
Case for Support

FORSE -
Formally-based tool
support for Erlang

development

Principal Investigators:
Professor John Derrick, University of Sheffield
Professor Simon Thompson, University of Kent

Academic Collaborator:
Lars-Ake Fredlund, Swedish Institute of Computer

Science (SICS)

Industrial Partners:
T-mobile UK Ltd

Erlang Training and Consulting Ltd

Keywords: Erlang, functional programming, refac-
toring, process algebras, testing.

1



Part 1 - Previous research

Staff at the Universities of Sheffield and Kent are well-placed
to carry out this work, and we have a track record in the
key areas in this proposal. These themes include functional
programming, verification and formal methods, and testing.

Functional programming. Work at the University of
Kent goes back over 20 years beginning with the develop-
ment of Miranda, through work on type theory, Haskell, and
techniques and tools for functional programming.

Techniques and tools. Functional programming is a differ-
ent paradigm from OO or procedural programming, but it
shares a number of aspects with other paradigms. Princi-
pally, the control of complexity is an issue irrespective of the
language involved, and work by staff and students at Kent
has investigated software engineering aspects of functional
programming. Projects have included design [35], software
measurement and visualisation [33], and refactoring func-
tional programs [32].

Other work in the department has explored the use of the
functional paradigm in ’document centred programming’ in
the VITAL project [29] and graphical extensions to func-
tional programming languages.

Refactoring. Kent is the home of the EPSRC-sponsored
Refactoring Functional Programs project(GR/R75052,
2002–5) [32, 46], website: http://www.cs.kent.ac.uk/
projects/refactor-fp/. The principal deliverable of
the refactoring project is the Haskell Refactorer, HaRe.
This tool, which covers the complete Haskell 98 language,
respects program layout in refactoring code and integrates
with the most used Haskell IDEs, it is now in its third
release.

Haskell. Simon Thompson is the author of one of the stan-
dard texts on functional programming in Haskell, currently
in its second edition [45]. He has also worked on reasoning
about functional programs in lazy functional programming
languages such as Miranda [43] and Haskell [42] as well exam-
ining the verification of programs using particular features of
these languages, such as input/output [39] and “laws” [40].
He has applied functional programming ideas to semantic
description in [44].

Formal methods and verification. Work on formal
methods has centred on specification languages, both process
algebraic and state-based, their relationship and verification
and development. Of particular relevance is the following.

Process algebras. Work on process algebra has included ap-
plications in distributed systems, model checking and links
to other formalisms. Applied work has included the use of
process algebras in the ODP standard [26, 10], subtyping [11]
and specification and analysis [21, 12]. Theoretical work has
included integrations of process algebras with other nota-
tions [36, 37], the semantics of refinement in process algebras
[36, 37, 25].

Model checking for Erlang. As detailed in the case for sup-
port, we have been involved in collaborative work concerning
verification support for Erlang. The approach has been one
where Erlang/OTP is translated into the µCRL process al-
gebra, upon which model-checking is performed. This work

has been successfully applied to a number of application ar-
eas (see, e.g., in conjunction with Ericsson and IT-university
in Gothenburg, Sweden [4], Universidad de A Coruna, Spain
and the cable and telecommunications company R, Galicia,
Spain [7]) in order to test its applicability. (More detail is
included in Part 2.)

Other work on model checking has included model check-
ing for stochastic automata [18, 15], deadlocks in timed pro-
cess algebras [14]. Both departments have wide ranging ex-
perience in the use of a variety of model checking systems
such as Caesar/Aldebaran, Uppaal, FDR etc.

Testing. Work by the proposers has included that on deriv-
ing tests from state-based specifications, e.g., we have shown
how refinement can be used to simplify the testing and test
case generation process [22, 24]. Both Kent and Sheffield
are part of the EPSRC FORTEST (FORmal methods and
TESTing) network which is just nearing completion, and
Sheffield is home to extensive work on specification based
testing.

The proposers have an excellent track record of successful
management of EPSRC and other projects. Feedback from
their last EPSRC final report (GR/L28890/01) noted:

Exactly what one would expect from the given team:
professional and thorough, with excellent dissemi-
nation. This team has an excellent reputation for
cost effectiveness. (Referee 6463PV)

Significant fundamental innovation. Excellent
achievements in training. (Referee 77NN8H)

John Derrick is Professor of Formal Methods at Kent
and will take up a Chair at Sheffield from January 2005,
he will subsequently hold a visiting position at Kent. His
current interests are in applied formal methods, particu-
larly distributed systems, and include work on refinement,
ODP, applications of UML, policy specification, performance
and QoS. He has published extensively within this area, in-
cluding over 100 journal and conference papers and two re-
search monographs [23, 13]. He is a member of several pro-
gramme committees (Z Users meeting, FMOODS, IFM) and
has edited a number of special journal issues. He has ex-
tensive experience of applying formal modelling and anal-
ysis techniques, particularly within the DS domain, and
funded projects include the following (in addition to those
mentioned above): PROST (DTI) Study on Conformance
Testing for ODP; (DTI) A study into Formal Description
Techniques for Object Management; (EPSRC) Cross View-
point Consistency in Open Distributed Processing; FOR-
MOSA (EPSRC/DTI) Formalisation of the ODP Systems
Architecture; (British Telecom) Type Management in Dis-
tributed Systems; (EPSRC) ODP Viewpoints in a Develop-
ment Framework; (EPSRC) A Specification Architecture for
the Validation of Real-time and Stochastic Quality of Service;
(EPSRC) Design Support Environments for Distributed Sys-
tems; (EPSRC) FORCES; (EPSRC) A Constructive Frame-
work for Partial Specification, (British Telecom) Scheduling
policies for active networks, and (EPSRC) RefineNet.

Simon Thompson is Professor of Logic and Computation
and Director of the Computing Laboratory at the University

2

http://www.cs.kent.ac.uk/projects/refactor-fp/
http://www.cs.kent.ac.uk/projects/refactor-fp/


of Kent. He has considerable experience of the theory and
practice of functional programming. He has received funding
from EPSRC (and its predecessors) for research in functional
programming and computational logic; recent grants include
Integrating Computer Algebra and Reasoning: Incorporating
a logic in the Axiom system (GR/M37851/01, 1999–2002)
[34] and HaRe discussed earlier. His work on refactoring
and other aspects of functional programming is discussed
earlier.

His work in logic includes a long-standing interest in proof
and program verification in constructive type theory and
he is the author of one of the graduate texts in this field
[41]. His work on diagrammatic reason with the University
of Brighton is supported by EPSRC under Reasoning with
Diagrams (GR/R63509, 2002–2005) [38]. He also has inter-
ests in the application and theory of temporal logics [17],
and in logics for multimedia [16].

Huiqing Li is exceptionally well-placed to work on the
refactoring aspects of this grant. She graduated with a Mas-
ter’s degree in computing science and engineering in 1995,
and worked at software engineering and programming lan-
guage processing since then. She is the research Assistant on
the project Refactoring Functional Programs (GR/R75052,
2002–5), and as such she is the principal architect and im-
plementor of the Haskell Refactorer, HaRe, [32]. She is also
working towards a PhD which will report on both the im-
plementation of HaRe and the formal verification of various
aspects of refactoring for functional programs.

Clara Benac Earle is the ideal candidate to work on
the verification aspects of this grant. She graduated with
an MSc from the University of Madrid, and worked at
Ericsson on prototype verification tool support for Er-
lang. With Thomas Arts she worked on model check-
ing Erlang code, developing the tool etomcrl (see also
http://sourceforge.net/projects/etomcrl), and applying it to
the AXD301 code [3]. Subsequently she undertook a PhD at
the University of Kent, which will be completed in Septem-
ber 2004. This has further developed the approach, and
some of the preliminary findings are published in [4, 5] in
addition to [3].

Part 2 - The Proposal

1 Executive Summary

The problem. Customers need to be able to reply on
IT-based services delivered at an economic rate. Moreover,
the requirements on these systems continually grow. Rather
than being monolithic programs running on mainframe com-
puters, applications are now expected to be concurrent,
distributed, fault-tolerant whilst subject to real-time con-
straints.

For business critical applications, reliability and robust-
ness are crucial, and current methods for achieving this are
expensive and limited. The need for appropriate processes
and tools to help engineer complex systems is clear. The
research proposed here will address this current gap.

Erlang. The programming language Erlang is designed
with precisely this sort of modern system in mind. Erlang
has a unique combination of simplicity of program expression
– because of the language’s high-level features – and expres-
sivity and efficiency of program code. Erlang is a concurrent
functional language with specific support for the develop-
ment of concurrent, distributed systems with soft real-time
requirements. Central to modern Erlang system develop-
ment is the Open Telecom Platform (OTP): an architecture
to construct complete fault-tolerant systems. OTP is re-
alised in a library of components which embody a number
of powerful, high-level, design patterns.

The success of Erlang. Erlang has been a significant
success, having been used in a variety of business critical ap-
plications. Erlang was originally conceived within Ericsson,
but now has a wider enthusiastic developer community, and
is used in companies of all sizes, most commonly small teams
within SMEs. Its domain of application including telecoms
and computer telephony but also covers banking, TCP/IP
programming, 3D-modelling and more. With the trend to
ubiquitous systems Erlang will grow more and more impor-
tant.

However, while Erlang’s characteristics have been used to
shorten development time, ensuring the reliability of systems
requires extensive testing and verification, at the expense of
delivery time. The problem thus is one of finding a more
reliable – yet at the same time more agile – engineering pro-
cess.

Our proposal: next generation tools and techniques.
It is acknowledged in the Erlang developer community that
there is a clear need for next generation tools and technolo-
gies:

model checking: help to establish explicit properties of de-
sign patterns that guarantee correctness of the system;

refactoring: make it possible to change the code and be
able to check whether pre-defined properties still hold;

testing: make this more effective, reducing testing time
whilst increasing test coverage.

This project will deliver precisely those tools and techniques.

Ground-breaking research – industrial tensioning.
Delivering these tools presents us with some serious research
issues: the mix of concurrent, distributed and real-time as-
pects in Erlang is unique. Moreover, these elements are com-
bined with the architectural principles of the OTP library,
specifically designed to support fault-tolerance through its
design patterns. At the same time, the language has sound
semantic underpinnings which offer the opportunity for the
well-founded and effective engineering of tool support.

Our aim is to help facilitate a step change in practice by
making such support available. To do so we will link our
work into industrial practitioners by working with industrial
Erlang users in order to develop, deploy and test our ideas.
Researchers will work with our partners to design tooling on
the basis of proven industrial needs; prototype tools will be
deployed in engineering solutions to industrially-based case
studies.

3



In doing this work we will build on our internationally
recognised research in model checking, verification, refac-
toring and testing. Moreover, we have identified named re-
searchers who bring to the project exactly the right skills and
experience to allow the team to ‘hit the ground running’.

2 Background

Erlang

Erlang [1] is a functional programming language with sup-
port for concurrency, scheduling, distribution and memory
management. It supports both concurrency and distribution
using light-weight processes and asynchronous message pass-
ing. It has been used to implement some substantial business
critical applications, e.g., the Ericsson AXD 301 high capac-
ity ATM switch [8] which at over a million lines of Erlang
code is used to implement the backbone network in the UK.

Erlang is available under an Open Source licence from Er-
icsson, and its use has spread to a variety of sectors. Appli-
cations include TCP/IP programming (HTTP, SSL, Email,
Instant messaging, etc), web-servers, databases, advanced
call control services, banking, 3D-modelling. This user base
is now Europe-wide with firms in the UK (both big and
small), France, Sweden, Germany amongst others.

Some aspects of Erlang make it comparable to Java. Both
languages aim to work on a variety of devices (since they
both compile into virtual machine code) and platforms.
They each aim to be general purpose, and have support
for distribution and concurrency. It is in their concurrent
features that they differ most markedly. Erlang provides
support for massively concurrent systems through its own
process management system, and it is not untypical for an
Erlang system to support tens of thousands of concurrent
processes. Java, on the other hand, supports threading.
Java threading is notoriously tricky; indeed, an early ver-
sion of the Sun tutorial on threads suggested that ’The first
rule of threads is this: avoid them if you can’. Erlang and
OTP, by contrast, encourage highly concurrent architectures
and moreover support them in efficient implementations. Of
equal importance is the fact that Erlang’s processes have a
rigorous semantics.

Design patterns

Erlang/OTP software is usually written according to strict
design patterns that make extensive use of software com-
ponents. Encapsulated in the extensive OTP library are a
variety of design patterns, each of which is intended to solve
a particular class of problem. Solutions to each such prob-
lem come in two parts. The generic part is provided by OTP
as a library module and the specific part is implemented by
the programmer in Erlang. Typically these specific callback
functions embody algorithmic features of the system, whilst
the generic components provide for fault tolerance, fault iso-
lation and so forth.

Fault tolerance is provided via a supervisor component in
which the runtime system provides a communication mech-
anism in the presence of software or hardware failure. A su-
pervisor process monitors this communication and uses one

of a number of policies by which to recover from a crashed
process.

In addition to generic servers and supervisors, other
generic components include finite state machines, event han-
dlers and applications and these considerably simplify the
building of systems. Erlang’s simplicity and these features
make it attractive to programmers, it also makes it particu-
larly suitable for formal support through refactoring, model
checking and testing.

Refactoring

Refactorings are source-to-source program transformations
that change program structure and organisation, but not
program functionality. Documented in catalogues and sup-
ported by tools, refactoring provides the means to adapt and
improve the design of existing code, and has thus helped
to address long-standing problems in software maintenance
while also enabling the trend towards modern agile software
development processes. Two typical refactoring scenarios
are: adapting the structure of an existing code base to pre-
pare for adding functionality or fixing a bug; cleaning up a
code base after extensive functional changes.

Current work on refactoring has concentrated on refactor-
ing sequential aspects of (typically) OO programs. The com-
plicated semantics of Java, Smalltalk and other languages
mean that the correctness of many refactorings can only
be ensured through extensive testing of the refactored code.
The Kent-based, EPSRC-supported project on Refactoring
Functional Programs has built a tool implementing many
refactorings for Haskell programs [32, 46]. Because of the
clean semantics of functional languages it is possible to guar-
antee the correctness of each refactoring – under well-defined
conditions – without recourse to testing. The solid semantic
foundations of Erlang will allow us a ‘quick win’ in transfer-
ring this work to Erlang from Haskell.

It is not simply a matter of transferring results from
Haskell, however. Refactoring for Erlang presents two novel
research challenges. First, concurrency is central to the Er-
lang ethos, yet refactoring in the presence of concurrency
is thus far unexplored. We expect to deploy our refactor-
ing experience in this direction. Secondly, the OTP library
presents a particular architectural framework and this raises
a series of questions: How should OTP programs be refac-
tored? What are the particular problems associated with
refactoring Erlang programs which appear – as a callback or
a state-transformer, for example – within an OTP context?

Model Checking

Model checking is an automatic formal verification technique
where a property is checked over a finite state (concurrent)
system, and it has been very successfully applied on hard-
ware descriptions and on specifications (e.g., automata, pro-
cess algebras). Model checking applied at the program level
(i.e., as program verification as opposed to specification veri-
fication) brings extra non-trivial challenges, and abstractions
are often necessary in order for programs to be amenable to
analysis.

In this proposal we seek to build upon our existing work on
model checking Erlang. In collaboration with partners, we
have worked on tool support for verification which includes a

4



number of components: translation, state-space generation
and model checking. In order to verify properties, Erlang
code is translated into a process algebraic specification given
in µCRL, to which standard model checking tools are applied
(e.g., Caesar/Aldebaran) [48]. The translation from Erlang
to µCRL is performed in two stages. First, a source to source
transformation is applied, resulting in Erlang code that is op-
timised for the verification, but has identical behaviour (i.e.,
we refactor). Second, this output is translated to µCRL. The
tool currently produces translations of the callback modules
of the generic servers and supervisors (these two normally
accounting for over 80% of OTP code).

The translation is quite involved due to particular lan-
guage features in Erlang. For example, Erlang makes use of
higher-order functions, whereas µCRL is 1st order; Erlang is
dynamically typed, but µCRL is statically typed; in Erlang
communication can take place in a computation, in µCRL
it cannot. However, µCRL is sufficiently close that such a
translation is feasible, and model checking on it computa-
tionally traceable even if the translation is involved. The
prototype tool, etomcrl, is described in [5], and case studies
using it in [4, 3].

Other related work in this area includes PathFinder [30]
and Bandera [20] which consider the problem of verifying
Java code. Our work is based on a similar idea, except that
we use the Erlang design patterns in order to obtain smaller
state spaces. In terms of Erlang relevant work includes that
by Huch [31], however, here the level of abstraction chosen
meant that key properties concerning data could not be ver-
ified, and our work has sought to rectify this [2].

Testing

There is a large amount of theory and practice on derivation
of test suites from specifications, e.g., testing from process
algebraic specifications and testing asynchronous languages
such as SDL.

Within Erlang the OTP test environment provides facili-
ties for designers to write their own test cases which can be
automatically executed overnight. The OTP test suite cur-
rently comprises over 3,000 such test cases. However, OTP
only provides for particular approaches to testing (e.g., traf-
fic load tests), and is targeted towards an application slant
(telecoms).

More general approaches to test generation include Er-
lang/QuickCheck, which is a library for random testing of
Erlang programs against specifications [6, 19]. Similar ideas
have also been considered in [9], where a technique for gener-
ating test suites from state machine specifications (written in
a syntax close to Erlang) is derived. However, none of these
approaches provides a general purpose way of systematic test
generation, this is what we wish to do and will exploit some
of the work on abstraction and refactoring to do so.

3 Workpackages

In this proposal we aim to build an environment containing
a range of tools designed to support the refactoring, verifi-
cation and testing of Erlang programs.

Our vision for refactoring in Erlang is to make machine-
supported refactoring second nature to the Erlang program-

mer. Refactorings can be performed in a speculative way at
minimal cost, and undone just as easily. Transition to OTP
from ‘raw’ Erlang will also be given as much automated sup-
port as is practicable.

Our vision for the verification technology for Erlang is
based upon model checking key properties against a process
algebraic abstraction of the Erlang code. We know its fea-
sibility, we now need to tackle some fundamental research
issues. These include extending the translation to cover the
fault-tolerant and real-time aspects of OTP; to scale up the
translation to other design patterns, and to use refactoring
to optimise the translation.

Our approach to verification and refactoring will be
brought together in the final workpackage when we apply
them to the issue of test generation.

Two prerequisite for these components are the basic in-
frastructure, which is provided in the first workpackage, and
a semantic foundation for our work, and this forms the sec-
ond workpackage.

The project requires research innovation in each of its
strands. At the same time we will work closely with in-
dustrial partners, who will influence the project throughout
its lifetime by providing case studies, design input, dissemi-
nation and evaluation of the work in its intended context.

We believe the strength of the work lies in it not just being
a single neat idea, but work in which several components
have already been tested and found useful, and such that
their development and integration offers hope for significant
impact. The adventure and risk (and excitment!) lie in the
realisation of the sum of the parts together.

WP1 - Project Infrastructure

The project will deliver an integrated set of tools to manipu-
late and process Erlang programs. Underlying the toolset is
a common Erlang infrastructure, comprising ‘front end’ com-
ponents including a parser that preserves source information
such as code layout and comments; a pretty-printer that re-
produces source code from abstract syntax trees; type and
module analysers; a library of traversal operations on syntax
trees to support program analysis and transformation; and
tooling for testing.

Workpackage 1 will deliver this common infrastructure.
Much of this exists already in a fragmentary form: the
workpackage will involve selecting between the various can-
didates, integrating the best available and developing those
components which are not currently available. This may in-
volve porting into Erlang components already developed for
other languages.

Development of this package will allow the project research
assistants to get up to speed with Erlang programming. The
RAs will also gain experience in testing and refactoring Er-
lang programs, which will be valuable in WPs 3, 4, 5 and
11. Integration work will be guided by the industrial col-
laborators, and the platform developed will be released in
Open Source format, to promote its adoption and further
enhancement by the Erlang developer community.

Development and maintenance of this workpackage will
continue throughout the lifetime of the project.

5



WP2 - Semantic Foundations

Fredlund has defined an operation semantics for Erlang,
which will give the formal underpinning for the work of the
project. The semantics can be used to define conditions un-
der which two programs are equivalent; to form the basis
for the formal generation of test data and for the translation
and abstraction of certain aspects of Erlang into µCRL.

The OTP is an Erlang library, and thus described by Fred-
lund’s semantics. However, the principles of OTP design
impose a strong set of constraints on systems which use it.
For example, fault tolerance is enforced by structuring pro-
cesses into a supervision tree in which parent nodes (and
only parent nodes) are responsible for starting and restart-
ing child processes. In giving the semantics of processes in
this context it is therefore not necessary to monitor failure
of all other processes in the system (which is possible in the
case of ‘raw’ Erlang). We will develop, in collaboration with
Fredlund as a Visiting Researcher, a simplified operational
semantics of OTP, based on his original Erlang semantics.

The existing translation of a subset of Erlang/OTP into
µCRL is not sufficient as a general semantic underpin-
ning since it abstracts away aspects of Erlang program be-
haviour in order to obtain tractable behaviour of model-
checking. Therefore, in this workpackage we will verify
that the OTP operational semantics is consistent with the
process-algebraic translation.

WP3 - Basic Refactorings

We have successfully developed the HaRe refactoring tool
for Haskell, which is a sequential functional programming
language. The refactorings in Hare were written in two
stages: first we refactored single-module Haskell programs,
and then we extended these to refactorings to multiple-
module projects. Hare is itself written in Haskell.

We will follow a similar approach in building the first
phase of the Erlang tool, transferring the insight and tech-
nology from the HaRe project to Erlang. We observe that
sequential Erlang refactorings are not without interest, since
OTP programs can ‘wire together’ sequential programs in
particular stylised forms, and so refactoring the application-
specific parts of a system will have a strong sequential com-
ponent.

We expect that our experience with Haskell refactorings
will allow us to complete this work package quickly, and
so spend most of the project on Erlang-specific aspects of
refactoring.

WP4 - Refactoring Concurrency

Concurrency is essential to Erlang system development.
Whilst it is acknowledged that refactoring concurrent code
in, say, Java, presents a substantial challenge [27], the
message-passing mechanism of Erlang promises to be more
tractable. Our initial target in this work package is to design
and implement refactorings for core Erlang concurrency.

Building on top of these we will then investigate com-
mon patterns of concurrency and fault-tolerance in substan-
tial Erlang projects. We will devise means for building up
“refactorings-in-the-large” from the basic stock of concurrent
refactorings developed earlier.

WP5 - Refactoring within OTP

The separation of Erlang into a base language and a set of de-
sign patterns (behaviours) encoded in the standard OTP li-
braries shapes the practice of Erlang programmers. The ma-
jority of Erlang code will be particular, application-specific,
functionality which is intended to be passed to one of the
generic operations within OTP. The architecture of OTP
requires that the application-specific code behaves in partic-
ular ways (and not in others).

This impacts on refactoring. Some of the refactorings de-
veloped in earlier work packages will only be valid in an
OTP context if programs meet additional conditions; other
refactorings will become possible because of the constraints
required by OTP. In this work package we will articulate
and implement these additional conditions and refactorings,
so that the tool can successfully support the OTP developer.

WP6 - Fault Tolerance

Erlang has fault tolerance mechanisms based around a su-
pervision tree which restarts crashed processes according to
one of a number of policies (one-for-one, one-for-all etc). The
existing translation of Erlang to µCRL is sufficiently robust
to deal with a large enough part of the language to make it
applicable to serious examples. However, it is currently lim-
ited by not being able to deal with the fault tolerant aspects
of the language.

In this workpackage we will extend the translation into
µCRL to produce a translation which models the effect of the
supervision tree and various policies, in an untimed context.
The translation algorithm will be implemented as part of
the toolset, and be evaluated by the application of model
checking to these translations, checking a range of properties
such as process liveness under faulty behaviour.

WP7 - Real-time aspects

Erlang is equipped with real-time capabilities, such as time-
outs, which are used in the generic server and finite state
machine OTP design patterns, for instance. Timing is also
used in the fault tolerant policies, which allow a maximum
number of restarts in particular time intervals, given as pa-
rameters. Modelling this behaviour is important since if the
maximum is exceeded, the crash propagates up the supervi-
sor tree and ultimately to the top application.

The current Erlang to µCRL translation is untimed, and
here we will look at incorporating timing information, in
order to model both timeouts and the full fault tolerant be-
haviour.

To do this we will use recent work on timed extensions to
µCRL [28, 47]. An extensive theory exists for these exten-
sions (completeness, bisimularity, complete axiomatisations
etc), and as noted in [47] it is possible to use verification tools
that exist for µCRL for the analysis of timed processes.

We will take this as our starting point and first extend
the translation to timeouts, with an embedding on which
untimed µCRL tools can be used. We will then extend
the translation of the fault tolerant policies to include their
restart strategy in terms of crashes per time interval and
propagation up the supervision tree.

6



The latter opens up the possibility to explore settings of
the restart parameters in order to optimize locality of the
crashes vs their propagation up the supervision tree. Cur-
rently default values are provided in Erlang and there is little
attempt to model or simulate the consequences of the other
particular choice of parameter. Our analysis and simulation
of the process algebraic abstraction will tackle this issue.

WP8 - Scaling up the translation

The extension to fault tolerant and real-time behaviour will
significantly enhance the applicability of the approach, but
further work is necessary in order to scale-up the application
of verification technology. In particular, we need to extend
the translation to other OTP design patterns and tackle the
issue of dynamic process creation in the translation of the
supervisor.

Task 8.1 - other OTP design patterns. In addition
to generic servers and supervisors, OTP defines applications,
finite state machines and event handlers. Hooks exist for
these in the current tool, and this task is to extend the
translation to these design patterns (using input from our
industrial partners to assess relative importance). This is
relatively straightforward, but will enhance the coverage of
the approach.

Task 8.2 - dynamic processes. In a supervisor Erlang
processes can, in general, be generated dynamically. How-
ever, to avoid a potentially infinite state-space we avoid dy-
namic process creation in µCRL by generating µCRL spec-
ifications for fixed configurations. This needs generalising,
and we seek to see how this can be supported in the veri-
fication framework. To do this we will (1) look at circum-
stances where dynamic process creation still gives a finite
state-space, (2) consider whether additional verification can
generalise results from fixed to arbitrary configurations. For
the latter, we will consider how we can apply both theo-
rem proving as well as techniques such as symmetry, data-
independence and compositionality results.

WP9 - Optimising the translation by refac-
toring

In this task we look at how we can use refactoring to optimize
the source-to-source Erlang transformation currently used in
the model checking tool.

A number of Erlang features need manual treatment at
present. For example, the translation step needs various
higher-order functions to be re-written in order that they can
be expressed in the process algebra. Similarly, two aspects
of pattern matching are not supported. First, one needs to
eliminate priority re-writing (priorities not being supported
in µCRL). Second, code where no match is found is not
currently supported, since such an Erlang process crashes,
whereas this is not reflected in the µCRL semantics.

The tasks here then are to (1) use refactoring techniques
to support the rewriting of higher-order functions, and (2)
provide similar support for priority rewriting, and investigate
approaches to translating code where no matches are found.

In addition, the size of the state space produced in the
model-checking is dependent on the code structure. Thus

we will also look at using refactoring to optimise the size of
the LTS produced from the translation algorithm.

WP10 - Evaluation, iteration and deploy-
ment

Our aim is to link into industrial practice, in order to find
out how best to deploy these technologies by working with
real developers on real projects. Our industrial partners will
help with deployment once the (1st generation) tools are
built, and we will iterate on the basis of this experience.

There are a number of stages to this. To begin with the
research staff will work with our partners to gain an under-
standing of the Erlang development process and an insight
to the processes and tools currently used. This experience
will be used in WP1 on tool integration, and also in WP3 as
this needs an understanding of the most useful refactorings.

The project RAs will visit the industrial partners for a
period of roughly three weeks in the first half year of the
project, and will undertake more substantial visits, of, say,
two to three months, in the second and third years of the
project.

Our industrial partners will also help us to evaluate the
work. Six monthly review meetings (open to all interested
in Erlang development, not just the industrial partners) will
be used to disseminate the work informally.

We will also use our partners, and other European Erlang
developers, to look at wider questions. For example, we
would like to investigate alternative process algebraic trans-
lations during the project. The issue here is that the trans-
lation affects in a fundamental way the properties that can
be verified. This is shown by the choice of translation made
by Huch [31] where, since data was abstracted to a non-
deterministic choice, key properties couldn’t be verified. We
will thus also take a step back from the existing work to see
whether different approaches to translation might offer gains
for different problems that one wishes to verify.

WP11 - Testing

This workpackage constitutes the programmme of work for
the PhD student supported by the project studentship.

Providing further automation of the testing process is nec-
essary in order to support the work of both small developer
teams as well as those developing large code bases.

Whilst there is some support for the testing process via
OTPs test environment and the QuickCheck Erlang tool,
there is considerable scope to provide further automation
and support. We seek here to do three things:

• integrate the QuickCheck Erlang tool into the develop-
ment environment.

• apply existing work on specification based testing to
help automate the derivation of the individual test cases
and their sequencing.

• apply refactoring techniques to enable tests and their
specifications to be refactored.

The QuickCheck Erlang tool enables random tests to be
generated from descriptions given as logical formulas over

7



Erlang terms. Our first task is to integrate this into the
basic infrastructure.

The general problem of deriving non-random tests is
harder, and there are significant challenges here due to the
mix in Erlang of data, concurrency, asynchronous message
passing and higher order function definition. However, rel-
evant work on testing exists in a number of communities,
and here we seek to use one approach. In particular, we will
use the process algebraic translation used in model check-
ing as the basis for test case generation to tackle issues of
concurrency and temporal ordering.

To do this, we will use the inverse of the Erlang to µCRL
translation to define test cases and test sequencing of the
Erlang code. Defining an appropriate inverse will be the
first task in achieving this, and will allow the use of testing
facilities in the Caesar/Aldebaran toolset. The effectiveness
of this will be assessed by generating tests for properties
expressed as specifications in µCRL. The possibility then
exists for integrating this approach with the random tests
generated by the Erlang version of QuickCheck.

Finally, we aim to apply our refactoring techniques in or-
der that tests can be refactored alongside the code base. For
tests generated by QuickCheck we will also derive a means
to refactor the test specification (given as a linear temporal
logic property), so it is clear what tests have been executed.
For tests generated via a process algebraic specification, we
will use the equivalence defined in WP2 to derive a new
process algebraic specification in addition to the refactored
tests. The OTP test environment will be used as a case
study for parts of this workpackage.

4 Relevance to Beneficiaries

Beneficiaries will include the functional programming and
Erlang research and developer communities as well as those
interested in verification and applications of model checking.

In particular we offer tangible benefits to the Erlang de-
veloper community, since there are clear potential economic
gains to be made from exploiting formal methods technology
to reduce the costs (in time and money) of ensuring relia-
bility, and by offering additional routes to assurance where
testing alone would be insufficient. Further details are given
in section L of the accompanying EPSRC form.

5 Dissemination and Exploitation

Dissemination, collaboration and exploitation are important
aspects of this proposal. Project deliverables will include

• tools, and tool plug-ins (disseminated via a project web-
site and through the Erlang pages)

• demonstrator projects

• engagement with industrial practice

• verified and (formally) specified components (be-
haviours)

• scientific publications in conferences and journals

The latter include Journal of Functional Programming, Er-
lang User Conference, Formal Aspects of Computing, Formal
Methods in Systems Design, FME, FORTE/PSTV, etc etc.

Existing contact will be maintained with the Erlang com-
munity. This includes continuing our existing collaborations
with the IT-university in Gothenburg, Sweden and the Uni-
versidad de A Coruna, Spain, and these and other Erlang
sites will be involved in the 6-monthly project review meet-
ings. Visits to these sites are costed in the proposal.

6 Justification of Resources

This project builds upon considerable expertise available at
Sheffield and Kent in the areas of functional programming
and formal methods. We are lucky to have two candidates
for the RA posts who bring a wealth of relevant experience
with them. The project is also a true collaboration with
links between the strands in a way that should be mutually
beneficial to the overall work. We envisage close working to
achieve the best results. Equipment: The equipment re-
quested will support the Research Staff and PhD student.
Travel: Support for travel is requested to support the dis-
semination and exploitation activities outlined above.

Bibliography

[1] J.L. Armstrong, S.R. Virding, M.C. Williams, and C. Wik-
ström. Concurrent Programming in Erlang. Prentice Hall
International, 1996.

[2] T. Arts and C.B̃enac Earle. Development of a verified dis-
tributed resource locker. In International workshop on For-
mal Methods in Industrial Critical Systems, July 2001.

[3] T. Arts, C. Benac Earle, and J. Derrick. Verifying Erlang
code: a resource locker case-study. In L. Eriksson and P.A.
Lindsay, editors, Formal Methods Europe: Getting IT Right,
volume 2391 of LNCS, pages 184–203. Springer-Verlag, July
2002.

[4] T. Arts, C. Benac Earle, and J. Derrick. Development of a
verified Erlang program for resource locking. Software Tools
for Technology Transfer (STTT), 2004. To appear.

[5] T. Arts, C. Benac Earle, and J. J. S. Penas. Translat-
ing Erlang to mCRL. In Proceedings of the International
Conference on Application of Concurrency to System Design
(ACSD2004). IEEE Computer Society Press, June 2004. To
appear.

[6] T. Arts and J. Hughes. Erlang/QuickCheck. In Ninth Inter-
national Erlang/OTP User Conference, 2003.

[7] T. Arts and J. J. S. Penas. Global scheduler properties de-
rived from local restrictions. In Proceedings of the 2002 ACM
SIGPLAN workshop on Erlang, pages 49–57. ACM Press,
2002.

[8] S. Blau and J. Rooth. AXD 301 – A new Generation ATM
Switching System. Ericsson Review, 1, 1998.

[9] J. Blom and B. Jonsson. Automated test generation for in-
dustrial Erlang applications. In Proceedings of the 2003 ACM
SIGPLAN workshop on Erlang, pages 8–14. ACM Press,
2003.

[10] H. Bowman, E. A. Boiten, J. Derrick, and M. W. A. Steen.
Strategies for consistency checking based on unification. Sci-
ence of Computer Programming, 33:261–298, April 1999.

[11] H. Bowman, C. Briscoe-Smith, J. Derrick, and B. Strulo. On
Behavioural Subtyping in LOTOS. In FMOODS’97, Second
IFIP International Conference on Formal Methods for Open

8



Object-based Distributed Systems. Chapman and Hall, July
1997.

[12] H. Bowman, J.W. Bryans, and J. Derrick. Analysis of a
multimedia stream using stochastic process algebra. The
Computer Journal, 44(4):230–245, April 2001.

[13] H. Bowman and J. Derrick, editors. Formal Methods for Dis-
tributed Processing, A Survey of Object-oriented Approaches.
Cambridge University Press, Cambridge, UK, September
2001.

[14] H. Bowman, G. Faconti, J.-P. Katoen, D. Latella, and
M. Massink. Automatic verification of a lip synchronisa-
tion protocol using UPPAAL. Formal Aspects of Computing,
10(5-6):550–575, August 1998.

[15] H. Bowman, J.W.Bryans, and J. Derrick. Towards stochastic
model checking with generalised distributions. In UKPEW
2000, 16th United Kingdom Performance Engineering Work-
shop, November 2000.

[16] Howard Bowman, Helen Cameron, Peter King, and Simon
Thompson. Mexitl: Multimedia in executable interval tem-
poral logic. Formal Methods in System Design, 22, 2003.

[17] Howard Bowman and Simon Thompson. A tableau
method for interval temporal logic with projection. In
TABLEAUX’98, International Conference on Analytic
Tableaux and Related Methods, volume 1397 of LNAI.
Springer-Verlag, 1998.

[18] J. Bryans, H. Bowman, and J. Derrick. Model Checking
Stochastic Automata. ACM Transactions on Computational
Logic, 4(4):452–492, October 2003.

[19] K. Claessen and J. Hughes. QuickCheck: a lightweight tool
for random testing of Haskell programs. In Proceedings of the
fifth ACM SIGPLAN international conference on Functional
programming, pages 268–279. ACM Press, 2000.

[20] J. C. Corbett, M. B. Dwyer, and J. Hatcliff. Bandera: a
source-level interface for model checking Java programs. In
Proceedings of the 22nd international conference on Software
engineering, pages 762–765. ACM Press, 2000.

[21] J. Derrick. Timed CSP and Object-Z. In ZB 2003: Formal
Specification and Development in Z and B, volume 2651 of
Lecture Notes in Computer Science, pages 300–318. Springer,
June 2003.

[22] J. Derrick and E. A. Boiten. Testing refinements by refining
tests. In ZUM’98: The Z Formal Specification Notation,
volume 1493 of LNCS, pages 265–283. Springer-Verlag, 1998.

[23] J. Derrick and E. A. Boiten. Refinement in Z and Object-Z.
Springer-Verlag, 2001.

[24] J. Derrick and E.A. Boiten. Testing refinements of state-
based formal specifications. Software Testing, Verification
and Reliability, (9):27–50, July 1999.

[25] J. Derrick and E.A. Boiten. Combining component specifi-
cations in Object-Z and CSP. Formal Aspects of Computing,
13:111–127, May 2002.

[26] John Derrick, Eerke Boiten, Howard Bowman, and Maarten
Steen. Viewpoints and consistency: translating LOTOS to
Object-Z. Computer Standards and Interfaces, 21:251–272,
August 1999.

[27] Aaron Greenhouse, T. J. Halloran, and William L. Scherlis.
Observations on the Assured Evolution of Concurrent Java
programs. In Proc. Workshop in Concurrency and Synchro-
nisation in Java Programming. ACM, 2004.

[28] J.F. Groote. The syntax and semantics of timed mCRL.
Technical Report SEN-R9709, CWI, Amsterdam, 1997.

[29] Keith Hanna. Interactive Visual Functional Programming.
In Simon Peyton Jones, editor, Proc. Intnl Conf. on Func-
tional Programming. ACM, 2002.

[30] K. Havelund and T. Pressburger. Model checking Java Pro-
grams with Java PathFinder. Software Tools for Technology
Transfer (STTT), 2004. To appear.

[31] F. Huch. Verification of Erlang programs using abstract in-
terpretation and model checking. In Proceedings of the fourth
ACM SIGPLAN international conference on Functional pro-
gramming, pages 261–272. ACM Press, 1999.

[32] Huiqing Li, Claus Reinke, and Simon Thompson. Tool Sup-
port for Refactoring Functional Programs. In ACM Sigplan
Haskell Workshop, 2003.

[33] The Medina Metrics Library. Available from http://www.

cs.kent.ac.uk/people/rpg/cr24/medina/.

[34] Erik Poll and Simon Thompson. Integrating Computer Al-
gebra and Reasoning through the Type System of Aldor. In
Hélène Kirchner and Christophe Ringeissen, editors, Fron-
tiers of Combining Systems, 2000. LNCS 1794, Springer-
Verlag, 2000.

[35] Daniel J. Russell. FAD: Functional Analysis and Design
Methodology. PhD thesis, University of Kent, 2000.

[36] G. Smith and J. Derrick. Refinement and verification of
concurrent systems specified in Object-Z and CSP. In
ICFEM’97, pages 293–302. IEEE Computer Society Press,
1997.

[37] G. Smith and J. Derrick. Specification, refinement and ver-
ification of concurrent systems - an integration of Object-Z
and CSP. Formal Methods in System Design, 18:249–284,
2001.

[38] Gem Stapleton, John Howse, John Taylor, and Simon
Thompson. What Can Spider Diagrams Say? In Alan
Blackwell, Kim Marriott, and Atsushi Shimojima, editors,
Diagrammatic Representation and Inference, 2004.

[39] Simon Thompson. Interactive functional programs: a
method and a formal semantics. In David A. Turner, ed-
itor, Research Topics in Functional Programming. Addison
Wesley, 1990.

[40] Simon Thompson. Lawful functions and program verification
in Miranda. Science of Computer Programming, 13(1):181–
218, 1990.

[41] Simon Thompson. Type Theory and Functional Program-
ming. Addison Wesley, 1991.

[42] Simon Thompson. Formulating Haskell. In Workshop on
Functional Programming, Ayr, 1992, Workshops in Com-
puting. Springer Verlag, 1993.

[43] Simon Thompson. A Logic for Miranda, Revisited. Formal
Aspects of Computing, 7, 1995.

[44] Simon Thompson. Programming language semantics using
Miranda. Technical Report 9-95, Computing Laboratory,
University of Kent at Canterbury, 1995.

[45] Simon Thompson. Haskell: The Craft of Functional Pro-
gramming. Addison Wesley, second edition, 1999.

[46] Simon Thompson and Claus Reinke. A Case Study in Refac-
toring Functional Programs. In Brazilian Symposium on
Programming Languages, 2003.

[47] M.B. van der Zwaag. Time-stamped actions in mCRL al-
gebras. Technical Report SEN-R0002, CWI, Amsterdam,
2000.

[48] A.G. Wouters. Manual for the mCRL tool set. Technical Re-
port CWI Research Report SEN-R0130, CWI, The Nether-
lands, 2001.

9

http://www.cs.kent.ac.uk/people/rpg/cr24/medina/
http://www.cs.kent.ac.uk/people/rpg/cr24/medina/


Part 3 - Diagrammatic Project Plan

Outcomes:

Workpackage 1:

Workpackage 2:

Workpackage 3:

Workpackage 4:

Workpackage 5:

Workpackage 6:

Workpackage 7:

Workpackage 8:

Workpackage 9:

Workpackage 10:

Workpackage 11:

Workpackage 12: Dissemination and collaboration
This includes the PhD student writing up his/her disser-
tation in addition to the standard dissemination activities
outlined above.

Project management:
The proposers have a long history of working together suc-

cessfully for many years. The two named RAs, Clara Benac
Earle and Huiqing Li, are currently being supervised by Der-
rick and Thompson, respectively. John Derrick worked at
Kent for 15 years and will remain as a Visiting Professor
after his move to Sheffield in January 2005. Their combined
track record, expertese make the four staff an experienced
and suitable team to carry out this work. The split of work
of the staff will be as follows:

Benac Earle and Derrick: Workpackages 1, 2, 6, 7, 8, 9, 10
PhD student and Derrick: Workpackages 10, 11 (and be part
of but not expected to contribute strongly to 1 and 2)
Li and Thompson: Workpackages 1, 2, 3, 4, 5, 9, 10.

Formal project management will be by 6-monthly review
meetings, and these will involve our industrial collaborators
T-mobile and Erlang Consulting, and will also be open to
other interested parties. It will also be possible for staff to
work at one site for short periods of time on a particular
workpackage if that is felt desirable.


