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1. INT RODUCTION
The use of high-level Petri net formalisms has made it
possible to create Petri net models of large systems. Even
thoughthe use of such modelsallows the modeller to create
compact representationsof data and action, the size of
models hasbeen increasing. A large model can make it
difficult to handlethecomplexity of themodelling aswell as
the analysisof the total model. It is well known that the use
of a modularapproachto modellinghasmany advantages:
it allows the modeller to consider different parts of the
model independently of oneanother. A modular approach
to analysis is also attractive: it oftendramaticallydecreases
the complexity of the analysis task.

Our aim in this paper is to show how two of the
most important analysis methods for Petri nets can be
performedin a modular way: place invariants and state
spaces. We illustrateour techniquesby meansof modular
Place/Transitions nets (modular PT-nets) in which the
individual modules(PT-nets) interactvia sharedplacesand
shared transitions. Sharing is often accomplished using
placefusion setsand transition fusion sets. Thesetwo sorts
of communication are present in a numberof models, e.g.
see[1, 2] for models using sharedtransitionsand[3, 4] for
modelsusing placefusion.

For placeinvariantsweshow thatit ispossibletoconstruct
invariantsof the total modularPT-netfrom invariantsof the
individualmodules.

For state spaces, also known as occurrencegraphsand
reachability graphs, we show that it is possible to decide
behavioural properties of the modular PT-net from state
spacesof the individual modulesplus a synchronization
graph,without unfolding to the ordinary state space. The
combined size of the occurrencegraphs of the modules
and synchronization graph is smaller than the size of the
ordinary, unstructuredstatespace. Hence,it is possible to
handlemorecomplex systems.

From our presentation it will beclearthat the techniques
also immediately apply to coloured Petri nets [4, 5] and
other forms of high-level Petri nets [1, 6]. This is very
important since most practical modelling and analysis are
performedby meansof high-level Petri nets. By presenting
the techniquesin termsof PT-nets we reducethe level of
technical details. Thegeneralization to high-level Petri nets
is ratherstraightforward.

The modular Petri net modeland the invariants compo-
sition were presented in [7], with coloured Petri nets as
modules. A first version of modular occurrencegraphswas
publishedin [8], but therewasa lack of tools to prove the
propertiesof thesystemdirectly on these. It turnedout that
this first version of modular occurrencegraphshad to be
revised in orderto doso.

This paper is structured as follows. Section 2 presents
anexamplewhich illustratesthebasic ideasbehindmodular
PT-nets,i.e.placefusion and transition fusion. In Sections3
and4 we show how placeinvariantsandstatespacescanbe
constructed in a modular way. Thenwe turn to the formal
definitions. Section 5 definesmodular PT-nets. Section 6
definesplaceinvariantsfor modularPT-nets, whileSection 7
defines modularstate spaces. In Section 8 we state their
proof rules, i.e. the rules by which behavioural properties
canbe decided. Section 9 presents other, larger, examples.
Finally, Section 10is theconclusion.

2. MODUL AR PT-NETS

In this section we present two different ways of modelling
a problem, one using place sharing, and the other using
transition sharing. The example described is a variation of
the resource allocation system from [4]. In the next two
sections the resourceallocation examplesare used to show
how analysis results of modules can be composed. This
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FIGURE 1. Exampleof theresourceallocationsystem.

meansthatpropertiesof a modularPT-netcanbeproved by
meansof formalanalysisof theindividualmodules.

The resourceallocationexamplehasa set of processes
which share a common pool of resources. There
are two different kinds of processes, called p-processes
and q-processes, and three different kinds of resources:
r-resources, s-resourcesand t-resources. Each process is
cyclicandduringtheindividualpartsof itscycle,theprocess
needsto have exclusive access to a varying amountof the
resources. The p-processes canbe in four differentstates,
while q-processes can be in five different states. In the
initial statethereare two p-processesand threeq-processes
plus oner-resource,threes-resourcesandtwo t-resources.
The PT-net is presented in Figure1. It is so small that we
would not decompose it in practice,but it canstill be used
to introducethebasic concepts of modular PT-nets. A first
possibility to modelthis system in a modularway consists
in modelling thep-processesandtheq-processesseparately.
This leadsto two modules, as shown in Figure2, eachof
them describing the interaction betweenprocesses of one
kindandtheresources. Themodulesarecomposedby fusion
of thetwo sharedresourceplaces, i.e.thetwo placeslabelled
with Sarefused andlikewisefor thetwo placeslabelledwith
T. In Figure2 theplacesto befused togetherhave thesame
name.Thesetsof placesto befused togetherarecalledplace
fusion sets. In a practical modelling tool we would need
moreelaboratedtechniquesto identify membersof a given
fusionset, but this isnotour purposehere.

You can view all placesof a place fusion set as being
representatives of the same underlyingplace. This means
that they share the same marking: when a token is added
to a placewhich belongsto a placefusion set, all placesof
the placefusion set will have the sametokenadded.When
a token is removed from a placewhich belongsto a place
fusion set, all placesof the place fusion set will have the
sametoken removed. In addition, the fusion of theresource
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FIGURE 2. Modular PT-net with two modules and two place
fusionsetswith two memberseach.

places, of the same kind, ensures that the modularPT-net
of Figure2 hasexactly the samebehaviour asthe PT-netof
Figure1. All placesin aplacefusionsethaveidentical initial
markings.

Another way of modelling the resourceallocation system
is to separate the cycle of p-processes, that of q-processes
andthe use of resources, as shown in Figure3. The three
modulesshare transitions, corresponding to synchronous
actions. Transitionshaving the samenamesbelong to the
same fusion set. This means that we have nine transition
fusion setswith two members each. Each transition of a
transition fusion set describes a part of a more complex
action and all parts must occur simultaneously, as one
indivisible action. We say that a transition fusion set is
enabled if all the transitions in the fusion set are enabled.
The changeproducedby theoccurrenceof atransition fusion
set is thesum of changesproducedby all the transitionsof
the fusion set.

A transition can describe an action which is a basic
part of a numberof independentactions. This meansthat
a transition can be a member of several transition fusion
sets. Since the behaviour, in the resourcesmodule, of the
three transitions T3p, T4p and T4q is identical, we could
include only one of the threetransitions and have it as a
member of threetransition fusion sets. If our main concern
was guidelinesfor modellingwe would have donethis, but
Figure3 correspondsto a straightforwardseparation of the
original PT-net.

The modular PT-net of Figure 3 has exactly the same
behaviour as the PT-net in Figure 1. Each transition
fusion set of themodularPT-netcorrespondsto exactly one
transition of thePT-net.

We have presented two examples of modular PT-nets
having the samebehaviour. The first onewas an example
of modules related by placefusion while the secondused
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FIGURE 3. ModularPT-netwith threemodulesandninetransition
fusionsetswith two memberseach.

transition fusion. In general, both placefusion and transition
fusion can coexist within a modular PT-net. In this paper
we do not consider the problem of identifying place and
transition fusionssets. We supposethatthemodelisalready
designedin a modular way. However, oneshould keepin
mind that the choiceof these sets has an influenceon the
performanceof modularanalysis.

In Section 5 we give formal definitions of a modular
PT-net andof its equivalent PT-net. In the next section we
presentamodularapproachof placeinvariantscalculus.

3. PLACE INVARIANT S OF MODULAR PT-NETS

Al l analysis methodsextract information about the prop-
erties of a PT-net in a condensed way. Place invariants
express invariant relationson the markingsof places. A
weight(positiveor negativeinteger)is attachedto theplaces.
It specifies the information we want to extract from the
markingsof a place. A weight function (vectorof weights
associatedwith places) determinesa placeinvariant if the
sum of the weightedmarkingsof placesis constant for all
reachablemarkings. It is often the case that some place
invariant ignoresthemarkingof someplaces. This is done
by assigning weight zero to the placeswhich should be
ignored.

3.1. Placeinvariantsof thePT-net

For the example of Figure 1 we find several place
invariants. One of the place invariants shows the cycle of
the q-processes: the weight of placesAq, Bq, Cq, Dq,
and Eq is one andthe weight of all other placesis zero.
We can show that the sum of the weighted markings is
constant for all reachablemarkings. This meansthat the
set of q-processes doesnot change,only the location of the
q-processeschangesduring their cycle. Insteadof checking

all reachablemarkings, we canalso checkthattheweighted
sum of tokens consumed by eachtransition is equal to the
weightedsum of tokensproduced. We say that a set of
weights having this property definesa placeflow. It canbe
provedthattheplaceflow property is sufficient to ensurethat
theweightfunctiondeterminesa placeinvariant.

In our notationof weight functions, placeshaving a zero
weight are simply left out and we use the namesof the
placesto refer to their markings, e.g. we write Bp instead
of M(Bp). For theexample in Figure1 wehavefive linearly
independentplaceinvariants:

W1: Bp + Cp + Dp + Ep = 2,
W2: Aq + Bq + Cq + Dq + Eq = 3,
W3: R + Bq + Cq = 1,
W4: S + Bq

+2 × (Cp + Dp + Ep + Cq + Dq + Eq) = 3,
W5: T + Dp + Eq + 2 × Ep = 2.

All of theaboveplaceinvariantscanbeinterpretedin terms
of the PT-net: W1 shows thatall thep-processes are in one
of thestatesrepresentedby Bp, Cp,Dp or Ep;andW3 shows
thatther-resourcesareeither free,i.e. in stateR, or occupied
by a q-process in state Bq or Cq. We canconstruct other
place invariants, but they can also be expressed as linear
combinations of the five invariants W1 to W5. Using the
five placeinvariantsabove, it is straightforwardto provethe
deadlock-freenessand similar behavioural propertiesof the
system.

3.2. Placeinvariants of the modular PT-net with place
shar ing

In Figure2, we have two modules, onefor thep-processes
and onefor the q-processes. The two modulesare related
through two placefusion sets, i.e. throughthe s-resources
and t-resources. For the p-processes, we have threeplace
invariants:

Wp1: Bp + Cp + Dp + Ep = 2,
Wp2: S + 2 × (Cp + Dp + Ep) = 3,
Wp3: T + Dp + 2 × Ep = 2.

For theq-processes, wehave four placeinvariants:

Wq1: Aq + Bq + Cq + Dq + Eq = 3,
Wq2: R + Bq + Cq = 1,
Wq3: S + Bq + 2 × (Cq + Dq + Eq) = 3,
Wq4: T + Eq = 2.

We ask the question: is it possible to construct place
invariants of the total system from the placeinvariants of
the individualmodules?

The place invariantsWp1, Wq1 and Wq2 do not include
any placeswhich are shared, so Wp1, Wq1 and Wq2 are
placeinvariantsof the total system,independentof theother
modules in the modular PT-net. The rest of the place
invariants have non-zeroweights for some of the shared
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places. In this situation we can only combine the place
invariants if the weight functionsassign the sameweight to
thesharedplaces. ThismeansthatwecancombineWp2 and
Wq3, because they both have weight onefor S andweight
zero for T. Analogously, we can combine Wp3 and Wq4
because they both have weight one for T andweight zero
for S. From the placeinvariants of the individual modules
wededucethefollowingplaceinvariantsof themodularPT-
net:

Wp1: Bp + Cp + Dp + Ep = 2
Wq1: Aq + Bq + Cq + Dq + Eq = 3
Wq2: R + Bq + Cq = 1
Wp2 + Wq3: 2 × (Cp + Dp + Ep + Cq + Dq + Eq)

+S + Bq = 3
Wp3 + Wq4: T + Dp + Eq + 2 × Ep = 2.

These five placeinvariants correspondto linearly indepen-
dentplaceinvariantsof the equivalent PT-net.

From the example above we see that a set of place
invariants, one for eachmodule, can be combinedinto a
place invariant of the full system if they have the same
weightsfor placeswhich are shared.This is not true in the
generalcase,but if we restrict ourselvesto combiningplace
flows it is a valid statement. This will be detailed in the
formal definition of invariants, seeSection 6. If the setsof
weightsdonotmatch, in thesensedescribedabove, wemay
sometimesobtain a matching by using a linearcombination
of theweights in theinvariants.

3.3. Placeinvariantsof themodular PT-net with
transition sharing

For theexample shown in Figure3 we have threemodules,
one for the p-processes, one for the q-processes and one
for the resources. The three modules are related through
transition fusion for each pair composed of a transition
in the p-processes or q-processes and the corresponding
transition in the resourcemodule. If we view the modules
independently of their context we can find a set of place
invariants of the individual modules. For the p-processes,
we haveoneplaceinvariant:

Wp : Bp + Cp + Dp + Ep = 2,

for theq-processes, wehaveoneplaceinvariant:

Wq : Aq + Bq + Cq + Dq + Eq = 3,

and the resourcesharing module has only the trivial null
place invariant. We ask: is it possible to construct place
invariants of the total system from the placeinvariants of
themodules?

In this case we have no sharedplacesand this means
that Wp and Wq are both invariants of the entire system.
However, it should be obviousthat we cannotconstruct all
the placeinvariants from those of the individual modules.
The problem is that we demandtoo much from the weight
functions. We demand that each transition leaves the

p1

t t

p2

G2G1

FIGURE 4. Two modulessharinga transition.

invariantunchanged,while it would be sufficient to require
that eachtransition fusion set does this. In order to relax
the conditionsof the weight functionsfor the modules, we
introduce the notion of flow preservation. We say that
a transition is flow preserving if and only if it preserves
the invariant. Then we are able to check that the non-
fused transitions are flow preserving for each module;
and, also, that transition fusion sets are flow preserving
acrossmodules, i.e.thatthetransitions together preservethe
invariant.

The above examples allowed us to show the intuition
behindmodularPT-netsandtheir analysisby meansof place
invariants. In Section 6 we formalize the notion of place
invariantsandplaceflows for modularPT-nets.

In the next section we present a modular approachto
statespacesconstruction,which is thesecondmainanalysis
methodfor PT-nets.

4. MODUL AR STATE SPACES

In this section we introducethebasic ideasof modularstate
spaces. The main reason for working with modularstate
spacesis to alleviatethestatespaceexplosion problem.The
idea is to generatea state spacefor eachmoduleand the
information necessary to capturethe interactionbetween
modules, and in this way avoid the construction of the full
statespace. It is importantthat modularstatespacesallow
usto provePT-netpropertiesdirectly, i.e.withoutunfolding
to the equivalent ordinary state space. Here, we will first
consider modularPT-netswith fused transitions only. For
that purpose we use another example which contains non-
sharedtransitions, thusbeingmore relevant. Thenwe will
show how theproblemcanbesolved for a modular PT-net
with placefusiononly.

4.1. Modular statespaceswith transitions shari ng

In this section, we concentrateon PT-nets composed by
transition fusion only. As wewill seelater, it is theoretically
easy to generatethe statespacesof the individual modules
and to compose these into the state space of the entire
system.However, practicaluseisharder:amodulecanhave
aninfinite statespacewhile the full statespaceis finite, e.g.
for themodules ofFigure4 composedby the fusion of the
two grey transitions t.

To avoid handlinginfinite statespaces, we would like to
obtainan efficient construction of statespacesof modules,
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FIGURE 5. An exampleof two communicatingprocesses.

FIGURE 6. After the first step of the modular state space
generation.

knowing that their behaviour is restricted by the behaviour
of theother modules. Only the reachablepartsof the state
spaceshould be constructed. Hence,ourmethodisabalance
between full reachability graph generation and on-the-fly
verification.

A modular state spaceis composed of one local state
space per module and a synchronization graph which
capturesthe communications. A local state space only
contains local information, i.e. the sub-graphsrepresenting
all reachablemarkings obtainedby occurrencesof local
transitions only. The markings are restricted to the
placesof the module. The synchronizationgraphprovides
informationon thestatespaceof theoverall systemandthe
occurrencesof fused transitions.

Theconstruction of amodularstatespaceis similar to that
of thestandardstatespaceexceptthat:

• the construction of local state spaces using only
transitions local to modules can be performed in
parallel;

• the construction of a modular state spacerequiresone
to keeptrackof theoccurrenceof sharedtransitionsand
to synchronizethe modulesusing this information.

Weusetheexampleof Figure5 to introducethealgorithm
for constructingmodularstatespaces. This isatoy example,
but it models a behaviour which resemblesthat of a typical
real system asconcernsthe ratio betweenlocal andshared

FIGURE 7. After the secondstep of the modular state space
generation.

FIGURE 8. After the third step of the modular state space
generation.

actions. Thesystemconsistsof two modules, called module
A and moduleB, eachhaving a behaviour consisting of a
start-up phase, a main loop anda termination phase. The
main loopcanperformlocal actionsandit cansynchronize
with the other module, the synchronization is achieved by a
transition fusion setconsisting of thetwo transitionslabelled
Sync.

In the rest of this section we construct thecorresponding
modularstate space. In Figures6–9, the sets of nodesin
dashed boxesare strongly connected components (SCCs),
e.g.in Figure6, A2 = {a2, a3}. We concludethe example
with a comparisonto theordinarystatespace.

In thefirst step, weconstructgraphscontainingall locally
reachablestates of each module. In the example the
inscription a1 specifiesthat the place a1 is marked by a
token and all other placesof moduleA areunmarked. We
also construct the first nodeof the synchronization graph,
correspondingto the initial state. It is labelledby theset of
SCCs of the modulesto which the restriction of the initial
statebelongs; but it also representsthe set of all reachable
markings from the initial marking by occurrencesof local
transitions only. The result of this first step is shown in
Figure6.

The result of the secondstep is presented in Figure 7.
From the state spacesof the moduleswe find reachable
stateswhich enable fused transitions. The combination of
thestatesa2 and b2enablesthefusedtransitionSyncleading
to new states a4 and b4. To the state spaceof module A
we needto adda4, andall markingsreachablefrom a4 by
occurrencesof local transitions; and a similar construction
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FIGURE 9. The ordinarystatespace.

is applied to module B and state b4. Note that the state
spacesof the modules, obtainedby this construction, are
not necessarily connected graphs. Finally, we add the arc
correspondingto Syncto thesynchronization graph.Thearc
is labelled by the startmarking, the occurring transition and
themarkingobtained.It connectstwo nodeswhichrepresent
theSCCsof the two involvedmarkings.

The third step (Figure 8) is similar to the secondstep.
We inspect the state space of the local modules starting
from A3 and B3 to find reachablestateswhichenablefused
transitions, and sincea2 and b2are locally reachablefrom
A3 andB3, we have to addthe arc corresponding to Sync.
As no new nodescanbeaddedto the local statespaces, we
know thatthey arenow complete.

If we comparethe ordinary state space of the whole
system,illustratedin Figure9, with themodularstatespace,
we observe that the modular state spaceis smaller thanthe
ordinaryone.Themodularstate spacecontainsa total of 12
nodesand 12arcs, while the ordinary state spacecontains
21nodesand 37arcs. Hence,thememorynecessary to store
thestatespaceis smaller. In Section 9.3, wediscuss thesize
of themodularstate spacein general.

To construct a modular state space, it is necessary to
calculate the SCCs. This is not the casewhen building an
ordinarystatespace.However theSCCsareneededin order
to determinenet properties, thuscomputing themon-the-fly
whenbuildingthemodularstatespaceisnotawasteof time.

4.2. Modular statespaces—placessharing

The composition of state space graphs is more complex
when sharing placesrather than transitions. This can be
seenin the example of Figure10, wherethegrey placep2,
initially empty, is the sharedone. In this case,it is ensured

p1 p2

t1

p5

t4

G2

G1

t2

p2

FIGURE 10. Two moduleseachwith finite graphs,but a modular
PT-netwith infinite graph.
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FIGURE 11. A modularPT-netwith transitionfusiononly.

that if at least oneof the moduleshasan infinite state space
graph,the modular PT-net also hasan infinite state space
graph. However, it is impossible to tell anything about
the state spacegraphof the modular PT-net if those of the
modulesarefinite. This is dueto the factthat a modulecan
provide enoughtokens in a placefusion set to allow some
transitions, in anothermodule, to beenabled; andthenthis
secondmodule canprovide somemore tokensfor the first
one andso on.

From a practical point of view it is important to be able
to handlesystemswhich useplacefusion,sincethekindsof
Petrinetsused in practicalapplicationsoftenrely on this.

We define atransformation from a modular PT-netusing
placefusiontoamodularPT-netusingonly transition fusion.
Informally this is doneby collectingeachplacefusion set
in a new moduleand then splitting the input and output
transitions, in order to obtaina transition fusion set for each
inputandoutputtransition of theplacefusionset. Figure11
shows how the system of Figure 10 canbe translatedinto
a behaviourally equivalent modularPT-net using transition
fusiononly.

The formal definition of the translation and the proof that
the behaviour is preserved are not includedin this paper.
They containanumber of technicaldetailswhich areof little
importancehere.

In this section we have presented a construction of
modularstatespaces. It is quite compactcomparedto the
ordinary state space. It has independentpartswhich can
be computed in parallel. In sections7 and 8 we formalize
the concepts presented here, and show the details of how
to prove PT-net properties directly from the modular state
space,i.e. withoutunfoldingto theequivalentordinarystate
space.
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5. FORMAL DEFINIT ION OF MODUL AR PT-NETS

We will now give the definition of a modularPT-net. We
start by giving thedefinitionof PT-nets, and introducingthe
notationsusedin the rest of thepaper. We use thefollowing
definition of PT-nets.

DEFINIT ION 5.1. A PT-net is a tuple PN = (P, T ,

W,M0), satisfying:

(i) P is a finite setof places;
(ii) T is a finite setof transitions. Thesets ofnetelements

are disjoint: T ∩ P = ∅;
(iii) W is thearc weight functionmapping from(P × T ) ∪

(T × P) into N;
(iv) M0 is the initial marking. M0 is a function mapping

fromP into N.

Now, wedefinemarkingsandstepsfor PT-nets.

DEFINIT ION 5.2.A marking is a function M mapping
from P into N while a step is a non-empty andfinite multi-
set over T . Thesets of all markingsandstepsare denoted
byM andY, respectively.

We denote thesetof multi-setsoverasetA by AMS.
Theenablingandoccurrencerules ofaPT-netcannow be

defined.

DEFINIT ION 5.3.A step Y is enabledin a marking M,
denoted byM[Y 〉, iff the followingproperty is satisfied:

∀p ∈ P :
∑

t∈Y

W(p, t) ≤ M(p).

When a step Y is enabled in a marking M1 it may occur,
changing the marking M1 to another marking M2, defined
by

∀p ∈ P : M2(p) =

(

M1(p)−
∑

t∈Y

W(p, t)

)

+
∑

t∈Y

W(t, p).

Note the summations aboveareovera multi-set Y . This
meansthatW(p, t) andW(t, p) appearasmany timesast

appearsin Y .
We say that M2 is directly reachablefrom M1 by the

occurrenceof stepY , which is denotedby: M1[Y 〉M2. [M〉

denotestheset of markingsreachablefrom M.
Now we are ready to define modular nets. Some

motivation and explanation of the individual parts of
the definition are given immediately below it, and it is
recommendedto readbothin parallel.

DEFINIT ION 5.4. A modular PT-net is a triple MN =

(S, PF, TF), satisfying the following requirements:

(i) S is a finite setof modulessuch that:

(a) each module, s ∈ S, isa PT-net:
s = (Ps , Ts,Ws ,M0s );

(b) the sets of nodes corresponding to different
modulesare pair-wisedisjoint1: ∀s1, s2 ∈ S :

[s1 6= s2 ⇒ (Ps1 ∪ Ts1) ∩ (Ps2 ∪ Ts2) = ∅].
1For the sake of simplicity, we use, in the examples, the same names

for objects(placesor transitions) belongingto differentmodules, but which
have to befused together.

(ii) PF ⊆ 2P is a finite setof placefusionsets such that:

(a) P =
⋃

s∈S Ps is the set of all places of all
modules;

(b) for nodesx ∈ P ∪ T we use S(x) to denote the
module to which x belongs. For all p in P we
defineM0(p) = M0S(p)

(p);
(c) members of a place fusion set have identical

initial markings:

∀pf ∈ PF : ∀p1, p2 ∈ pf : [M0(p1) = M0(p2)].

(iii) TF ⊆ 2T is a finite setof transition fusion setswhere:
T =

⋃

s∈S Ts is thesetof all transitionsof all modules.

EXPLANATION. (i) A modularPT-netcontainsafiniteset
of modules, eachof thembeinga PT-net. These modules
must havedisjoint setsof nodes.

(ii) Eachplacefusion set is a set of placesto be fused
together. 2P denotesthe set of all subsets of places. We
demandthat all elementsof aplacefusionset havethesame
initial marking. In the following we will denoteby EP ⊆ P

(‘externalplaces’) the set of all placeswhich are members
of aplacefusionset and byIP = P \ EP (‘internalplaces’),
all non-fused places. Notethatwe do not demandtheplace
fusionsets to bedisjoint.

(iii) Eachtransition fusion set is a set of transitions tobe
fused together. In thefollowing,we will denoteby ET ⊆ T

(‘external transitions’) the set of all transitions which are
members of a transition fusion set and by IT = T \ ET
(‘i nternaltransitions’), all non-fused transitions. Note that
wedo not demandthe transition fusion setsto bedisjoint.

In thefollowingdefinition,we introduceplacegroupsand
transition groups.

DEFINIT ION 5.5.A place group pg ⊆ P is an
equivalence class of the smallest equivalence relation
containingall pairs (p1, p2) ∈ P × P where:

∃pf ∈ PF : p1, p2 ∈ pf.

A transition group tg ⊆ T consists of either a single non-
fusedtransition t ∈ IT or all the members of a transition
fusion set tf ∈ TF.

The set of placegroupsis denoted byPG and the set of
transition groupsbyTG.

Place groups and transition groups are defined very
differently since a placecan be a memberof at most one
placegroup while a transition canbe amember of several
transition groups. Thereasonis thataplacegrouprepresents
a sharedresource. A transition canbe amember of several
transition groupsas it can be synchronizedwith different
transitions (sub-actionof several more complex actions).
Placegroupsform a partition of the set of places. This
meansthat eachplacep is a memberof exactly oneplace
groupwhich will bedenoted[p]. Note thatall placegroups
and transition groups have at least one element. From
Definitions5.4(ii) and5.5,weknow thatall placesof aplace
groupwill have the same initial markings, this allows us to
defineM0([p]) = M0(p) withoutambiguity.
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Next, we extend the arc weight function W to place
groupsandtransition groups:
∀(g1, g2) ∈ (PG× TG) ∪ (TG× PG) :

W(g1, g2) =
∑

x∈g1,y∈g2

W(x, y).

Now, we extend the definitions of markings and steps to
modularPT-nets.

DEFINIT ION 5.6.A marking is a function M : PG→ N

while a step is a non-empty and finite multi-set over TG.
The sets of all markingsandstepsare denoted byM andY,
respectively.

Therestriction of amarkingM toamodules isdenotedby
Ms . Theenablingandoccurrencerules ofa modularPT-net
cannow be expressed.

DEFINIT ION 5.7.A step Y is enabledin a marking M,
denoted byM[Y 〉, iff the followingproperty is satisfied:

∀pg ∈ PG :
∑

tg∈Y

W(pg, tg) ≤ M(pg).

When a step Y is enabled in a marking M1 it may occur,
changing the marking M1 to another marking M2, defined
by:
∀pg ∈ PG :

M2(pg) = (M1(pg) −
∑

tg∈Y

W(pg, tg)) +
∑

tg∈Y

W(tg, pg).

We say that M2 is directly reachablefrom M1 by the
occurrenceof stepY , which we also denote by: M1[Y 〉M2.
[M〉 denotestheset of markingsreachablefrom M, and we
generalize this notation to cover the following caseswhich
areall useful in relation to modularPT-nets.

(i) M2 is reachablefrom M1 by the occurrenceof an
internal transition t : M1[[t〉M2, and [[M〉 denotes
the set of all markingsreachablefrom M by internal
transitionsonly or no transition (i.e.M ∈ [[M〉).

(ii) M2 is reachablefrom M1 by theoccurrenceof a fused
transition tf : M1[tf 〉〉M2, and [M〉〉 denotesthe set of
all markingsreachablefrom M by the occurrenceof
a fused transition. This implies that in general M 6∈

[M〉〉.
(iii) M2 is reachablefrom M1 by a sequenceof internal

transitions followed by a fused transition σ =

t1 . . . tntf : M1[[σ 〉〉M2, and [[M〉〉 denotes the set
of all markings reachableby a sequenceof internal
transitions (or none) followed by a fused transition,
i.e. the closure of M[[〉〉. As case n = 0 is allowed,
[M〉〉 ⊆ [[M〉〉.

For a local marking Ms in a module s, [Ms〉s denotes the
set of markingsreachablefrom Ms by occurrencesof local
transitionsof modules only.

Next, weshow thateachmodularPT-nethasabehavioural
equivalent PT-net. Some motivation and explanation of
individual partsof the definition of the equivalent PT-net is

given immediatelybelow it, andit is recommendedto read
both in parallel. All namesthat refer to the equivalent PT-
net are marked by an asterisk, e.g. M0 refersto the initial
marking of themodularPT-netandM∗

0 to theinitial marking
of itsequivalent PT-net.

DEFINIT ION 5.8. Let a modular PT-net MN = (S,

PF, TF) be given. Thenwe definethe equivalent PT-net to
bePN∗ = (P ∗, T ∗,W∗,M∗

0) where:

(i) P ∗ = PG.
(ii) T ∗ = TG.
(iii) ∀(x∗, y∗) ∈ (P ∗ × T ∗) ∪ (T ∗ × P ∗) :

W∗(x∗, y∗) = W(x∗, y∗).

(iv) ∀p∗ ∈ P ∗ : M∗
0(p∗) = M0(p

∗).

EXPLANATION. (i) Theequivalent PT-net hasoneplace
for eachplacegroup.

(ii) The equivalent PT-net has one transition for each
transition group.

(iii) The weight associated with a pair (place group,
transition group)is unchanged.

(iv) From Definitions 5.4(ii) and 5.5, we know that all
placesof a placegroup have the sameinitial marking and
weknow thatall placegroupshaveat least onemember. The
initial marking of a placegroupis determinedby one of the
membersof theplacegroup.

The following theoremshows that a modular PT-netand
itsequivalent PT-nethavethe samebehaviour.

PROPOSITION 5.1. Let MN be a modular PT-netandlet
PN∗ be the equivalent PT-net. Thenwe havethe following
properties:

1. M = M
∗ ∧ M0 = M∗

0 .
2. Y = Y

∗.
3. ∀M1,M2 ∈ M,∀Y ∈ Y :

M1[Y 〉MNM2 ⇔ M1[Y 〉PN∗M2.

Proof. (i) M = M
∗, follows from Definitions 5.2, 5.6

and 5.8(i). From Definition 5.8(iv), the two initial markings
areidentical. Thus, M0 = M∗

0 .
(ii) From Definition 5.2, Y

∗ consistsof all non-empty and
finite multi-sets in T ∗

MS. From Definition 5.6, Y consists
of all non-emptyand finite multi-sets in TGMS. From
Definition 5.8(ii), T ∗ = TG. ThusY = Y

∗.
(iii) First,we provethat the enabling rulescoincide, i.e.

M1[Y 〉MN ⇔ M1[Y 〉PN∗ .

From Definition 5.3 it followsthatM1[Y 〉PN∗ iff:

∀p∗ ∈ P ∗ :
∑

t∗∈Y

W∗(p∗, t∗) ≤ M1(p
∗),

which by Definition 5.8(i) and(ii) is equivalent to:

∀pg ∈ PG :
∑

tg∈Y

W∗(pg, tg) ≤ M1(pg).
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which by Definition 5.8(iii) is equivalent to:

∀pg ∈ PG :
∑

tg∈Y

W(pg, tg) ≤ M1(pg).

From Definition 5.7, it follows that this is exactly the
enabling condition for M1[Y 〉MN.

Next wemust provethattheoccurrencerulescoincide,i.e.

M1[Y 〉MNM2 ⇔ M1[Y 〉PN∗M2.

This part of the proof can be structured like the part
regardingenablingrulesandwewill not includeit.

In Section 2, we claimed that the presented modular
PT-nets and the PT-net, given as examples, wereequivalent
accordingto the behaviour. This can be checked using
Definition5.8 andProposition 5.1.

6. PLACE INVARIANT ANALYSIS

In this section weshow how the conceptsof placeinvariants
andplaceflows canbeextendedto modular PT-nets. Place
invariantscanbeusedin theproofsof propertiesof aPT-net,
e.g. to show that thereis no deadmarking. In this paper we
focuson the conceptsof placeinvariantsand placeflows,
more thanon the useof invariants in the proof of properties
of PT-nets.

6.1. Placeflowsand invari ants of PT-nets

In this subsectionwe recall the conceptsof placeflow and
placeinvariant.

DEFINIT ION 6.1. For a PT-netPN = (P, T ,W,M0), a
weight function is a function F mappingfromP into Z:

(i) F is a placeflow iff:

∀t ∈ T :
∑

p∈P

F(p) ∗ W(p, t) =
∑

p∈P

F(p) ∗ W(t, p);

(ii) F determinesa placeinvariant iff:

∀M ∈ [M0〉 :
∑

p∈P

F(p) ∗ M(p) =
∑

p∈P

F(p) ∗ M0(p).

A weight function F mapseachplacep to an integer
F(p).

(i) Wesaythatatransition t isflowpreservingwith respect
to a weight function F if f t possesses the property
describedin (i). For a subset of transitionsT ′′ ⊆ T ,
we saythatF is T ′′-flow preserving if f all t ∈ T ′′ are
flow preserving, with respectto F .

(ii) The intuition of a transition t being flow preserving is
that t removes—whentheweightsof F aretakeninto
account—thesamenumberof tokensas it adds.

For a given marking M, we calculatethe weightedsum
asthe sum of the weights multiplied by the marking of the
individual places. The weight function F determines an

invariant iff all reachablemarkingshave thesameweighted
sum.

Note that any linearcombination of two placeflows is a
placeflow, i.e. if F1 andF2 areplaceflows, and z1, z2 ∈ Z

thenz1 ∗ F1 + z2 ∗ F2 is a placeflow. Theweight function
which assignszero weightsto all placesis always a place
flow. We say that a placep is included in F if F(p) 6= 0.
Themain reason for introducing placeflows is thedifficulty
checkingplaceinvariantson thetotalset of reachablestates.
Placeflows canbe checked on the structureof the PT-net.
In practicewe do not needto sum throughall the places,
it is sufficient to sum throughthe input placesof t for the
first sum, andthroughtheoutputplacesof t for thesecond
sum.

Thefollowing theoremdescribestherelationship between
placeinvariantsandplaceflows.

THEOREM 6.1.Let a PT-net with no dead transition be
givenandlet F bea weight function.

F is a placeflow ⇔ F determinesa placeinvariant.

Proof. The theorem is part of the classical theory for
invariantanalysis (see e.g. [9]).

⇐ is satisfiedfor all PT-netswith no deadtransition.
⇒ is satisfiedfor all PT-nets.

6.2. Placeinvariantsof modular PT-nets

In this section we show how the formal definitions of place
invariantsandplaceflowscanbegiven for modularPT-nets.
This subsection is structured like the previous one andit
shouldbe easy to comparethedefinitionsgiven for PT-nets
andmodularPT-nets.

DEFINIT ION 6.2. For a modular PT-net MN = (S,

PF, TF), a weight function is a function F mapping from
PGinto Z.

(i) F is a placeflow iff:
∀tg ∈ TG :

∑

pg∈PG

F(pg) ∗ W(pg, tg)

=
∑

pg∈PG

F(pg) ∗ W(tg, pg).

(ii) F determinesa placeinvariant iff:
∀M ∈ [M0〉 :

∑

pg∈PG

F(pg) ∗ M(pg) =
∑

pg∈PG

F(pg) ∗ M0(pg).

A weightfunctionF of amodularPT-netmapseachplace
grouppg into aninteger F(pg).

(i) Wesaythatatransition grouptg isflowpreservingwith
respect to a weight function F if f tg possesses theproperty
described in Definition 6.2(i). For a subset of transitions
groupsTG′′ ⊆ TG, we say that F is TG′′-flow preserving
if f all tg ∈ TG′′ areflow preserving,with respectto F .
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The intuition of a transition group tg being flow
preserving is that tg removes—whenthe weightsof F are
taken into account—thesamenumberof tokensas it adds.

(ii) For a given marking M we calculatethe weighted
sum as the sum of the weights multiplied by the marking
of the individual place groups. The weight function F

determinesan invariant iff all reachablemarkingshave the
same weighted sum.

THEOREM 6.2.Let a modular PT-net with no dead
transition begivenandlet F bea weight function.

F is a placeflow ⇔ F determinesa placeinvariant.

Proof. Thetheoremcanbeproved similarly to Theorem6.1,
we just needto consider placegroupsandtransition groups
insteadof placesand transitions.

⇒ is satisfied for all modularPT-nets.
⇐ is satisfied for all modular PT-nets with no dead

transition.

2

6.3. How to find placeinvariantsof modular PT-nets

In the examples presented in sections 2 and 3, we have
shown some compositions of place invariants and place
flows, using either place fusion only or transition fusion
only.

We use the term global weight function for a weight
function of the entire modular PT-net, while we use the
term local weight function for a weight function of a single
module. In thepresent section,westate andprove anumber
of theoremsspecifyinghow localplaceflowsandlocalplace
invariantsarerelatedto globalplaceflows andglobal place
invariants.

DEFINIT ION 6.3. Let MN = (S, PF, TF) be a modular
PT-net.

(i) A set of local weight functions{Fs}s∈S of the modules
is consistent iff they assign the same weight to all
membersof each placegroup:

∀pg ∈ PG : ∀p1, p2 ∈ pg : FS(p1)(p1) = FS(p2)(p2).

(ii) A global weight function F of MN determines a
consistent set of local weight functions{Fs}s∈S of the
modules:

∀p ∈ P : FS(p)(p) = F([p]).

(iii) A consistent set of localweight functions{Fs}s∈S of the
modulesof MN determinesaglobalweight functionF :

∀pg ∈ PG,∀p ∈ P : pg = [p] ⇒ F(pg) = FS(p)(p).

Notethatthe constructionfulfils: if F1 determines{Fs}s∈S

and{Fs}s∈S determinesF2 thenF1 = F2.

THEOREM 6.3.Let MN = (S, PF, TF) be a modular
PT-net and let {Fs}s∈S be a consistent set of local weight
functionsof the moduleswhich determinethe global weight
function F . Thenwe have

[∀s ∈ S : Fs is a placeflowof Ts ]

⇒ F is a placeflowof MN.

Proof. The theoremfollows directly from the observation
that all transitions of the individual modules are flow
preserving, i.e. we know that eachmember of a transition
group is flow preserving. This is a much stronger
demand than the transition group being flow preserving as
a group.

In the next theoremwe show how Theorem6.3 can be
extendedto placeinvariants if we considermodularPT-nets
withoutplacefusion.

THEOREM 6.4.Let MN = (S,∅, TF) be a modular PT-
netwithoutplacefusion,andlet {Fs}s∈S bea consistent set
of local weightfunctionsof themoduleswhich determinethe
globalweight functionF . Thenwe have

[∀s ∈ S : Fs determinesa placeinvariantof module s]

⇒ F determinesa placeinvariant of MN.

Proof. Fromthedefinitionof enablingfor modularPT-nets,
we know that a transition group will only be enabled if all
transitionsof the groupareenabled.Thismeansthattheset
of reachablestatesfor themodularPT-net is coveredby the
set of reachablestatesof thelocalmodules.

Note that we can find place invariants of the total
systemwhich cannotbeexpressed as placeinvariantsof the
individualmodules.

THEOREM 6.5.Let MN = (S, PF,∅) be a modular PT-
net without transition fusion, and let F be a global weight
function of MN which determines a set of local weight
functions{Fs}s∈S. Thenwe have

F is a placeflowof MN
⇒ [∀s ∈ S : Fs is a placeflowof Ts].

Proof. Sincetransition fusion isnot used, weknow that each
transition groupconsistsof exactly one member. Thuseach
individual transition isflow preserving.

From Definition 6.3 and Theorem 6.5 we know that we
canfind all placeflows of the total system from the place
flowsof the individualmodules.

THEOREM 6.6.LetMN = (S, PF, TF) bea modularPT-
net and let F be a global weight function of MN which
determinesa set of local weight functions{Fs}s∈S . Then we
have

F is a placeflowof themodularPT-net
⇔ [∀s ∈ S : Fs is a placeflowof ITs ]

∧ [TF isflowpreserving for F ].
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Proof. In this proof, it is sufficient to establish a
correspondencebetweenthetransition groupsandtheunion
of the set of internal transitions and the set of fusion
sets. If a transition group contains exactly one transition
it corresponds to an internal transition and otherwise it
correspondsto a transition fusion set.

Theorem6.6 is a key result. Al l placeflows of a modular
PT-net can be determined from consistent sets of weight
functions which are placeflows for the internal transitions
IT and are flow preservedby all transition fusion sets. A
correspondingtheoremfor colouredPetri nets (CP-nets) has
beenshown for placefusiononly in [10].

To illustratehow we envision the use of the results from
this section, we describe how a placeflow could be found
for a modular PT-net. We will assume that a modular
PT-net hasmainly internal, i.e. non-fused, nodes, and the
main work is to check that the internal transitions areflow
preserving. When performing placeinvariant analysis one
canbeinterestedeitherin all possibleflowsof thesystemor
in a few, but descriptive, placeflows. Theorem6.6 allows
oneto calculate all possible placeflows in a modular way:
calculate all flows for the internal transitionsandcombine
those which areconsistent and, finally, checkthe transition
fusion sets.

Theresult of this theoremisalso attractivewhenusingan
interactiveprocesswheretheweightsof placesaregradually
added. It consists in starting with a single module and
specifying weights that are flow preserved by all internal
transitions. After this, the rest of the weight functionscan
be restricted, using the weights of the module. Both place
fusion setsand transition fusion setscanbe used. We know
that the weight functionsmust beconsistent andthis means
that all placesof a place fusion set must have the same
weight. We also know that the transition fusion setsmust
beflow preserving and if only oneof thesurroundingplaces
needsaweight,it canbecalculateddirectly from theknown
weights. After these restrictions have beenapplied, the
internal transitionsof the next module canbe checked. In
the end it is necessaryto checkthat all transition fusion sets
areflow preserving.

In the next section, we present another main analysis
method,i.e.modularstatespaces.

7. STATE SPACES

In the following, we formally define modularstatespaces;
but first weintroducesomenotationsandrecallthedefinition
of statespacesof PT-nets.

7.1. Statespacesof PT-nets

We want to representstatespacesasdirectedgraphs. Since
we want to be able to have multiple arcsbetweenpairs of
nodesweuse thefollowing definitionfrom [9].

DEFINIT ION 7.1. A directedgraph is a tuple DG =

(V ,A,N) such that:

(i) V is a set of nodes(or vertices);

(ii) A is a set of arcs(or edges) such that

V ∩ A = ∅;

(iii) N is a nodefunction. It is definedfromA into V × V .

Thenodefunction N mapsanarca into a pair of nodes
(x1, x2), wherex1 is thesourceand x2 thedestination of arc
a.

DEFINIT ION 7.2. Let PN = (P, T ,W,M0), be a PT-net.
Thestatespaceof PN is thedirectedgraphSS= (V ,A,N),
where:

(i) V = [M0〉;
(ii) A = {(M1, t,M2) ∈ V × T × V | M1[t〉M2};
(iii) ∀a = (M1, t,M2) ∈ A : N(a) = (M1,M2).

The state space contains a node for each reachable
marking andanarcfor eachpossible transition occurrence.

For two nodesvs andve we useDPF(vs , ve) to denote
the set of all directedfinite paths connecting vs to ve, i.e.
all finite sequencesof nodesand arcsv1, a1, v2, a2, . . . , vn

wherev1 = vs , vn = ve, and for all i in 1, . . . n, N(ai) =

(vi , vi+1).
Next we consider SCCs. Two nodesv1, v2 ∈ V are

strongly connected if f there exists a finite directed path
which starts in v1 andendsin v2 anda finite directedpath
which starts in v2 and ends in v1. It is easy to see that
strong-connectedness is an equivalencerelation and hence
determinesa set of disjoint equivalenceclasses. An SCC is
a directedgraphDG′ = (V ′, A′, N ′), where V ′ ⊆ V is an
equivalenceclassof strongly connectednodes, A′ ⊆ A are
all those arcswhereboth thesourceanddestination belong
to V ′, andN ′ is the restriction of N to A′.

Theset of all SCCs isdenotedby SCC. For a nodev ∈ V

and a componentc ∈ SCC we use the notation v ∈ c to
denote thatv is oneof the nodesin c. A similar notation is
usedfor arcs. We use vc to denote thecomponentto which
v ∈ V belongs. We also denote the source(respectively
destination)of anarca by srce(a) (respectively dest(a)).

DEFINIT ION 7.3. The directed graph SS∗ = (V ∗,

A∗, N∗) is the SCC-graphof state spaceSSiff the following
propertiesare satisfied:

1. V ∗ = SCC;
2. A∗ = {a ∈ A | srce(a)c 6= dest(a)c};
3. ∀a ∈ A∗ : N∗(a) = (srce(a)c, dest(a)c).

Definition 7.3 allows us to talk aboutthe SCC graphof
a statespaceand this will turn out to be avery useful tool
whenwe have to specify efficient proof rules for deciding
propertiesof systems. Thiswill bediscussed in Section 8.

7.2. Modular statespaces

In this sectionwe consider modularPT-netswith transition
fusiononly, i.e.noplacefusion. To concludethat this isnot
a severerestriction please recalltheargumentsof Section4.

In the definition of modular state spaceswe need a
compactnotationto capturethestatesreachablefrom M in
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all theindividualmodules, i.e.[[M〉. It turnsout thatwecan
use aproductof SCCs of the individualmodulesto express
this representative node: for any reachablemarkingM, we
use M 6c to denote theproductof SCCs Mc

s of the individual
modules:

∀M ∈ [M0〉 : M 6c =
∏

s∈S

Mc
s .

Thisnotation is also extendedto aset X of markings:

X 6c =
⋃

M∈X

{M 6c}.

In the definition of a modular state space, we have two
parts: the synchronizationgraph and the state spacesof
the individual modules. The definition is followed by an
explanationandboth should be readin parallel.

DEFINIT ION 7.4. Let MN = (S,∅, TF) be a modular
PT-net without place fusion and with the initial marking
M0. The modular state spaceof MN is a pair MSS =

((SSs)s∈S, SG), where:

(i) SSs = (Vs, As , Ns) is the localstatespaceof modules:

(a) Vs =
⋃

v∈(VSG)s
[v〉s ,

(b) As = {(M1, t,M2) ∈ Vs × ITs × Vs | M1[t〉M2},
(c) ∀a = (v1, t, v2) ∈ As : Ns(a) = (v1, v2);

(ii) SG= (VSG, ASG, NSG) is the synchronization graphof
MN:

(a) VSG = [[M0〉〉
6c ∪ {M

6c

0},

(b) ASG = {(M
6c

1, (M ′
1, tf,M2),M

6c

2) ∈

VSG× ([M0〉 × TF × [M0〉) × VSG |

M ′
1 ∈ [[M1〉 ∧ M ′

1[tf 〉M2},
(c) ∀a = (v1,X, v2) ∈ ASG : NSG(a) = (v1, v2).

EXPLANATION. (i) The definition of the state space
graphs of the modules is a generalization of the usual
definition of statespaces:

(a) the set of nodesof the state spacegraphof a module
containsall stateslocally reachablefrom any nodeof
thesynchronization graph;

(b) likewise the arcsof the state spacegraphof a module
correspond to all enabled internal transitions of the
module;

(c) an arc (v1, t, v2) starts from nodev1 andendsin node
v2.

(ii) Eachnodeof the synchronization graph is labelled
by an M 6c and represents all the nodesreachablefrom M

by occurrencesof local transitions only, i.e. [[M〉. The
definition of M 6c ensuresthatany markinghaving thesame
set of markings reachable by internal transitions will be
represented by thesamenodein VSG. Thesynchronization
graphcontainsthe informationon the nodesreachableby
occurrencesof fused transitions:

(a) the nodes of the synchronization graph represent
all markings reachablefrom another marking by a
sequenceof internal transitions followed by a fused
transition. Theinitial nodeis also represented;

(b) the arcs of the synchronization graph represent all
occurrencesof fused transitions;

(c) an arc (v1,X, v2) starts from nodev1 andendsin node
v2.

The state space graphs of the modules only contain
local information, i.e. the markingsof the module and the
arcs corresponding to local transitions, but not the arcs
corresponding to fused transitions. All the information
concerning the occurrencesof fused transitionsis storedin
the synchronization graph. This structure is designed in
orderto efficiently checkpropertiesdirectly in modularstate
spaces, aswill beshown in Section8.

Themodularstate spacecanbeunfoldedinto an ordinary
state space. Let M denote the set of markingsof the full
system and Ms the set of markings of module s. The
explanation is given just below the definition and both
should be readin parallel.

For a marking ms of module s, we use m∗
s to denote

themarkingof the full system whereall placesof all other
modulesareempty.

DEFINIT ION 7.5. Let MN = (S, PF, TF) be a modular
PT-netandMSS= ((SSs)s∈S, SG) its modular state space.
Theunfoldedstate spaceof MSSisSS= (V ,A,N), where:

(i) V =
⋃

v∈VSG
[[v〉;

(ii) A =
⋃

(v,(m,[t ],m′),v′)∈ASG
{(m, [t],m′)}

∪
⋃

m∈V,s∈S,(ms,t,m′
s)∈As

{(m, t, (m+m′
s
∗
)−m∗

s )};
(iii) ∀a = (v1,X, v2) ∈ A : N(a) = (v1, v2).

EXPLANATION. (i) The set of nodesof the equivalent
state spaceis the set of markingsrepresented by nodesin
VSG, i.e.thesetof markingsreachableby internal transitions
from any of the nodesof VSG.

(ii) An arc label of the synchronization graph is an arc
of the equivalent state space. For eachmarking m, if a
local transition isenabled,thereis a correspondingarcin the
equivalentstatespace.Themarkingobtainedischangedfor
themodule concernedas specified in its state spacegraph.

(iii) An arc (v1,X, v2) starts from nodev1 and ends in
nodev2.

Thefollowing theoremstates thattheequivalent ordinary
statespaceof a MSS and the state spaceof the equivalent
PT-netof MN arethesame.

THEOREM 7.1.Let MN be a modular PT-net, MSSits
modular statespaceandPNitsequivalentPT-net. LetSSMSS

betheunfoldedstatespaceof MSSandSSPN thestatespace
of PN:

SSMSS is isomorphic to SSPN.

Proof. The main idea of the proof is to follow the
constructive definitions given in Definitions 5.8, 7.2, 7.4,
and 7.5. Definition 5.8 shows how we can construct an
equivalent PT-netPN from a modular PT-netMN; note that
we have a transition in PN for eachtransition group in MN.
Using Definition 7.2, we canthen construct the statespace
SSPN corresponding to PN. Using Definition 7.4, we can
construct themodularstate spaceMSS from MN and finally
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we must show that Definition 7.5 maps MSS to anunfolded
state spaceSSMSS which by construction is isomorphic to
SSPN.

Wenow define anabstractalgorithm to constructmodular
state spaces. We use primitive functionssimilar to those
of [9] (Proposition 1.4). WaitingSG is a set of nodesof
the synchronization graph.NodeSG(v) is a procedurewhich
createsanew nodev in thesynchronization graphandaddsv
to WaitingSG. If v isalreadyanode,NodeSG(v) hasnoeffect.
Analogously, ArcSG(v1, (M1, t,M2), v2) createsanarcwith
sourcev1, destination v2, and inscription (M1, t,M2) in the
synchronization graph, if it doesnot exist yet. NextSG(v)

is used to denote the set of possible next moves using
fused transitions. These moves can be performedfrom
any marking in [[v〉, i.e. reachablefrom v by occurrences
of local transitions only. In addition to this, we use the
function AddInternalSuccessors(M) which takesa marking
anddevelopsthecorrespondingstatespaceof eachmodule,
i.e. all local markingsreachablefrom Ms using transitions
from ITs only. This procedureis similar to thestatespaces
constructionalgorithm for all modules, with initial marking
Ms . AddInternalSuccessors(M) is able to determine the
SCCsof Ms for eachof thelocalstatespacesandfrom these
constructM 6c asthereturnedvalue.

PROPOSITION 7.1.The following algorithm constructs
themodularstate space:

WaitingSG := ∅

v0 := AddInternalSuccessors(M0)

NodeSG(v0)

repeat
selectanodev1 ∈ WaitingSG

for all (M1, t,M2) ∈ NextSG(v1) do
begin

v2 := AddInternalSuccessors(M2)

NodeSG(v2)

ArcSG(v1, (M1, t,M2), v2)

end
WaitingSG := WaitingSG\ {v1}

until WaitingSG = ∅

This algorithm is a generalization of the one for
constructing state spaces. The generalizationsfollow
directly from Definition 7.4.

In the next section,we will show how to proveproperties
directlyonthemodularstatespace,i.e.withoutunfoldingto
theordinarystatespace.

8. PROVING PROPERTIES

Here, we will prove properties for modular PT-nets. It
has been our main concernto ensure that all properties
are defined in such a way that they are consistent with
the definitionsknown for PT-nets. For eachof the PT-net
properties we present proof rules which take advantage
of the characteristics of modular state spaces. We also
sketch algorithmsshowing how these proof rules can be
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FIGURE 12. Modular PT-netwith modulesA and B.
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FIGURE 13. The full statespaceof the system.

implemented in orderto obtain efficientanalysisof modular
PT-netsandavoid unfoldingto ordinarystatespaces.

We first introduce the example that will be used
throughoutthis section. In Figure12 we present a modular
PT-netconsisting of two modulesA andB whichsharefour
commontransitionsTF1, TF2, TF3, and TF4. Module A
is presented on the left-handside while module B is on the
right-hand side. This systemwill be used to illustratethe
properties in thefollowingsubsections.

The modular PT-net is equivalent to a PT-net wherethe
transitions sharedby both modules are fused, i.e. TF1 of
module A is fused with TF1 of module B, TF2 of module
A is fusedwith TF2 of moduleB, andso on. Theoccurrence
graphof this PT-net is presentedin Figure13. Themodular
statespaceof thesystem ispresentedin Figure14. Notethat
we do not distinguish betweennodesand SCCs, since they
all contain exactly onenode.

8.1. Reachability

Here,our purpose is to find whethera given marking M is
reachableor not. Theset of ancestorsof a localmarkingMs

in the state spacegraphof module s is the set of SCCsfrom
whichMs canbereached,i.e. for all s in S andfor all local
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FIGURE 14. The modular statespace.

markingsMs in Vs , we define:
ancs(Ms) = {Mc

i | Mi ∈ Vs ∧ Ms ∈ [Mi〉s}.
We now expressthe reachability properties.

PROPOSITION 8.1.

(i) M ∈ [M0〉 ⇔ ∃v ∈ VSG : M ∈ [[v〉.
(ii) M ∈ [M0〉 ⇔ [(∀s ∈ S : Ms ∈ Vs)

∧((
∏

s∈S ancs(Ms) ∩ VSG) 6= ∅)].

EXPLANATION. (i) A globalmarkingis reachableif f it is
internallyreachablefrom oneof thenodesin VSG.

(ii) Thefirst part of theconjunction ensuresthat all local
markingsarereachable.Thisisanecessary but notsufficient
condition, and the secondpart of the conjunction ensures
that there exists a node in VSG from where the required
combinationof localstatesis reachable.

Proof. (i) Followsdirectly from Definition 7.4.
(ii) The first part of the conjunction ensures that the

ancestors of all Ms are well defined. Reachability then
follows from Definition 7.4 and the definition of function
ancs .

SKETCH OF ALGORITHM . The process to check that
a marking M is reachablecan easily be implementedby
first looking at the restrictions of M to the modules. If
for one module s, Ms is not in SSs , then M is not
reachable.Otherwise, we checkif thereexistsanodev in the
synchronization graph from which M is locally reachable.
This can be doneefficiently, using the information of the
SCCs of themodules.

EXAMPL E. Let us apply Proposition 8.1(ii) to the
examplepresentedin Figures12–14,tocheckwhetherA4B2
is reachableor not. Node A4 is in SSA. Node B2 is in
SSB . Node A4B2 is locally reachablefrom nodeA1B1:
the ancestors of A4 in SSA are A4, A2 and A1, and the
ancestorsof B2 in SSB areB2, B1. Thusall theconditions
aresatisfied andA4B2 is reachable.We also checkif A5B2
is reachable.NodeA5 is in SSA. Node B2 is in SSB . The
only ancestor of A5 in SSA is itself, the ancestors of B2
in SSB are B2, B1. Thus the cross-products of ancestors
are {A5B2, A5B1} which are not in SG. Hence,the last
conditionof theproposition is not satisfied and A5B2 is not
reachable.

8.2. Deadmark ings

We will now giveproperties to finddeadmarkings.

PROPOSITION 8.2.

(i) M ∈ [M0〉 is dead⇔

[(∀s ∈ S : ∀(m1, t,m2) ∈ As : m1 6= Ms)

∧(∀(v1, (M1, tf,M2), v2) ∈ ASG : M1 6= M)].
(ii) M ∈ [M0〉 is dead⇔

[(∀s ∈ S : (Ms)
c ∈ Term(SCCs) ∩ Trivial(SCCs))

∧(∀(v1, (M1, tf,M2), v2) ∈ ASG : M1 6= M)].
(iii) M ∈ [M0〉 is notdead⇐

∃s ∈ S : ∀m ∈ Vs : ∃(m, t,m′) ∈ As .
(iv) M ∈ [M0〉 is notdead⇐

∃s ∈ S : Term(SCCs) ∩ Trivial(SCCs) = ∅.

EXPLANATION. (i) A marking is deadiff there is no
enabled transition,neither local nor fused.

(ii) A markingisdeadiff it belongsto terminal andtrivial
componentsof all localstatespacesanddoesnotenableany
fused transitions. We use function Term which returnsthe
set of terminal SCCs andfunction Trivial which returnsthe
set of trivial SCCs. An SCC is terminal if it hasnooutgoing
arcs, and it is trivial i f it hasexactly onenodeandnoarc.

(iii) We know that there is no reachable deadmarking if
there exists a local module which for any marking hasan
enabled transition.

(iv) We know that there is no reachabledeadmarking
if there exists a local module without strongly connected
componentsbeingboth terminaland trivial.

Proof. (i) ⇒ Let M bea reachabledeadmarking.No local
transition is enabled. Thus, for all s in S, Ms cannotbethe
sourceof anarc.No fusedtransition isenabled. Hencethere
is noarclabelledby M in SG.

⇐ Theproof is similar to that of ⇒.
(ii) Theright-handsides of(i) and (ii) areequivalent.
(iii) Let us suppose thatthereexistsa modules in S such

thatall nodeshave at least oneoutgoingarc.Thenfrom each
reachable marking a local transition of s isenabled. ThusM

is notdead.
(iv) The right-hand sidesof (iii) and (iv) are equivalent.

SKETCH OF ALGORITHM . Herewewantto findall reach-
abledeadmarkingsof thesystemusing Proposition 8.2(ii).
We will consider all thenodesof SG. For eachnodem, we
will only consider for all ms the leavesof [ms〉s , in thestate
spacegraphof module s. These aretheterminalandtrivial
Ms .

We construct the sets of
∏

s∈S Mc
s for all the SGnodes.

We removefrom this set all the markings labelling SGarcs.
Thus the remaining markingssatisfy the conditionsof the
proposition above and form the set of all reachabledead
markings.

EXAMPL E. We apply this algorithm to the example
presented in Figures 12–14, to find all reachabledead
markings.

Thereare two nodesin SG labelled by the SCCs’cross-
productsA1B1 andA5B3. Thesetof trivial leavesof [A1〉A
is {A3, A4}, the one of [B1〉B is {B2}. The set of trivial
leaves of [A5〉A is {A5}, the oneof [B3〉B is {B3}. Thus
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the set of cross-products to checkis {A3B2, A4B2, A5B3}.
Theset of arc labelsin SGis {A3B1, A4B1, A2B2, A5B3}.
Hence,thesetof reachabledeadmarkingsis {A3B2, A4B2}.

8.3. L iveness

Wenow wantto determinewhetheragiven setof transitions
is live or not. We first express the liveness properties for a
fused transition, thenfor a local one andfinally for a set of
transitions ingeneral.

PROPOSITION 8.3.

(i) tf ∈ TF is live ⇔

[∀scc ∈ Term(SCCSG) : tf ∈ Trans(scc)]
∧[∀v ∈ VSG : ∀M ∈ [[v〉 :

(∀s ∈ S : Mc
s ∈ Term(SCCs)) ⇒

∃(v, (M1, tf
′,M2), v2) ∈ ASG : M1 ∈ [[M〉 ].

(ii) t ∈ ITs is live ⇔

[∀scc ∈ Term(SCCSG) :

∃v ∈ scc : t ∈ Trans([vs〉s) ]

∧[∀v ∈ VSG : ∀M ∈ [[v〉 :

(Mc
s ∈ Term(SCCs)) ⇒

(t ∈ Trans(Mc
s )

∨∃(v, (M1, tf,M2), v2) ∈ ASG : M1 ∈ [[M〉 )].
(iii) X ⊆ T is live ⇔

[∀scc ∈ Term(SCCSG) :

(X ∩ Trans(scc) 6= ∅

∨∃v ∈ scc : X ∩ Trans([[v〉) 6= ∅]

∧[∀v ∈ VSG : ∀M ∈ [[v〉 :

(∀s ∈ S : Mc
s ∈ Term(SCCs)) ⇒

(∃s ∈ S : X ∩ Trans(Mc
s ) 6= ∅)

∨(∃(v, (M1, tf,M2), v2) ∈ ASG : M1 ∈ [[M〉 )].

EXPLANATION. WeuseSCCSG to denotetheset of SCCs
of the synchronization graph. Transmapsan SCC into the
set of transitions which occur in the labels of the arcs in
the component. Similarly, we use Trans to map a set of
reachable markings to the set of transitions which occur in
the labelsof thearcsbetweentwo nodesof theset.

(i) A fusedtransition tf is live if f it occurs in all terminal
strongly connected components of the synchronization
graph, and furthermoreit is always possible to get to a
combinationof localstateswhichenablesa fusedtransition.

(ii) A transition local to module s is live if f, for all
terminal SCCs of the synchronization graph,thereexists a
nodewhich enablest , and furthermoreit is alwayspossible
to getto acombinationof localstateswhichenablesa fused
transition, or to astateenabling t .

(iii) A setof transitionsX is live if f for eachterminalSCC
of the synchronization graphthereis an occurrenceof some
elementof X, or somenodeenablingan internaltransition in
X. Furthermoreit isalwayspossible to get to a combination
of local stateswhich enablesa fusedtransition, or to a state
enabling an element in X.

Proof. (i) and (ii) areparticularcasesof (iii). Thus, we will
only prove(iii).

⇒ Let X be a live set of transitions. This means
that it is possible from any reachablemarking to reach

another marking in which one of the transitions of X is
enabled. For each terminal SCC of the synchronization
graph either thereexistsa fusedtransition in X belonging
to the component(X ∩ Trans(scc) 6= ∅) or thereexists a
nodev in scc for which a local transition of X is enabled
(∃v ∈ scc : X ∩ Trans([[v〉) 6= ∅). Moreover, from each
node in the synchronizationgraph it is possible to reach
a set of terminal SCCseither containing a local transition
of X (X ∩ Trans(Mc

s ) 6= ∅) or enabling a fusedtransition
(∃(v, (M1, t,M2), v2) ∈ ASG : M1 ∈ [[M〉). This ensures
that it is possible from eachnodeof the synchronization
graph either to locally reacha markingenabling a transition
of X or to attain anothernodein the synchronization graph.
If weapplythis last caseseveraltimes, wewill reachanode
in a terminal SCC of the synchronization graph. From the
first condition, one of its successors enablesa transition of
X.

⇐ Theproof is similar to that of ⇒.

SKETCH OF ALGORITHM . Here,we want to checkthe
liveness of a givenset X of transitions. We mark thenodes
that satisfy the first part of the condition on the right-hand
sideof (iii). To dothatwemarkthenodesin theSCC graphs
of moduleswhich enableor containa local transition of X,
aswell as their ancestors. Thenwe mark the nodesin the
terminal SCCsof the synchronization graph that are built
fromat least onemarkedSCC. Wealso markthenodesof the
terminal SCCs of the synchronization graphwhich enable
a fused transition of X. Then, if there exists a terminal
SCCof thesynchronization graphwithoutany marked node,
the first part of the condition is not satisfied, thus X is not
live. Otherwise, we have to check the secondpart of the
condition. For eachnodein the synchronizationgraphwe
takethelocalsuccessorswhich arebuilt from terminal SCCs
only. For eachof thesewe checkthatit eithercontainsalocal
transition of X or labelsanarcof thesynchronization graph.
If onenodedoesnot satisfy this requirementX is not live,
otherwise it is.

EXAMPL E. We apply this algorithm to the example
presented in Figures12–14,to checkthat X = T is not
live. We could of course deducethis property from the
fact that the system hasdeadmarkings, but this is just an
illustration of the algorithm to check liveness. In the SSs
of modulesA and B we mark nodesA1, A2 andB1. The
synchronization graphcontainsonly oneSCC. NodeA1B1
is built from a marked local node(e.g.A1), so we mark it.
Hence,the terminal SCC hasa marked node,and the first
part of the condition is satisfied. The terminal nodeswe
haveto checknow areA3B2, A4B2 andA5B3. NodeA3B2
does not contain a transition of X nor labels an arc of the
synchronization graph. ThusX is not live. Note that the
sameproblemariseswith A4B2, andthatA5B3 satisfiesthe
condition.

8.4. Homeproperties

Here, we want to check whethera given set of reachable
markingsis a homespaceor not. We first express thehome
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properties for a markingandthenfor a set of markings.

PROPOSITION 8.4.

(i) MH ∈ [M0〉 is a homemarking⇔

[∀scc ∈ Term(SCCSG) : ∃v ∈ scc : MH ∈ [[v〉 ]

∧[∀v ∈ VSG : ∀M ∈ [[v〉 :

(∀s ∈ S : Mc
s ∈ Term(SCCs)) ⇒

(MH ∈ [[M〉

∨∃(v, (M1, tf,M2), v2) ∈ ASG : M1 ∈ [[M〉 )].
(ii) X ⊆ [M0〉 is a homespace⇔

[∀scc ∈ Term(SCCSG) : ∃v ∈ scc : X ∩ [[v〉 6= ∅]

∧[∀v ∈ VSG : ∀M ∈ [[v〉 :

(∀s ∈ S : Mc
s ∈ Term(SCCs)) ⇒

(X ∩ [[M〉 6= ∅

∨∃(v, (M1, tf,M2), v2) ∈ ASG : M1 ∈ [[M〉 )].

EXPLANATION. (i) A marking MH is a homemarking
if it is always possible to reach this marking. To
prove this we must show that all terminal SCCs of the
synchronization graphhave anodewhich contains MH in
its local successors; and we must show that if we cannot
enable any transition fusion we must be able to reachMH

using internaltransitionsonly.
(ii) Checking ahomespaceis similar to (i), we just check

for anon-empty intersection insteadof membership.

Proof. Theproof is similar to theproof of liveness. (i) is a
particularcase of (ii) whereX contains only onemarking.
Thus, wewill only prove(ii).

⇒ Let X bea homespace.Thismeansthatit is possible,
from any reachablemarking,to reacha markingof X. Let
scc bea terminalSCC of thesynchronization graph.Froma
nodev of scc, it is possible to reachany nodein [[v〉. Then,
from thehypothesis, X ∩ [[v〉 6= ∅. Now, let v bea nodeof
the synchronization graph,M bea marking in [[v〉 which is
in aterminalSCCof all modules, theneither[[M〉 containsa
nodeof X or it ispossibleto leavev in orderto reachanother
nodein thesynchronization graph.

⇐ Theproof is similar to that of ⇒.

SKETCH OF ALGORITHM . Here we want to check
whether a given set X of markingsis a homespaceor not.
Wemarkthenodesthatsatisfy thefirst partof thecondition.
To do that we mark the nodesof X in the SCC graphs
of the modules aswell as their ancestors. Then we look
at the nodesin the terminal SCCs of the synchronization
graphwhich are built only from marked SCCs. We mark
those which contain at least onemarking of X in their local
successors. We have to do that because it might be the
case that the componentin one module is marked due to
the restriction of a marking M1 in X andthecomponentin
another module is marked dueto the restriction of another
marking M2 in X. Then, if thereexistsa terminal SCCof
thesynchronization graphwithoutany marked node,thefirst
part of the condition is not satisfied, thus X is not a home
space. Otherwise, we have to checkthe secondpart of the
condition. For eachnodein the synchronizationgraphwe
takethelocalsuccessorswhich arebuilt from terminal SCCs
only. For eachof these, we checkthat it eithercontainsa

marking of X or labels anarcof thesynchronization graph.
If onenodedoesnotsatisfy thisrequirement,X isnotahome
space,otherwise it is.

EXAMPL E. We apply this algorithm to the example
presented in Figures12–14,to checkthat X1 = {A2B2}

is notahomespaceandthatX2 = {A3B2, A4B2} is. Letus
startwith X1. In theSSs of modulesA andB wemarknodes
A1, A2 and B1, B2. The synchronization graph contains
only oneSCC. NodeA1B1 is built from only marked local
nodesand hasA2B2 as a local successor, so we mark it.
Hence,theterminalSCChasamarkednodeandthefirst part
of theconditionis satisfied. Theterminalnodeswe have to
checknow are A3B2, A4B2 and A5B3. NodeA3B2 hasno
outgoingarc. ThusX1 is not a homespace. Note that the
sameproblemariseswith A4B2 andthatA5B3 satisfies the
condition.

Now let us checkthat X2 is a homespace. In the state
spacegraphsof modulesA and B we mark nodesA1, A2,
A3, A4 and B1, B2. The synchronization graph contains
only oneSCC. NodeA1B1 is built only from marked local
nodes, andhasA3B2 asa local successor, so we mark it.
Hence,theterminalSCChasamarkednodeandthefirst part
of theconditionis satisfied. Theterminalnodeswe have to
checknow are A3B2, A4B2 and A5B3. Both A3B2, A4B2
arein X2. NodeA5B3 labels anarcof thesynchronization
graph.ThusX2 is ahomespace.

8.5. Boundedness

We explain how boundedness properties can be checked.
Herewe use the fact that we have no placefusion, i.e. that
all placesaremembersof onelocalmodule.

PROPOSITION 8.5. For the boundedness properties, we
have the following proof rules, valid for all s ∈ S, andall
p ∈ Ps :

(i) BestUpperBound(p) = maxMs∈Vs Ms(p);
(ii) BestLowerBound(p) = minMs∈Vs Ms(p).

EXPLANATION. (i) Thebest upperboundfor aplacep in
Ps canbefounddirectly in thelocalstatespaceof modules.

(ii) Statesthesameresult for lowerbounds.

Proof. (i) The BestUpperBound for a given place is local
to the module s of this place. As the statespacegraphof
module s containsexactly the reachablemarkingsof this
module,we just haveto find theBestUpperBoundin SSs .

(ii) The argumentsin theproof of (i) alsoapply to (ii).

REMARKS. Bounds of placescan be generalizedin
several ways. Boundscan be defined for a set of places
insteadof a single placeandeven a generalfunction canbe
appliedto the reachablemarkings. Similar generalizations
couldbe specified for modularstatespaces. One important
observationis thatthesegeneralboundscanbecheckedvery
efficiently if they only dependona singlemodule,or if they
canbeexpressed as a positive linearcombination of bounds
of themodules.

THE COMPUTER JOURNAL, Vol. 43, No. 3, 2000



240 S. CHRISTENSEN AND L. PETRUCCI

SKETCH OF ALGORITHM . Theboundsof a single place
arelocalproperties. Thusthey areveryeasy to checkonthe
statespaceof themodule containingplacep. Thisallowsus
to investigatethestate spacegraphof onemodule insteadof
thestatespaceof the entire system.

EXAMPL E. We apply this to the example presented in
Figures12–14.

If wewant to checkthatA1 isboundedbyone,wetraverse
the nodesof moduleA, this meansthat it is necessary to
checkfive nodes. Similarly, it is necessary to traverse three
nodesto check the boundof a placeof module B. In the
ordinary state spaceit is always necessary to traverse the
ninenodes.

To illustratetheremarkontheextension to generalbounds
above, we want to checkthe mutual exclusion betweenA5
and B2. For that purpose, we use a function F so that
F(M) = M(A5) + M(B2). Theprojectionsof this function
on both modules are FA and FB such that: FA(MA) =

MA(A5) andFB(MB) = MB(B2).
Now we computethemaximaof these functionsfor each

nodein SG. Thereareonly two nodesA1B1 andA5B3. For
the first nodewe getmax(FA) = 0 and max(FB) = 1, thus
max(F ) = 1 for this node.For the secondnode,we obtain
max(FA) = 1 and max(FB) = 0, thusmax(F ) = 1 for this
node. Thusthe maximum for function F in SG is one and
themutualexclusionbetweenplacesA5 andB2 isproved.

If weinvestigatethecomplexity of the algorithmsrequired
in order to decide thepropertiesdescribedin this section we
find that all of them are linear in the size of the modular
statespace.In particular, it shouldbenotedthatanumberof
propertiesof localmodulescanbecheckedmoreefficiently
whenusing themodularstatespacesthantheordinarystate
spaces.

In the next section we apply the results presented up to
now to largermodels.

9. LA RGER EXAMPLES

There exists a large numberof industrial applications of
Petri nets, in particular for high-level Petri nets such as
CP-nets. This is the reason why parts of this section
discuss models which are not PT-nets. As explainedin the
introduction, the results shown in theprevioussectionscan
also begeneralizedto CP-nets.

9.1. An exampleof a modular approachto place
invariants

We have tried to use the results from Section 6.3 to find
place flows of the hierarchical CP-net described in [11].
This is a model describing a detaileddesign of the network
managementsystemof theRcPAX X.25 wideareanetwork.
It consists of 30 modules (pages), many of these having
up to seven instances due to the reuse of pages. The
modular approachmadeit easy to find the placeinvariants
neededin the proof of properties which were local to a
few pages. The modular approachalso madeit possible to
compose placeflows of the individual pageinstancesinto

placeflows of the total system. An example of a property
whichcouldbeproved directly by meansof aplaceinvariant
and which involved many pageswas the preservation of
packets in the system. The handling of packageswas
relatively complex and involved grouping packagesinto
larger logical units. By adding extra placeswhich would
keep a log of the information passed on the network, it
was possible to investigate how messagescould be lost and
check that the information which was re-established either
matched the original message, or the originating sender
would be notified. The work on modular placeinvariants
wasperformedafter thedesignof themodelwascompleted,
and not as an integratedpart of the modelling process. It
should also be noted that the work on the examples was
performedby hand.Tool supportwill benecessary if place
invariants should beused aspartof the developmentof large
descriptions. A similar approachcould easily beapplied to
otherhierarchical CP-netmodels, e.g. theISDN Basic Rate
Interfacedescribedin [12].

We havenot investigatedhow a modularapproachcanbe
usedfor largesystemsrelatedby meansof transition fusion,
since we have no models of this nature at our disposal.
From our own experiments with small systems it seemsto
bepossible to use amodularapproachfor largeronestoo.

9.2. An example of a modular approachto occurr ence
graph analysis

To test the ideasof modularstate spacesbeforedoing an
actualimplementationwehaveinvestigatedalargerexample
usingan existing tool, Design/CPN [13].

Design/CPN supports analysis of CP-nets by meansof
state spaces. The facilities of Design/CPN allowed us
to emulatethe algorithm described in Proposition 7.1 by
manually calling appropriateroutines. The lack of full tool
supportis thereason for choosing an examplewhich is still
of amoderatesize.

The aim of this testing is twofold: first of all we want to
show how modularstatespaceswork for concreteexamples,
second we want to illustratethat the basic functionalities
of the Design/CPN tool can be used as a basis for an
implementation of a tool supporting analysis by meansof
modularstatespaces.

The example we have chosen is constructed to reflect
some of the important properties that we expect to find in
industrial applications: thesystemconsistsof threemodules,
each of them has an initialization phase, a cyclic main
phase anda termination phase. Themodulescommunicate
pairwise, and the communicationsleadto new behaviour of
the modules. Thusthis example hasa structure similar to
thatof Figure5, but usingmoremodules.

The ordinary state spacehas1728nodesand 7368arcs.
Thesystem hasa singlenon-trivial SCC, which implies that
thesystem hasno deadmarkingsandevery reachablestate
is a homestate.

Themodularstatespacehasfournodesand 54arcsin the
synchronization graph, and threemodules with altogether
18 nodesand 18arcs. Thegeneration wasperformedusing
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thefacilitiesproposedin Design/CPN to specifybreakpoints
in the construction. Thus it was possible not to fire fused
transitionsor transitionsof another module, but only build
local parts of the graph. Moreover, the generation could
becontinuedafter determining thenodesobtainedby firing
a sharedtransition. If we inspect the SCC graphsof the
modules we find that noneof them hasa trivial terminal
component. Accordingto Proposition 8.2(iv) this implies
that the system has no dead state. To show that every
reachablestate is a homestate, we use Proposition 8.4(i)
and provethat the initial marking is a home state. First we
observe that all combinationsof local terminal components
enableat least onefused transition,i.e.wecannotbetrapped
in the combination of local components. We concludeby
checkingthat the initial marking is includedin the nodes
locally reachablein theterminalSCCof thesynchronization
graph.

In the example we have asystem wherecommunication
does not involve all modules. This meansthe number
of arcs in the synchronization graph grows with the
number of states of the modules which do not take
part in the communication. If we handle this case by
introducing a special symbol denoting that a module does
not participate in thecommunication thenumberof arcsof
thesynchronization graphwill decrease from 54 to 10.

9.3. Practical use of modular analysis

The modular method to obtain place invariants is rather
satisfactory since it works both for place fusion and
transition fusion. Thusasupersetof theactual flowsthat will
be relevant for the entire system can be calculated locally
to eachmodule.Thentheir combinationcanbeperformed,
leading to flows of theentire system. We have to note that
from theexperienceof our groupsa modularly designednet
consists of differentmodules with often several instances
of the samemodule. In that case the calculus of the flow
would be the same for all i nstancesand obtaining it for
a single instance is sufficient. Moreover, modulesdo not
participatein all flows, and that can be seen very easily
when performing the combinations. This is an advantage
comparedto thenon-modularcalculus, whereall theplaces
would be examined.Ourmethodcould beseenasamodule-
guidedheuristic for invariantscalculus.

As concernsthe modularoccurrencegraphs, thepractical
useof themethodisnotasobvious, but weareconvincedof
its relevancein practicalcases.

In the worst case, where all the transitions of the
modules are shared, the synchronization graph will be
isomorphic to the ordinary occurrencegraph, i.e. have the
same numberof nodesand arcs, while the state spacesof
the modules will have no arcsand as many disconnected
nodesas therestriction of theoccurrencegraphnodesto the
correspondingmodule. Thus, in theworst case therewill be
morenodesandasmany arcs.

In the best case, wherethereis no synchronizationat all ,
thesynchronization graphwill contain exactly onenode(the
initial one) and noarc. The individual state spacesof the

moduleswill betherestriction of theusualoccurrencegraph
to eachmodule.They arealso thenormaloccurrencegraph
obtainedfor the module. Thusthe synchronousproductof
thegraphswill beavoided.

In arealapplicationtherewould often beafew transitions
to befused, andthuswe canexpectto benot very far from
thebest case.

Anotherparameterto consider thataffectsthesizeof the
synchronization graph, and therebyof the modular state
space, is the numberof modules. In the large example
of Section 9.2, there were three modules and for each
communicationoneof the modulesdid notparticipate. This
implies that the local behaviour of this module appearsin
the initial markings of arcs in the synchronization graph,
althoughit is useless. As suggestedfor theexample,such a
situation canbehandledin practiceby, for example, adding
a flag. Henceeven if there is a large numberof modules,
their localbehaviourwould notbeduplicated.

10. CONCLUSION

In this paper, we have presented a framework for modular
analysis of PT-nets. We have consideredsets of individual
PT-nets relatedby transition fusion and by place fusion.
Transition fusion canbeusedto modelsynchronousactions,
while place fusion can be used to model shared data.
Modular PT-nets form a simple, but yet very general,
framework to discussanalysisof structurednetmodels.

Wealso introducedanalysisof modularPT-netsby means
of placeflows. It allows us todetermine placeflows of the
modularPT-netfrom theindividualmodules, only transition
fusion needsto be checkedglobally. This meansthat it is
not necessary to recompute all placeflows when a single
moduleismodified. Previousworks(e.g.[10]) havefocused
onmodulescommunicatingvia placesonly.

Finally, we have presented a way of generating state
spacesof systemsexploiting their modularstructure. We
have shown how to construct this for systems without
place fusion, and we have shown a translation from a
modular PT-net with place fusion into a modular PT-net
using transition fusion only.

If the results of Definition 7.5 and Theorem7.1 are used
to construct theordinarystatespace,thenthemodularstate
spacemethodisonly a fasterway of generatingtheordinary
statespace.Exceptfordegeneratedcasesit is fastersincethe
local behaviour is only developedonce,not for eachglobal
state allowing thisparticularbehaviour.

Moreover, it is possible to check properties using the
modular state spacedirectly, i.e. without unfolding to the
ordinary state space. When designing algorithmsthereis
often a trade-off betweentime and spacecomplexity. For
statespaceanalysis it is attractive to have aratherfast way
to decideproperties, but the state spaceexplosion problem
makes it absolutelynecessary to minimizememoryusage.

A similar approachwas presentedin [14], but it startsby
constructing the full state spaceof the modules, i.e. states
thatmaynotbereachablein thefull system,aswepointout
in Section 4. Severalreductionmethodshavebeenproposed
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to avoid the state spaceexplosion problem, but they have
drawbacks: they do not allow oneto checkall properties of
thesystem or leadto a construction of thefull ordinarystate
space(e.g.[15, 16, 9, 17, 18, 19]).

Oneof the next stepsin the developmentof themodular
state spaceapproachis to implementa first version of a
tool supporting it. In Section 7, we showed an abstract
algorithm for the construction of modular state spaces,
and in Section 9, we argued that the capabilities of an
existing tool could be used to emulate this algorithm.
In Section 8, the discussion of each property included
an abstract algorithm which can be used directly in the
implementation of a tool.

Havingaccessto toolsupportwill allow usto test theideas
for industrial sizemodels. As describedin Section 9, many
industrial models seemtohave astructurewhichmakesthem
suited for this kindof analysis, i.e.they consist of relatively
independentparts.
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