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This paper presents a method for solving multi-depot vehicle routing problem (MDVRP). First, a virtual central
depot is added to transfer MDVRP to the multi-depot vehicle routing problem with the virtual central depot
(V-MDVRP), which is similar to a vehicle routing problem (VRP) with the virtual central depot as the origin.
An improved ant colony optimization with coarse-grain parallel strategy, ant-weight strategy and mutation
operation, is presented for the V-MDVRP. The computational results for 23 benchmark problems are reported
and compared to those of other ant colony optimizations.
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1. Introduction

Vehicle routing problem (VRP) holds an important place
in the logistics field, which includes simultaneously deter-
mining routes for several vehicles from a depot to a number
of customers without exceeding vehicle capacity constraints.
Another well-known generalization of VRP is the multi-depot
vehicle routing problem (MDVRP), in which the fleet of vehi-
cles now must serve several depots instead of only one and
each vehicle must start from and end at the same depot.
Its objective is to find a set of minimum cost routes that
can facilitate delivery from multiple depots to a number of
customer locations. MDVRP is a NP-hard problem that is very
difficult to solve for exact methods like dynamic program-
ming and branch and bound. Thus, many researchers have
used heuristic approaches to solve the problem. Early heuris-
tics were developed by Tillman and Cain (1972); Wren and
Holliday (1972) and Raft (1982) who used simple construc-
tion and some improvement. Better heuristic algorithms were
then described by Chao et al (1993); Renaud et al (1996);
Cordeau et al (1997); Lim andWang (2005); Mingozzi (2005)
and Crevier et al (2007).

MDVRP is a generalization of the standard VRP, in which
there are multiple depots. As delivery routes consist of combi-
nations of depots and customers, the MDVRP is very difficult
to solve even for relatively small-sized instances compared
with the VRP with a single depot (SDVRP). Considering
many heuristics successfully applied in solving SDVRP, the
objective of this paper is to simplify MDVRP to SDVRP and
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develop an algorithm that is similar to the approach to SDVRP
to solve MDVRP. Assume there is a virtual centre depot and
all the vehicles have to start from and end at the ‘global’
depot. Thus, the actual depots can be considered as the
accesses of the ‘global’ depot. Therefore, the MDVRP can be
transformed into the SDVRP with the multiple fixed accesses.
The other aim in this paper is to develop a heuristic algorithm,
a parallel improved ant colony optimization (PIACO), for
the MDVRP with the virtual central depot (V-MDVRP). The
remainder of this paper is organized as follows. In Section 2,
we describe the standard MDVRP and the V-MDVRP.
Section 3 presents the PIACO. Some computational results
are discussed in Section 4 and lastly, the conclusions are
provided in Section 5.

2. Problem description

2.1. Multi-depot vehicle routing problem

A standard MDVRP can be described as the problem of
designing least cost routes from the H depots to a set of
geographically scattered points. Each route starts from and
ends at the same depot, each customer is visited exactly once
by a vehicle and the total demand of each route does not
exceed the vehicle capacity Vh . An example of the MDVRP
is presented in Figure 1. As shown, the stars denote the actual
depots and the circles denote the customers. C is the vertex
set, L is the edge set and the cost matrix D={di j , ci , c j ∈ C}
corresponding to the distance is defined on L. The vertex
set C is partitioned into two subsets Cd = {c1, . . . , cH } and
Cc={cH+1, . . . , vH+N }, respectively, the set of central depots
and the set of customers. Each customer ci ∈ Cc is associ-
ated with a non-negative demand qi to be delivered and each
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Figure 1 An example of MDVRP.

Figure 2 An example of V-MDVRP.

depot ch ∈ Cd is associated with a demand qh = 0 To avoid
a vehicle passing two or more depots, we assume dkl = ∞
(ck, cl ∈ Cd).

2.2. MDVRP with virtual depot

First, a virtual central depot c0, whose distances to the H
actual depots and N customers are assumed as 0 and ∞,
respectively, is added. Each vehicle starts its route from the
virtual central depot through one actual depot to customers
and returns through the same actual depot to the virtual depot

without exceeding the capacity constraints of each vehicle.
Thus, the problem is transferred into V-MDVRP, which is
similar to a VRP with the virtual central depot as the origin.
Figure 2 depicts an example of V-MDVRP with the same
customers and actual depots from Figure 1. In addition, all
other constraints from the standard MDVRP still apply.

3. Parallel improved ACO for V-MDVRP

Ant colony optimization (ACO) is a relatively new optimiza-
tion method proposed by Dorigo et al (1996), which simulates
food-seeking behaviours of ant colonies in nature. It has been
successfully applied to some classic compounding optimiza-
tion problems, for example travelling salesman (Dorigo et al,
1996; Stützle and Hoos, 2000), vehicle routing (Bullnheimer
et al, 1999; Bell and McMullen, 2004; Yu et al, 2009),
telecommunication routing (Schoonderwoerd et al, 1997),
and product design (Albritton and McMullen, 2007), etc.

The solution of the V-MDVRP is to find a set of minimum
cost routes in order to facilitate delivery from the virtual
central depot through the H actual depots to a number of
customer locations. This is very similar to food-seeking
behaviours of ant colonies in nature. If we take the virtual
central depot as the nest, take the actual depots as the entries
of nest, and take customers as the food, solving V-MDVRP
can be described as the searching process for food starting
from the nest through an entry.

3.1. Improved ACO

The specific steps of the improved ACO are as follows:

Step 1: Generation of solutions In ACO for VRP, the
decision-making about combining customers is based on a
probabilistic rule taking into account of both the visibility
and the pheromone information on an edge. Thus, to select
the next customer j, the ant uses the following probabilistic
formula.

p(i, j) =

⎧⎪⎨
⎪⎩

(�(i, j))� × (�(i, j))�∑
l /∈tabu(�(i, l))

� × (�(i, l))�
j /∈ tabu

0 otherwise

(1)

where, p(i, j) = the probability of choosing to combine
customers i and j on the route; �(i, j) = the pheromone
concentration on the edge (i, j). It can tell us how good the
combination of these two customers i and j was in previous
iterations; �(i, j) = the visibility on the edge (i, j). � and
� = the relative influence of the pheromone trails and the
visibility values, respectively; tabu= the set of the infeasible
nodes.

Step 2: Mutation operation In a genetic algorithm, the muta-
tion is a genetic operator used to maintain genetic diver-
sity from one generation of a population of chromosomes
to the next generation. Furthermore, the study conducted by
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Figure 3 Illustration of the mutation operation changing depots:
(a) Selecting the changed depot and the tour, (b) Changing the
depot.

Yu et al (2009) has empirically shown that the mutation oper-
ation can help the ACO to reach further solutions in the search
space. In this paper, there are two mutation operations that
produce a new solution that is not very far from the original
one. One of the mutation operations is to change the depot
on a route and the other is to change a customer on a route.
Figure 3 shows two examples of the mutation operations. In
the depot mutation, a depot and a tour among all tours through
the depot should firstly be selected, for example c1 and c1 →
c4 → c5 → c6 → c1 (Figure 3(a)). Then, a new depot is
selected among all depots, for example c2 (Figure 3(a)), and a
new solution is produced by changing the first selected depot
to the second selected depot (Figure 3(b)). Like changing
the depot, in the customer mutation, a customer among all
customers is firstly selected, for example c9 (Figure 4(a)). The
two edges that are linked to the selected customer are deleted
and the other customer(s) or the depot that links to the deleted
edges is directly linked. Then, a tour among all tours through
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Figure 4 Illustration of the mutation operation changing
customers: (a) Selecting the changed customer, (b) Linking the
selected customer to the selected tour, (c) Applying the 2-opt
exchange to the mutated tour.
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any depot is selected for example c1 → c4 → c5 → c6 → c1
(Figure 4(a)). A new solution is produced by linking the
selected customer to the last customer and the depot through
which the selected tour goes (Figure 4(b)). As the muta-
tion operations may violate vehicle capacity constraints, an
approach is to try to fix the resultant capacity violations
by adding the tour amounts. Furthermore, the new selected
customer in the mutation is directly inserted into the segment
between the last customer and the depot, and this can possibly
break the local optimality of the new route, like Figure 4(b).
Thus, the 2-opt exchange that searches the overall customer
sequence by testing all possible pairwise exchanges of the
customer locations in a route is used to ensure the local
optimality of each route in the newsolution. Then, for this
example, the mutated tour can be represented as Figure 4(c) if
the new tour does not violate the vehicle capacity constraint.

Step 3: Update of Pheromone Information The updating of
pheromone trails is a key element in ACO, which reflects
the quality of the solutions and improves subsequent solu-
tions. First, in order to simulate the natural evaporation of
pheromone, the amount of the pheromone on each segment
is reduced. Then, the pheromone increments are assigned to
each visited edge. This is done with the following pheromone
updating equation,

�(i, j) = � × �(i, j) + ��(i, j) � ∈ (0, 1) (2)

��(i, j) =
∑
h

∑
k

��hk (i, j) (3)

where, ��(i, j) = the sum of the pheromone increments on
edge (i, j); ��hk (i, j) = the pheromone increments on the kth
route through the hth actual depot on edge (i, j); � = the
parameter that controls the speed of evaporation; k = the No.
of the route.

There are some strategies updating the pheromone incre-
ments. In this paper, the ant-weight strategy (Yu et al, 2009)
is used to assign the increased pheromone, which takes into
account of both global and local information. Specifically, the
pheromone increment is calculated:

��hk (i, j)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Q

L
× L−Lh

(H−1) × L
× Lh− f hk

(nh−1) × Lh
if link (i, j) on
the kth route
through the hth
actual depot

0 otherwise
(4)

where, Q = a constant; L = the total length of all routes in
the solution, that is L = ∑

h L
h ; Lh = the total length of all

routes through the hth actual depot in the solution, that is
Lh = ∑

k f
h
k ; f hk = the length of the kth route through the hth

actual depot in the solution; nh = the number of the routes
through the hth actual depot.
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Figure 5 Parameters for updating the increased pheromone.

In the ant-weight strategy, the total pheromone increments
on all edges that the solution covers are equal to Q/L . The
proportion of the pheromone increments shared by the routes
through the hth actual depot to the total pheromone incre-
ments equals L−Lh

(H−1)×L . Similarly, the pheromone increments
on each edge on a tour through the hth actual depot are
related to the contribution of the edge to the tour, that is
the pheromone increment proportion of edge (i, j) equal to

Lh− f hk
(nh−1)×Lh . For updating the increased pheromone, the param-
eters of the example from Figure 1 are as Figure 5. In this
way, the valid information obtained from the previous search
can be retained for further and more careful search in a more
favourable area, which helps speed up the convergence of the
algorithm.

3.2. Parallelization strategies for IACO

A huge amount of calculation is generated from imple-
menting the ACO in practice, thus parallel implementation of
ACO exerts an important role. Referring to parallel genetic
algorithms (Eklund, 2004; Solar et al, 2002; Yang et al,
2007; Yu and Yang, 2009; Yu et al, 2007), there are four
kinds of parallel strategy for ACO: independent strategies,
master-slave strategies, fine-grain strategies and coarse-grain
strategies. As the improved ACO proposed in this paper will
be implemented in a distributed environment, the coarse-
grain strategy is selected in which it requires little commu-
nication and can speed up the convergence while ensuring
the quality of the solution. The coarse-grain strategy runs
several subcolonies in parallel, among which the information
exchange is done at certain intervals (epoch) or numbers
(nm) of iterations (Bullnheimer et al, 1998; Middendorf et al,
2002). The information exchange employs the ring topology.
By exchanging the ‘outstanding ants’ between sub-colonies,
the selection spaces of the subcolonies are diversified to
effectively prevent the premature convergence.

4. Numerical analysis

The 23 problems from Christofides and Eilon (1969), Gillett
and Johnson (1976) and Chao et al (1993) were used to vali-
date the performance of the proposed PIACO. The main char-
acteristics of these test problems are summarized in Table 1.
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The heuristic described in the previous sections is coded
in Visual C++. Net 2003 and executed on a cluster, which
consists of eight computers equipped with 512MB of RAM
and a Pentium processor running at 3000MHz. The parame-
ters in the PIACO (Table 2) are estimated through simulation.

Table 1 Characteristics of test problems

Problem H n Q Problem H n Q

1 4 50 80 13 2 80 60
2 4 50 160 14 2 80 60
3 5 75 140 15 4 160 60
4 2 100 100 16 4 160 60
5 2 100 200 17 4 160 60
6 3 100 100 18 6 240 60
7 4 100 100 19 6 240 60
8 2 249 500 20 6 240 60
9 3 249 500 21 9 360 60

10 4 249 500 22 9 360 60
11 5 249 500 23 9 360 60
12 2 80 60

Table 2 Parameters in PIACO

m p � � Q epoch nm
the number of the population a constant a constant a constant migrating the number
subcolonies of subcolony intervals of migrating ants

8 30 2 1 1000 10 1

Table 3 The results of PIACO compared with other heuristic methods

PIACOProblem Best-known
solutions

FIND CGL ACO ACO-WM

Best Mean Inferior %

1 576.86 576.86 576.86 576.86 576.86 576.86 578.54 0.29
2 473.53 473.53 473.87 484.28 473.53 473.53 482.09 1.81
3 641.18 641.18 645.15 645.16 641.18 641.18 647.62 1.00
4 1001.49 1003.86 1006.66 1020.52 1001.49 1001.49 1011.97 1.05
5 750.26 750.26 753.4 750.26 750.26 750.26 767.46 2.29
6 876.5 876.5 877.84 878.34 876.5 876.5 898.5 2.51
7 885.69 892.58 891.95 898.8 887.11 885.69 889.25 0.40
8 4437.58 4485.08 4482.44 4508.14 4500.15 4482.38 4659.62 3.95
9 3900.13 3937.81 3920.85 4083.44 3913 3912.23 4130.79 5.91

10 3663.00 3669.38 3714.65 3747.62 3693.4 3663.00 3749.16 2.35
11 3554.08 3648.94 3580.84 3599.93 3564.74 3554.08 3798.31 6.87
12 1318.95 1318.95 1318.95 1327 1318.95 1318.95 1330.31 0.86
13 1318.95 1318.95 1318.95 1318.95 1318.95 1318.95 1343.73 1.88
14 1360.12 1365.68 1360.12 1375.22 1373.18 1365.68 1394.58 2.12
15 2505.29 2551.45 2534.13 2588.22 2565.67 2551.45 2603.17 2.03
16 2572.23 2572.23 2572.23 2604.9 2572.23 2572.23 2580.42 0.32
17 2708.99 2731.37 2720.23 2776.99 2708.99 2708.99 2746.41 1.38
18 3702.75 3781.03 3710.49 3907.88 3846.05 3781.03 4082.07 7.96
19 3827.06 3827.06 3827.06 3863.03 3827.06 3827.06 4017.3 4.97
20 4058.00 4097.06 4058.07 4231.28 4142 4097.06 4395.7 7.29
21 5474.74 5656.46 5535.99 5579.86 5495.54 5474.74 5947.82 8.64
22 5702.06 5718 5716.01 5897.64 5832.07 5772.23 6196.03 7.34
23 6095.36 6145.58 6139.73 6341.61 6183.13 6125.58 6283.54 2.58

After the above work, we continue experimenting 20 times.
The proposed PIACO is compared with FIND algorithm
(Renaud et al, 1996), CGL method (Cordeau et al, 1997), a
standard ACO (Dorigo et al, 1996) and ACO with the ant-
weight strategy and the mutation operation (ACO-WM) (Yu
et al, 2009). These instances and the best known solutions are
available at http://neo.lcc.uma.es/radi-aeb/WebVRP//index
.html ? / Problem Instances /MDVRPInstances.html. Table 3
shows the results obtained using proposed heuristic and the
results from other heuristic methods. The numbers in bold
are the best solutions among several algorithms. Columns
7–9 present the results from PIACO including the best solu-
tions, the average solutions and the inferior. The results
reveal that the PIACO used in this research is able to find
the best-known solutions in 15 problems (problem 1–7,
10–13, 16–17, 19 and 21) among the 23 problems. Also, the
method can generate competitive solutions for most problems
compared with other methods, except for problem 18, 20 and
22. In addition, the PIACO can generate solutions within
less than 3% of the optimum solution in most cases. This
means our algorithm has a good performance for MDVRP.
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Furthermore, the performance of PIACO is better than the
ones of ACO and ACO-WM. This may be because the intro-
duction of the coarse-grain strategy diversifies the ant colony,
widens the searching space and prevents the algorithm from
trapping in local optimization. Also, the ACO-WM gener-
ally gives a better solution than the ACO. This indicates that
the ant-weight strategy and the mutation operation are effec-
tive compared with ACO. Additionally, the run time not only
depends on the CPU of the machines but also on the opera-
tion system, the compiler, the programming language and the
precision used during the execution of the run. Therefore the
comparison of computational effort is not included.

5. Conclusions

The MDVRP has been an important problem in the field of the
distribution and logistics, which is the generalization of the
standard VRP. As the delivery routes consist of combinations
of depots and customers, this problem belongs to the class of
NP-hard problems. In this paper, by an added virtual central
depot, the MDVRP is transferred into V-MDVRP, which is
similar to the VRP with the virtual central depot as the origin.
Then, a parallel improved ACO is presented, in which three
improved strategies: the coarse-grain parallel strategy, the ant-
weight strategy and the local search strategy, are applied. The
computational results of 23 benchmark problems reveal that
our PIACO is effective and efficient.
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