Modular Analysisof PetriNets

S@REN CHRISTENSEN! AND LAURE PETRUCCI?

1pepartment of Conputer Science University of Aarhus, Ny Munkegade Building 540,
DK-8000ARHUSC, Dermark
2 .SV, CNRSUMR 8643,ENS ¢k Cachan, 61 avenuedu Pdt Wil son, F-94235CACHAN Cedex, France
Email: petrucci@Ilswvens-caban.fr

Thispaper showshow two of themostimportant analysis methodsfor Petri netscan be performedin
amodular way. Weillustrate our techniquesby means of modular Place/Transitions nets (modular
PT-nets) in which the individual modules interact via shared places and shared transitions. For
place invariants we show that it is possble to construct invariants of the total modular PT-net
from invariants of the individual modules. For state spaces, we show that it is posgble to dedde
behavioural properties of the modular PT-net from state spaces of the individual modules plus a
synchronization graph, without unfolding to the ordinary state space. The generalization of our
techniquesto high-level Petri nets is rather straightforward .

RecewvedNovember6, 1998; revisedApril 13,2000

1. INTRODUCTION

The use of high-level Petri net formaisms has made it

possible to creak Petri net modek of large systems Even

thoughthe use of such modek allows the modeler to creae

compactrepregntationsof data and action, the size of

modek hasbeenincreasng. A large model can malke it

difficult to handle the complexity of the modelling aswell as

the analysis of the total model. It is well known thatthe use
of a modularapproacho modellinghas mary adwantages
it allows the modeller to consider different parts of the

modelindependey of oneanoher A modular approach
to analyss is als attractve: it oftendramaticallydecreass
the complexity of the analysista.

Our am in this paper is to show how two of the
mog important anaysis mehods for Petri nes can be
performedin a modular way: place invariants and state
spaces We illustrate our techniquedy meansof modular
Place/Tanstions nets (modular PT-net§ in which the
individual modules(PT-netg interactvia sharedplacesand
shared transtions.  Sharing is often accompli®ied using
placefusion setsard trarsition fusion sets. Thesetwo sarts
of communcaion are preentin a numberof modek, e.g.
see[1, 2] for modek usng sharedtranstionsand[3, 4] for
modebk usng pacefusion.

For placeinvariantswe show thatit is possideto construct
invarians of the total modulr PT-netfrom invariants of the
individualmodules

For state spaces also known as occurrencegraphsand
reaclahlity graphs, we show that it is posside to decide
behaioural propertes of the modulr PT-net from state
spacesof the individual modulesplus a synchronization
graph,without unfolding to the ordinary state space. The
combined size of the occurrencegraphs of the modules
and synchronzaion gaphis snaller thanthe size of the
ordinary, undructuredstate space. Hence,it is possible to
handke more complex systems

From our preenttionit will be clearthat the techngues
also immedately apply to coloured Petri nets [4, 5] and
other forms of high-level Petri nes [1, 6]. This is very
important since most practical modelling and analysis are
performedby meansof high-level Petri nets. By presenting
the technguesin termsof PT-net we reducethe level of
techncal detils. Thegeneralzaionto high-level Petri nets
is ratherstraightforward.

The modular Petri net modeland the invariants compo-
sition were presened in [7], with coloured Petri nets as
moduks A first version d modular occurrencegraphswas
publishedin [8], but therewasa lack of tools to prove the
propertes of the systemdirecty onthese. It turnedout that
this first version d modular occurrencegraphshadto be
revised in orderto do so.

This paper is dructured as follows. Section 2 preserts
anexamplewhichillustratesthebasc ideasbehindmodular
PT-nets,i.e. placefusion ard trarsition fusion. In Sectios 3
and4 we show how placeinvariantsandstate spacescanbe
congructed in a modulr way. Thenwe turn to the formal
definitions Secion 5 definesmodular PT-nets. Secion 6
definesplaceinvariantsfor modular PT-nets, while Secion 7
defines modular state spaces In Section 8 we state their
proof rules, i.e. the rules by which behavioural propertes
canbe decded. Secion 9 preents oher, larger, exampkes.
Finally, Secion 10istheconclusion.

2. MODUL AR PT-NETS

In this section we presen two differert ways of modelling
a problem, one usng pace sharing, and the other using
transition sharing. The example described is a variation of
the resaurce allocation system from [4]. In the next two
sectians the resaurce allocation examples are usedto show
how analysis reailts of moduks can be compogd. This
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FIGURE 1. Exampleof theresourceallocationsystem.

meanghatproperies of amodulr PT-netcanbe proved by
meanf formalanalysis of theindividualmodules

The reurce allocationexamplehasa set of proceses
which share a common pool of rewurces  There
are two differentkinds of proceses, called p-proceses
and g-proceses, and three different kinds of resurces
r-reources sresurcesand t-reurces Each proces is
cyclicandduringtheindividualparts of itscycle,the proces
needsto have exclusve acces to a varying amountof the
reources The p-proceses canbe in four differentstates,
while g-proceses can be in five different states In the
initial statethereare two p-processesnd threeg-processes
plus oner-reurce, three s-reurcesandtwo t-reources
The PT-netis presntedin Figurel. It is © smal that we
would na decamposeit in practice,but it canstill be used
to introducethe basc conceps of modulr PT-nes. A first
possibility to modelthis systemin a modularway congsts
in modellin g the p-processesnd the g-processeseparately
This leadsto two modules as shown in Figure 2, eachof
them degribing the interacton between proceses of one
kindandtheresources Themoduksarecompogdby fusion
of thetwo sharedresourceplacesi.e.thetwo placedabelled
with Sarefused andlik ewisefor thetwo placedabelledwith
T. In Figure2 the placesto befused togetherhave the same
name.Thesets of placedo befused togethearecalledplace
fusion sets. In a practical modelling tool we would need
moreelaboraed technguesto idenify membersof a given
fusion set, but thisis notour purpo® here.

You canview all placesof a place fusion set as being
repregntatives of the same underlyingplace. This means
that they share the same marking: whena token is added
to a placewhich belongsto a placefusion set, all placesof
the placefusion set will have the sametokenadded.When
atokenis removed from a placewhich belongsto a place
fusion set, all placesof the place fusion set will have the
sametoken removed. In addtion, the fuson o theresource

q-processes

p-processes

FIGURE 2. Modular PT-net with two modules and two place
fusionsetswith two membersach.

places of the same kind, enaires that the modular PT-net
of Figure2 hasexacty the samebehaviour asthe PT-netof
Figure 1. All placesn aplacefusion sethaveidenticalinitial
markings

Another way of modelling the resaurceallocation system
is to separae the gycle of p-proceses, that of g-proceses
andthe use of reources as hown in Figure3. Thethree
modulesshare transtions, correpondingto synchronous
acions Trangtionshaving the samenamesbelong to the
sane fusion set. This mears that we have nine trarsition
fusion setswith two memlers each Each trarsition of a
trarsition fusion set describes a part of a more complex
action and all parts must occur simultaneously, as one
indivisible action. We say that a trarsition fusion set is
enathed if al the transitions in the fusion set are enabled
The change producedby the occurenceof atransition fusion
set is the sum of changegroducedby all the transtionsof
the fusion set.

A transition can describe an action which is a basic
part of a numberof independenacions This meansthat
a trarsition can be a member of several trarsition fusion
sets.  Since the behaviour, in the reourcesmoduke, of the
three transtions T3p, T4p and T4q is idenical, we culd
include only one of the threetrangtions and have it as a
member of threetransition fusion sets. If our main concern
was guidelinesfor modelling we would have donethis, but
Figure 3 correpondsto a straightforward separaiton o the
original PT-net.

The modular PT-net of Figure 3 hasexacly the same
behaviour as the PT-net in Figure 1. Each transition
fusion set of the modulr PT-netcorrepondsto exacly one
transition of the PT-net.

We have preened two exampks of modulr PT-nes
having the samebehaviour. The first onewas an exampke
of moduksrelated by pacefusion while the secondused
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FIGURE 3. ModularPT-netwith threemodulesandninetransition
fusionsetswith two membersach.

transition fusion. In general, both placefusion and trarsition
fusion can coeist within a modular PT-net In this paper
we do not consgder the problem of idenifying place and
transtion fusonssets. We suppo® thatthemodelis aready
desgnedin a modublr way. However, one should keepin
mind that the choice of the® sets has an influenceon the
performancef modulranaysis.

In Secion 5 we give formal definitions of a modular
PT-netandof its equivaent PT-net In the net secion we
preentamodulbrapproachof placeinvarians calculus.

3. PLACE INVARIANT SOF MODULAR PT-NETS

All analysis methods extract information about the prop-
eries of a PT-netin a cmndensd way. Placeinvariants
expres invariant relationson the markings of places A

weight(postive or negativeinteger)is attachedo theplaces
It specifies the information we want to extract from the
markingsof a place. A weightfunction (vectorof weights
asociatedwith place$ determinesa placeinvariant if the
sum of the weightedmarkingsof placesis congantfor all

reachablemarkings It is often the ca® that some place
invariantignoresthe marking of some places Thisis done
by assigning weight zero to the placeswhich should be
ignored.

3.1. Placeinvariantsof the PT-net

For the exampk of Figure 1 we find several place
invariants. One of the place invariants shows the gycle of
the g-proceses. the weight of placesAq, Bqg, Cq, Dq,
and Eq is one andthe weight of all other placesis zero.
We can show that the sum of the weighted markingsis
congant for al reachablemarkings This meansthat the
set of g-proceses doesnot changepnly thelocaion o the
g-proceses changesiuring their cycle. Insteadof checking

all reachablenarkings we canalso checkthattheweighted
sum of tokers consumed by eachtrarsition is equal to the
weightedsum of tokensproduced. We say that a set of
weights having this property definesa placeflow. It canbe
provedthattheplaceflow property is aufficientto ensure that
theweightfunctiondeterminesa placeinvariant.

In our notationof weightfunctions placeshaving a zero
weight are simply left out and we use the namesof the
placesto refer to their markings e.g. we write Bp instead
of M(Bp). For theexampkin Figurel we havefive linearly
independenplaceinvariant:

Wi: Bp+Cp+Dp+ Ep =2,
W2 Ag+Bq+Cq+ Dg+Eq=3,
W3: R+ Bg+Cqg=1,
W4: S+ Bg
+2x (Cp+Dp+Ep+Cq+ Dg+ Eq) =3,
Ws: T+ Dp+Eq+2xEp=2.

All of theabove placeinvariantscanbeinterpretedn terms
of the PT-net W; shows thatall the p-proceses are in one
of the states repregntedby Bp, Cp, Dp or Ep; and W3 shows
thatther-reourcesareeitherfree,i.e. in stateR, or occupied
by a g-proces in state Bq or Cg. We can condgruct other
placeinvariants but they can al be expresed as linear
combinations of the five invariants Wy to Ws. Using the
five placeinvariantsabove, it is graightfornardto provethe
deadlock-freenessand similar behavioural propertiesof the
system.

3.2. Placeinvariants of the modular PT-net with place
sharing

In Figure 2, we have two moduks onefor the p-proceses
and onefor the g-proceses. The two moduksarerelaed
throughtwo placefusion sets, i.e. throughthe s-reurces
andt-resources For the p-proceses, we have threeplace
invariants:

Wpi: Bp+Cp+Dp+ Ep=2,
Wp2: S+2x(Cp+ Dp+ Ep) =3,
Wps: T+ Dp+2x Ep=2.

For theg-proceses, we have four placeinvariants:

Wq1: Aq+Bg+Cq+Dg+ Eq =3,
Wq22 R+Bg+Cqg=1,

Wost S+ Bg+2x(Cq+ Dg+ Eq)=3,
Woa: T+ Eq=2.

We axk the quedion: is it possible to condruct place
invariants of the total system from the placeinvariants of
the individualmodules?

The place invariants Wp1, Wq1 and Wg2 do not include
ary placeswhich are shared, so Wp1, Wq1 and Wy are
placeinvarians of the total system,independentf the other
moduks in the modular PT-net  The red of the place
invarians have non-zeroweights for some of the shared
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places In this situation we can only combinethe place
invariants if the weight functionsassign the sameweightto
thesharedplaces This meangthatwe cancombineW,, and
Wqa, becaus they both have weightonefor S andweight
zero for T. Analogousy, we can combie Wp3 and Wyq
becaus they both have weightone for T and weight zero
for S. From the placeinvariant of the individual modules
we deducehefollowing placeinvariants of the modular PT-
net

Wit Bp+Cp+Dp+Ep=2

Wa1: Aq+Bgq+Cq+Dg+ Eq=3

Wq2: R+Bg+Cqg=1

Wp2+ Wys: 2x (Cp+Dp+Ep+Cq+ Dg+ Eq)
+S+Bg=3

Wps+Wga: T+ Dp+Eq+2x Ep=2.

The five placeinvarians correpondto linearly indepen-
dentplaceinvarians of the equivalent PT-net

From the exampk abose we see that a set of place
invariants one for eachmodule, can be combinedinto a
place invariant of the full systemif they have the same
weightsfor placeswhich are shared. Thisis nottruein the
generakas, but if we redrict ourslvesto combiningplace
flows it is a valid statenert. This will be detailed in the
formal definition of invariarts, seeSection 6. If the setsof
weights do notmath, in the sen® desribedabove, we may
sametimesobtain a matching by wsing a linearcombination
of the weightsin theinvariant.

3.3. Placeinvariantsof the modular PT-net with
transition sharing

For the exampk shown in Figure 3 we have threemodules
one for the p-proceses, one for the g-proceses and one
for the reources The three modules are relaed through
trarsition fusion for each pair composed of a transition
in the p-proceses or g-proceses and the crreponding
transtion in the resourcemodule. If we view the modules
independery of their context we canfind a set of place
invariants of the individual modules For the p-proceses,
we have oneplaceinvariant

Wp: Bp+Cp+Dp+Ep=2,
for theg-proceses, we have oneplaceinvariant
Wq: Aq+Bgq+Cq+Dg+Eq=3,

and the resource sharing module has only the trivial null
placeinvariant We axk: is it possible to condruct place
invariants of the total system from the place invariants of
the modules?

In this cae we have no sharedplacesand this means
that Wp and Wq are both invariants of the enire system.
However, it should be obviousthat we cannotcongruct all
the placeinvariants from those of the individual modules
The problem s that we demandoo much from the weight
functions. We demard that each trarsition leaves the

-

FIGURE 4. Two modulessharingatransition.

invariantunchangedwhile it would be sufficient to require

that eachtrarsition fusion set does this. In order to relax
the conditionsof the weight functionsfor the moduks we

introducethe noton o flow presrvation. We say that
a transition is flow presering if and orly if it preserves
the invariant. Then we ae able to check that the non-

fused trangtions are flow presrving for each module;
ard, alsq that trarsition fusion sets are flow presening

acros modulesi.e.thatthetranstionstogether preervethe

invariant.

The aove exanples allowed us to show the intuition
behind modukrPT-nes andtheir analysis by meansof place
invariants. In Section 6 we formalize the naotion of place
invariants andplaceflows for modular PT-nes.

In the next secion we present a modular approachto
statespacescongruction,whichis thesecondmainanalyss
methodfor PT-nest.

4. MODUL AR STATE SPACES

In this s=cion we introducethe basc ideasof modukr state
spaces The main rea®n for working with modular state
spacess to alleviatethe state spaceexploson problem.The
ideais to generatea state spacefor eachmoduleand the
information necesary to capturethe interactionbetween
moduks and in this way avoid the condruction o the full
state space. It is importantthat modularstate spacesallow
usto prove PT-netpropertes directy, i.e.withoutunfolding
to the equivalent ordinary state space. Here, we will first
consder modularPT-netswith fused transtions only. For
that purpo® we use anoher exampk which contains non-
sharedtranstions, thusbeingmore relevant. Thenwe will
show how the problem canbe solved for a modular PT-net
with placefusion only.

4.1. Modular state spaceswith transitions sharing

In this section, we concentrateon PT-nets compogd by
transition fusion ornly. As we will seelater, it istheoretically
eay to generatethe state spacesof the individual modules
and to compose these into the state space of the entire

system.However, pracicaluseis harder:amodule canhave
aninfinite statespacewhile the full statespaceis finite, e.g.

for the moduks of Figure4 compogd by the fuson o the
two grey transitionst.

To avoid handlinginfinite state spaceswe would like to
obtainan efficientcondruction of state spacesof modules
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FIGURE 5. An exampleof two communicatingorocesses.

Module A Module B Synchronization Graph

Al
B1

FIGURE 6.
genestion.

After the first sep of the modular state space

knowing that their behaviour is redricted by the behaviour
of the other modules Only the reachableartsof the state
spaceshould be condructed. Hence purmethodisabalance
betweenfull reactability graph gereration and onthe-fly
verification.

A modular state spaceis compogd of one local state
space per module and a synchronizaion gaph which
capturesthe communications A local state space only
continslocal informaton, i.e. the sub-graphsepregning
all reachablemarkingsobtainedby occurrencesof local
transtions only.  The markings are redricted to the
placesof the module. The synchronizationgraph provides
informationon the state spaceof the overall systemandthe
occurrencesf fused transtions

Thecondruction of amodukrstate spaceis dmilar to that
of thestandardstate spaceexceptthat:

e the condruction of local state spacesusng only
transtions local to moduks can be performedin
parallel;

e the condruction o a modukr state spacerequresone
to keeptrackof the occurrencef sharedtiranstionsand
to synchronizethe modulesusing thisinformaiton.

We usetheexampkof Figure5 to introducethealgorithm
for congructingmodularstatespaces Thisis atoy example,
but it modek a behaviour which reeemblesthat of a typical
real system as concernghe ratio betweenocal and shared

Module A Module B Synchronization Graph

(AN (ar || By (B ey
b4 b5
| @) (b5)!
A I | R
N J AN J

FIGURE 7. After the secondstep of the modular state space
genesdtion.

Module A Module B Synchronization Graph

((a2,b2),8ync,(a4,b4))

A3
B3
a2,b2),Sync,(a4,b4))

J

FIGURE 8. After the third step of the modulr state space
genesdtion.

actons Thesystemconssts of two modules caled module
A and moduleB, eachhaving a behaviour conssting of a
start-up pha®, a main loop and a termination phag. The
main loop canperformlocal actonsandit cansynchronize
with the other moduk, the synchronizaionis achieved by a
transition fusion setconsisting of the two trarsitionslabelled
Sync

In the reg of this ecion we mngructthe correponding
modularstate space. In Figures6-9, the sets of nodesin
daded boxes are strongly conneced componerg (SCCs),
e.g.in Figure6, A2 = {a2 a3}. We moncludethe exampke
with a compari®nto the ordinarystatespace.

In the first step, we congructgraphscontiningall localy
reachablestates of each module. In the example the
inscription al specifiesthat the place al is marked by a
token and all other placesof moduleA areunmarled. We
also congruct the first nodeof the synchronizaion graph,
correpondingto theinitial state. It is labelledby the set of
SCCs of the modulesto which the redriction of the initial
state belongs but it also repregntsthe set of all reachable
markings from the initial marking by accurencesof local
transtionsonly. The reault of this first step is shown in
Figure6.

The reallt of the secondstep is preentd in Figure 7.
From the state spacesof the moduleswe find reachable
stateswhich enable fused tramsitions. The combination of
the statesa? and b2enalbesthe fusedtransition Syndeading
to new states a4 and b4. To the state spaceof moduk A
we needto adda4, andall markingsreachabldrom a4 by
occurencesof local trarsitions; and a similar construction
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FIGURE 9. The ordinary statespace.

is appied to module B and state b4. Note that the state
spacesof the modules obtainedby this congruction, are
not necesarily conneced graphs Finally, we ald the ac
correpondingto Syncto the synchronzation graph.Thearc
is labelled by the startmarking, the occuring transition and
the markingobtained.It connecstwo nodesvhichrepregnt
the SCCsof the two involved markings.

The third step (Figure 8) is dmilar to the secondstep.
We inspect the state space of the local moduks starting
from A3 and B3 to find reachablestateswhich enablefused
transtions, and sincea2 and b2arelocally reachabldrom
A3 andB3, we have to addthe arc correponding to Sync
As nonew nodescanbe addedto the local state spaceswe
know thatthey are now complete.

If we comparethe ordinary state space of the whole
system, illustratedin Figure 9, with themodularstatespace,
we observe that the modular state spaceis snaller thanthe
ordinaryone.Themodukr state spacecontinsatotal of 12
nodesand 12arcs while the ordinary state spacecontins
21nodesand 37arcs Hence thememorynecesary to gore
the statespaceis smaller. In Section 9.3, we discuss the size
of the modular state spacein general

To congruct a modular state space, it is necesary to
calcdate the SCCs. This is not the casewhen bulding an
ordinarystatespace.However the SCCs areneededn order
to determine net propertes, thuscompuing themon-the-fly
whenbuil dingthe modular state spaceis notawade of time.

4.2. Modular state spaces—placessharing

The composition of state space graphs is more complex
when sharing placesrather than transitions. This can be
seenin the exampk of Figure 10, wherethe grey placep2,
initially ermpty, is the shared one. In this case|t is ersured

Gl

t1

=t 3

FIGURE 10. Two moduleseachwith finite graphs,but a modular
PT-netwith infinite graph.

G1* P2 Fusion module G2*

FIGURE 11 A modularPT-netwith transitionfusiononly.

thatif atleas oneof the moduleshasan infinite state space
graph,the modular PT-net also hasan infinite state space
graph. However, it is impossible to tell anything about
the state spacegraphof the modubr PT-netif thos of the
modukesarefinite. Thisis dueto the factthata module can
provide enoughtokensin a placefusion set to allow some
transtions in another module, to be enabéd; andthenthis
secondmoduk can provide some more tokensfor the first
one andso on.

From a praciical point of view it is important to be able
to handk systemswhich use placefusion, sincethekindsof
Petrinetsused in practicalapplicationftenrely onthis.

We define atrangormaton from a modubr PT-netusng
placefusionto amodularPT-netusng only transtion fuson.
Informally this is doneby collecting eachplacefusion set
in a new moduleand then splitting the input and output
transitions, in order to obtain a transition fusion setfor each
inputandoutputtranstion of theplacefusion set. Figurell
shows how the system of Figure 10 canbe trarslatedinto
a behaviourally equivaent modularPT-netusing transtion
fusiononly.

The formal definition of the translation and the proof that
the behaviour is presrved are not includedin this paper
They containanumber of tecmicaldetailswhich are of little
importancehere.

In this sectim we have preserted a construction of
modularstate spaces It is quite compactcomparedo the
ordinary state space. It hasindependenpartswhich can
be compuedin paralel. In secions7 and 8 we formalize
the cnceps preened here, and show the detils of how
to prove PT-net propertes directly from the modubr state
space,i.e. withoutunfoldingto theequivalent ordinarystate
space.
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5. FORMAL DEFINIT ION OF MODUL AR PT-NETS

We will now give the definition of a modularPT-net. We
start by giving thedefinitionof PT-nets andintroducingthe
notationsusedin thered of the paper We use thefollowing
definition of PT-nets.

DEFINITION 5.1. A PTnetis a tuple PN = (P, T,
W, Mo), satisfying:

(i) P isafinite setof places

(i) T is afinite setof trarsitions. The sets of netelemens
aredisjoint: TN P = ;

(iii) W isthearc weightfuncion mappngfrom(P x T) U
(T x P)intoN;

(iv) Mo is the initial marking. Mp is a funcion mapping
from P into N.

Now, we define markingsandstepsfor PT-nes.

DEFINITION 5.2.A marking is a function M mappng
from P into N while a step is a non-empy and finite multi-
set over T. The sets of al markingsand stepsare denoed
by M andY, repectively

We denote the setof multi-setsoverasetA by Ays.
Theenablingandoccurrenceules ofa PT-netcannow be
defined.

DEFINITION 5.3.A gep Y is enabledin a marking M,
denoed byM[Y), iff the following propetty is satsfied:

VpeP:) Wp.n) < Mp).
teY
When a gep Y is enabkdin a marking M1 it may occur,
changing the marking M1 to another marking M, defined

by
Vp e P:Map) = (Ml(P)—Z W(p, t))+z W, p).

tey tey

Note the summations above areovera multi-set Y. This
meanghat W (p, t) andW (¢, p) appeamsmary timesass
appearsn Y.

We say that M» is directly reachablefrom M; by the
occurrencef step Y, whichisdenoedby: M1[Y)M>. [M)
denotegheset of markingsreachabldrom M.

Now we ae ready to define modubr nes. Some
motivation and explanaton o the individual parts of
the definition are given immediately below it, and it is
recommendetb readbothin parallel.

DEFINITION 5.4. A modubr PT-netis a triple MN =
(S, PF, TF), satisfying the following requiremerts:

(i) S is afinite setof modukssuch that

(@) eacimoduk, s € S, isaPT-net:
s = (P, Ty, Wy, MOS);
(b) the sets of nodes corresponding to different
moduksare pair-wise disjointl: Vs1,52 € S :
[s1 ?5 $2 = (Psl U Tsl) N (Psz U Tsz) = 0].
1For the sake of simplicity, we use, in the exanples the same names

for objects(placesor transtions) belongingto differentmodules but which
have to befused together

(i) PF c 2P is afinite setof placefusion sets such that

(@ P = Useg Ps is the set of all places of all
moduks

(b) for nodesx € P UT weuse S(x) to denoe the
moduk to which x belongs For all p in P we
defineMo(p) = Moy, (p);

(c) membes of a place fuson set have idenical
initial markings:

Vpf € PF:Vp1, p2 € pf : [Mo(p1) = Mo(p2)].

(i) TF c 27 is a finite setof trarsition fusion setswhere:
T = J,es Ts isthesetof all transtionsof all modules

EXPLANATION. (i) A modular PT-netconginsafinite set
of modules eachof thembeinga PT-net. Thee modules
mud have digoint sts of nodes

(i) Eachplacefusion set is a set of placesto be fused
togeher. 2° denotesthe set of all subsets of places We
demandhat al element of aplacefusionset havethesame
initial marking. In the following we will denoteby EP C P
(‘externalplace$) the set of all placeswhich are members
of aplacefusionset and bylP = P \ EP (‘internal places),
all non-fued places Notethatwe do notdemandheplace
fusion sets to bedigoint.

(iif) Eachtrarsition fusion setis a set of trarsitions tobe
fused togeter. In thefollowing, we will denoeby ET € T
(‘external transtions) the set of all transtions which are
members of a trarsition fusion setarnd by IT = T \ ET
(‘internaltranstions), all non-fusd transtions Note that
we do nd demandthe trarsition fusion setsto be disjoint.

In the following definition,we introduceplacegroupsand
trangtion groups

DEFINITION 5.5.A place group pg < P is an
equivalence dass of the smadlest equivalence relation
continingall pairs (p1, p2) € P x P where:

3pf € PF: p1, p2 € pf.

A trarsition grouprg C T conssts of either a single non-
fusedtransition ¢ € IT or all the memlers of a transition
fusionse zf € TF.

The set of place groupsis denoed byPG and the set of
transtion groupsby TG.

Place groups and transgtion groups are defined very
differenty since a placecanbe a memberof at mos one
placegroup while a transition canbe amenber of several
transtion groups Therea®nis thataplacegrouprepregnts
a sharedresaurce. A trarsition canbe amenber of several
transtion groupsasit can be synchronizedwith different
transtions (sub-actionof several more complex actiong.
Placegroupsform a partition of the set of places This
meansthat eachplace p is a memberof exacly oneplace
groupwhich will bedenoed[p]. Notethatall placegroups
and transtion groups have at leag one element. From
Definitions5.4(ii) and5.5, we know thatall placesof aplace
groupwill have the same initial markings, this allows us to
define Mo([p]) = Mo(p) withoutambiuity.
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Next, we extend the arc weight function W to place
groupsandtranstion groups
Y(g1,82) € (PGx TG U (TG x PG) :

Yo Wy

X€L1,YEL2

W(g1, g2) =

Now, we extend the definitions of markings and steps to
modukr PT-nes.

DEFINITION 5.6.A marking is a function M : PG— N
while a step is a non-empy and finite muti-set over TG.
The sets of all markingsand stepsare denoed byM andY,
respectively

Therestriction of amarking M to amodules isdenoedby
M. Theenabing and occurrenceules ofa modular PT-net
cannow be expresed.

DEFINITION 5.7.A dep Y is enabledin a marking M,
denoed byM[Y), iff the following propetty is satsfied:

Vpg € PG: Y W(pg.tg) < M(pg).
tgeY

When a gep Y is enabkdin a marking M1 it may occur,
changhg the marking M, to anoher marking M», defined
by:

Vpg € PG:

M2(pg) = (Mi(pg) — > W(pg. 1) + Y _ W(tg. pg).
tgey tgey

We say that M» is directly reachablefrom M; by the
occurrencesf step Y, which we also denoe by: M1[Y)M>.
[M) denotedhe set of markingsreachabldrom M, and we
generailze this notation to cover the following cagswhich
areall useful in relationto modular PT-net.

(i) My is reachablefrom Mj by the occurrenceof an
intermal trarsition r: M1[[t)M>, and [[M) denoes
the set of all markingsreachableéfrom M by interral
transitions only or notrarsition (i.e. M € [[M)).

(i) M> is reachabldrom M, by the occurrenceof afused
trarsition zf: M1[tf))M>, and [M)) denoesthe set of
all markingsreachabldrom M by the occurrenceof
a fused transition. This implies that in gereral M ¢
[M)).

(iii) M2 is reachablefrom M by a sequenceof internal
trarsitions followed by a fused trarsition o =
t...tatf: Ma[lo))Mo, and [[M)) denoes the set
of all markings reachableby a sequenceof internal
trangtions (or none) followed by a fused transtion,
i.e. the dosue of M[[)). Ascagn = 0 is alowed,
[M)) < [[M)).

For a local marking M, in a module s, [M,), denoesthe
set of markingsreachabldrom M; by occurrencesf local
transtionsof moduk s only.

Next, we show thateachmodularPT-nethasabehaioural
equialent PT-net Some motivaton and explanaton o
individual partsof the definition of the equivalent PT-netis

given immediatelybelow it, andit is recommendetb read
bothin parallel. All nhamesthatreferto the equivalent PT-
netare marked by an aderik, e.g. Mg refersto the initial
marking of themodukrPT-netand M to theinitial marking
of itsequivalent PT-net

DEFINITION 5.8. Let a modubr PT-net MN = (S,
PF, TF) be given. Thenwe definethe equivalent PT-netto
bePN* = (P*, T*, W*, M) where:

(i) P*=PG.
(i) T* =TG.
(iii) Y(x*, y*) € (P* x T*) U (T* x P*) :

W*(x*, y*) = W™, y").
(iv) Vp* € P* : M§(p*) = Mo(p*).

EXPLANATION. (i) The equivalent PT-nethasoneplace
for eachplacegroup.

(i) The equivalent PT-net has one trarsition for each
transtion group.

(i) The weight associated with a pair (place group,
transtion group)is unchanged.

(iv) From Definitions 5.4(ii) and 5.5, we know that all
placesof a place group have the sameinitial marking and
weknow thatall placegroupshave atleas onememberThe
initial marking o a placegroupis determinedby ore of the
membersf theplacegroup.

The following theoremshows that a modular PT-netand
its equivalent PT-nethave the samebehaviour.

PROPOSITION 5.1. Let MN be a modubr PT-netand|et
PN* bethe equivalent PT-net Thenwe havethe following
propetties:

1. M=M*"A M= Mj.
2. Y=Y*
3. VM1, M2 e M,VY €Y :

Ma[Y)mMnM2 & M1[Y)pne M.

Proof (i) M = M*, follows from Definitions 5.2, 5.6
ard 5.8(i). From Definition 5.8(iv), the two initial markings
areidentcal Thus Mo = Mj;.

(ii)y From Definition 5.2, Y* conssts of all non-empy and
finite multi-setsin Ty,. From Definition 5.6, Y consists
of all non-emptyand finite multi-sets in TGys. From
Definition 5.8(ii), T* = TG. ThusY = Y*.

(iii) First,we provethatthe enabling rulescoincide, i.e.

M1[Y)un < Ma[Y)pn:.
From Definition 5.3 it followsthat M1[Y )pns iff:

Vp*e P*i Yy WH(pt,1*) < Ma(p®),

t*eY

which by Definition 5.8(i) and (ii) is equivalent to:

Vpg € PG: Z W*(pg,tg) < M1(pg).
tgeY
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which by Definition 5.8(iii) is equivalent to:

Vpg € PG: ) W(pg.1g) < Mi(pg).
tgeY

From Definition 5.7, it follows that this is exactly the
enaliing condtion for M1[Y)mn.
Next we mud provethattheoccurrenceulescoincidej.e.

M1[Y)YMNM2 < M1[Y )pn+Mo.

This part of the proof can be structured like the part
regardngenabingrulesandwe will notincludeit. O

In Secion 2, we daimed that the presented modukr
PT-nets and the PT-net given as exampks, wereequivaent
accordingto the behsiour. This can be checled usng
Definition 5.8 andPropostion 5.1.

6. PLACE INVARIANT ANALYSIS

In this sectiay we show how the concegs of placeinvariants
andplaceflows canbe extendedto modular PT-nets. Place
invariants canbe usedin the proofs of propertiesof aPT-net,
e.g to show thatthereis no deadmarking. In this paper we
focuson the conceptsof placeinvariants and place flows,

more thanon the useof invariantsin the proof of properties
of PT-nes.

6.1. Placeflowsand invariants of PT-nets

In this subsectionwe recall the conceptsof placeflow and
placeinvariant.

DEFINITION 6.1. For aPT-netPN = (P, T, W, Mp), a
weightfunctionis a function F mappihgfrom P into Z:

(i) F isaplaceflow iff:

VieT: Y F(p)xW(p.n= Y F(p)* W, p):
pepP PEP

(ii) F determinesa placeinvariantiff:

VM € [Mo): ) F(p)* M(p) =) F(p)* Mo(p).
peP peP

A weight function F mapseachplace p to an integer
F(p).

(i) Wesaythatatrarsition: isflowpreseringwith resgect
to a weight functon F iff r+ possesses the propery
desribedin (i). For a subset of transtions7” C T,
we saythat F is T”-flow presevwing iff al r € T” are
flow preserving, with repectto F.

(ii) Theintuition of atransition ¢ being flow preservingis
thatr remores—whenthe weightsof F aretakeninto
account—the samenumberof tokensasit adds

For a given marking M, we calculatethe weightedsum
asthe sum of the weights multiplied by the marking of the
individual places The weight function F determines an

invariantiff all reachablenarkingshave the sameweighted
sum.

Note that any linearcombination of two placeflowsis a
placeflow, i.e. if F1 and F» areplaceflows, andz1,z2 € Z
thenzi x F1 + z2 % F> isaplaceflow. Theweightfunction
which assgnszeroweightsto all placesis always a place
flow. We say thata placep is included in F if F(p) # O.
Themain rea®n for introducing gdaceflowsis the difficulty
checkingplaceinvariantsonthetotal set of reachabletates
Placeflows canbe checled on the structureof the PT-net.
In practicewe do not needto sum throughall the places
it is sufficientto sum throughthe input placesof r for the
first sum, andthroughthe outputplacesof ¢ for the second
sum.

Thefollowing theorendescribestherelationsip between
placeinvariantsandplaceflows.

THEOREM 6.1.Let a PT-net with no dead transition be
givenandlet F beaweightfuncion.

F is a placeflow < F determinesa placeinvariant.

Proof. The theoremis part of the dasscal theory for
invariantanalyss (see eg. [9]).

« is satisfiedfor all PT-nets with no deadtrarsition.

= is satisfiedfor all PT-nets. O

6.2. Placeinvariantsof modular PT-nets

In this section we show how the formal definitions of place
invariants andplaceflows canbegiven for modulr PT-nes.
This subsecton is dructured like the previous one andit
shouldbe eay to comparethe definitionsgiven for PT-nets
andmodular PT-nes.

DEFINITION 6.2. For a modubr PT-net MN = (S,
PF, TF), a weight function is a function F mappng from
PGinto Z.

(i) Fisaplaceflow iff:
Vig e TG:

D F(pg)* Wipg,tg)
pgePG

= Y F(pg)*W(g, pg).
pgePG

(ii) F determinesa placeinvariantiff:
VM € [Mp) :

Y F(pg)«M(pg) = Y F(pg)x Mo(pg).

pgePG pgePG

A weightfunction F of amodularPT-netmapseachplace
grouppg into aninteger F(pg).

(i) We saythatatransition groupzg isflowpreseringwith
regectto aweightfunction F iff rg posesses the propery
described in Definition 6.2(i). For a subset of trarsitions
groupsTG’ C TG, we say that F is TG’-flow presewing
iff dl rg € TG” areflow presrving,with regpectto F.
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The intuition of a trarsition group tg being flow
presrving is that rg remorzes—whenthe weightsof F are
taken into account—thesame numberof tokensasit adds

(ii) For a given marking M we calculatethe weighted
sum as the sum of the weights multiplied by the marking
of the individual place groups The weight function F
determinesaninvariant iff all reachablenarkingshave the
same weighted sum.

THEOREM 6.2.Let a modubr PT-net with no dead
transition be givenandlet F bea weightfuncion.

F is a placeflow < F determinesa placeinvariant.

Proof. Thetheorencanbeproved similarly to Theoren6.1,
we just needto consder placegroupsandtranstion groups
insteadof placesand trarsitions.

= is stisfied for all modular PT-net.
< is stisfied for all modular PT-nes with no dead
transition.

6.3. How tofind placeinvariantsof modular PT-nets

In the exampks presented in secions 2 and 3, we have
shown some compodtions of place invarians and place
flows, using either place fusion only or transition fusion
only.

We use the term global weight function for a weight
function o the enire modular PT-net, while we use the
termlocal weightfunctionfor aweightfuncton o asingle
moduk. In the present s2cion, we state and prove anumber
of theoremspecifyinghow local placeflows andlocalplace
invariantsarerelatedto globalplaceflows andglobal place
invariants.

DEFINITION 6.3. LetMN = (S, PF, TF) be a modular
PT-net.

(i) A setoflocal weight funcions{F;};cs of the modules
is consstent iff they assgn the same weight to all
membes of each placegroup:

Vpg € PG:Vp1, p2 € pg: Fspy(p1) = Fspy)(p2).

(i) A global weight funcion F of MN determines a
congstent st of localweight functions{F;},cs of the
moduks

Vp e P Fsp(p) = FpD-

(iii) A congstent st of localweightfuncions{F;};cs of the

moduksof MN deerminesaglobalweightfunction F:

Vpg € PG Vpe P:pg=I[pl= F(pg) = Fsp)(p).

Notethatthe constructionfulfils: if F; determines{F};cs
and{F;};cs determines F» then Fy = Fo.

THEOREM 6.3.Let MN = (S, PF, TF) be a modular
PT-netand let {F;};cs be a condstent st of local weight
funcionsof the moduleswhich determine the global weight
function F. Thenwe have

[Vs € S : Fy isa placeflowof T]
= F isa placeflowof MN.

Proof. The theoremfollows directly from the observation
that al transtions of the individual modules are flow
presening, i.e. we know that eachmemler of a transition
group is flow presrving. This is a much stronger
demand than the trarsition group being flow presering as
agroup. |

In the next theoremwe show how Theorem6.3 canbe
extendedto placeinvariansif we congder modubr PT-nets
withoutplacefusion.

THEOREM 6.4.Let MN = (S, ¥, TF) be a modular PT-
netwithoutplacefuson, andlet { F;};c5 bea congstent st
of local weightfuncionsof the moduleswhich determinethe
globalweightfuncion F. Thenwe have

[Vs € S : F; determinesa placeinvariantof moduk s]
= F determiresa placeinvariant of MN.

Proof. Fromthedefinition of enablingfor modularPT-nets
we know that a transition group will only be enabled if all
transti onsof the groupareenabkd. This meansthatthe set
of reachabletatesfor the modularPT-netis coveredby the
set of reachabletatesof thelocalmodules |

Note that we can find place invariants of the total
systemwhich cannotbe expresed as placeinvariant of the
individualmodules

THEOREM 6.5.Let MN = (S, PF, #) be a modular PT-
netwithout transtion fuson, andlet F be a global weight
funcion o MN which deermines a set of local weight
funcions{F;},cs. Thenwe have

F isa placeflowof MN
= [Vs € S : F; isa placeflow of Tg].

Proof. Sincetrarsition fusionisnot used weknow that each
transition group consists of exactly one memler. Thus each
individual trarsition is flow presering. O

From Definition 6.3 and Theorem 6.5 we know that we
canfind all placeflows of the total system from the place
flows of the individualmodules

THEOREM 6.6.LetMN = (S, PF, TF) bea modularPT-
net and let F be a global weight funcion o MN which
determinesa set of local weight funcions{ F};cs. Then we
have

F isa placeflow of the modular PT-net
& [Vs € S : Fy isa placeflowof IT;]
A [TF isflowpresewringfor F1.
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Proof. In this proof, it is wfficient to estaish a
correpondencdetweenthetrangtion groupsandtheunion
of the set of intermal trarsitions ard the set of fusion
sets. If a trarsition group contains exactly one trarsition
it correpondsto an internal transtion and otherwise it
correpondsto atranstion fuson set. |

Theorem6.6 is akey reailt. All placeflows of amodular
PT-net can be deermined from consstent sets of weight
functions which are placeflows for the internal trarsitions
IT and are flow preservedby all transition fusion sets. A
correpondingtheoremfor colouredPetri nets (CP-net) has
beenshawn for placefusiononly in[10].

To illustratehow we envision the use of the resuts from
this ®cion, we desribe how a placeflow could be found
for a modulr PT-net We will asume that a modular
PT-net hasmainly internal i.e. non-fusd, nodes andthe
main work is to check that the interral transitions are flow
preerving. When performing paceinvariantanalysis one
canbeinteregedeitherin all possible flows of the systemor
in a few, but deriptive, placeflows. Theorem®6.6 allows
oneto cakulate all possible placeflows in a modular way:
calculate all flows for the internaltranstions and combine
those which areconsistert ad, finally, checkthe trarsition
fusion sds.

Thereault of thistheoremis also attracive whenusingan
interactive proces wheretheweightsof placesaregradually
added. It conssts in starting with a single module and
specifying weightsthat are flow preserved by all internal
transtions After this, the req of the weight functionscan
be redricted, using the weights of the moduk. Both place
fusion setsand trarsition fusion setscanbe used We know
that the weight funcionsmug be consstent andthis means
that all placesof a place fusion set mug have the same
weight. We dso know that the trarsition fusion sets must
beflow preserving andif only oneof thesurroundingplaces
needsaweight,it canbecalculateddirectly from theknown
weights. After the® redrictions have beenappled, the
internal transtions of the next module canbe checled. In
the endit is necessaryo checkthatall trarsition fusion sets
areflow presrving.

In the next secion, we preent another main analysis
method,.e. modularstatespaces

7. STATE SPACES

In the following, we formally define modular state spaces
but first weintroducesomenotationsandrecallthedefinition
of statespacef PT-nets

7.1. Statespacesof PT-nets

We want to repregntstate spacesasdirectedgraphs Since
we want to be abde to have multiple arcsbetweenpairs of
nodeswe use thefollowing definitionfrom [9].

DEFINITION 7.1. A directedgraphis a tuple DG =
(V, A, N) suchthat

(i) Visasetof nodeqor vertices);

(i) Aisasetof arcs(or edge}such that
VNA=0;
(iii) N isanodefuncion. It isdefinedromA intoV x V.

Thenodefunction N mapsanarca into a pair of nodes
(x1, x2), where x1 is the sourceard x» the destiration of arc
a.

DEFINITION 7.2. LetPN = (P, T, W, Mp), be a PT-net.
The statespaceof PN isthe direcedgraphSS= (V, A, N),
where:

(i) V =[Mo);
(i) A={(M1,t,M2)eV xT xV | Mt)Ma};
(iii) Ya = (M1, 1, M2) € A : N(a) = (M1, M2).

The state space containsa node for each reachable
marking and anarcfor eachpossilie transition occurence.

For two nodesv, andv, we use D P F(vg, v.) to denoe
the set of all directedfinite paths conrecting vg to v,, i.e.

all finite sequence®f nodesand arcsvi, a1, v2, az, ..., v,
wherevy = v, v, = ve, andforadliinl,...n, N(a;) =
(vi, vi41).

Next we congder SCCs. Two nodesvi,vp € V are
strongly conneced iff there exists a finite directed path
which startsin v1 andendsin v2 anda finite directedpath
which startsin v2 andendsin vy. It is eay to seethat
strong-conneadnes is an equivalencerelaion and hence
deerminesa set of digoint equivalenceclasses. An SCCis
adirectedgraphDG’ = (V’, A’, N'), where V/ C V isan
equivaenceclassof strongly connecednodes A’ C A are
all those acswhereboth the sourceanddegination belong
to V/, and N’ is therestriction of N to A’.

Thesetof all SCCsisdenoedby SCC. Foranodev € V
anda component € SQC we use the notatonv € ¢ to
denoethatv is oneof the nodesin c. A similar notation is
usedfor arcs. We use v¢ to denoe the componento which
v € V belongs We dso denot the source (repecively
degdination) of anarca by srce(a) (repectively deg(a)).

DEerINITION 7.3. The direced graph S8 = (V*,
A*, N*) is the SCCgraph of date spaceSSiff the following
propetties are satisfied:

1. V*=SCC;
2. A*={a € A|srcea) # ded(a)‘};
3. Va € A*: N*(a) = (src€a)¢, des(a)°).

Definition 7.3 allows us to talk aboutthe SCC graphof
a statespaceand this will turn out to be avery usefd tool
whenwe have to specify efficient proof rules for deciding
propertes of systems Thiswill bediscussed in Secion 8

7.2. Modular state spaces

In this sectionwe condgder modularPT-netswith transtion
fusiononly, i.e. noplacefusion. To concudethatthisis not
a severeredriction pleas recalltheagumentof Sectiond.

In the definition of modular state spaceswe need a
compactotationto capturethe statesreachabldrom M in
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all theindividualmodules i.e.[[M). It turnsoutthatwe can
use aproductof SCCs of the individualmodulesto expres
this repregntatve node: for ary reachablemarking M, we
use MY to denoe the productof SCCs M¢ of the individual
modukes

VM e [Mo) : M7 = | M.

seS

Thisnotationis aso extendedo aset X of markings

x7= | m%.

MeX

In the definition of a modular state space, we have two
parts the synchronizationgraph and the state spacesof
the individual modules The definition is followed by an
explanaton and both should be readin paralel.

DEFINITION 7.4. Let MN = (S, @, TF) be a modular
PT-net without place fusion and with the initial marking
Mp. The modubr state spaceof MN is a pair MSS =
((S8)ses. SG), where:

(i) SS = (Vg, Ag, Ny) isthelocal statespaceof moduks:

@ V= UUE(VSG)_c[U)S’
(b) Ay ={My1,t,M2) € Vg xIT x Vs | M1[t) M2},
(€) Va=(v1,t,v2) € As : Ny(a) = (v1, v2);
(i) SG= (Vsg, Asc Nso) is the synchronzaion gaphof
MN:
(@) Vse=[[Mo)?U (Mg},
(b) Asc={(M{, (Mj.1f. M2), M}) €
Vse x ([Mo) x TF x [Mo)) x Vsg|
M] € [[M1) A M1[tf) M2},
(€) Va = (v1, X, v2) € AsG: Nsg(a) = (v1, v2).

EXPLANATION. (i) The definition of the state space
graphs of the modules is a generaizaion o the usual
definition of statespaces:

(a) theset of nodesof the state spacegraphof a moduke
containsall stateslocally reachabldrom any nodeof
the synchronkaion gaph;

(b) likewise the arcsof the state spacegraphof a moduke
correpond to all enabledinternal transtions of the
moduk;

(c) anarc (v1, t, v2) starts from nodev; andendsin node
V2.

(if) Eachnodeof the synchronizaion gaphis labelled
by an M? andrepreents all the nodesreachablefrom M
by occurrenceof local transtions only, i.e. [[M). The
definition of M¢ ensrresthatany markinghaving the same
set of markings reactate by internal trarsitions will be
repregnied by the same nodein Vsg. The synchronizaion
graphcontainsthe informationon the nodesreachableby
occurrencesf fused transtions

(a) the nodes of the synchronzaion gaph repreent
all markings reachablefrom another marking by a
sequenceof internal transtions followed by a fused
trangtion. Theinitial nodeis also repregnted;

(b) the arcs of the synchronkaion gaph repreent all
occurrencesf fused transtions

(c) anarc (v1, X, vp) startsfrom nodev; andendsin node
v2.

The state space graphsof the modules only contain
local informaion, i.e. the markings of the module and the
arcs correponding to local transtions, but not the arcs
correponding to fused transtions. All the information
concerning the occurrence®f fused transtionsis goredin
the synchronizaion graph. This dructure is desgnedin
orderto efficienly checkpropertesdirectly in modukr state
spacesaswill beshown in Section8.

Themodular state spacecanbeunfoldedinto an ordinary
state space. Let M denot the set of markings of the full
systan and M the set of markings of moduk s. The
explamation is given just below the definition and bah
should bereadin paralel.

For a marking m, of moduk s, we use m} to denoe
the marking of the full systemwhereall placesof all other
moduksareempty.

DEFINITION 7.5. LetMN = (S, PF, TF) be a modular
PT-netand MSS= ((SS);es, SO its modubr state space
The unfoldedstate spaceof MSSis SS= (V, A, N), where:

)V =Upevedlv);

It ,

(i) A= U(U,(m,[;],m/),v')gASG{(m, [t], m")}
UUmeV,xeS,(ms,t,ml".)eAx{(m’ t, (m +m§*) _m;()}’
(iii) Ya = (v1, X, v2) € A : N(a) = (v1, v2).

EXPLANATION. (i) The set of nodesof the equivalent
state spaceis the set of markingsrepregned by nodesin
Vs, i.e.the setof markingsreaclale by internal trarsitions
from any of the nodesof Vsg.

(if) An arc label ofthe synchronizaion gaphis an arc
of the equivalent state space. For eachmarkingm, if a
localtranstion isenabledthereis a corregpondingarcin the
equialentstatespace.The markingobtaineds changedor
the module concernedss Peciied in its date spacegraph.

(iii) An arc (v1, X, v2) starts from nodewvs andendsin
nodeuv.

Thefollowing theoremstates thatthe equivalent ordinary
state spaceof a MSS andthe state spaceof the equivalent
PT-netof MN arethe same.

THEOREM 7.1.Let MN be a modubr PT-net MSSits
modubr state spaceandPNitsequivalentPT-net LetSSuss
bethe unfoldedstate spaceof MSSandSS$y the state space
of PN:

SSussisisomomphicto SSn.

Proof. The main idea of the proof is to follow the
congructive definitions given in Definitions 5.8, 7.2, 7.4,
ard 7.5. Definition 5.8 shows how we can construct an
equialent PT-netPN from a modulr PT-netMN; note that
we have atrarsition in PN for eachtransition groupin MN.
Using Definition 7.2, we canthen castruct the statespace
S$n correponding to PN. Using Definition 7.4, we can
congructthe modukbr state spaceMSS from MN and finally
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we must show that Definition 7.5 maps MSSto anunfolded
state space SSuss which by condruction is isomorphi to
S&N. O

We now define anabgractalgorithm to congructmodular
state spaces We use primitive functionssimilar to those
of [9] (Propogdtion 1.4). Waitingsg is a set of nodesof
the synchronkaion gaph. Nodesg(v) is a procedurenhich
creaesanew nodev inthe synchronzaion gaphandaddsv
toWaitingsc. If v isalreadyanode Nodesg(v) hasnoeffect.
Analogousy, Arcsa(vi, (M1, t, M>), v2) createsanarcwith
sourcevs, destiration vp, andinscription (M1, t, M>) in the
synchronzaion gaph,if it doesnot exist yet Nextsg(v)
is uxd to denot the set of posible next moves usng
fused trandtions. The® moves can be performedfrom
ary markingin [[v), i.e.reachablgrom v by occurrences
of local trarsitions only. In addition to this, we use the
function AddinermalSuccesors(M) which takesa marking
anddevelopsthe correpondingstate spaceof eachmodule,
i.e. all local markingsreachabldrom M; using transtions
from IT; only. This procedurds smilar to the state spaces
congructionalgorithm for all modules with initial marking
M;. AddIinermalSuccesors(M) is ade to determine the
SCCsof M; for eachof thelocalstatespacesandfrom thes
congruct M7 asthereturnedvalue.

PrROPOSITION 7.1.The following algorithm congructs
the modular state space:

Waitingsg := @

vo := AddInemalSuccesors(Mo)
Nodesc(vo)

repeat

selectanodev; € Waitingsg

foral (M1, t, M2) € Nextsg(vy) do

begin
v2 := AddInemalSuccesors(M>)
Nodesg(v2)
Arcsg(vi, (M1, t, M2), v2)

end

Waitingsc := Waitingsc \ {v1}

until Waitingsg = @

This algorithm is a generalzaion o the one for
condructing state spaces The generalizationsfollow
directly from Definition 7.4.

In the next secion, we will show how to prove propertes
directly onthemodularstatespace,.e. withoutunfoldingto
theordinary statespace.

8. PROVING PROPERTIES

Here, we will prove propertes for modubr PT-net. It
has been our main concernto ensure that all propertes
are defined in such a way that they are consstent with
the definitionsknown for PT-nets For eachof the PT-net
propertes we present proof rules which take adwantage
of the characteriics of modular state spaces We dso
sketch algorithms showing how thes proof rules can be

(D) D)
i

F1||t2||t3||TF2| |TF1||TF2||TF3||TF4|

FIGURE 12 Modular PT-netwith moduksA and B.

=

FIGURE 13. Thefull statespaceof the system.

implemenéd in orderto obtain efficientanalysis of modular
PT-netsand avoid unfoldingto ordinarystatespaces

We first introduce the exampk that will be used
throughoutthis cion. In Figure12 we present a modular
PT-netconssting of two modulesA and B which sharefour
commontranstions TF1, TF2, TF3, and TF4. Module A
is preenkd ontheleft-handside while moduke B is on the
right-hand side. This systemwill be usedto illustratethe
propertesin thefollowing subscions

The modular PT-netis equivalent to a PT-net wherethe
trangtions shared by both modules are fused, i.e. TF1 of
moduk A is fused with TF1 of module B, TF2 of moduke
A isfusedwith TF2 of module B, and so on. Theoccurrence
graphof this PT-netis preentedin Figure13. Themodular
state spaceof the system is presentedin Figure14. Note that
we do not distinguish betwveennodesand SCCs, since they
all contain exacty onenode.

8.1. Reahability

Here,our purpo® is to find wheher a given marking M is
reachabler not. Theset of ancesors of alocalmarking M,
in the state spacegraphof module s is the set of SCCsfrom
which M, canbereachedi.e.forall s in S andfor all local
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Module A Module B

Synchronisation Graph

((A2,B2),TF2,(A5,B3))
((A3,B1),TF3,(A5,B3))
((A4,B1),TF4,(A5,B3))

((A5,B3),TF1,(A1,B1))

FIGURE 14. The modular state space.

markingsM; in Vy, we define:
ancG (M) = {M; | M; € Vs A M € [M;)s}.
We now expressthe reactahlity properties.

ProPoOSITON 8.1.

(i) M e[Mp) < v e Vsg: M € [[v).
(i) Me[Mpy) < [(VseS:Mse V)
A([Tses anG (Ms) N Vse) # D)].

EXPLANATION. (i) A globalmarkingis reachableff itis
internallyreachabldrom oneof thenodesn Vsg.

(i) Thefirst part of the conjuncton ensuresthat al local
markingsarereachableThisisanecesary but notsufficient
condtion, and the secondpart of the conjuncion ensures
that there exists a nodein Vsg from where the required
combinatiorof localstatesis reachable.

Proof. (i) Followsdirectly from Definition 7.4.

(if) The first part of the conjuncton enaures that the
ancesors of all M are well defined. Reaclahlity then
follows from Definition 7.4 and the definition of function
ang. O

SKETCH OF ALGORITHM. The proces to check that
a marking M is reachablecan easly be implementedby
first looking at the redrictions of M to the modules If
for one moduk s, M; is not in SS, then M is not
reachableOtherwise, we checkif thereexistsanodev in the

synchronization gaphfrom which M is locally reachable.

This can be doneefficiently, using the informaion o the
SCCs of the modules

ExAmMPLE. Let us apply Propostion 8.1(ii) to the
exampkepreentedin Figuresl2—14 to checkwhetherA4B2
is reachableor not. Node A4 is in SS. Node B2 is in
S$%. Node A4B2 is locally reachablefrom node A1B1:
the ancestas of A4 in SS, are A4, A2 and Al, andthe
ancesorsof B2 in S§ areB2, B1. Thusall the condiions
aresatisfied and A4B2 is reachableWe dso checkif A5B2
is reachable.NodeA5 isin SS. Node B2 isin S§. The
only ancesor of A5 in S$ is itself, the ancestas of B2
in S$ areB2, B1. Thusthe coss-product of ancesors
are {AbB2, A5B1} which are not in SG Hence,the lag
conditionof the propostion is not satisfied and A5B2 is not
reachable.

8.2. Deadmarkings

We will now give properiesto find deadmarkings

ProPOSITION 8.2.

(i) M e[Mp)isdeads

[(Vs € S :V(my,t,mp) € Ay : m1 # My)

AV (v1, (M1, tf, M2), v2) € Asg: M1 # M)].
(i) M € [Mp)isdeads

[(Vs € §: (M) € Tem(SCCy) N Trivial (SCCy))

ANV (v1, (M1, tf, M2),v2) € Asg: M1 # M)].
(iii) M e [Mp) isnotdead«

s e S:Vme Vy:3I(m,t,m') € A;.
(iv) M € [Mp) isnotdead«

s € S : Taam(SQCy) N Trivial (SCCy) = .

EXPLANATION. (i) A marking is deadiff thereis no
enabeéd transtion, neither local nor fused.

(ii) A markingis deadiff it belongsto terminal andtrivial
componentsf al local statespacesanddoesnotenableary
fused transtions We use function Term which returnsthe
set of terminal SCCs andfuncion Trivial which returnsthe
set of trivial SCCs. An SCCisterminal if it hasno outgoing
arcs anditistrivia if it hasexacly onenodeandnoarc.

(iii) We know that there is no reactade deadmarking if
there exists a local module which for any marking hasan
enatled transition.

(iv) We know that thereis no reachabledead marking
if there exists a local moduk without strongly conneced
componergbeing both terminal and trivial .

Proof. (i) = Let M beareachableleadmarking. No local
transition is enabled Thus, for all s in S, M, cannotbethe
saurceof anarc. No fusedtransitionis enabled Herncethere
isnoarclabelledby M in SG

< The proof is similar to that of =.

(i) Therighthandsides of(i) and (ii) areequivalent.

(iii) Letus suppo® thatthereexistsamodules in S such
thatall nodeshave & leas oneoutgoingarc. Thenfrom each
reactable marking alocaltrarsition of s isenabéd. ThusM
isnotdead.

(iv) The right-hand sidesof (iii) and (iv) are equivalent.

|

SKETCH OF ALGORITHM. Herewewantto findall reach-
abledeadmarkingsof the systemusing Propogion 8.2(ii).
We will consder all thenodesof SG For eachnodem, we
will only considerfor all m; the learesof [my), in the state
spacegraphof module s. Thes aretheterminalandtrivial
M.

We condruct the sets of [], ¢ M¢ for all the SGnodes
We renovefrom this et all the markings labelling SGarcs
Thusthe remahing markings satisfy the conditionsof the
propodtion above and form the set of al reachabledead
markings

ExAMPLE. We @ply this algorithm to the exampke
preentedin Figures 12-14, to find all reachabledead
markings

Thereare two nodesin SGlabelled by the SCCs’ cross-
producs A1B1 andA5B3. Thesetof trivial leaves of [Al) 4
is {A3, A4}, the oneof [Bl)p is {B2}. The set of trivial
leavesof [A5) 4 is {A5}, the oneof [B3)p is {B3}. Thus
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the set of cross-product to checkis {A3B2, A4B2, A5B3}.
Thesetof arclabelsin SGis {A3B1, A4B1, A2B2, A5B3}.
Hencethesetof reachableleadmarkingss {A3B2, A4B2}.

8.3. Liveness

We now wantto determinewhetheragiven setof transtions
is live or not We first express the livenes propertes for a
fused transtion, thenfor alocal one andinaly for a set of
transitions in general.

ProOPOSITION 8.3.

(i) tf e TFislive &
[Vsac € Teem(SQCsg) : tf € Trangsax)]
AVv € Vsg: VM € [[v) :
(Vs € S: M{ € Tem(SCCy)) =
(v, (M, tf', M2), v2) € Asg: M1 € [[M) ].
(i) r elTsislive &
[Vsac € Tem(SCCsg) :
Jv esa:t € Trang[vy);s) |
AVv € Vsg: VM € [[v) :
(M € Taem(SCCy)) =
(t € TrangM¢)
VI(v, (M1, tf, M2), v2) € Asg: M1 € [[M))].
(i) X C Tislive
[Vsac € Tem(SCCse) :
(X NTrangs@) # @
vav € sac: X N Trang[[v)) # @]
AVv € Vsg: VM € [[v) :
(Vs € S: M{ € Tem(SCCy)) =
(3s € §: X NTrang M¢) # )
V(E3(v, (M1, tf, M2),v2) € Asg: M1 € [[M))].

EXPLANATION. We use SQCsgto denoetheset of SCCs
of the synchronizaion graph. Transmapsan SCC into the
set of transtionswhich occurin the labels of the acsin
the component Similarly, we use Transto map a set of
reactabe markings to the set of transitions which occu in
the labek of thearcsbetveentwo nodesof the set.

(i) A fusedtrarsition ¢f is live iff it occursin all terminal
strongly conneced componerg of the synchronizaion
graph, and furthermoreit is always possible to get to a
combinatiorof localstateswhich enablesa fusedtranstion.

(i) A trangtion local to modules is live iff, for all
terminal SCCs of the synchronzaion gaph,there exists a
nodewhich enabksz, and furthermoreit is alwayspossible
to getto acombinatiorof localstateswhich enablesafused
transition, or to a stateenalling ¢.

(iii) A setof tramsitions X is liveiff for eachterminalSCC
of the synchronizaion g-aphthereis an occurrenceof some
elemenbf X, or somenodeenablingan internaltranstionin
X. Furthermoreit is always possible to getto a dombinaion
of local stateswhich enablesa fusedtransition, or to a state
enating an element in X.

Proof. (i) and (ii) areparticdarcasef (iii). Thus, we will
only prove(iii).

= Let X be a live set of transtions This means
that it is possible from any reachablemarking to reach

anoher marking in which one of the transtions of X is
enabled. For eachterminal SCC of the synchronization
graph either there exists a fusedtrarsition in X belonging
to the component(X N Trangsa) # @) or thereexists a
nodev in sac for which a local trarsition of X is enabled
(Fv € s : X N Trang[[v)) # @). Moreover, from each
nodein the synchronizationgraphit is possible to reach
a set of terminal SCCseither containing a local trarsition
of X (X N Trang M) # ¥) or enalling a fusedtrarsition
A, (M1, 1, M2),v2) € Asg: M1 € [[M)). Thisensures
that it is possible from eachnode of the synchronization
graph eitherto locally reacha marking enalling a transition
of X orto atain anohernodein the synchronkzaion gaph.
If we applythislad cas severaltimes we will reachanode
in a terminal SCC of the synchronizaion gaph. From the
first condition, one of its successes enalbes a transition of
X.

< The proof is similar to that of =. |

SKETCH OF ALGORITHM. Here,we want to checkthe
livenes of agivenset X of transtions We mark the nodes
that satisfy the first part of the condition on the right-hard
sideof (iii). To dothatwe markthenodesntheSCC graphs
of moduleswhich enableor containalocal transtion of X,
aswell astheir ancegors. Thenwe mark the nodesin the
terminal SCCsof the synchronization graph that are built
from at lea$ onemarked SCC. We also markthe nodesof the
terminal SCCs of the synchronizaion gaphwhich enabk
a fused transition of X. Then, if there exists a termnal
SCC of thesynchronkaion graphwithoutany marked node,
the first part of the condition is not satisfied thus X is not
live. Otherwise, we have to checkthe secondpart of the
condition. For eachnodein the synchronizationgraphwe
takethelocal successos which are built from terminal SCCs
only. For eachof thewe checkthatit eithercontainsalocal
transition of X or labelsanarcof thesynchronkzaton gaph.
If onenodedoesnot satisfy this requrementX is nat live,
otherwiseitis.

ExamMPLE. We gply this agorithm to the exampke
preenied in Figures12-14,to checkthat X = T is not
live. We ould of course deducethis propery from the
fact that the system has deadmarkings, but this is just an
illustration of the algorithm to check liveress. In the SS
of moduksA and B we mark nodesA1l, A2 andB1. The
synchronzaion gaphconiinsonly oneSCC. NodeA1B1
is built from a marked local node(e.g.A1), so we markit.
Hence,the terminal SCC hasa marked node,and the first
part of the conditionis stidied. The terminal nodeswe
haveto checknow are A3B2, A4B2 and A5B3. NodeA3B2
does nat contain a tramsition of X nor labels an arc of the
synchronization gaph. Thus X is notlive. Note thatthe
sane problemariseswith A4B2, and that A5B3 satisfieghe
condtion.

8.4. Home properties

Here, we want to check whethera given set of reachable
markingsis a homespaceor not We first expresthehome
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propertesfor amarkingandthenfor a set of markings

PropPOSITION 8.4.

(i) Mgy € [Mo) isahomemarking <
[Vsac e Tem(SQCse) : v e sac: My € [[v) ]
AVv € Vsg: VM € [[v) :
(Vs € S : M{ e Tam(SCCy)) =
(Mpy € [[M)
V3(v, (M1, tf, M2), v2) € AsGg: M1 € [[M))].
(i) X < [Mo) isahomespaces
[Vsac € Taem(SQCsgq) : v € sac: X N [[v) # @]
AVv € Vsg: VM € [[v) :
(Vs € §: M{ € Tam(SCCy)) =
XNI[M)#0
VA(v, (M1, tf, M2), v2) € Asg: M1 € [[M))].

EXPLANATION. (i) A marking My is a homemarking
if it is always posible to reach this marking. To
prove this we must show that all termina SCCs of the
synchronzation gaphhave anodewhich contains My in
its local succesors;, and we mug show that if we cannot
enabhe ary transition fusion we must be ale to reachMpy
ugnginternaltranstionsonly.

(ii) Checking ahome spaceis similar to (i), wejust check
for anon-empy intereecioningeadof memberkip.

Proof. Theproofis smilar to the proof of livenes. (i) isa
particularcas of (ii) where X contains only onemarking.
Thus we will only prove (ii).

= Let X beahomespace.This meanghatit is possible,
from any reachablanarking,to reacha markingof X. Let
s beaterminal SCC of the synchrongzaion graph.Froma
nodev of sa, it is possible to reachary nodein [[v). Then,
from thehypotess, X N [[v) # @. Now, let v bea nodeof
the synchronizaion gaph,M beamarkingin [[v) whichis
inaterminal SCC of all modules theneither[[M) containsa
nodeof X oritisposibletoleare v in orderto reachanother
nodein the synchroniaion graph.

< The proof is similar to that of =. O

SKETCH OF ALGORITHM. Here we want to check
whethera given set X of markingsis a homespaceor not
We markthenodeghatsatidfy thefirst partof thecondition.
To do that we mark the nodesof X in the SCC graphs
of the modules aswell astheir ancegors. Thenwe look
at the nodesin the terminal SCCs of the synchronizaion
graphwhich are built only from marked SCCs. We mark
those which contain at lea$ onemarking of X in theirlocal
succesors. We have to do that becaus it might be the
ca® that the componenin one moduk is marked dueto
the restriction of a marking M1 in X andthe componentn
anoher module is marked dueto the redriction o another
marking M» in X. Then, if thereexistsa terminal SCC of
the synchronizaion gaphwithoutany marked node thefirst
part of the condtion is not satisfied thus X is nota home
space. Otherwig, we have to checkthe secondpart of the
condition. For eachnodein the synchronizationgraphwe
takethelocalsuccessos which are built from terminal SCCs
only. For eachof thes, we checkthatit eithercontainsa

marking o X or labels anarcof the synchronizaion gaph.
If onenodedoesotsatisfy thisrequrement X isnotahome
space,otherwiit is.

ExXAmMPLE. We gply this algorithm to the exampk
preened in Figures12—-14,to checkthat X1 = {A2B2}
isnotahomespaceandthatX2 = {A3B2, A4B2} is. Letus
startwith X1. Inthe SS of moduksA and B we marknodes
Al, A2 and B1, B2. The synchronzaion gaph contins
only oneSCC. NodeA1B1 is built from only marked local
nodesand hasA2B2 as a local succesor, so we mark it.
Hencetheterminal SCC hasamarkednodeandthefirst part
of the conditionis stidied. Theterminalnodeswe have to
checknow are A3B2, A4B2 and A5B3. NodeA3B2 hasno
outgoingarc. ThusX1 is not a homespace. Note thatthe
same problemariseswith A4B2 andthat A5B3 satisfies the
condtion.

Now let us checkthat X2 is a homespace. In the state
spacegraphsof modukesA and B we mark nodesAl, A2,
A3, A4 and B1, B2. The synchronzaion gaph contins
only oneSCC. NodeA1B1 is built only from marked local
nodes and has A3B2 asa local succesor, so we mark it.
Hence theterminal SCC hasamarkednodeandthefirst part
of the conditionis stidied. Theterminalnodeswe have to
checknow are A3B2, A4B2 and A5B3. Both A3B2, A4B2
arein X2. Node A5B3 labels anarc of the synchronizaion
graph.ThusX2 is ahomespace.

8.5. Boundedness

We explain hov boundednespropertes can be checled.
Herewe use the factthat we have no placefusion, i.e. that
all placesaremembersof onelocal module.

PropPoOsITION 8.5. For the boundednespropeties, we
have the following proof rules, valid for all s € S, andall
p € Py

() BesUppeBoundp) = maxu,ev, Ms(p);
(i) BesLowerBoundp) = miny,ev, Ms(p).

EXPLANATION. (i) Thebed upperboundfor aplacep in
P, canbefounddirecty in thelocalstate spaceof moduks.
(ii) Statesthe samereault for lower bounds

Proof. (i) The BesUppeBound for a given placeis local
to the module s of this place. As the state spacegraphof
moduk s containsexactly the reachablemarkingsof this
moduk, we just have to find the BesUppeBoundin SS.
(i) The agumertsin the proof of (i) alsoapply to (i). O

REMARKS. Boundsof placescan be generalizedin
several ways Boundscan be defined for a set of places
insteadof a single placeandeven a generafuncion canbe
appliedto the reachablanarkings Similar generalizations
could be specified for modularstate spaces Oneimportant
obenationisthatthee generaboundscanbechecledvery
efficiently if they only dependonasingle module, or if they
canbeexpresed as a postive linearcombination o bounds
of the modules
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SKETCH OF ALGORITHM. Theboundsof a single place
arelocalproperties Thusthey arevery eay to checkonthe
state spaceof the module cntainingplacep. Thisalowsus
to investigate the state spacegraphof onemoduk ingeadof
the statespaceof the entire system

ExampPLE. We gply this to the exampk presented in
Figures12-14.

If wewantto checkthatAl isboundedy one wetraverse
the nodesof module A, this meansthat it is necesary to
checkfive nodes Similarly, it is necesary to traverse three
nodesto checkthe boundof a placeof moduk B. In the
ordinary state spaceit is always necesary to travere the
ninenodes

Toillustratetheremarkontheextensonto generabounds
above, we wantto checkthe mutual exclusion betveenA5
and B2. For that purpo®, we use afuncton F so that
F(M) = M(A5) + M (B2). Theprojecionsof thisfuncton
on both modules are F4 and Fp such that: Fa(M4) =
M4 (AB) andFg(Mp) = Mp(B2).

Now we computethe maximaof thes functionsfor each
nodein SG Thereareonly two nodesA1B1 and A5B3. For
the first nodewe getmax(F4) = 0 and max(Fp) = 1, thus
max(F) = 1 for this node. For the secondnode,we obtain
max(F4) = 1 andmax(Fg) = 0, thusmax(F) = 1 for this
node. Thusthe maximum for funcion F in SGis one and
themutualexclusonbetweerplacesA5 andB2 is proved.

If weinvestigatethe complexity of the dgorithmsrequired
in order to decide the propertiesdescrikedin this sectian we
find thatal of them arelinearin the size of the modulr
statespace.In particular it shouldbe notedthata numberof
propertes of localmodukscanbe checledmoreefficiently
whenudng the modularstate spaceghanthe ordinary state
spaces

In the next section we gply the resuts presened up to
now to largermodesk.

9. LARGER EXAMPLES

There exists a large numberof indugrial applicaions of
Petri nets, in particular for high-level Petri nets such as
CP-rets. This is the reasm why parts of this sectin
discuss modek which are not PT-nets. As explainedin the
introducton, the reaults shown in the previoussecionscan
alo begeneralizedo CP-nets

9.1. An exanpleof a modular approachto place
invariants

We have tried to use the resuts from Section 6.3 to find
place flows of the hierarchical CP-net desribed in [11].
This is amodel describing a detailed design of the network
managemerdystemof the RcPAX X.25wideareanetvork.
It conssts of 30 moduks (page$, mary of thes having
up to seven indancesdue to the reue of pages The
modukr approachmadeit eay to find the placeinvariants
neededin the proof of propertes which were local to a
few pages The modubr approachalso madeit possible to
compoe placeflows of the individual pageingancesinto

placeflows of the total system. An exampk of a propert
which could be proved directly by meanf a placeinvariant
and which involved mary pageswas the presrvation of
paclets in the system. The handling of packageswas
relatively compkx and involved grouping packagesinto
larger logical units By adding extra placeswhich would
keep a log of the informaton passed on the nework, it
was possible to invedigate how mesagescould be log and
check that the information which was re-estabshed either
mathed the original mesage, or the originaing sender
would be notified. The work on modulr placeinvariants
was performedafter the desgn of the modelwascompkted,
ard na asan integratedpart of the modelling process. It
should also be noted that the work on the exampkes was
performedby hand. Tool supportwill benecesary if place
invariants hould be used as partof the derelopmentof large
degriptions A similar approachcould eadly be appied to
otherhierarchical CP-netmodek, e.g.the ISDN Basic Rate
Interfacedegribedin [12].

We have notinvestigatedhow a modular approactcanbe
usedfor large systens relatedby mears of trarsition fusion,
since we have no modek of this naure at our disposal.
From our own experimens with small systemsit seemsto
beposible to use amodular approacHor largeronestoo.

9.2. An exanple of a modular approachto occurr ence
graph analysis

To ted the ideasof modularstate spacesbeforedoing an
actualimplementationve haveinvedigatedalargerexample
usng an existingtool, Desgn/CPN [13].

Dedgn/CPN suppors anaysis of CP-nes by meansof
state spaces. The facilities of DesigV/CPN alowed us
to emulatethe algorithm described in Propogtion 7.1 by
manually calling appropriate routines. The lack of full tool
supportis therea®n for choosng an examplewhichis dill
of amoderaé size.

The am of this testing is twofold: first of all we want to
show how modularstatespacesvork for concretesxamples
secad we want to illustratethat the basic functionalities
of the Desgn/CPN tool can be used as a bass for an
implemenétion o a tool supporing analysis by meansof
modularstatespaces

The exampk we have cho®n is congructed to reflect
some of the important propertes that we expectto find in
indudrial applicaions thesystemconssts of threemodules
eachof them has an initialization phese, a ¢yclic main
phag andaterminaton pha®. The modukscommuncage
pairwise, and the ommuntaionsleadto nen behaviour of
the modules Thusthis exampk hasa structure similar to
that of Figure5, but usng moremodules

The ordinary state spacehas1728nodesand 7368arcs
Thesystem hasa single non-tivial SCC, which implies that
the system hasno deadmarkingsandevery reachablestate
is ahome state.

Themodular state spacehasfournodesand 54arcsin the
synchronizaion gaph, and three modukes with altogeter
18 nodesand 18arcs Thegeneraibn wasperformedusng
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thefacilitiesproposedin Desgn/CPN to specify breakpoints
in the cndruction. Thusit was possible not to fire fused

transtionsor transtions of anoher module, but only build

local parts of the graph. Moreover, the generaiton could

be coninuedafter deermining the nodesobtainedby firing

a sharedtranstion. If we inspect the SCC graphsof the

modukes we find that none of them hasa trivial terminal

component. Accordingto Propostion 8.2(iv) this implies

that the system has no dead state. To show that every

reachablestate is a home state, we use Propogdtion 8.4(i)

ard provethat the initial marking is a home state. First we

obsrve that al combinaionsof local terminal componerg

enabkatleas onefused trangtion,i.e.we cannotetrapped
in the combinaion o local componerg We conclude by

checkingthat the initial marking is includedin the nodes
locally reachablén theterminalSCC of thesynchronization
graph.

In the exampk we have asystem wherecommun¢aion
doesnot invalve dl moduks This meansthe number
of arcs in the synchronzaion gaph grows with the
number of states of the moduks which do not take
part in the communcaion. If we hande this ca® by
introducing a special symbol denotng that a moduk does
not paricipate in the communcaion the numberof arcs of
the synchronizaion graphwill decreasfrom 54to 10.

9.3. Practical use of modular analysis

The modular method to obtain place invariant is rather
satisfacory since it works both for place fusion and
trarsition fusion. Thusasupersetof the actwal flowsthat will
be relevant for the ertire system can be calcuated locally
to eachmodule. Thentheir combinationcanbe performed,
leadng to flows of the enire system. We have to note that
from the experienceof our groupsa modularly desgnednet
conssts of differentmodules with often several instances
of the samemodule. In that ca the calculus of the flow
would be the same for al instancesand obtaining it for
a single inganceis afficient. Moreover, moduksdo not
participatein al flows, and that can be seenvery easly
when performing the combhnations This is an advantage
comparedo the non-modularcalculus whereall the places
would be examined.Our methodcould be seenasamodule-
guidedheuridic for invariantscalculus

As concernghe modular occurrenceyraphs the practcal
use of themetodis notasobvious but we arecorvincedof
its relevancein practicalcags

In the worst case, where dl the trarsitions of the
moduks are shared, the synchronzaion gaph will be
isomorpht to the ordinary occurrencegraph, i.e. have the
same numberof nodesand arcs while the state spacesof
the modules will have no arcsand as mary disconnecéd
nodesastheredriction o theoccurrencgraphnodeso the
correpondngmoduk. Thus in theworst ca® therewill be
morenodesand asmary arcs

In the beg ca, wherethereis no synchronkzatonat all,
the synchronizaion gaphwill contain exactly onenode(the
initial one) and noarc. The individua state spacesof the

moduleswill betheredriction o theusual occurrencegraph
to eachmodule. They arealso the normaloccurrencegraph
obtainedfor the module. Thusthe synchronougroductof
the graphswill beavoided.

In arealappicaiontherewould often beafew transtions
to befused, andthuswe canexpectto be notvery far from
thebed cas.

Anotherparameteto consder thataffectsthe size of the
synchronizaion gaph, and therebyof the modular state
space, is the numberof modules In the large example
of Section 9.2, there were three modules and for each
communcaiononeof the modulesdid not paricipate. This
implies that the local behaiour of this moduk gpearsin
the initial markings of arcsin the synchronization graph,
althoughit is useless. As suggesedfor theexampk, sucha
stuation canbehandedin pracice by, for exampk, adding
aflag. Henceevenif thereis a large numberof modules
their localbehaiourwould notbeduplicaked.

10. CONCLUSION

In this paper we have presnied a framewnork for modular
anaysis of PT-nets. We have consderedsets of individual
PT-nets related by trarsition fusion and by gace fusion.
Transtion fuson canbeusedto modelsynchronousctions
while place fusion can be used to model shared data.
Modular PT-ness form a simple, but yet very genera)
framework to discuss analysis of structurednet modes.

We also introducedanalysis of modular PT-nets by means
of placeflows. It alows us to determine placeflows of the
modularPT-netfrom theindividualmodules only transtion
fusion needsto be checkedglobaly. This meansthatit is
not necesary to recompu¢ dl placeflows whena single
modukis modified. Previousworks (e.g.[10]) havefocused
onmodulescommunicatingia placesonly.

Finally, we have preented a way of generaing state
spacesof systemsexploiting their modularstructure. We
have shown how to congruct this for systems without
place fusion, and we have shown a trandation from a
modubr PT-net with place fusion into a modular PT-net
using trarsition fusion orly.

If the resuts of Definition 7.5 and Theorem 7.1 are used
to condructthe ordinary state space thenthe modularstate
spacemethodisonly afasterway of generaingtheordinary
statespace.Exceptfor degeneratedassit is fastersincethe
local behaiour is only developedonce,not for eachglobal
state dlowingthis partcularbehaiour.

Moreover, it is posible to check propertes using the
modukbr state spacedirecty, i.e. without unfolding to the
ordinary state space. When desgning algorithmsthereis
often a trade-of betweentime and spacecompleity. For
statespaceanalyss it is attractve to have aratherfast way
to decide propertes, but the state spaceexploson problem
malesit absolutely necesary to minimizememoryusage.

A similar approachwas presettedin [14], but it startsby
congructing the full state spaceof the modules i.e. states
thatmay notbereachablén thefull system,aswe pointout
in Secion 4 Severalreducton methodshave beenproposd
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to avoid the state spaceexploson problem, but they have
drawbacks they do notallow oneto checkall properies of
the system or leadto a congruction d thefull ordinary state
space(e.g.[15,16,9,17, 18, 19)).

Oneof the net stepsin the developmentof the modular
state space approachis to implementa first version of a
tool supportng it. In Secion 7, we showed an abgract
algorithm for the congruction of modular state spaces
and in Section 9, we agued that the capahlities of an
existing tool could be used to emulate this algorithm.
In Section 8, the discussion of each property included
an abgract algorithm which can be used directly in the
implementation of atool.

Having accestotool supportwill allow ustoted theideas
for indugria sizemodek. As desribedin Secion 9, mary
indugrial modek emto have astructure which makesthem
suited for this kind of anaysis, i.e.they condst of relaively
independenpars.

REFERENCES

[1] Battiston,E., De Cindio, F. andMauri, G. (1991)OBJ3A nets
systemsaclassof high-level netshaving objectsas domains.
In G. Rozerberg (ed), Advancesin Petri Nets 1988 (Lect
Notes Conmput ci., vol. 340), pp.20-43.Springer New York.
Alsoin JensenK. and Rozenbeg, G. (eds)(1991)Highdevel
Petri Nets: Theay and Application, pp. 189-212.Springer

[2] Christensen,S. and Damgaad Hansen,N. (1994) Coloured
Petri nets extendedwith channe$ for synchonouscommu-
nication. In R. Valette (ed), Application andTheory of Petri
Nets 1994 (Lect NotesComput. <ci., vol. 815), pp. 159-178.
Springer New York. Alsoavailable as: Daimi PB-390, 1SS\
01058517.

[3] Huber P, JensenK. andShapio, R. M. (1990)Hierarchiesin
colouredPetri nets.In G. Rozenbeg (ed), Advancesin Petri
Nets 1990(Lect NotesComput Sci., vol. 383), pp. 342—-416.
Springer New York. Alsoin JensenK. and Rozenbeg, G.
(eds) (1991) High-level Petri Nets: Theay and Application,
pp.215-243 Springet

[4] Jensen, K. (1992) Coloured Petri Nets. Basic Concepts,
Analysis Methods and Practical Use. Volume 1, Basic
Conceps. Monagraphs in Theoretical Computer Science
Springet

[5] JensenK. (1986)Coloured Petri nets. In G. Rozenbeg (ed.),
Advancesn Petri Nets 1986,Part | (Lect NotesComput. ci.,
vol. 254), pp. 248-299.Springer, New York.

[6] Reisig, W. (1991) Petri nets and algebmic specficaions.
Theoret. Comput. Sci., 80, 1-34. Also in Jensen,K. and
Rozenbeg, G. (eds)(1991)High-level Petri Nets: Theoryand
Application, pp. 137-170.Springet

[7] Christensen,S. and Petrucci, L. (1992) Towards a modular
analysisof colouredPetri nets.In K. Jenserfed), Application
and Theory of Petri Nets 1992 (Lect Notes Comput ci.,
616), pp. 113-133.Springer New York. Also available &s:
Daimi PB-391,ISSN 01058517.

[8] Christensen,S. and Petrucci, L. (1995) Modular state space
analysisof colouredPetri nets.In G. deMichelisandM. Diaz
(eds), Application andTheory of Petri Nets 1995(Lect Notes
Comput Sci., vol. 935), pp. 201-217 Springer New York.

[9] Jensen, K. (1994) Coloured Petri Nets. Basic Concepts,
Analysis Methods and Practical Use. Volume 2, Analysis
Methods Monagraphs in Theoretical Computer Scence
Springet

[10] Narahai, Y. and ViswanadhamN. (1985) On the invariants
of colouredPetri nets.In G. Goosand J. Hartmanis(eds),
Advancesin Petri Nets 1985 (Lect Notes Comput ci.,
vol. 222), pp. 330—-341.Springer New York.

[11] Christensen, S. and Jepsen, L. O. (1991) Modelling
and simulation of a network managementsystem using
hierarchical coloured Petri nets. In Erik Mosekilde (ed),
Proc. 1991 European SimulationMulticonfeence ISBN 0-
91180192-8, pp. 47-52.An extended version available as:
Daimi PB-349,ISIN 01058517.

[12] Huber P. and Pinci, V. O. (1991) A formal, execugble
speciftationof the ISDN basicrateinterface.Proc 12th Int.
Conf.on Application andTheory of Petri Nets, pp. 1-21.

[13] Design/CPN 3.0. META Software and Aarhus University,
(1996)Alsoavailable &s:
http://www.daimi.au.dk/desgnCPN.

[14] Notomi, M. and Murata, T. (1994) Hierarchicalreachability
graphof boundedPetri nets for concurent software anajsis.
IEEETrans.Sotware Eng., 20, 325-336.

[15] Dimitrovici, C., Hummet, U. and Petrucci, L. (1991)
Semartics, composition and et properties of algebraic high
level nets.In G. Rozerberg (ed), Advancesn Petri Nets 1991
(Lect Notes Comput. <ci., vol. 524), pp. 93-117.Springet
New York.

[16] Finkel, A. and Petrucci, L. (1991) Avoiding state explosion
by composition of minimal covering graphs. Proc. 3rd
Computer-Aided Verification Workshop(Lect NotesComput
Sci, vol. 575), pp. 169-180.Springer New York.

[17] Vadmari, A. (1990) Compositionalstate spacegeneration.
Proc. 11t Int. Conf.on Application andTheoryof Petri Nets,
pp.43-62.

[18] Vamaii, A. (1990) Stubbon sets for reduced state space
genestion. In Rozenbeg, G. (ed), Advancesin Petri Nets
1990 (Lect Notes Comput <ci., vol. 483) pp. 491-515.
Springer New York.

[19] Vernadat F. and Michel F. (1997) Covering step graph
preservingfailure semantics.In P. Azéma and G. Balbo
(eds), Application andTheory of Petri Nets 1997 (Lect Notes
Comput Sci., vol. 1248) pp. 253-270.Springer New York.

THE COMPUTER JOURNAL,

Vol. 43, No.3, 2000




