

How to improve the performance of
YECC-generated Erlang (JAM) parsers

SERC-0050 Rev. B
Torbjörn Törnkvist

971212

1 Introduction

YECC is a parser generator written in Erlang [1]. YECC - like the C YACC - takes a
LALR(1) grammar as input. YECC generates a parser implemented in Erlang as output.
In this text we will explore some ideas described in a paper by Bhamidipathy &
Proebsting [2]. The results indicates a 10 times speed up in the generated parsers is
possible.

2 Related work

In the paper mentioned earlier [2], the authors describe how they achieve a significant
speed up for YACC generated parsers using their method. What they have done is to
generate directly, executable, hard-coded parsers. This is in contrast to the standard
YACC method of generating interpreted, table-driven parsers. This alternative way of
generating parsers seems to be very promising for parsers running in the Erlang (JAM)
machine. The results from this work will be presented in the following text.

3 Implementation

The current YECC implementation generates two main functions, one for the action
table, and one for the goto table. Each function consist of a (possibly large) number of
clauses. For example, the action clause consist of seven arguments where the first
argument is an integer representing the state and the second argument representing the
token. The correct clause is chosen by the built-in pattern matching mechanism. Since
the Erlang JAM system doesn’t implement hash indexing on the arguments, we
suspected that the alternative way of generating the parser could be advantageous. This
alternative method is explored in this paper.

We changed the way the code is generated in YECC. So for example, the originally
YECC generated action function was split into one function per state in our modified
version. In our modified version each state therefore only needed six arguments, having
the token as the first argument. The two code extracts below show the originally YECC
generated code compared to our modified YECC generated code.

 yeccpars2(1, atom, __Ss, __Stack, __T, __Ts, __Tzr) ->
 yeccpars1(__Ts, __Tzr, 3, [1 | __Ss], [__T | __Stack]);
 yeccpars2(1, ’(’, __Ss, __Stack, __T, __Ts, __Tzr) ->
 yeccpars1(__Ts, __Tzr, 1, [1 | __Ss], [__T | __Stack]);

 yeccpars2(1, __Cat, __Ss, __Stack, __T, __Ts, __Tzr) ->
 __Val = nil,
 yeccpars2(5, __Cat, [1 | __Ss], [__Val | __Stack], __T, __Ts, __Tzr);
 yeccpars2(2, ’$end’, _, __Stack, _, _, _) ->
 {ok, hd(__Stack)};
 yeccpars2(2, _, _, _, __T, _, _) ->
 yeccerror(__T);

Figure 1. Two (small) states in the old style

 state_1(atom, __Ss, __Stack, __T, __Ts, __Tzr) ->
 yeccpars1(__Ts, __Tzr, state_3, [state_1 | __Ss], [__T | __Stack]);
 state_1(’(’, __Ss, __Stack, __T, __Ts, __Tzr) ->
 yeccpars1(__Ts, __Tzr, state_1, [state_1 | __Ss], [__T | __Stack]);
 state_1(__Cat, __Ss, __Stack, __T, __Ts, __Tzr) ->
 __Val = nil,
 state_5(__Cat, [state_1 | __Ss], [__Val | __Stack], __T, __Ts, __Tzr).

 state_2(’$end’, _, __Stack, _, _, _) ->
 {ok, hd(__Stack)};
 state_2(_, _, _, __T, _, _) ->
 yeccerror(__T).

Figure 2. Two (small) states in the alternative style

The generation of the GOTO function was changed in a similar way.

4 Result

In order to measure the results, we made use of three grammars of different size. The
table in Figure 3 shows the number of rules for each grammar and the number of tokens
which were sent into the parser.

No of rulesNo of tokens

SMALL 9 9

MEDIUM 112 97

LARGE 197 551

Figure 3. Grammar sizes

We measured the time for generating the parser, compiling the parser, and running the
parser. The results are shown in the Figures 4-6 below.

Gen (old)Gen (new)Speedup

SMALL 115 105 1.1

MEDIUM 2730 2815 0.97

LARGE 5860 6215 0.94

Figure 4. Generation Time

Comp (old)Comp (new)Speedup

SMALL 630 695 0.91

MEDIUM 8675 8715 0.99

LARGE 14300 14600 0.98

Figure 5. Compilation Time

Exec (old)Exec (new)Speedup

SMALL 0.24 0.23 1.0

MEDIUM 31.9 2.6 12.3

LARGE 464 119.5 3.9

Figure 6. Execution Time

As can be seen from the tables above, the generation and the compilation times are
almost equivalent between the two YECC variants. However, the execution times all
decreased. The new mechanism’s provided up to 12 times speed up.

5 Conclusion

The results of our measurements clearly indicates that the alternative way of generating
YECC parsers is to be preferred. However, if a future Erlang JAM compiler should
introduce argument indexing, the benefits will vanish. This was demonstrated when we
ran the test using the Erlang BEAM system (which uses argument indexing), where the
old YECC style of generating parsers outperformed the alternative method described
here.

An other interesting result from this experiment is that also huge grammars can be
generated and compiled. In particular the latter has been a problem so far. For example
a complete SQL grammar with ~1500 rules resulted in 40000 lines of generated code.
With the original way of generating the parser the Action and Goto functions become
too large for the Erlang compiler, and could not be compiled. With the alternative way
of generating, the resulting Erlang code was compiled in a couple of minutes.

6 References
 [1] - Concurrent Programming In Erlang,
 Armstrong, Virding, Williams, Wikström,
 Prentice-Hall, 2:ed, ISBN 0-13-508301-X

 [2] - Very Fast YACC-Compatible Parsers,
 Bhamidipaty, Proebsting,
 University of Arizona, Department of Comp.Sci.
 Technical report: TR 95-09

Copyright © 1991-97 Ericsson Telecom AB

