mally distributed. Fortunately, the statistical techniques that we describe are
generally robust in the face of small deviations from normality. Large deviations
from the normal distribution can cause problems. Thus it is important to be able
to examine a data set to see whether or not the distribution is approximately
normal.
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Plotting a histogram of the data provides a quick view of the distribution.
The histogram should show a roughly “bell shaped” distribution, symmetrical
around a single peak. If the histogram shows that the distribution is obvi-
ously skewed, then it would be unwise to assume that the data are normally
distributed.

The Q–Q Plot provides a more precise graphical test of whether a set of
data could have come from a particular distribution. The data points,

d = [d1, d2, . . . , dn]T (B.68)

are first sorted in numerical order from smallest to largest into a vector y, which
is plotted versus

xi = F−1((i− 0.5)/n) (i = 1, 2, . . . , n) (B.69)

where F (x) is the CDF of the distribution against which we wish to compare
our observations.

If we are testing to see if the elements of d could have come from the normal
distribution, then F (x) is the CDF for the standard normal distribution

FN (x) =
1√
2π

∫ x

−∞
e−

1
2 z2

dz . (B.70)

If the elements of d are normally distributed, the points (yi, xi) will follow a
straight line with a slope and intercept determined by the standard deviation
and expected value, respectively of the normal distribution that produced the
data.

Example B.11

Figure B.8 shows the histogram from a set of 100 data points. The
characteristic bell shaped curve in the histogram makes it seem that
these data might be normally distributed. The sample mean is 0.20
and the sample standard deviation is 1.81.

Figure B.9 shows the Q − Q plot for our sample data set. It is
apparent that the data set contains more extreme values than the
normal distribution would predict. In fact, these data were gener-
ated according to a t distribution with 5 degrees of freedom, that
has broader tails than the normal distribution. See Figure B.6.

Because of these deviations from normality, it would be wise to not
treat these data as if they were normally distributed.

There are a number of statistical tests for normality. These tests, including
the Kolmogorov–Smirnov test, Anderson–Darling test, and Lilliefors test each
produce probabilistic measures called p-values. A small p-value indicates that
the observed data would be unlikely if the distribution were in fact normal,
while a larger p-value is consistent with normality.
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Figure B.8: Histogram of a sample data set.
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Figure B.9: Q−Q Plot for the sample data set.
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B.8 Estimating Means and Confidence Intervals

Given a collection of noisy measurements m1, m2, . . ., mn of some quantity
of interest, how can we estimate the true value m, and how uncertain is our
estimate? This is a classic problem in statistics.

We will assume first that the measurement errors are independent and nor-
mally distributed with expected value 0 and some unknown standard deviation
σ. Equivalently, the measurements themselves are normally distributed with
expected value m and standard deviation σ.

We begin by computing the measurement average

m̄ =
m1 + m2 + . . . + mn

n
. (B.71)

This sample mean m̄ will serve as our estimate of m. We will also compute
an estimate s of the standard deviation

s =

√∑n
i=1(mi − m̄)2

n− 1
. (B.72)

The key to our approach to estimating m is the following theorem.

Theorem B.8

(The Sampling Theorem) Under the assumption that measurements
are independent and normally distributed with expected value m
and standard deviation σ, the random quantity

t =
m̄−m

s/
√

n
(B.73)

has a Student’s t distribution with n− 1 degrees of freedom.

If we had the true standard deviation σ instead of the estimate s, then
t would in fact be normally distributed with expected value 0 and standard
deviation 1. This does not quite work out because we have used an estimate
s of the standard deviation. For smaller values of n, the estimate s is less
accurate, and the t distribution therefore has fatter tails than the standard
normal distribution. As n goes to infinity, s becomes a better estimate of σ
and it can be shown that the t distribution converges to a standard normal
distribution [43].

Let tn−1, 0.975 be the 97.5%-tile of the t distribution and let tn−1, 0.025 be
the 2.5%-tile of the t distribution. Then

P

(
tn−1, 0.025 ≤

m̄−m

s/
√

n
≤ tn−1, 0.975

)
= 0.95 . (B.74)

This can be rewritten as

P
((

tn−1, 0.025s/
√

n
)
≤ (m̄−m) ≤

(
tn−1, 0.975s/

√
n
))

= 0.95 . (B.75)
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We can construct the 95% confidence interval for m as the interval from m̄+
tn−1, 0.025s/

√
n to m̄+tn−1, 0.975s/

√
n. Because the t distribution is symmetric,

this can also be written as m̄− tn−1, 0.975s/
√

n to m̄ + tn−1, 0.975s/
√

n.
As we have seen, there is a 95% probability that when we construct the

confidence interval, that interval will contain the true mean, m. Note that we
have not said that, given a particular set of data and the resulting confidence
interval, there is a 95% probability that m is in the confidence interval. The
semantic difficulty here is that m is not a random variable, but is rather some
true fixed quantity that we are estimating; the measurements m1, m2, . . ., mn,
and the calculated m̄, s and confidence interval are the random quantities.

Example B.12

Suppose that we want to estimate the mass of an object and obtain
the following ten measurements of the mass (in grams):

9.98 10.07 9.94 10.22 9.98
10.01 10.11 10.01 9.99 9.92 . (B.76)

The sample mean is m̄ = 10.02 g. The sample standard deviation is
s = 0.0883. The 97.5%-tile of the t distribution with n-1=9 degrees
of freedom is (from a t-table or function) 2.262. Thus our 95%
confidence interval for the mean is[

m̄− 2.262s/
√

n, m̄ + 2.262s/
√

n
]

g . (B.77)

Substituting the values for m̄, s, and n, we get an interval of[
10.02− 2.262× 0.0883/

√
10, 10.02 + 2.262× 0.0883/

√
10
]

g
(B.78)

or
[9.96, 10.08] g . (B.79)

The above procedure for constructing a confidence interval for the mean us-
ing the t distribution was based on the assumption that the measurements were
normally distributed. In situations where the data are not normally distributed
this procedure can fail in a very dramatic fashion. See Exercise B.8. However, it
may be safe to generate an approximate confidence interval using this procedure
if (1) the number n of data is large (50 or more) or (2) the distribution of the
data is not strongly skewed and n is at least 15.

B.9 Hypothesis Tests

In some situations we want to test whether or not a set of normally distributed
data could reasonably have come from a normal distribution with expected
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value µ0. Applying the sampling theorem (B.8), we see that if our data did
come from a normal distribution with expected value µ0, then there would be
a 95% probability that

tobs =
m̄− µ0

s/
√

n
(B.80)

would lie in the interval

[F−1
t (0.025), F−1

t (0.975)] = [tn−1, 0.025, tn−1, 0.975] (B.81)

and only a 5% probability that t would lie outside this interval. Equivalently,
there is only a 5% probability that |tobs| ≥ tn−1, 0.975.

This leads to the t–test: If |tobs| ≥ tn−1, 0.975, then we reject the hypothesis
that µ = µ0. On the other hand, if |t| < tn−1, 0.975, then we cannot reject the
hypothesis that µ = µ0. Although the 95% confidence level is traditional, we
can also perform the t–test at a 99% or some other confidence level. In general,
if we want a confidence level of 1− α, then we compare |t| to tn−1, 1−α/2.

In addition to reporting whether or not a set of data passes a t–test it is
good practice to report the associated t–test p–value . The p-value associated
with a t–test is the largest value of α for which the data passes the t–test.
Equivalently, it is the probability that we could have gotten a greater t value
than we have observed, given that all of our assumptions are correct.

Example B.13

Consider the following data

1.2944 −0.3362 1.7143 2.6236 0.3082
1.8580 2.2540 −0.5937 −0.4410 1.5711 (B.82)

These appear to be roughly normally distributed, with a mean that
seems to be larger than 0. We will test the hypothesis µ = 0. The t
statistic is

tobs =
m̄− µ0

s
√

n
(B.83)

which for this data set is

tobs =
1.0253− 0
1.1895/

√
10

≈ 2.725 . (B.84)

Because |tobs| is larger than t9, 0.975 = 2.262, we reject the hypothesis
that these data came from a normal distribution with expected value
0 at the 95% confidence level.

The t–test (or any other statistical test) can fail in two ways. First, it could
be that the hypothesis that µ = µ0 is true, but our particular data set contained
some unlikely values and failed the t–test. Rejecting the hypothesis when it is
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in fact true is called a type I error . We can control the probability of a type
I error by decreasing α.

The second way in which the t–test can fail is more difficult to control. It
could be that the hypothesis µ = µ0 was false, but the sample mean was close
enough to µ0 to pass the t–test. In this case, we have a type II error. The
probability of a type II error depends very much on how close the true mean
is to µ0. If the true mean µ = µ1 is very close to µ0, then a type II error is
quite likely. If the true mean µ = µ1 is very far from µ0 then a type II error
will be less likely. Given a particular alternative hypothesis, µ = µ1, we call
the probability of a type II error β(µ1), and call the probability of not making
a type II error (1 − β(µ1)) the power of the test. We can estimate β(µ1) by
repeatedly generating sets of n random numbers with µ = µ1 and performing
the hypothesis test on the sets of random numbers. See exercise B.9.

The results of a hypothesis test should always be reported with care. It
is important to discuss and justify any assumptions (such as the normality as-
sumption made in the t–test) underlying the test. The p-value should always be
reported along with whether or not the hypothesis was rejected. If the hypoth-
esis was not rejected and some particular alternative hypothesis is available, it
is good practice to estimate the power of the hypothesis test against this alter-
native hypothesis. Confidence intervals for the mean should be reported along
with the results of a hypothesis test.

It is important to distinguish between the statistical significance of a hy-
pothesis test and the actual magnitude of any difference between the observed
mean and the hypothesized mean. For example, with very large n it is nearly
always possible to achieve statistical significance at the 95% confidence level,
even though the observed mean may differ from the hypothesis by only 1% or
less.

B.10 Exercises

1. Compute the expected value and variance of a uniform random variable
in terms of the parameters a and b.

2. Compute the CDF of an exponential random variable with parameter λ.

3. Show that

Cov(aX, Y ) = aCov(X, Y ) (B.85)

and that

Cov(X + Y, Z) = Cov(X, Z) + Cov(Y, Z) . (B.86)

4. Show that the PDF for the sum of two independent uniform random vari-
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ables on [a, b] = [0, 1] is

f(x) =


0 (x ≤ 0)
x (0 ≤ x ≤ 1)
2− x (1 ≤ x ≤ 2)
0 (x ≥ 0) .

(B.87)

5. Suppose that X and Y are independent random variables. Use condition-
ing to find a formula for the CDF of X + Y in terms of the PDF’s and
CDF’s of X and Y .

6. Suppose that x = (X1, X2)T is a vector composed of 2 random variables
with a multivariate normal distribution with expected value µ and covari-
ance matrix C, and that A is a 2 by 2 matrix. Use properties of expected
value and covariance to show that y = Ax has expected value Aµ and
covariance ACAT .

7. Consider the following data, which we will assume are drawn from a normal
distribution.

−0.4326 −1.6656 0.1253 0.2877 −1.1465
1.1909 1.1892 −0.0376 0.3273 0.1746

Find the sample mean and standard deviation. Use these to construct a
95% confidence interval for the mean. Test the hypothesis H0 : µ = 0
at the 95% confidence level. What do you conclude? What was the
corresponding p-value?

8. Using MATLAB, repeat the following experiment 1,000 times. Use the
Statistics Toolbox function exprnd() to generate 5 exponentially distributed
random numbers with λ = 10. Use these 5 random numbers to generate
a 95% confidence interval for the mean. How many times out of the 1,000
experiments did the 95% confidence interval cover the expected value of
10? What happens if you instead generate 50 exponentially distributed
random numbers at a time? Discuss your results.

9. Using MATLAB, repeat the following experiment 1,000 times. Use the
randn function to generate a set of 10 normally distributed random num-
bers with expected value 10.5 and standard deviation 1. Perform a t–test
of the hypothesis µ = 10 at the 95% confidence level. How many type
II errors were committed? What is the approximate power of the t–test
with n = 10 against the alternative hypothesis µ = 10.5? Discuss your
results.

10. Using MATLAB, repeat the following experiment 1,000 times. Using the
exprnd() function of the Statistics Toolbox, generate 5 exponentially dis-
tributed random numbers with expected value 10. Take the average of the
5 random numbers. Plot a histogram and a probability plot of the 1,000
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averages that you computed. Are the averages approximately normally
distributed? Explain why or why not. What would you expect to happen
if you took averages of 50 exponentially distributed random numbers at a
time? Try it and discuss the results.

B.11 Notes and Further Reading

Most of the material in this Appendix can be found in virtually any intro-
ductory textbook in probability and statistics. Some recent textbooks include
[5, 24]. The multivariate normal distribution is a somewhat more advanced
topic that is often ignored in introductory courses. [145] has a good discussion
of the multivariate normal distribution and its properties. Numerical methods
for probability and statistics are a specialized topic. Two standard references
include [79, 164].
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Appendix C

Review of Vector Calculus

Synopsis: A review of key vector calculus topics, including the gradient, Hessian,
Jacobian, Taylor’s theorem, and Lagrange multipliers.

C.1 The Gradient, Hessian, and Jacobian

In vector calculus, the familiar first and second derivatives of a single–variable
function are generalized to operate on vectors.

Definition C.1

Given a scalar–valued function with a vector argument, f(x), the
gradient of f is

∇f(x) =


∂f
∂x1
∂f
∂x2
...

∂f
∂xn

 . (C.1)

∇f(x0) has an important geometric interpretation in that it points in the di-
rection in which f(x) increases most rapidly at the point x0.

Recall from single–variable calculus that if a function f is continuously dif-
ferentiable, then a point x∗ can only be a minimum or maximum point of f
if f

′
(x)|x=x∗ = 0. Similarly in vector calculus, if f(x) is continuously dif-

ferentiable, then a point x∗ can only be a minimum or maximum point if
∇f(x)|x=x∗ = 0. Such a point x∗ is called a critical point.

307
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Definition C.2

Given a scalar–valued function of a vector, f(x), the Hessian of f
is

∇2f(x) =


∂2f

∂x1∂x1

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2∂x2

· · · ∂2f
∂x2∂xn

...
...

. . .
...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

· · · ∂2f
∂xn∂xn

 . (C.2)

If f is twice continuously differentiable, the Hessian is symmetric. The Hessian
is analogous to the second derivative of a function of a single variable.x We have
used the symbol ∇2 here to denote the Hessian, but beware that this symbol is
used by some authors to denote an entirely different differential operator, the
Laplacian.

Theorem C.1

If f(x) is a twice continuously differentiable function, and ∇2f(x0)
is a positive semidefinite matrix, then f(x) is a convex function
at x0. If ∇2f(x0) is positive definite, then f(x) is strictly convex
at x0.

This theorem can be used to check whether a critical point is a minimum of
f . If x∗ is a critical point of f and ∇2f(x∗) is positive definite, then f is convex
at x∗, and x∗ is thus a local minimum of f .

It will be necessary to compute derivatives of quadratic forms.

Theorem C.2

Let f(x) = xT Ax where A is an n by n symmetric matrix. Then

∇f(x) = 2Ax (C.3)

and
∇2f(x) = 2A . (C.4)

Definition C.3

Given a vector–valued function of a vector, F(x), where

F(x) =


f1(x)
f2(x)

...
fm(x)

 (C.5)
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the Jacobian of F is

J(x) =


∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

...
...

. . .
...

∂fm

∂x1

∂fm

∂x2
· · · ∂fm

∂xn

 . (C.6)

Some authors use the notation ∇F(x) for the Jacobian. Notice that the rows
of J(x) are the gradients (C.1) of the functions f1(x), f2(x), . . ., fm(x).

C.2 Taylor’s Theorem

In the calculus of single–variable functions, Taylor’s theorem produces an infinite
series for f(x + ∆x) in terms of f(x) and its derivatives. Taylor’s theorem can
be extended to a function of a vector f(x), but in practice, derivatives of order
higher than two are extremely inconvenient. The following form of Taylor’s
theorem is often used in optimization theory.

Theorem C.3

Suppose that f(x) and its first and second partial derivatives are
continuous. For any vectors x and ∆x there is a vector c, with c on
the line between x and x + ∆x such that

f(x + ∆x) = f(x) +∇f(x)T ∆x +
1
2
∆xT∇2f(c)∆x . (C.7)

This form of Taylor’s theorem with remainder term is useful in many
proofs. However, in computational work there is no way to determine c. For
that reason, when ∆x is a small perturbation, we often make use of the approx-
imation

f(x + ∆x) ≈ f(x) +∇f(x)T ∆x +
1
2
∆xT∇2f(x)∆x . (C.8)

An even simpler version of Taylor’s theorem, called the mean value theo-
rem uses only the first derivative.

Theorem C.4

Suppose that f(x) and its first partial derivatives are continuous.
For any vectors x and ∆x there is a vector c, with c on the line
between x and x + ∆x such that

f(x + ∆x) = f(x) +∇f(c)T ∆x . (C.9)
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We will make use of a truncated version of (C.8)

f(x + ∆x) ≈ f(x) +∇f(x)T ∆x . (C.10)

By applying (C.10) to each of the functions f1(x), f2(x), . . ., fm(x), we obtain
the approximation

F(x + ∆x) ≈ F(x) + J(x)∆x . (C.11)

C.3 Lagrange Multipliers

The method of Lagrange multipliers is an important technique for solving
optimization problems of the form

min f(x)
g(x) = 0 (C.12)

where the scalar-valued function of a vector argument, f(x) is called the ob-
jective function.

Figure C.1 shows a typical situation. The curve represents the set of points
(a contour) where g(x) = 0. At a particular point, x0 on this curve, the gradient
of g(x0) must be perpendicular to the curve because the function is constant
along the curve. Moving counter–clockwise, we can trace out a curve x(t),
parameterized by the variable t ≥ 0, with x(0) = x0 and g(x(t)) = 0. By the
chain rule,

f ′(x(t)) = x′(t)T∇f(x(t)) . (C.13)

Here x′(t) is the tangent to the curve. Since ∇f(x0) and x′(0) are at an acute
angle, their dot product, f ′(0), is positive. Thus f(x) is increasing as we move
counter–clockwise around the curve g(x) = 0 starting at x0. Similarly, by
moving clockwise around the curve, we will have f ′(0) < 0. Thus x0 cannot be
a minimum point.

In Figure C.2, ∇f(x0) is perpendicular to the curve g(x) = 0. In this case,
f ′(0) = 0, and ∇f(x0) provides no information on what will happen to the
function value as we move away from x0 along the curve g(x) = 0. The point
x0 might be a minimum point, or it might not.

In general, a point x0 on the curve g(x) = 0 can only be a minimum or
maximum point if ∇g(x0) and ∇f(x0) are parallel, or where

∇f(x0) = λ∇g(x0) (C.14)

where λ is scalar. A point x0 satisfying (C.14) is called a stationary point,
and λ is called a Lagrange multiplier.

The Lagrange Multiplier condition (C.14) is necessary but not sufficient for
finding a minimum of f(x) along the contour g(x) = 0, because a stationary
point may be a minimum, maximum, or saddle point. Furthermore, a problem
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g(x)=0

x0

g(x )0

∆

f(x )0

∆

Figure C.1: The situation at a point which is not a minimum of (C.12).

g(x)=0

x0

g(x )0

∆

f(x )0

∆

Figure C.2: The situation at a minimum point of (C.12).
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may have several local minima. Thus it is necessary to examine the behavior of
f(x) at all stationary points to find a global minimum.

Theorem C.5

A minimum of (C.12) can occur only at a point x0 where

∇f(x0) = λ∇g(x0) (C.15)

for some λ.

The Lagrange multiplier condition can be extended to problems of the form

min f(x)
g(x) ≤ 0 .

(C.16)

Since points along the curve g(x) = 0 are still feasible in (C.16), the previous
necessary condition must still hold true. However, there is an additional restric-
tion. Suppose that ∇g(x0) and ∇f(x0) both point in the outward direction.
In that case, we could move in the opposite direction, into the feasible region,
and decrease the function value. Thus a point x0 cannot be a minimum point
of (C.16) unless the two gradients point in opposite directions.

Theorem C.6

A minimum point of (C.16) can occur only at a point x0 where

∇f(x0) + λ∇g(x0) = 0 (C.17)

for some Lagrange multiplier λ ≥ 0.

Example C.1

Consider the problem

min x1 + x2

x2
1 + x2

2 − 1 ≤ 0 .
(C.18)

The Lagrange multiplier condition is[
1
1

]
+ λ

[
2x1

2x2

]
= 0 (C.19)

with λ ≥ 0. One solution to this nonlinear system of equations is
x1 = 0.7071, x2 = 0.7071, with λ = −0.7071. Since λ < 0, this point
does not satisfy the Lagrange multiplier condition. In fact, it is the
maximum of f(x) subject to g(x) ≤ 0. The second solution to the
Lagrange multiplier equations is x1 = −0.7071, x2 = −0.7071, with
λ = 0.7071. Since this is the only solution with λ ≥ 0, this point
solves the minimization problem.
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Note that (C.17) is (except for the condition λ > 0) the necessary condition
for a minimum point of the unconstrained minimization problem

min f(x) + λg(x) . (C.20)

Here the parameter λ can be adjusted so that, for the optimal solution, x∗,
g(x∗) ≤ 0. We will make frequent use of this technique to convert constrained
optimization problems into unconstrained optimization problems.

C.4 Exercises

1. Let

f(x) = x2
1x

2
2 − 2x1x

2
2 + x2

2 − 3x2
1x2 + 12x1x2 − 12x2 + 6 . (C.21)

Find the gradient, ∇f(x), and Hessian, ∇2f(x). What are the critical
points of f? Which of these are minima and maxima of f?

2. Find a Taylor’s series approximation for f(x + ∆x), where

f(x) = e−(x1+x2)
2

(C.22)

is near the point

x =
[

2
3

]
. (C.23)

3. Use the method of Lagrange multipliers to solve the problem

min 2x1 + x2

4x2
1 + 3x2

2 − 5 ≤ 0 .
(C.24)

4. Derive the formula (A.91) for the 2–norm of a matrix. Begin with the
maximization problem

max
‖x‖2=1

‖Ax‖22 . (C.25)

Note that we have squared ‖Ax‖2. We will take the square root at the
end of the problem.

(a) Using the formula ‖x‖2 =
√

xT x, rewrite the above maximization
problem without norms.

(b) Use the Lagrange multiplier method to find a system of equations
that must be satisfied by any stationary point of the maximization
problem.

(c) Explain how the eigenvalues and eigenvectors of AT A are related to
this system of equations. Express the solution to the maximization
problem in terms of the eigenvalues and eigenvectors of AT A.

(d) Use this solution to get ‖A‖2.
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5. Derive the normal equations (2.3) using vector calculus, by letting

f(m) = ‖Gm− d‖22 (C.26)

and minimizing f(m). Note that in problems with many least squares
solutions, all of the least squares solutions will satisfy the normal equa-
tions.

(a) Rewrite f(m) as a dot product and then expand the expression.

(b) Find ∇f(m).

(c) Set ∇f(m) = 0, and obtain the normal equations.

C.5 Notes and Further Reading

Basic material on vector calculus can be found in many calculus textbooks.
However, more advanced topics, such as Taylor’s theorem for functions of a
vector are often skipped in basic texts. The material in this chapter is particu-
larly important in optimization, and can often be found in associated references
[99, 110, 117].



Appendix D

Glossary of Notation

• α, β, γ, ... : Scalars.

• a, b, c, ... : Scalars or functions.

• a, b, c, ... : Column vectors.

• ai: ith element of vector a.

• A, B, C, ... : Functions or random variables.

• A, B, C, ... : Fourier transforms.

• A, B, C, ... : Matrices.

• Ai,·: ith row of matrix A.

• A·,i: ith column of matrix A.

• Ai,j : (i, j)th element of matrix A.

• A−1: The inverse of the matrix A.

• AT : The transpose of the matrix A.

• A−T : The transpose of the matrix A−1.

• Rn: The space of n–dimensional real vectors.

• N(A): Null space of the matrix A.

• R(A): Range of the matrix A.

• rank(A): Rank of the matrix A.

• si: Singular values.

• λi: Eigenvalues.
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• ‖x‖: Norm of a vector x. A subscript is used to specify the one norm, two
norm, or infinity norm.

• ‖A‖: Norm of a matrix A. A subscript is used to specify the one norm,
two norm, or infinity norm.

• G†: Generalized inverse of the matrix G.

• m†: Generalized inverse solution m† = G†d.

• G]: A regularized generalized inverse of the matrix G.

• mα,L: Tikhonov regularized solution with regularization parameter α and
regularization matrix L.

• Rm: Model resolution matrix. Rm = G†G.

• Rd: Data resolution matrix. Rd = GG†.

• E[X]: Expected value of the random variable X.

• ā: Mean value of the elements in vector a.

• N(µ, σ2): Normal probability distribution with expected value µ and
variance σ2.

• Cov(X, Y ): Covariance of the random variables X and Y .

• Cov(x): Matrix of covariances of elements of the vector x.

• ρ(X, Y ): Correlation between the random variables X and Y .

• Var(X): Variance of the random variable X.

• f(d|m): Conditional probability density for d, conditioned on a particular
model m.

• L(m|d): Likelihood function for a model m given a particular data vector
d.

• σ: Standard deviation.

• σ2: Variance.

• tν,p: p-percentile of the t distribution with ν degrees of freedom.

• χ2
obs: Observed value of the χ2 statistic.

• χ2
ν,p: p-percentile of the χ2 distribution with ν degrees of freedom.

• ∇f(x): Gradient of the function f(x).

• ∇2f(x): Hessian of the function f(x).
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damped SVD method, 103
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distribution
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double–sided exponential distribution,
see distribution, double–sided
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earthquake location problem, 6, 6–
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eigenvalue, 26, 27, 61, 64, 267, 267–
269, 271, 277, 278, 313

eigenvector, 26, 61, 64, 267, 267–
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elementary row operations, 248
Euclidean length, see 2–norm
expected value, 23, 67, 122, 244, 288,

289–291, 295–297, 303
exponential distribution, see distri-

bution, exponential

fast Fourier transform, 181, 183–
185, 189

Fermat’s least–time principle, 217
FFT, see fast Fourier transform
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finite difference derivatives, 110, 203,
204, 226

forward problem, 2, 4, 6, 15, 19, 45,
178, 180, 181, 184

Fourier basis functions, see basis, Fourier
Fourier transform, 4, 175, 175–192
Fredholm integral equation of the

first kind, 3, 43, 57, 78
frequency response, 175, 177
Frobenius norm, 271, 271, 273
full rank least squares problem, see

matrix, full rank

gamma function, 21, 25, 286
Gauss–Newton method, 197, 197–
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218, 221, 225, 226, 228

Gaussian distribution, see distribu-
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Gaussian elimination, 194, 247, 247–
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Gaussian point spread function, 147,
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GCV, see generalized cross valida-
tion

generalized cross validation, 121, 121–
122, 130, 132

generalized singular value decompo-
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Geonics EM–38 ground conductiv-
ity meter, 222–223

global optimization, 205, 205–210,
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GN method, see Gauss–Newton method
Gosset, W. S., 287
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Gram–Schmidt orthogonalization pro-

cess, 266, 278
Green’s function, 174, 191
GSVD, see generalized singular value

decomposition
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Hermitian symmetry, 182, 182, 190
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higher–order Tikhonov regularization,
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131, 165, 167, 192, 228

histogram, 39–41, 297–298, 305

identity matrix, see matrix, identity
IDFT, see inverse Fourier transform,

discrete
IFFT, see inverse Fourier transform,

fast
IFK, see Fredholm integral equation

of the first kind
ill–posed problem, see discrete ill–

posed problem
image deblurring, 147–148, 152, 153
impulse resolution test, see spike res-

olution test
impulse response, 79, 80, 174–176,

180, 183–186, 191, 192
indefinite matrix, see matrix, indef-
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independent random variables, 19–

21, 23, 24, 28, 29, 33, 37,
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225, 227, 231, 235, 236, 286,
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inner product, 50, 275
inverse Fourier transform, 4, 175,

176, 185
discrete, 181, 182, 183, 190
fast, 181

inverse of a matrix, 26, 62, 253, 255,
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220–222, 225, 309

JDF, see joint probability density
function

joint probability density function, 19,
289, 290–293, 296

Kaczmarz’s algorithm, 134, 134–141,
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Kullback–Liebler cross–entropy, 240,
240–241
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Lagrange multipliers, 52, 53, 101,
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310–313

Landweber iteration, 151, 151–152
Laplacian operator, 110, 131, 195,

217, 220, 225
law of total probability, 294, 295
least squares problem, 18–21, 23, 24,

28–30, 33–36, 38–41, 59, 61–
64, 66, 71, 82, 100, 146,
148, 156, 165–167, 227, 228,
235, 243, 244, 266, 266, 270,
273–275, 314

least squares solution, see least squares
problem

leave one out cross validation, 121
Legendre polynomials, 56
Levenberg–Marquardt method, 198,

198–199, 201–211, 214, 216,
222, 228

likelihood function, see maximum like-
lihood estimation

linear combination, 13, 16, 22, 23,
49, 56, 60, 62, 69, 126, 181,
251, 259–262

linear independence, 49, 56, 60, 102,
152, 256, 257, 260, 261, 266–
268, 275–277

linear regression, 4, 17–38, 41, 56,
132, 196, 200, 201

linearly dependent vectors, see lin-
ear independence

LM method, see Levenberg–Marquardt
method

local minimum points, 196, 205–207,
211, 214, 216, 225, 228, 239,
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low–pass filter, 180

MAP model, see maximum a poste-
riori model

Markov chain Monte Carlo method,
245

mathematical model, 2, 21, 22, 33,
38, 45, 47, 54, 147, 177,
190, 201, 222, 226, 227

MATLAB commands
chi2pdf, 39
chol, 269
cond, 70, 273
eig, 267
fft, 181
ifft, 181
lsqnonneg, 155
norm, 270
orth, 266
pinv, 61
qr, 273
randn, 291
rank, 86, 262
reshape, 73
rref, 249
sqrtm, 235
svd, 60

matrix
diagonal, 20, 23, 26, 27, 36, 59,

60, 64, 106, 110, 116, 184,
191, 255

full column rank, 17, 18, 61, 67,
262, 274, 278

full rank, 62, 70, 102, 262, 296
full row rank, 262
identity, 23, 62, 66–68, 70, 84,

101, 102, 106, 110, 111, 116,
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indefinite, 268
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orthogonal, 59, 60, 62, 64, 110,

133, 264, 264–265, 268, 273–
274

positive definite, 26, 141, 145,
146, 152, 170, 196, 235, 244,
268, 268–269, 276, 278, 308
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269, 276, 278

rank deficient, 12, 13, 59, 71,
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square root, 235, 244
symmetric, 26, 67, 141, 144, 145,

152, 244, 254, 268, 269, 276,
278, 308

upper–triangular, 255, 269, 273
matrix matrix product, 252
matrix norm, 67, 270, 270–273, 277,

313
matrix vector product, 251
maximum a posteriori model, 230,

230–231, 234–239, 244
maximum entropy principle, 240, 240–

241
maximum entropy regularization, 157,

157–163, 171
maximum likelihood estimation, 19,

19–21, 33, 40, 196, 227, 228,
230–231, 239, 243, 245

maximum likelihood principle, see
maximum likelihood estima-
tion

MCMC, see Markov chain Monte Carlo
method

mean value theorem, 310
median, 35, 71, 288
midpoint rule, 44, 79
minimum length solution, 63, 63–

64, 100, 136, 166
minimum relative entropy method,
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mode, 288
model identification problem, 2
model null space, 60, 62–64, 66, 73,

95, 177

model resolution, 13, 57, 66, 66–68,
76–78, 187, 218, 225

modified truncated SVD method, 166
Monte Carlo error propagation, 37
Moore–Penrose pseudoinverse, 61, 67,

70, 94, 133
MRE method, see minimum rela-

tive entropy method
MTSVD, see modified truncated SVD
multicollinearity, 132
multistart method, 206, 207–210, 216
MVN, see distribution, multivariate
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Newton’s method, 194, 194–196, 214
damped, 194

NNLS, see nonnegative least squares
method

non–negative least squares method,
155

nonlinear least squares problem, 196,
199, 206, 211, 215, 216, 218,
222, 228, 231, 238, 243

nonlinear regression, 196, 196–214
nonnegative least squares method,

157, 159, 171
norm, see vector norm, matrix norm
normal distribution, see distribution,

normal
normal equations, 18, 21, 24, 35, 41,

62, 63, 102, 141, 146, 152,
166, 199, 266, 274, 314

null space of a matrix, 13, 60, 62–66,
68, 73, 110, 111, 166, 177,
258, 258–260, 262, 264, 274,
276, 278

Nyquist frequency, 182, 183, 184

objective function, 108, 161, 199, 206,
216, 226, 310

Occam’s inversion, 220, 220–226
Occam’s razor, 220, 228
ordinary cross validation, see leave

one out cross validation
orthogonal basis, see basis, orthog-

onal
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orthogonal functions, 14, 50–51, 275–
276

orthogonal matrix, see matrix, or-
thogonal

orthogonal polynomials, 56
orthogonal projection, see projection
orthogonal subspaces, 264
orthogonal vectors, 65, 110, 143, 144,

263
orthonormal basis, see basis, orthonor-

mal
outliers, 6, 30, 30–35, 40
over–fitting of data, 71

p–value
chi–square test, 21, 21–22, 201,

207
t–test, 302, 303, 304

parallelogram law, 277
parameter estimation problem, see

discrete inverse problem
PCR, see principle components re-

gression
PDF, see probability density func-

tion
perpendicular, see orthogonal
Picard condition, 70, 103, 105, 106
piecewise polynomial TSVD method,

166, 166–171
pivot column, 249, 261, 262, 276
point spread function, 147, 152
poles of a transfer function, 178
posterior distribution, 229, 229–245
power of a hypothesis test, 303
power of a matrix, 254
PP-TSVD, see piecewise polynomial

TSVD method
preconditioning, 153
principal axes, error ellipsoid, 26
principle of indifference, 229
prior distribution, 157, 229, 229–

245
probability density function, 19, 21,

283, 283–287, 303, 304
projection, 26, 50, 63, 66, 68, 69, 73,

134, 265, 265–266, 270, 275

proportional effect, 30
pseudoinverse, see Moore–Penrose pseu-

doinverse

Q–Q plot, 40, 41, 298
QR factorization, 133, 146, 166, 273,

273–274
quadratic form, 268, 268–269, 308

random variables, 21, 22, 29, 229,
240, 244, 282

range of a matrix, 18, 60, 63, 64,
126–128, 261, 262, 264, 266,
274, 276

rank deficient least squares problem,
see matrix, rank deficient

rank of a matrix, 12, 60, 64, 66, 73,
110, 166, 262, 274, 276

ray paths, 7, 11–12, 71–78, 94–96,
134, 137–141, 216–218

reduced row echelon form, 249, 257,
259, 261, 262, 276

regularization by discretization, 57,
92

regularization by truncated singular
value decomposition, 71

regularization parameter, 101, 103,
109, 114, 121, 122, 125–127,
130–132, 147, 162, 220

Regularization Tools commands
blur, 148
cgsvd, 110
discrep, 103
fil fac, 103
get l, 113
l curve, 103, 113
lsqi, 103
picard, 103, 105
regudemo, 103
shaw, 47, 86
tikhonov, 113

representers, 44, 44–50, 56
residuals, 6, 18, 21, 22, 28–30, 32,

33, 35, 36, 39, 41, 71, 103,
139, 143, 145, 146, 185, 196,
200, 207
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resolution kernel, see resolution ma-
trix, model, 67

resolution matrix
data, 67, 67–68, 70
model, 66, 66–68, 70, 75, 84,

86, 96, 106–107, 116–117
resolution test, 67, 76, 87, 96
ridge regression, 132
Riemann–Lebesgue lemma, 15
robust estimation procedures, 6, 33,

35, 42
robust least squares, 42
roughening matrix, 109, 110, 131,

181, 191, 217, 225
row action methods, 152
row space of a matrix, 262
row–column expansion method, 252
RREF, see reduced row echelon form

sample mean, 298, 300, 301, 303,
304

sampling rate, 181, 182–186, 210
seismogram, see seismometer
seismometer, 8, 79–86, 185–187, 190,

191
seminorm, 109, 110, 114, 217, 219,

270
serial convolution, 183
Shaw problem, 45, 45–47, 86–92, 103–

105, 107–108, 128, 151, 162–
163, 167–170, 236–238

sifting property of the delta func-
tion, 174, 176

signum function, 35
simultaneous iterative reconstruction

technique, 140, 140–141, 151
singular value decomposition, 59, 59–

65, 71, 72, 95, 96, 99, 101–
107, 126, 133, 146, 148, 151,
152, 165, 166, 189, 228, 235,
244

singular value spectrum, 68, 70, 78
SIRT, see simultaneous iterative re-

construction technique
slowness, 8, 11, 12, 39, 45, 72, 77,

94–96, 114, 117, 137, 217

slug test, 200, 200–201
solution existence, 13, 16
solution stability, 13, 15, 16, 53, 54,

68–71, 99, 181, 184, 185,
189

solution uniqueness, 13, 14, 16, 62,
64, 260

sparse, 148
sparse matrix, 133, 134, 148, 228
spatial frequency, 180, 181
spectral amplitude, 175, 176–178,

181, 182, 185, 186, 190
spectral division, 184, 185–187
spectral phase, 176, 176, 177, 178,

181, 182, 190
spectrum, 175, 189
spherical harmonic functions, 57
spike resolution test, 76, 96
standard deviation, 20, 22, 27, 28,

30, 33, 39–41, 53, 54, 94,
130, 137, 162, 196, 200, 207,
209, 215, 220, 222, 231, 233,
235, 236, 289, 291, 298, 300,
301, 304

standard normal distribution, 283,
287, 291, 293, 297

stationary point, 310, 313
steepest–descent method, 198
Student, see Gosset, W. S.
Student’s t distribution, see distri-

bution, Student’s t
subspace of Rn, 257, 257–262
SVD, see singular value decomposi-

tion
system of equations, 247

ill–conditioned, 13, 49, 57, 59,
273

over–determined, 250, 270
under–determined, 250, 276
vector form, 251

t–test, 302, 303, 304
Taylor’s theorem, 193, 195, 204, 221,

309, 309–310
TGSVD, see truncated generalized

singular value decomposi-
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tion
Tikhonov regularization, 100, 100–

133, 147, 148, 153, 156, 157,
161–163, 167, 199, 215, 220,
228, 236, 238, 243

Toeplitz matrix, 96
tomography, 10, 10–12, 16, 71–78,

130–131, 134–141, 151, 152,
192, 216–218, 225

total least squares problem, 42
total variation regularization, 165,

165–170
transfer function, see impulse response
transpose of a matrix, 254, 256, 262
truncated generalized singular value

decomposition, 118, 118
truncated singular value decompo-

sition, 66, 70, 71, 79, 82,
87, 90, 96, 106, 130, 137,
141, 185

TSVD, see truncated singular value
decomposition

type I error, 303
type II error, 303, 304

unbiased estimator, 23, 66, 99, 243
uncorrelated random variables, 290
uniform distribution, see distribu-

tion, uniform
uninformative prior distribution, 229
upward continuation, 178, 179, 180

van Genuchten, M. Th., 210
variance, 23, 53, 66, 230, 235, 289,

297, 303
vector norm, 18, 33, 35, 63, 67, 100,

103, 105, 108, 114, 118, 122,
126, 128, 130, 137, 153, 165–
167, 185, 218, 269, 269–
271, 274

vertical seismic profiling, 8, 8–9, 111–
114, 118, 122

VSP, see vertical seismic profiling

water level regularization, 185, 185–
189, 191, 192

wavelets, 57

zeros of a transfer function, 177, 178
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