
Future Generation Computer Systems 20 (2004) 7–18

SGrid: a service-oriented model for the Semantic Grid

M. Li a,∗, P. van Santena, D.W. Walkerb, O.F. Ranab, M.A. Bakerc
a Department of Electronic and Computer Engineering, Brunel University, Uxbridge UB8 3PH, Middlesex, UK

b Department of Computer Science, Cardiff University, PO Box 916, Cardiff CF24 3XF, UK
c Distributed Systems Group, University of Portsmouth, Portsmouth PO1 2EG, UK

Abstract

This paper presents SGrid, a service-oriented model for the Semantic Grid. Each Grid service in SGrid is a Web service
with certain domain knowledge. A Web services oriented wrapper generator has been implemented to automatically wrap
legacy codes as Grid services exposed as Web services. Each wrapped Grid service is supplemented with domain ontology
and registered with a Semantic Grid Service Ontology Repository using a Semantic Services Register. Using the wrapper
generator, a finite element based computational fluid dynamics (CFDs) code has been wrapped as a Grid service, which can
be published, discovered and reused in SGrid.
© 2003 Elsevier B.V. All rights reserved.

Keywords: Semantic Grid; Web services; Service-oriented model; Wrapper generator; Domain ontology

1. Introduction

A Grid [1] is a promising next generation dis-
tributed computing infrastructure, including the so-
lution of large-scale resource intensive problems.
The Grid couples a wide variety of geographically
distributed resources such as PCs, workstations and
clusters, storage systems, data sources, databases and
special purpose scientific instruments and presents
them as an unified integrated resource. A Grid instan-
tiation is a Grid system prototype using one or more
of the Grid middleware technologies such as Globus
[2], Condor[3], or UNICORE[4]. Most current Grid
instantiations are focused on computational services
for end users. They lack the ability to provide do-
main problem solving services and knowledge related
services.

∗ Corresponding author.
E-mail address: maozhen.li@brunel.ac.uk (M. Li).

Fundamental research on Semantic Web[5] has al-
lowed the Grid community to move from the current
data centric view supporting the Grid, towards a Se-
mantic Grid with a set of domain specific problem
solving services and knowledge services. The Seman-
tic Grid [6] is a service-oriented architecture in which
entities provide services to one another under various
forms of contract. The Semantic Grid is characterized
by an open system, with a high degree of automation,
which supports flexible collaboration and computation
on a global scale. In such an environment it is essen-
tial that information relating to the needs of the user
and their applications, and the resource providers and
their networking, storage and computational resources
all have easily discoverable interfaces, and are defined,
which means that can be used by higher-level ser-
vices to effectively exploit the Grid. Zhuge[7] presents
a soft-device concept to enhance semantic capabili-
ties for the Grid by dynamically clustering resources
through a single semantic image. Like the Semantic
Web which is defined as “an extension of the current

0167-739X/$ – see front matter © 2003 Elsevier B.V. All rights reserved.
doi:10.1016/S0167-739X(03)00160-2

8 M. Li et al. / Future Generation Computer Systems 20 (2004) 7–18

Web in which information is given well-defined mean-
ing, better enabling computers and people to work in
cooperation”, the Semantic Grid can be described as
an “extension of the current Grid in which information
and services are given well-defined meaning, better en-
abling computers and people to work in cooperation”
[8].

SGrid is a service-oriented model for the Seman-
tic Grid in which each Grid service is exposed as
a Web service (WS). A WS[9] is a self-contained,
self-describing, modular application that can be pub-
lished, located, and invoked across the Web. The
core WSs include WSDL for service description,
UDDI for service publishing and discovery, SOAP
for service binding and invocation. Since the WSs
standards are simple and based on standard Web
technologies, these standards have the advantage of
widespread academic and industrial support, which
implies greater uptake, ease-of-use, and true ubiquity.
In SGrid, each Grid service is exposed as a WS with
a semantic description defined in a Semantic Grid
Service Ontology Repository (SGSOR). A service
consumer such as an end user needs to negotiate
with a service provider about the terms under which
the services can be provided. The underlying com-
plexity of the Semantic Grid infrastructure and the
speedy interaction required, make software agents the
most likely candidate to handle these negotiations. In
SGrid, each user accesses the Semantic Grid through
an User Agent (UA). Each UA acts as a service
consumer and interacts with a Grid System Agent
(GSA), which acts as a service provider. The GSA
manages all the Grid services in a Grid system. In
addition, SGrid is end users oriented. End users are
computational scientists knowing little about com-
puter software and hardware. In SGrid, there are
three situations for end users to access Semantic Grid
services:

• End users provide a data set for a domain problem
and a problem solver; SGrid only provides compu-
tational services. In this situation, an user domain
problem solver can be wrapped as a Semantic Grid
service to be used by other users.

• End users provide a data set and a description for
a domain problem; SGrid provides information ser-
vices (domain problem solvers) and computational
services.

• End users provide a data set for a domain; SGrid
provides knowledge services to find the semantic
meaning of the data set.

The rest of this paper is organized as follows.
Section 2gives a layered structure for the Semantic
Grid. Section 3describes the software architecture
of SGrid and the main components used in SGrid.
Section 4presents Web services oriented wrapper gen-
erator (WSOWG) for automatically wrapping legacy
codes as Grid services exposed as WSs.Section 5
describes a case study on wrapping a computational
fluid dynamic (CFD) code as a WS with WSOWG.
Section 6compares SGrid with related work.Section 7
concludes the paper and gives future work.

2. A layered structure for the Semantic Grid

From a service-oriented point of view, the Semantic
Grid can be divided into four layers—computational
services layer, data services layer, information services
layer and knowledge services layer. The layered struc-
ture is shown inFig. 1.

2.1. Computational services layer

The computational services layer is primarily con-
cerned with large-scale pooling of computational
resources. The services provided by this layer are
related to resource discovery and allocation, resource
monitoring, user authentication, task scheduling or
co-scheduling, fault tolerance.

Fig. 1. A layered structure of the Semantic Grid.

M. Li et al. / Future Generation Computer Systems 20 (2004) 7–18 9

2.2. Data services layer

Built on top of a computational services layer, a data
services layer mainly provides intensive computation
and analysis of shared large-scale data sets, from hun-
dreds of TeraBytes to PetaBytes, across widely dis-
tributed scientific communities. The services provided
by this layer are related to data storage, meta-data
management, data replication and data transferring.

2.3. Information services layer

The information services layer runs on top of a data
services layer allowing uniform access to heteroge-
neous information sources and providing commonly
used services running on distributed computational re-
sources. Uniform access to information sources relies
on meta-data to describe information and to help inte-
grate heterogeneous resources. The granularity of the
offered services can vary, from subroutine or method
calls to complete applications. Hence, in scientific
computing, services can include the availability of
specialized numerical solvers, such as matrix solvers
and partial differential equation (PDE) solvers, to
complete scientific codes for applications such as
weather forecast and molecular or fluid dynamics.
In commercial computing, services can be statisti-
cal routines based on existing libraries or prediction
services, which offer coarser grained functionality,
such as database profiling or visualization services.
In hypermedia applications, services can be multime-
dia content analysis algorithms or hyperlink servers.
Services in this layer can therefore be offered by in-
dividual providers or by corporations; they may be
specialized for specific applications such as genomic
databases, or general purpose, such as numerical
libraries.

2.4. Knowledge services layer

The knowledge services layer is the top most layer
that provides services, which can look for patterns
in existing data repositories, and manage information
services. Running on top of a data services layer, the
knowledge service layer can provide knowledge dis-
covery from a huge amount of data using a data-mining
mechanism. Or it can provide semantic meaning of
information services aggregated from the informa-

tion services layer. This layer is domain oriented and
usually uses domain knowledge built with domain
ontology.

It is intended that each of these layers provide ser-
vices to various applications, ranging from support
for mobile devices, to large-scale single applications
such as modeling protein folding and concurrent
engineering.

A substantial part of the research effort dedicated
to the Grid has concentrated on the computational and
data layers. However, growing interest in the recently
established “the Semantic Grid” working group at the
Global Grid Forum[10] indicates the importance of
services provided by the Semantic Grid.

3. The software architecture of SGrid

SGrid is a service-oriented model for the Semantic
Grid. Fig. 2 shows the software architecture adopted
by SGrid. The main components in SGrid are UAs and
a GSA, a WSOWG used to wrap legacy codes as WSs,
a Semantic Services Register (SSR) to register a WS
with domain knowledge, a Semantic Services Mapper
(SSM) to map from a semantic service description to
a specific WS. The main functions of each component
are given below.

3.1. Web services oriented wrapper generator

The WSOWG is used to automatically wrap legacy
codes as WSs for use in SGrid. Each legacy code
could be a problem solver, or a data-mining algo-
rithm to discover a pattern in a data set. Each wrapped
Grid service has a WSDL interface for service de-
scription; an entry in an UDDI based Grid Services
Repository (UddiGSR) for service registry and dis-
covery; a SOAP Listener for service implementation;
a semantic capability description registered with a
SGSOR.

3.2. Semantic Services Register

The SSR is used to extend the UddiGSR to sup-
port semantic services. The UDDI search mechanism
relies on pre-defined categorization through keywords
and does not refer to the semantic content of the ad-
vertisements. The registry is supposed to function in a

10 M. Li et al. / Future Generation Computer Systems 20 (2004) 7–18

User Agent User

User User Agent

Semantic Grid

Services

Ontology

Repository

Semantic

Services

Register

Semantic

Services

Mapper

UDDI Grid

Services

Repository

Grid

System

Agent

User Agent User

Web Services Oriented

Wrapper Generator

Grid Middleware

Legacy

Codes Grid Resources

A Grid System

Fig. 2. The software architecture of SGrid.

<SemanticGridServices>

 <ServiceNode>

<Name>Numerical Solvers</Name>

<Parent>NULL</Parent>

<Related query = “Numerical Libraries” match = “100%” />

<Related query = “Numerical Calculation” match = “70%” />

<Related query = “Numerical Analysis” match = “90%” />

 </ServiceNode>

 <ServiceNode>

<Name>Partial Differential Equation</Name>

<Parent>Numerical Solvers</Parent>

<Related query = “PDE” match = “90%” />

<Related query = “Partial Differential Solver” match = “100%” />

<Related query = “Partial Differential Equation Library” match = “100%” />

<Related query = “Method for Wave Propagation” match = “80% />

<Related query = “Method for Heat Transfer in Solid” match = “80%” />

<Related query = “Method for Flow in Porous Media” match = “80%” />

<Related query = “Method for Plane stress and strain in structural Mechanics” />

<Related query = “Mathematical Model” match = “40” />

 </ServiceNode>

</SemanticGridServices>

Fig. 3. The capability description of a Semantic Grid service.

M. Li et al. / Future Generation Computer Systems 20 (2004) 7–18 11

for each entry in the SGSOR

 match the entry with a service request

 if match successfully

 find the leaf node related to the matched entry in the SGSOR

 add the leaf node with a match degree to a service candidate list

 continue match

end of match

for each entry in the service candidate list

 find the closest service candidate based on a match degree

return the closest service candidate registry

Fig. 4. The algorithm used to match a Semantic Grid service.

fashion similar to white or yellow pages, where busi-
nesses can be looked up by name or by standard ser-
vice taxonomy as is already used within the industry.
UDDI itself does not support semantic descriptions of
services.

Each Grid service has a domain ontology descrip-
tion defined in XML to express its semantic capabili-
ties. Ontology is defined as a set of knowledge terms,
including the vocabulary, the semantic interconnec-
tions, and some simple rules of interference and logic
for some particular topics[11]. The SSR registers the
semantic capability description of each Grid service

String findSemanticGridService (ServiceRequest)

{

 String Service;

 int i, j, NumberofMatch = 0;

 for (i = 0; i < n; i++) //n is the total entry number in SGSOR

 {

 if (match (Entryi, ServiceRequest))

 {

 Service[NumberofMatch] = Ni, // find the leaf node Ni related to Entryi;

 Match[NumberofMatch] = DegreeofMatchi;

 NumberofMatch++;

 }

 }

 for (j = 0; j <NumberofMatch ; j++)

 {

 if (Match [0] < Match [j])

 {

 Match[0] = Match[j];

 Service = Service [j];

 }

 }

 return Service;

 }

Fig. 5. The implementation of the semantic service matching algorithm.

with the SGSOR. Each Grid service in the UddiGSR
has an unique registry in the SGSOR. The SGSOR
is organized in a tree structure and defined in XML.
Each registry in the SGSOR has a name and one or
more related items of which each has a match degree
to define the semantic relationship with the registry.
For example,Fig. 3shows the semantic capability de-
scription of a Grid service defining numerical solvers
with a PDE service. The semantic capabilities for a
PDE Grid service could be, for example, a PDE solver,
a method for wave propagation, or a method for heat
transfer in solid.

12 M. Li et al. / Future Generation Computer Systems 20 (2004) 7–18

binding

Service

Implementation

Grid service

mapping

service

WSDL

semantic

service

match

problem

formulation

in XML

UDDI Grid

Service

Repository

Semantic Grid

Services

Ontology

Repository
Grid

System

Agent

User

Agent

Domain

Problem

Description

Fig. 6. The data flow for a Semantic Grid service matching.

3.3. Semantic services mapper

The SSM is used to match a specific WS in the
UddiGSR from a semantic service registry in the SG-
SOR. Each registry in the SGSOR is a semantic ser-
vice associated with a couple of related terms with
different ranking rates. For an user service request,
there may be multiple semantic service candidates
based on a semantic understanding. The SSM will
rank these semantic match degrees to choose the clos-
est candidate. When searching and finding a Grid ser-
vice, a semantic match will be performed first in the
SGSOR, and then the WS in the UddiGSR can be
found by mapping the registry in the SGSOR to the
WS in the UddiGSR. The algorithm used to find a
semantic service in the SGSOR is given inFig. 4
and the implementation of the algorithm is given in
Fig. 5.

3.4. UAs and GSA

The UA acts on behalf of a user. Each UA runs on
a specific Grid system managed by a GSA. An UA
communicates with the GSA to request Grid services
available for an user. These Grid services are described
in a user friendly way. For a molecular dynamic code,
for instance, its functionality and usage information
will be provided to an user. An user can browse
Grid services available and then submit a service
request.

An UA can assist an user in formulating a domain
problem, and submit the user request to a GSA. For
example, an user may ask for a service such as “Find
me a solution to partial differential equation”. The
UA will then parse the user request, formulate it in
XML and forward it to the GSA. The GSA will use the
SSM to perform a semantic match in the SGSOR and
map a specific WS in the UddiGSR, and then bind the
service for service invocation. The data flow to find a
Semantic Grid service is shown inFig. 6.

4. The implementation of WSOWG

In this section, we will describe the implementation
of WSOWG, a WSOWG used to automatically wrap
legacy codes as WSs for reuse in the SGrid. First we
give a brief introduction to a wrapper generator (WG),
used to automatically wrap legacy codes as CORBA
components.

4.1. A CORBA oriented WG

We have implemented WG, a CORBA oriented
WG [12] on Solaris 2.7 using Visibroker[13] as the
CORBA ORB. The main constraints for a legacy code
to be wrapped as a component with WG are:

• The legacy code can be a sequential code or a par-
allel code using MPI[14].

• The legacy code can be written in C, Fortran or Java.

M. Li et al. / Future Generation Computer Systems 20 (2004) 7–18 13

• The legacy code can be located anywhere within a
distributed computing network.

• The legacy code must be a binary code and can per-
form certain functions with some input(s)/output(s).

When using the WG to wrap a legacy code, de-
velopers need to supply WG with parameters such as
the wrapped component name, the name and location
of the legacy code, the legacy code type (sequential
or parallel in MPI), processors used, inputs and out-
puts of the legacy code. After receiving the parameters
from a developer, WG will check the validity of these
parameters, and then generate a CORBA IDL and an
XML interface based on the input parameters. Using
an IDL compiler, WG generates a skeleton for the
component. Based on the specified parameters, WG
knows how to generate the Listener. If there are no
data input to the component, the generated Listener
will automatically invoke the Body of the component
once a request has been received. Otherwise, the gen-
erated Listener will first finish receiving data from
another component, and then it invokes the Body of
the component. Input data may either be streamed to
the component, or read from a file. The Publisher is
generated in a similar way to the Listener. The gen-
eration of the Body is completed by a Body template
within WG, making use of the skeleton created by the
IDL compiler. The main function of the Body is to
invoke the legacy code wrapped inside it. After gen-
erating all the interfaces needed to wrap the legacy
code as a component, WG stores the component in
the Component Repository (CR) in XML for future
use.

4.2. Web services oriented wrapper generator

In order to augment the WG to the WSOWG, we
have implemented three new tools using Apache Axis
[15] and UDDI4J[16] and integrated them with the
WG. The functionality of each tool is described below.

4.2.1. IDL2WSDL
Based on Java2WSDL from Apache Axis,

IDL2WSDL can generate a WSDL interface includ-
ing the binding information for a component wrapped
from a legacy code. IDL2WSDL makes use of an
XML description of the component IDL generated by
WG. CORBA parameters can be of typeout or inout.

An out type is a variable that is initialized and set in
a server and sent back to the client. Aninout type is
a type that is initialized and set in a server and can
be sent between a client and a server. IDL2WSDL
deals with CORBAout and inout in this way. If an
operation hasout parameters then these parameters
appear as parts in the operation response message.
If an operation hasinout parameters, then these pa-
rameters will have a part with the same in both the
operation request and response messages. The WSDL
interface can be used by a WS client to invoke the
WS component, and can also be registered with the
UddiGSR for service discovery.

4.2.2. WSDL2SOAP
WSDL2SOAP makes use of WSDL2Java from

Apache Axis and the WSDL of a CORBA component
to generate a SOAP Listener to implement a SOAP
binding implementation for a WS component. The
SOAP Listener listens requests from a WS client and
then invokes the corresponding CORBA component
wrapped via WG.

4.2.3. UDDIKit
A tool used to manage the UddiGSR. UDDIKit reg-

isters a WS component wrapped via WSOWG with
the UddiGSR and publishes them on the Web. A Web
user can find a service needed through browsing the
UddiGSR.

Fig. 7 shows the data flow of WSOWG. After re-
ceiving the parameters for wrapping a legacy code as
a WS component, WSOWG first invokes WG to check
the validity of these parameters, such as the validity of
the component directory, and whether the input types
belong to the types it supports. WG will then gener-
ate a CORBA IDL and an XML interface based on
the legacy code properties. Using an IDL compiler,
WG generates a skeleton for the component includ-
ing a Listener, a Publisher, and a Body of the com-
ponent. Secondly, WSOWG invokes IDL2WSDL to
generate a WSDL interface based on an XML descrip-
tion of the component IDL. Thirdly, WSOWG invokes
WSDL2SOAP to take the WSDL interface as an input
to generate a SOAP Listener, which will integrate a
call to the CORBA component Listener through IIOP.
Finally, WSOWG invokes the UDDIKit to register the
wrapped component with the UddiGSR for service
discovery.

14 M. Li et al. / Future Generation Computer Systems 20 (2004) 7–18

Legacy Code Description in XML Legacy Code

WSOWG

IDL Interface

in XML

IDL2WSDL

WSDL

WSDL2SOAP WG

UddiGSR

UDDIKit

 Web Service Component
Data

Output
SOAP

Request IIOP
SOAP

Listener

CORBA

Listener

CORBA

Publisher

CORBA

Body

Fig. 7. The data flow of WSOWG.

5. A case study: wrapping a CFD code as a WS

In this section we describe how to use the WSOWG
to automatically wrap a CFD legacy code as a WS
component in SGrid. The CFD code called PHI3D[17]
written in Fortran is a finite element based CFDs code
for simulating incompressible Navier–Stokes flows,
and is being used to model flow in the lung and up-
per respiratory system. The legacy code “PHI3D.x”
makes use of one processor. It has 1 input and 12
outputs (steps, inner steps, Mass, Uvel, Vvel, Wvel,
Temp, PHI, Press, DeltaT, Time, Reyn). The CORBA
component IDL generated from the WG is illustrated
in Fig. 8.

module CFD

{

 interface CFDComponent

 {

void Listener(in string ComponentID, in string inputs);

void Body(in string parameters);

void Publisher(out string Component ID, out string outputs);

 };

 };

Fig. 8. The CORBA component IDL.

A segment of the WSDL interface describing the
Publisher is given inFig. 9. The WSDL interface is
automatically generated through the IDL2WSDL tool
provided by the WSOWG. Once the legacy code has
been wrapped as a WS, the WSOWG will register the
WS with the UddiGSR and invoke the SSR in SGrid
to register its semantic capabilities with the SGSOR
for semantic reuse.

6. Related work

We compare SGrid with related work based on the
following aspects.

6.1. SGrid portals and legacy portals

Most Grid systems provide services to end users via
a Grid portal. A Grid portal is a Web based user inter-
face that provides seamless access to heterogeneous
Grid resources. The goal is to allow scientists to focus
completely on science by making the Grid a transpar-
ent extension of the user’s desktop environment. Grid
portals in current use include XCAT[18], Gateway
[19], HotPage[20], JiPANG[21], AliEN [22], Grappa

M. Li et al. / Future Generation Computer Systems 20 (2004) 7–18 15

<?xml version = “1.0” encoding = “ITF-8”?>

<definitions

 name = “CFDComponent”

 …

<message name = “PublisherRequest” />

<message name = “PublisherResponse” />

 <part name = “ComponentID” type = “xsd:string” />

 <part name = “outputs” type = “xsd:string” />

 </message>

<portType name = “CFDComponent”>

 …

<operation name = “Publisher”>

 <input message = “tns:PublisherRequest” />

 <output message = “tns:PublisherResponse” />

 </operation>

 </portType>

<binding name = “CFDComponentBinding” type = “tns:CFDComponent”>

 <soap:bindings style = “rpc” transport = http://schemas.xmlsoap.org/soap/http />

 …

<operation name = “Publisher”>

 <soap:operation soapAction = “Publisher” />

 <input>

 <soap:body use = “encoded” namespace = “urn:CFDComponent”

 encodingStyle = http://schemas.xmlsoap.org/soap/encoding/ />

 </input>

 <output>…</output>

 </operation>

 </binding>

<service name = “CFDComponentService”>

 <port name = “CFDComponent” binding = “tns:CFDComponentBinding”>

 <soap:address location = http://localhost:8080/axis/services/CFDComponent />

 </port>

 </service>

</definitions>

Fig. 9. The Publisher WSDL of the CFD WS component.

[23], Genius[24] and many others. While no two por-
tal designs are the same, they all share the following
characteristics[25]:

• A portal user makes a secure connection from a
Web browser to the portal server.

• The portal server then obtains a certificate from a
proxy certificate server and uses that to authenticate
the user with the Grid.

• When the user completes defining the parameters of
the computation the portal Web server launches an
application manager, which is a process that con-
trols and monitors the actual execution of the Grid

computation. The Web server delegates the user’s
proxy credential to the application manager so that
the application manager may act on the user’s be-
half.

In some systems, the application manager publishes
an event/message stream to a persistent event channel
archive. This event stream describes the state of the
Grid application execution and can be monitored by
the user through the Web browser.

Compared with a conventional Grid portal, the ben-
efits provided by a portal built from SGrid can be sum-
marized as follows.

16 M. Li et al. / Future Generation Computer Systems 20 (2004) 7–18

6.1.1. Interoperability
The three-tier architecture results in a classic

stove-pipe problem: user interfaces are locked into
particular middle tiers, which in turn are locked into
specific back end systems and resources. An SGrid
portal built from Grid services, which are defined in
a context-independent way in terms of their inter-
faces, rather than its implementations. Portals built
this way are interoperable. An SGrid portal may use
Grid services provided by different Grid systems al-
lowing users to access coarse-grained federated Grid
resources and services.

6.1.2. Semantic Grid services
An SGrid portal can provide information and

knowledge services except for normal computational
services provided by conventional portals. In addition,
the use of software agents and domain ontology can
semantically assist users in formulating their problem
description, searching possible solutions on the Grid.

6.2. SGrid and the Semantic Web

SGrid is a service-oriented model for the Seman-
tic Grid. It has a layered structure in which different
layers provide different services. Research on the Se-
mantic Web[26] can be applied to the knowledge ser-
vices layer in SGrid. Zhuge[27] presents a knowledge
Grid model and a knowledge Grid operation language
(KGOL) to allow users to easily create and share their
knowledge Grids. SGrid allows users to easily wrap
legacy codes as Grid services including computational
services, information services and knowledge services
using the WSOWG. The KGOL can be used to ex-
press the semantic relationships of the wrapped Grid
services in SGrid.

6.3. The WG in SGrid

There is some prior work that addresses issues for
generating wrappers with semi-automatic generation
or meta-wrapper style to leverage legacy codes to a
distributed environment.

Vidal et al. [28] suggests wrappers and mediators
to access data from heterogeneous database or legacy
servers. Ashish and Knoblock[29] suggested that in-
formation mediator for obtaining information from
multiple Web sources. Souder and Mancoridis[30]

provided wrappers for securely integrating legacy sys-
tems into a distributed environment. However, these
works are about how to migrate legacy information
systems to a distributed environment mainly on obtain-
ing information from multiple data sources. A wrapper
is provided for each data source. WSOWG is about au-
tomatically leveraging legacy codes as WSs to a Grid
environment.

Kim and Bieman[31] provided a wrapping tech-
nique that enables various legacy systems to be
reused on CORBA based distributed environments
without any changes to them. An automatic wrapper
generation method based on extensible wrapping tem-
plate classes is presented for wrapping legacy codes.
The legacy codes in the work are sequential codes.
WSOWG differs from the work in two ways. First,
the legacy codes in WSOWG can be sequential codes
or parallel codes using MPI based on the implementa-
tion of WG. Second, WSOWG is a software tool, not
just a template class. Therefore, users do not need to
write any codes to use WSOWG. They only need to
specify the parameters related to a legacy code when
wrapping the legacy code as a WS component with
WSOWG.

SWIG [32] is a software tool that provides an inter-
face compiler that connects high legacy codes written
in C, C++, and Objective-C with scripting languages
such as Perl, Python, and Tcl/Tk. Legacy codes can be
sequential codes or parallel codes using MPI. Whereas
SWIG focuses on manipulating legacy codes through
the use of scripting languages, WSOWG is used to
automatically wrap legacy codes as WS components
(component SOAP Listeners, component WSDL inter-
faces, component CORBA skeletons, component data
flow) which can then be plugged together to create
applications for reuse on the Grid.

Built from the WG, the WSOWG also provides
CORBA the ability for parallel computing. CORBA
enables the seamless integration of distributed objects
within one system, and is designed primarily for se-
quential applications. High performance computing
applications are mostly parallel programs using mes-
sage passing paradigms such as MPI. CORBA cannot
replace the MPI communication layer due to archi-
tectural and performance constraints. When wrapping
an MPI based high performance legacy code as a
parallel CORBA component, WSOWG makes use of
an MPI runtime to manage the intra-communication

M. Li et al. / Future Generation Computer Systems 20 (2004) 7–18 17

of multiple processors within the parallel component.
The inter-communication among different compo-
nents is managed by CORBA. The advantage is that
users can use existing CORBA implementations (such
as Visibroker, Orbacus[33] and others) without any
modification to CORBA IDL compilers, as is done
in other projects with a similar objective, such as
PARDIS [34] and Cobra[35].

7. Conclusions and future work

The Semantic Grid will play a very important role in
the widespread uptake of the Grid. It will provide en-
hanced support for end users to access heterogeneous
Grid services and resources by understanding their
domain problems and providing solutions. SGrid is a
service-oriented model for the Semantic Grid in which
each Grid service is exposed as a WS with semantic
capabilities defined in a domain ontology repository.
Legacy codes can be automatically wrapped as Grid
services exposed as WSs for semantic reuse in SGrid
using the WSOWG. In addition, the use of software
agents assists end users in formulating their domain
problems, providing solutions, and submitting tasks to
the Grid.

The SGrid project is at a very early stage. There are
several key issues need to be resolved before its full
implementation:

• SGrid should be able to support multiple GSAs. If a
Grid service in one Grid system is not available, the
GSA could negotiate with other GSAs to request
the specific service. Thus SGrid could provide users
the ability to access federated Grid resources and
services, which may run across different domains.

• An expressive Semantic Grid Service Ontology
should be taken into consideration using a seman-
tic services description language such as DAML-S
[36] to provide rules of inference and logic for
some domains.

References

[1] I. Foster, C. Kesselman, The Grid, Blueprint for a New
Computing Infrastructure, Morgan Kaufmann, San Francisco,
USA, 1998.

[2] Globus.http://www.globus.org.

[3] Condor.http://www.cs.wisc.edu/condor/.
[4] UNICORE. http://www.unicore.de/.
[5] Semantic Web.http://www.w3.org/2001/sw/.
[6] Semantic Grid.http://www.semanticgrid.org.
[7] H. Zhuge, Clustering soft-devices in Semantic Grid, IEEE

Comput. Sci. Eng. 4 (6) (2002) 60–62.
[8] N. Furmento, W. Lee, A. Mayer, S. Newhouse, J. Darlington,

ICENI: an open Grid service architecture implemented with
Jini, in: Proceedings of the IEEE/ACM SuperComputing’02,
Baltimore, USA, November 2002.

[9] L.F.G. Sarmenta, Bayanihan computing net: Grid computing
with XML Web services, in: Proceedings of the CCGrid 2002,
Berlin, Germany, May 2002.

[10] Global Grid Forum.http://www.globalfridforum.org/.
[11] J. Hendler, Agents and the Semantic Web, IEEE Intell. Syst.

16 (2) (2001) 30–37.
[12] M. Li, O.F. Rana, M.S. Shield, D.W. Walker, A wrapper

generator for wrapping high performance legacy codes as
Java/CORBA components, in: Proceedings of the IEEE/ACM
SuperComputing’00, Dallas, USA, November 2000.

[13] Borland.http://www.borland.com/visibroker.
[14] MPICH.

http://www-unix.mcs.anl.gov/mpi/mpich/indexold.html.
[15] Apache Axis.http://www.xml.apache.org/axis/.
[16] UDDI. http://www-124.ibm.com/developerworks/oss/uddi4j/.
[17] P.T. Williams, A.J. Baker, Incompressible computational fluid

dynamics and the continuity constraint method for the 3D
Navier–Stokes equations, Num. Heat Transf. B 29 (1996)
137–273.

[18] S. Krishnan, et al., The XCAT science portal, in: Proceedings
of the SuperComputing’01, 2001.

[19] M. Pierce, C.-H. Youn, G. Fox, The Gateway computational
Web portal: developing Web services for high performance
computing, in: Proceedings of the International Conference
on Computational Science, 2002, pp. 503–512.

[20] M. Thomas, J. Boisseau, Development of Web toolkits
for computational science portals: the NPACI HotPage, in:
Proceedings of the HPDC9, 2000, pp. 308–309.

[21] T. Suzumura, et al., JiPANG: a Jini-based computing portal
system, in: Proceedings of the SuperComputing, 2001.

[22] AliEN. http://www.alien.cern.ch/.
[23] Grappa.http://www.iuatlas.physics.indiana.edu/grappa/.
[24] Genius.http://www.genius.ct.infn.it/.
[25] D. Gannon, et al., Programming the Grid: distributed software

components, P2P and Grid Web services for scientific
applications, Cluster Comput. 5 (3) (2002) 325–336.

[26] H. Zhuge, VEGA-KG: a way to the knowledge web, in:
Proceedings of the 11th International World Wide Web
Conference, Honolulu, Hawaii, USA, May 2002.

[27] H. Zhuge, A knowledge Grid model and platform for global
knowledge sharing, Expert Syst. Appl. 22 (2002) 313–320.

[28] M.E. Vidal, L. Raschid, J.R. Gruser, A meta-wrapper for
scaling up to multiple autonomous distributed information
sources, in: Proceedings of the Third International Conference
on Cooperative Information Systems, 1998, pp. 148–157.

[29] N. Ashish, C.A. Knoblock, Semi-automatic wrapper gene-
ration for Internet information sources, in: Proceedings of the
Second International Conference on Cooperative Information
System, 1997, pp. 160–169.

http://www.globus.org
http://www.cs.wisc.edu/condor/
http://www.unicore.de/
http://www.w3.org/2001/sw/
http://www.semanticgrid.org
http://www.globalfridforum.org/
http://www.borland.com/visibroker
http://www-unix.mcs.anl.gov/mpi/mpich/indexold.html
http://www.xml.apache.org/axis/
http://www-124.ibm.com/developerworks/oss/uddi4j/
http://www.alien.cern.ch/
http://www.iuatlas.physics.indiana.edu/grappa/
http://www.genius.ct.infn.it/

18 M. Li et al. / Future Generation Computer Systems 20 (2004) 7–18

[30] T. Souder, S. Mancoridis, A tool for securely integrating
legacy systems into a distributed environment, in: Proceedings
of the Sixth Working Conference on Reverse Engineering,
1999, pp. 47–55.

[31] H.S. Kim, J. Bieman, Migrating legacy systems to CORBA
based distributed environments through an automatic wrapper
generation technique, in: Proceedings of the Joint Meeting
of the Fourth World Multi-Conference on Systematics,
Cybernetics and Informatics (SCI’2000) and the Sixth
International Conference on Information Systems Analysis
and Synthesis, ISAS’2000.

[32] D.M. Beazley, P.S. Lomdahl, Lightweight computational
steering of very large scale molecular dynamics simulations,
in: Proceedings of the IEEE/ACM SuperComputing’96, 1996.

[33] Orbacus.http://www.ooc.com/ob.
[34] K. Keahey, D. Gannon, PARDIS: a parallel approach to

CORBA, in: Proceedings of the Sixth IEEE International
Symposium of High Performance Distributed Computation,
1997, pp. 31–39.

[35] T. Priol, C. René, Cobra: a CORBA-compliant programming
environment for high-performance computing, in: Proceedings
of the Euro-Par’98, 1998, pp. 1114–1122.

[36] M. Paolucci, T. Kawamura, T.R. Payne, K. Sycara, Semantic
matching of Web services capabilities, in: Proceedings of the
First International Semantic Web Conference (ISWC), June
2002.

M. Li is a Lecturer in Distributed Sys-
tems at Brunel University. He received
the PhD from Institute of Software, Chi-
nese Academy of Sciences in 1997. He
was a Research Associate in Department
of Computer Science, Cardiff Univer-
sity from January 1999 to January 2002.
Dr. Li’s research interests are in the ar-
eas of Semantic Grid, parallel and dis-
tributed computing, information retrieval,

multi-agent systems, multi-modal user interface, computer sup-
ported for cooperative work.

P. van Santen leads the Distributed and
Grid Computing Group at the Department
of Electronics and Computer Engineering
at Brunel University, and serves as the
chief Architect for the new High Perfor-
mance cluster facility in the Brunel Infor-
mation Technology Laboratory (BITlab).
He is a principal investigator for a project
concerned with Service Discovery and In-
teroperability funded by the EU-DataTAG

project through PPARC. His present research interests lie in the
areas of parallel system performance analysis, high performance
clusters and Grid computing. He holds a lectureship in Advanced
Computer Architecture and Distributed Computing.

D.W. Walker is head of the Parallel and
Scientific Computing Group in the De-
partment of Computer Science at Cardiff
University, and the Director of the Welsh
E-Science Centre. Professor Walker’s re-
search interests focus on software, algo-
rithms, and environments for computa-
tional science on high performance com-
puters. He has been closely involved in
the development of the ScaLAPACK par-

allel software library, and the MPI message passing standard. He
has also contributed to the design of a parallel version of the
Community Climate Model, and has published a number of pa-
pers on the parallel implementation of particle-in-cell algorithms
for plasma simulations. He has also been involved in the bench-
marking of science and engineering applications codes on parallel
computers. Prof. Walker has published over 70 papers in the area
of parallel computing and has co-authored three books on the
subject.

O.F. Rana is a Senior Lecturer in
Computer Science at Cardiff University,
and the Deputy Director of the Welsh
E-Science/Grid Computing Centre. He
also acts as advisor to Grid Technology
Partners —an US based company spe-
cializing in Grid technology transfer to
industry. He holds a PhD in Computer
Science from Imperial College, London
University in parallel architectures and

neural algorithms, MSc in Micro-electronics from Southampton
University, and BEng in Information Systems Engineering from
Imperial College, London. His research interests are in the areas
of high performance distributed computing, multi-agent systems
and data-mining. Prior to joining Cardiff University, he worked
for over 5 years in the use of neural algorithms in a number of
fields, including biotechnology, instrumentation and control.

M.A. Baker is a Reader in Distributed
Systems within the Faculty of Technol-
ogy at the University of Portsmouth.
Dr. Baker leads the Distributed Systems
Group (DSG) that is actively working
in the areas of distributed Java, Cluster
Computing, and Grid Technologies. Dr.
Baker is co-founder and co-chair of the
IEEE Computer Society’s Task Force on
Cluster Computing (TFCC). Dr. Baker is

an editor of the international journalComputation and Concur-
rency: Practice and Experience (Wiley) and of IEEE Computer
Society’s digital magazine (DS-online).

http://www.ooc.com/ob

	SGrid: a service-oriented model for the Semantic Grid
	Introduction
	A layered structure for the Semantic Grid
	Computational services layer
	Data services layer
	Information services layer
	Knowledge services layer

	The software architecture of SGrid
	Web services oriented wrapper generator
	Semantic Services Register
	Semantic services mapper
	UAs and GSA

	The implementation of WSOWG
	A CORBA oriented WG
	Web services oriented wrapper generator
	IDL2WSDL
	WSDL2SOAP
	UDDIKit

	A case study: wrapping a CFD code as a WS
	Related work
	SGrid portals and legacy portals
	Interoperability
	Semantic Grid services

	SGrid and the Semantic Web
	The WG in SGrid

	Conclusions and future work
	References

