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Capacity of Data Collection in Arbitrary Wireless
Sensor Networks

Siyuan Chen∗ Minsu Huang∗ Shaojie Tang† Yu Wang∗

Abstract— Data collection is a fundamental function provided
by wireless sensor networks. How to efficiently collect sensing
data from all sensor nodes is critical to the performance of sensor
networks. In this paper, we aim to understand the theoretical
limits of data collection in a TDMA-based sensor network in
terms of possible and achievable maximum capacity. Previously,
the study of data collection capacity [1]–[6] has concentrated on
large-scale random networks. However, in most of the practical
sensor applications, the sensor network is not uniformly deployed
and the number of sensors may not be as huge as in theory.
Therefore, it is necessary to study the capacity of data collection
in an arbitrary network. In this paper, we first derive the
upper and lower bounds for data collection capacity in arbitrary
networks under protocol interference model and disk graph
model. We show that a simple BFS tree based method can lead
to order-optimal performance for any arbitrary sensor networks.
We then study the capacity bounds of data collection under a
general graph model, where two nearby nodes may be unable
to communicate due to barriers or path fading, and discuss
performance implications. Finally, we provide discussions on the
design of data collection under physical interference model or
Gaussian channel model.

Index Terms— capacity, data collection, arbitrary networks,
wireless sensor networks.

I. INTRODUCTION

Due to their wide-range potential applications in various

scenarios such as battlefield, emergency relief and environment

monitoring, wireless sensor networks have recently emerged

as a premier research topic. The ultimate goal of a sensor

network is often to deliver the sensing data from all sensors to

a sink node and then conduct further analysis at the sink node.

Thus, data collection is one of the most common services used

in sensor network applications. In this paper, we study some

fundamental capacity problems arising from data collection in

wireless sensor networks.

We consider a wireless sensor network where n sensors

are arbitrarily deployed in a finite geographical region. Each

sensor measures independent field values at regular time

intervals and sends these values to a sink node. The union

of all sensing values from n sensors at a particular time is

called a snapshot. The task of data collection is to deliver

these snapshots to a single sink. Due to spatial separation,

several sensors can successfully transmit at the same time

if these transmissions do not cause any destructive wireless

interference. As in the literature, we first adopt the protocol
interference model in our analysis and assume that a successful
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transmission over a link has a fixed data-rate W bit/second.

Later, we relax these assumptions to more realistic models:

physical interference model and Gaussian channel model.
The performance of data collection in sensor networks

can be characterized by the rate at which sensing data can

be collected and transmitted to the sink node. In particular,

the theoretical measure that captures the limits of collection

processing in sensor networks is the capacity of many-to-

one data collection, i.e., the maximum data rate at the sink

to continuously receive the snapshot of data from sensors.

Data collection capacity reflects how fast the sink can collect

sensing data from all sensors with interference constrain. It

is critical to understand the limit of many-to-one information

flows and devise efficient data collection algorithms to improve

the performance of wireless sensor networks.
Capacity limits of data collection in random wireless sen-

sor networks have been studied in the literature [1]–[6]. In

[1], [2], Duarte-Melo et al. first introduced the many-to-one

transport capacity in dense and random sensor networks under

protocol interference model. Both El Gamal [3] and Barton

and Zheng [4] investigated the capacity of data collection

with complex physical layer techniques, such as antenna

sharing, channel coding and cooperative beam-forming. Liu

et al. [5] recently studied the capacity of a general some-

to-some communication paradigm under protocol interference

model in random networks with multiple randomly selected

sources and destinations. Chen et al. [6] studied the capacity

of data collection under protocol interference model with

multiple sinks. However, all the research above shares the

standard assumption that a large number of sensor nodes are

either located on a grid structure or randomly and uniformly

distributed in a plane. Such an assumption is useful to simplify

the analysis and derive nice theoretical limits, but may be

invalid in many practical sensor applications.
In this paper, we focus on deriving capacity bounds of

data collection for arbitrary networks, where sensor nodes

can be deployed in any distribution and can form any network

topology. We summarize our contributions as follows:

• For arbitrary sensor networks under protocol interfer-

ence model and disk graph model (if two sensors are

within the transmission ranges of each other then they

can communicate), we propose a simple data collection

method which performs data collection on branches of

the Breadth First Search (BFS) tree. We prove that this

method can achieve collection capacity of Θ(W ) which

matches the theoretical upper bound.

• Since the disk graph model is idealistic, we also consider

a more practical network model: general graph model.
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In the general graph model, two nearby nodes may be

unable to communicate due to various reasons such as

barriers and path fading. We first show that Θ(W ) may

not be achievable for a general graph. Then we prove that

a greedy scheduling algorithm on BFS tree can achieve

capacity of Θ(λ
∗
λ

W
Δ∗ ) while the capacity is bounded by

Θ( W
Δ∗ ) from above. Here, Δ∗, λ∗, and λ are three new

interference related parameters defined in Section V.

• Finally, we discuss the data collection capacity under

more general communication models, physical interfer-

ence model and Gaussian channel model. For physical

interference model, we prove that the capacity of data

collection is in the same order as the one under protocol

interference model. For Gaussian channel model, we

derive an upper bound of data collection capacity.

The results above not only help us to understand the theoretical

limits of data collection in sensor networks, but also provide

practical and efficient data collection methods (including how

to construct data collection structure and how to schedule data

collection) to achieve near-optimal capacity. Even though we

are focusing on arbitrary networks, all of our solutions can be

applied to random networks since any random network is just

a special case of arbitrary networks.

The rest of this paper is organized as follows. We first re-

view related work in Section II, and then describe our network

model in Section III. We study the data collection capacity

under disk graph model and protocol interference model in

Section IV. In Section V, we relax the disk graph model in

our analysis and derive the bounds of data collection capacity

in a general graph model. We discuss the collection capac-

ity under physical interference model and Gaussian channel

model in Section VI, and conclude the paper in Section VII.

A preliminary conference version of this paper appeared in [7].

Due to space limit, some detailed proofs and simulation results

are ignored here, and provided as Supplemental Material.

II. RELATED WORK

Gupta and Kumar initiated the research on capacity of

random wireless networks by studying the unicast capacity in

the seminal paper [9]. A number of following papers studied

capacity under different communication scenarios in random

networks: unicast [10]–[12], multicast [13]–[15], broadcast

[16], [17]. In this paper, we focus on the capacity of data

collection in a many-to-one communication scenario.

Capacity of data collection in random wireless sensor net-

works has been investigated in [1]–[6]. Duarte-Melo et al.
[1], [2] first studied the many-to-one transport capacity in

random sensor networks under protocol interference model.

They showed that the overall capacity of data collection is

Θ(W ). El Gamal [3] studied data collection capacity subject

to a total average transmitting power constraint. They relaxed

the assumption that every node can only receive from one

source node at a time. It was shown that the capacity of

random networks scales as Θ(lognW ) when n goes to infinity

and the total average power remains fixed. Their method uses

antenna sharing and channel coding. Barton and Zheng [4]

also investigated data collection capacity under more complex

physical layer models (non-cooperative SINR model and co-

operative time reversal communication (CTR) model). They

first demonstrated that Θ(lognW ) is optimal and achievable

using CTR for a regular grid network in [18], then showed

that the capacities of Θ(log nW ) and Θ(W ) are optimal and

achievable by CTR when operating in fading environments

with power path-loss exponents that satisfy 2 < β < 4 and

β ≥ 4 for random networks [4]. Recently, Chen et al. [6]

have studied data collection capacity with multiple sinks. They

showed that with k sinks the capacity increases to Θ(kW )
when k = O( n

logn ) or Θ( nW
logn ) when k = Ω( n

log n ). Liu

et al. [5] lately introduced the capacity of a more general

some-to-some communication paradigm in random networks

where there are s(n) randomly selected sources and d(n)
randomly selected destinations. They derived the upper and

lower bounds for such a problem. However, all research above

shares the standard assumption that a large number of sensor

nodes are either located on a grid structure or randomly and

uniformly distributed in a plane. Such an assumption is useful

to simplify the analysis and derive nice theoretical limits, but

may be invalid in many practical sensor applications. To our

best knowledge, our paper is the first to study data collection

capacity for arbitrary networks.

III. NETWORK MODELS AND COLLECTION CAPACITY

A. Basic Network Models

In this paper, we focus on the capacity bound of data

collection in arbitrary wireless sensor networks. For simplicity,

we start with a set of simple and yet general enough models.

Later, we will relax them to more realistic models.

We consider an arbitrary wireless network with n sensor

nodes v1, v2, · · · , vn and a single sink v0. These n sensors are

arbitrarily distributed in a field. At regular time intervals, each

sensor measures the field value at its position and transmits

the value to the sink. We first adopt a fixed data-rate channel
model where each wireless node can transmit at W bits/second

over a common wireless channel. We also assume that all

packets have unit size b bits. The time is divided into time

slots with t = b/W seconds. Thus, only one packet can be

transmitted in a time slot between two neighboring nodes.

TDMA scheduling is used at MAC layer.

Under the fixed data-rate channel model, we assume that

every node has a fixed transmission power P . Thus, a fixed

transmission range r can be defined such that a node vj can

successfully receive the signal sent by node vi only if ||vi −
vj || ≤ r. Here, ||vi − vj || is the Euclidean distance between

vi and vj . We call this model disk graph model. We further

define a communication graph G = (V,E) where V is the set

of all nodes (including the sink) and E is the set of all possible

communication links. We assume graph G is connected.

Due to spatial separation, several sensors can successfully

transmit at the same time if these transmissions do not cause

any destructive wireless interferences. As in the literature,

we first model the interference using protocol interference
model. All nodes have a uniform interference range R. When

node vi transmits to node vj , node vj can receive the signal

successfully if no node within a distance R from vj is
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transmitting simultaneously. Here, for simplicity, we assume

that R
r is a constant α which is larger than 1. Let δ(vi) be

the number of nodes in vi’s interference range (including vi
itself) and Δ be the maximum value of δ(vi) for all nodes vi,
i = 0, · · · , n. We summarize all notations used in this paper

in a table given in Section VI of Supplemental Material.

B. Capacity of Data Collection

We now formally define delay and capacity of data collec-

tion in wireless sensor networks. Recall that each sensor at

regular time intervals generates a field value with b bits and

wants to transport it to sinks. We call the union of all values

from all n sensors at particular sampling time a snapshot of

the sensing data. The goal of data collection is to collect these

snapshots from all sensors to the sinks. It is clear that the sink

prefers to get each snapshot as quickly as possible. In this

paper, we assume that there is no correlation among all sensing

values and no network coding or aggregation technique is used

during the data collection.

Definition 1: The delay of data collection D is the time

used by the sink to successfully receive a snapshot, i.e., the

time needed between completely receiving one snapshot and

completely receiving the next snapshot at the sink.

Definition 2: The capacity of data collection C is the ratio

between the size of data in one snapshot and the time to receive

such a snapshot (i.e., nb
D ) at the sink.

Thus, the capacity C is the maximum data rate at the sink

to continuously receive the snapshot data from sensors. Here,

we require the sink to receive the complete snapshot from all

sensors (i.e., data from all sensors need to be delivered). Notice

that data transport can be pipelined in the sense that further

snapshots may begin to transport before the sinks receiving

prior snapshots. In this paper, we focus on capacity analysis
of data collection in an arbitrary sensor network.

IV. COLLECTION CAPACITY FOR DISK GRAPH MODEL

Upper Bound of Collection Capacity: It has been proved

that the upper bound of capacity of data collection for random

networks is W [1], [2]. It is obviously that this upper bound

also holds for any arbitrary network. The sink v0 cannot

receive at rate faster than W since W is the fixed transmission

rate of individual link. Therefore, we are interested in design

of data collection algorithm to achieve capacity in the same

order of the upper bound, i.e. Θ(W ).
In this section, we propose a simple BFS-based data collec-

tion method and demonstrate that it can achieve the capacity

of Θ(W ) under our network model: disk graph model. Our

data collection method includes two steps: data collection tree

formation and data collection scheduling.

A. Data Collection Tree - BFS Tree

The data collection tree used by our method is a classical

Breadth First Search (BFS) tree rooted at the sink v0. The

time complexity to construct such a BFS tree is O(|V |+ |E|).
Let T be the BFS tree and vl1, · · · , vlc be all leaves in T .

For each leaf vli, there is a path Pi from itself to the root

r/2

j
vy

vz

vx

R

Pi

v

Fig. 1. Proof of Lemma 1: on a path Pi in BFS T , the interference nodes
for a node vj is bounded by a constant.

v0. Let δPi(vj) be the number of nodes on path Pi which

are inside the interference range of vj (including vj itself).

Assume the maximum interference number Δi on each path

Pi is max{δPi(vj)} for all vj ∈ Pi. Hereafter, we call Δi

path interference of path Pi. Then we can prove that T has

a nice property that the path interference of each branch is

bounded by a constant.

Lemma 1: Given a BFS tree T under the protocol interfer-

ence model, the maximum interference number Δi on each

path Pi is bounded by a constant 8α2, i.e., Δi ≤ 8α2.

Proof: We prove by contradiction with a simple area

argument. Assume that there is a vj on Pi whose δPi(vj) >
8α2. In other words, more than 8α2 nodes on Pi are located

in the interference region of vj . Since the area of interference

region is πR2, we consider the number of interference nodes

inside a small disk with radius r
2 . See Figure 1 for illustration.

The number of such small disks is at most πR2

π( r
2 )

2 = 4α2

inside πR2. By the Pigeonhole principle, there must be more

than 8α2

4α2 = 2 nodes inside a single small disk with radius
r
2 . In other words, three nodes vx, vy and vz on the path Pi

are connected to each other as shown in Figure 1. This is a

contradiction with the construction of BFS tree. As shown in

Figure 1, if vx and vz are connected in G, then vz should be

visited by vx not vy during the construction of BFS tree. This

finishes our proof.

(a)

V

0V

0V

0V

data

slot 2

slot 3

slot 1

(b)

(c)

(d)

0

ΔPath P with    = 3

Slot 1

i                i

Slot 2

Slot 3

Fig. 2. Scheduling on a path: after Δi slots the sink gets one data.

B. Branch Scheduling Algorithm

We now illustrate how to collect one snapshot from all

sensors. Given the collection tree T , our scheduling algorithm

basically collects data from each path Pi in T one by one.

First, we explain how to schedule collection on a single

path. For a given path Pi, we can use Δi slots to collect one

data in the snapshot at the sink. See Figure 2 for illustration.
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Fig. 3. Illustrations of our scheduling on the data collection tree T .

In this figure, we assume that R = r, i.e., only adjacent nodes

interfere with each other. Thus Δi = 3. Then we color the path

using three colors as in Figure 2(a). Notice that each node on

the path has unit data to transfer. Links with the same color

are active in the same slot. After three slots (Figure 2(d)), the

leaf node has no data in this snapshot and the sink got one data

from its child. Therefore, to receive all data on the path, at

most Δi × |Pi| time slots are needed. We call this scheduling

method Path Scheduling.

Now we describe our scheduling algorithm on the collection

tree T . Remember T has c leaves which define c paths from

P1 to Pc. Our algorithm collects data from path P1 to Pc in

order. We define that i-th branch Bi is the part of Pi from vli
to the intersection node with Pi+1 for i = [1, c− 1] and c-th
branch Bc = Pc. For example, in Figure 3(b), there are four

branches in T : B1 is from vl1 to va, B2 is from vl2 to v0, B3 is

from vl3 to vb, and B4 is from vl4 to v0. Notice that the union

of all branches is the whole tree T . Algorithm 1 shows the

detailed branch scheduling algorithm. Figure 3(c)-(j) give an

example of scheduling on T . In the first step (Figure 3(c)), all

nodes on P1 participate in the collection using the scheduling

method for a single path (every Δ1 slots, sink v0 receives

one data). Such collection stops until there is no data in this

snapshot on branch B1, as shown in Figure 3(d). Then Step 2

collects data on path P2. This procedure repeats until all data

in this snapshot reaches v0 (Figure 3(j)).

Algorithm 1 Branch Scheduling on BFS Tree

Input: BFS tree T .

1: for each snapshot do
2: for t = 1 to c do
3: Collect data on path Pi. All nodes on Pi transmit

data towards the sink v0 using Path Scheduling.

4: The collection terminates when nodes on branch Bi

do not have data for this snapshot. The total slots

used are at most Δi · |Bi|, where |Bi| is the hop

length of Bi.

5: end for
6: end for

C. Capacity Analysis

We now analyze the achievable capacity of our data collec-

tion method by counting how many time slots the sink needs

to receive all data of one snapshot.

Theorem 2: The data collection method based on path-

scheduling in BFS tree can achieve data collection capacity

of Θ(W ) at the sink.

Proof: In Algorithm 1, the sink collects data from all c
paths in T . In each step (Lines 3-4), data are transferred on

path Pi and it takes at most Δi · |Bi| time slots. Recall that

Path Scheduling needs at most Δi · k time slots to collect k
packets from path Pi. Therefore, the total number of time slots

needed for Algorithm 1, denoted by τ , is at most
∑c

i=1 Δi ·
|Bi|. Since the union of all branches is the whole tree T , i.e.,∑c

i=1 |Bi| = n. Thus, τ ≤ ∑c
i=1 Δi|Bi| ≤

∑c
i=1 Δ̃|Bi| ≤

Δ̃n. Here Δ̃ = max{Δ1, · · · ,Δc}. Then, the delay of data

collection D = τt ≤ Δ̃nt. The capacity C = nb
D ≥ nb

Δ̃nt
= W

Δ̃
.

From Lemma 1, we know that Δ̃ is bounded by a constant.

Therefore, the data collection capacity is Θ(W ).

Remember that the upper bound of data collection capacity

is W , thus our data collection algorithm is order-optimal.

Consequently, we have the following theorem.

Theorem 3: Under protocol interference model and disk

graph model, data collection capacity for arbitrary wireless

sensor networks is Θ(W ).

V. COLLECTION CAPACITY FOR GENERAL GRAPH MODEL

So far, we assume that the communication graph is a disk

graph where two nodes can communicate if and only if their

distance is less than or equal to transmission range r. However,

a disk graph model is idealistic since in practice two nearby

nodes may be unable to communicate due to various reasons

such as barriers and path fading. Therefore, in this section, we

consider a more general graph model G = (V,E) where V is

the set of sensors and E is the set of possible communication

links. Every sensor still has a fixed transmission range r such

that the necessary condition for vj to receive correctly the

signal from vi is ||vi − vj || ≤ r. However, ||vi − vj || ≤ r
is not the sufficient condition for an edge vivj ∈ E. Some

links do not belong to G because of physical barriers or the
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selection of routing protocols. Thus, G is a subgraph of a

disk graph. Under this model, the network topology G can be

any general graph (for example, setting r = ∞ and putting a

barrier between any two nodes vi and vj if vivj /∈ G). Notice

that even though we still consider the protocol interference

model, our analysis still holds for arbitrary interference graph.

In general graph model, the capacity of data collection could

be W
n in the worst-case. We consider a simple straight-line

network topology with n sensors as shown in Figure 4(a).

Assume that the sink v0 is located at the end of the network

and the interference range is large enough to cover every

node in the network. Since the transmission on one link will

interfere with all the other nodes, the only possible scheduling

is transferring data along the straight-line via all links. The

total time slots needed are n(n + 1)/2, thus the capacity is

at most nb
n(n+1)t/2 = Θ(Wn ). Notice that in this example, the

maximum interference number Δ of graph G is n. It seems the

upper bound of data collection capacity could be W
Δ . We now

show an example whose capacity can be much larger than W
Δ .

Again we assume all n nodes with the sink interfering with

each other. The network topology is a star with the sink v0
in center, as shown in Figure 4(b). Clearly, a scheduling that

lets every node transfer data in order can lead to a capacity

W which is much larger than W
Δ = W

n .

VVn V 0V2 1 0VV1

V2

Vn

(a) Straight-line Topology (b) Star Topology

Fig. 4. The optimum of BFS-based method under two extreme cases.

A. Upper Bound of Collection Capacity

We first present a tighter upper bound of data collection

capacity for general graph model than the natural one W . Con-

sider all packets from one snapshot, we use pi to represent the

packet generated by sensor vi. For any vi, let l(vi) be its level

in the BFS tree rooted at the sink v0 ( which is the minimum

number of hops required for packet pi or a packet at vi to

reach v0). We use D(v0, l) to represent a virtual disk centered

at the sink node v0 with radius of hop distance l. The critical
level (or called the critical radius) l∗ is the greatest level l
such that no two nodes within l level from v0 can receive a

message in the same time slot, i.e., l∗ = max{l|∀vi, vj ∈
D(v0, l) cannot receive packets at the same time}. The re-

gion defined by D(v0, l) is called critical region. See Figure 5

for illustration. For any packet pi originated at node vi, we

define

λ∗
i =

{
l(vi) if vi ∈ D(v0, l

∗)
l∗ + 1 otherwise.

Here, λ∗
i gives the minimum number of hops needed to reach

the sink v0 after packet pi reaches the critical region around

v0. Let λ∗ = maxi{λ∗
i }. Then we can prove the following

lemma on the lower bound of delay for data collection.

V

kV

iV

jV
il(V )qV

sV

0

l*

(a) critical region around sink v0

V

l=l(V )iiV

kVjV

qV

sV

l*
l=1
l=2

0
l=0

(b) a tree view of critical region

Fig. 5. Illustration of the definition of critical region, i.e. l∗. The grey area
is the critical region, where no any two nodes can receive a message in the
same time slot due to interference around v0.

Lemma 4: For all packets from one snapshot, the delay to

collect them at sink v0

D ≥ t
∑
i

λ∗
i .

Proof: It is clear the critical region around the sink v0 is

a bottleneck for the delay. Any packet inside the critical region

can only move one step at each time slot. First, the total delay

must be larger than the delay which is needed for the case

where all packets originated outside critical region are just

one hop away from the critical region. In other words, assume

that we can move all packets originated outside critical region

to the surrounding area without spending any time. Then

each packet pi needs λ∗
i time slots to reach the sink. By the

definition of the critical region, no simultaneous transmissions

around the critical region (1-hop from it) can be scheduled in

the same slot. Therefore, the delay is at least the summation

of λ∗
i .

Let Δ∗ =
∑

i λ
∗
i

n , we have a new upper bound of data

collection capacity, C ≤ W
Δ∗ ≤ W . Notice that Δ∗ ≥ 1 and it

represents the limit of scheduling due to interference around

the sink (and its critical region).

B. Lower Bound of Collection Capacity

The data collection algorithm based on branch-scheduling

in BFS tree can still achieve the capacity of W
Δ̃

. However,

in general graph model we can not bound Δ̃ by a constant

any more, and it could be O(1) or O(n). Though this simple

method can match the tight upper bounds Θ(Wn ) and W of

examples shown in Figure 4, it is still not a tight bound. We

show such an example and discuss a tighter lower bound based

on this method in Section I of Supplemental Material.
Now we introduce a new greedy-based scheduling algorithm

which is inspired by [19]. The scheduling algorithm still uses

the BFS tree as the collection tree. All messages will be sent

along the branch towards the sink v0. For n messages from

one snapshot, it works as follows. In every time slot, it sends
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each message along the BFS tree from the current node to its

parent, without creating interference with any higher-priority

message. The priority ρi of each packet pi is defined as 1
l(vi)

.

It is clear that packets originated from the children of the sink

have the highest priority ρi = 1 while packets originated from

other nodes have lower priority ρi < 1. For two packets with

the same priority (on the same level in the BFS tree), ties can

be broken arbitrarily. Given a schedule, let vτj be the node

of packet pj in the end of time slot τ . The detailed greedy

algorithm is given in Algorithm 2.

Algorithm 2 Greedy Scheduling on BFS Tree

Input: BFS tree T .

1: Compute the priority ρi = 1/l(vi) of each message pi.
2: for each snapshot do
3: while ∃pj such that vτj �= v0 do
4: for all such pi in decreasing order of priority ρi do
5: if sending pi from node vτi will not create inter-

ference with any higher-priority messages that are

already scheduled for this time slot then
6: node vτi sends pi to its parent par(vτi ) in T .

7: end if
8: end for
9: τ = τ + 1.

10: end while
11: end for

Now we analyze the capacity achieved by this greedy data

collection method. Before presenting the analysis, we first

introduce some new notations. For two nodes vi and vj ,

h(vi, vj) denotes the shortest hop number from vi to vj in

graph G. The delay of packet pj is defined as the time until

it reach the sink v0, i.e., Dj = t ·min{τ : vτj = v0}.

j

Vi

λiV

Fig. 6. Illustration of the definitions of λi.

Let λi be the minimal hops that a packet needs to be

forwarded from node vi before a new packet at vi can be safely

forwarded along the BFS tree. So λi = max{l|∃vj , h(vi, vj) =
l and transmission from vi to par(vi) interferes with transmis-

sion from vj to par(vj)} + 1. Here par(vi) is the parent of

vi in T . See Figure 6 for illustration. Here λi = 4 for vi. We

define that λ = maxi{λi}. Both λ and λi are integers (hop

counts). In addition, we can prove that λ ≥ λ∗. A detailed

proof is provided in Section II of Supplemental Material.
Packet pj is said to be blocked in time slot τ if, in time slot

τ , pj is not sent out. We define the following blocking relation

on our greedy algorithm schedule: pk ≺ pj if in the last time

slot in which pj is blocked by the transmission of higher

priority packets in that time slot, pk is the one closest to pj in

term of hops among these packets (ties broken arbitrarily).

The blocking relation induces a directed blocking tree TD

where nodes are all message pi and edge (pk, pj) representing

pk ≺ pj . The root pr of the tree TD is a message with highest

priority (originated in a child of v0) which is never blocked.

Let P (j) the path in TD from pr to pj and h(j) be the hop

count of P (j). We then derive an upper bound on the delay

Dj of packet pj in the greedy algorithm.

Lemma 5: For each packet pj in the snapshot, its delay

Dj ≤ t ·∑pi∈P (j) min{l(vi), λ}.

Proof: We prove this lemma by induction on h(j). For

any packet pj , if h(j) = 0, which means pj is the root pr of

TD, it will not be blocked. So Dj = t · l(vj). Then consider

the right side of the inequation t·∑pi∈P (j) min{l(vi), λ} = t·
min{l(vj), λ}. Since pj is packet with highest priority, l(vj) =
1 and l(vj) ≤ λ. Thus, t ·∑pi∈P (j) min{l(vi), λ} = t · l(vj)
and the claim in this lemma holds for the case where h(j) = 0.

If h(j) > 0, i.e., pj �= pr, let τ be the last time slot in

which pj is blocked by packet pk, i.e., pk ≺ pj . Notice that

t ·h(vτk , v0) ≤ Dk − t · τ , otherwise pk would not reach v0 by

time Dk. Also h(vtj , v
t
k) ≤ λ−1 since after pk moves one hop

pj is safe to move. From time slot τ+1, pj may be forwarded

towards v0 over one hop in each time slot, and reach v0 at the

earliest time slot,

Dj ≤ t · (τ + 1 + h(vtj , v0))

≤ t · (τ + 1 + h(vtk, v0) + h(vtj , v
t
k))

≤ t · (τ + 1) +Dk − t · τ + t · λ− 1

= Dk + t · λ.
On the other hand, Dj ≤ Dk + t · l(vj) because after pk
reaches the sink v0, pj needs at most l(vj) to reach the sink.

Consequently, Dj ≤ Dk + t · min{l(vj), λ}. This completes

our proof.

Lemma 6: The data collection capacity of our greedy algo-

rithm is at least λ∗
λ

W
Δ∗ .

Proof: Let pj be the packet having maximum Dj . By

Lemma 5 and λ ≥ λ∗,

Dj ≤ t
∑

pi∈P (j)

min{l(vi), λ} ≤ λ

λ∗ t
∑

pi∈TD

min{l(vi), λ∗}

≤ λ

λ∗ t(
∑

vi∈D(v0,l∗)

l(vi) +
∑

vi /∈D(v0,l∗)

(l∗ + 1))

=
λ

λ∗ t
∑
i

λ∗
i =

λ

λ∗ntΔ
∗.

Thus, the capacity achieved by our greedy algorithm is at least
nb
Dj

= λ∗
λ

W
Δ∗ .

Remark: In summary, we show that under protocol interfer-

ence model and general graph model data collection capacity

for arbitrary sensor networks has the following bounds:

Theorem 7: Under protocol interference model and general

graph model, data collection capacity for arbitrary sensor

networks is at least λ∗
λ

W
Δ∗ and at most W

Δ∗ .

Here λ∗ describes the interference around the sink v0, while

λ describes the interference around a node vi. Since λ ≥ λ∗,
λ∗
λ ≤ 1. For disk graph model, λ∗

λ is a constant. However,
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for general graph model it may not, thus, there is still a

gap between the lower and upper bounds (such an example

is given in Section I of Supplemental Material). We leave

finding tighter bounds to close the gap as one of our future

works. For two examples in Figure 4, the greedy method

matches the optimal solutions in order. For the straight-line

topology in Figure 4(a), λ∗ = λ = n and Δ∗ = Θ(n).
Thus, the capacity λ∗

λ
W
Δ∗ = Θ(Wn ) matches the upper bound.

For the star topology in Figure 4(b), λ∗ = λ = 1 and

Δ∗ = 1. In this case, λ∗
λ

W
Δ∗ = Θ(W ) also matches the

upper bound. Compared with the branch scheduling method,

greedy method can achieve much better capacity in practice,

since greedy algorithm allows packet transmissions among

multiple branches of the BFS tree in the same time slot. This

is confirmed by our simulation results on random networks

(Section V of Supplemental Material).

VI. DISCUSSIONS ON OTHER MODELS

A. Physical Interference Model

So far, we only consider the protocol interference model,

which is an ideal and simple model. We can extend our analy-

sis to the physical interference model by applying a technique

introduced by Li et al. [8] when they studied the broadcast

capacity of wireless networks. In physical interference model,
node vj can correctly receive signal from a sender vi if

and only if, given a constant η > 0, the SINR (Signal to

Interference plus Noise Ratio)

P · ||vi − vj ||−β

B ·N0 +
∑

k∈I P · ||vk − vj ||−β
≥ η,

where B is the channel bandwidth, N0 is the background

Gaussian noise, I is the set of actively transmitting nodes when

node vi is transmitting, β > 2 is the pass loss exponent, and P
is the fixed transmission power. We can prove the following

theorem which indicates that data collection capacity under

physical interference model is still Θ(W ).
Theorem 8: Under physical interference model and disk

graph model, data collection capacity for arbitrary wireless

sensor networks is Θ(W ).
Due to space limit, the detailed proof of this theorem is

given in Section III of Supplemental Material.

B. Gaussian Channel Model

For both protocol interference model and physical interfer-

ence model, as long as the value of a given conditional ex-

pression (such as transmission distance or SINR value) beyond

some threshold, the transmitter can send data successfully to

a receiver at a specific constant rate W due to the fixed rate

channel model. While widely studied, fixed rate channel model

may not capture well the feature of wireless communication.

We now discuss the capacity bounds under a more realistic

channel model: Gaussian channel model. In such model, it

determines the rate under which the sender can send its data

to the receiver reliably, based on a continuous function of the

receiver’s SINR. Again, we assume every node transmits at a

constant power P . Any two nodes vi and vj can establish a

direct communication link vivj , over a channel of bandwidth

W , of rate

Wij = W log2

(
1 +

P · ||vi − vj ||−β

N0 +
∑

k∈I P · ||vk − vj ||−β

)
.

This model assigns a more realistic transmission rate at large

distance than the fixed rate channel model with protocol or

physical interference model.

In order to derive an upper bound for the capacity of

data collection under Gaussian channel model, we consider

the congestion at the sink node. In particular, we prove

that whatever scheduling scheme is implemented, the total

transmission rate of all the incoming links at the sink node is

upper bounded by some value. As a bottleneck, the capacity

of the whole network is always bounded by that value. Our

proof basically follows the same idea proposed in [12] [13],

which is firstly used to study the capacity bound for multicast

session under Gaussian channel model. Due to space limit, the

detailed proof is given in Section IV of Supplemental Material.
Theorem 9: An upper bound for data collection capacity

under Gaussian channel model is at most

max
i

(Wi0) +W · log2(n).
The first part of this upper bound depends on the rate of the

shortest incoming link at sink, while the second part depends

on the total number of nodes. Notice that maxi(Wi0) ≤
W log2(1 + P

N0
). Thus, which part in the bound playing an

important role depends on the relationship between n and

1 + P
N0

. When the network is a regular grid or a random

homogeneous topology, it is satisfied that li0 ≥ nγ for some

constant γ < 0. Then we have maxi(Wi0) = O(W log n).
Therefore, the total rate of all incoming links at sink node v0
is at most O(logn · W ). A lower bound of data collection

capacity in this model is still open.

VII. CONCLUSION

In this paper, we study the theoretical limits of data collec-

tion in terms of capacity for arbitrary wireless sensor networks.

We first propose a simple data collection method based on

BFS tree to achieve capacity of Θ(W ), which is order-optimal

under protocol interference model and disk graph model.

However, when the underlying network is a general graph,

we show that Θ(W ) may not be achievable. We prove that

a new BFS-based method using greedy scheduling can still

achieve capacity of Θ(λ
∗
λ

W
Δ∗ ) and also give a tighter upper

bound Θ( W
Δ∗ ). At last, we discuss the collection capacity under

more general models, physical interference model or Gaussian

channel model. Table I summarizes our results. All of our

methods can achieve these results for random networks too.

We also provide some simulation results on random networks

in Section V of Supplemental Material.
There are still several open problems left as our future work.

First, we would like to close the gap of upper and lower bounds

of data collection capacity for general graph; Second, the lower

bound of data collection capacity under Gaussian channel

model is still open. We plan to design new data collection

schemes to approximate the upper bound better. Third, even

though the capacity of data aggregation for arbitrary networks
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has been studied in [20], the author only considered the worst

case capacity. It is interesting to study aggregation capacity

for any arbitrary network. Fourth, different collection methods

may cost different amount of energy. It is desired to study

the trade-off between the achievable capacity and the energy

consumption for data collection in sensor networks. Recent

study [21] provides a nice start on this direction. Last, we

also plan to study the collection capacity under more practical

models (considering data correlation, fading effects, and time

varying channels).

TABLE I

SUMMARY OF DATA COLLECTION CAPACITY

Network Model Interference Model Capacity C
Disk Graph Protocol Interference C = Θ(W )
Disk Graph Physical Interference C = Θ(W )

General Graph Protocol Interference Θ(λ
∗
λ

W
Δ∗ ) ≤ C ≤ Θ( W

Δ∗ )
General Graph Gaussian Channel C ≤ maxi(Wi0) +W · log2(n)
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