
IIE Transactions (1997) 29, 45±52

A heuristic to minimize the total weighted tardiness with

sequence-dependent setups

YOUNG HOON LEE1, KUMAR BHASKARAN2, MICHAEL PINEDO3

1Samsung Electronics Co. Ltd., Semiconductor Business, System Supports Group, P.O. Box 37 Suwon, Korea 449-900
2IBM T.J. Watson Research Center, P.O. Box 2018, Yorktown Heights, New York 10598, USA
3Department of Industrial Engineering and Operations Research, Columbia University, New York, New York 10027, USA

Received April 1992, revised in August 1994 and accepted August 1995

We propose a three-phase heuristic for the problem of minimizing the total weighted tardiness on a single machine in the presence of
sequence-dependent setup times. In the ®rst phase a number of parameters characterizing the problem instance at hand are calculated. In the
second phase we develop a schedule by using a new priority rule whose parameters are calculated based on the results of the ®rst phase.
Computational experiments show that this rule signi®cantly outperforms the only other rule so far developed in the literature. The third
phase consists of a local improvement procedure to improve the schedule obtained in the second phase. The procedure we suggest has been
successfully implemented in an industrial scheduling system.

1. Introduction

Consider a single machine and n jobs that are all
available for processing at time zero. Let the processing
time, weight, and due date of job j be denoted by pj, wj,
and dj, respectively, where j = 1,. . ., n. The completion
time of job j depends on the schedule. If Cj denotes this
completion time, then the tardiness Tj of job j is de®ned
as max(Cj ÿ dj; 0). If job k immediately succeeds job j a
setup time sjk is incurred. Such setups are usually
sequence dependent and sjk need not be equal to skj.
The objective is to ®nd a sequence of jobs that mini-
mizes the total weighted tardiness, i.e.,

P
wjTj. If job j

starts its processing at time zero, it is assumed to require
a setup s0j.
The case with sequence-independent setups has re-

ceived considerable attention in the past, and has been
shown to be strongly NP-hard (Lawler et al., 1982). The
problem is NP-hard in the ordinary sense when there are
no setups and jobs have unit weights (Du and Leung,
1990); it then allows for a pseudo-polynomial time
algorithm (Lawler, 1978). Potts and van Wassenhove
(1982, 1985, 1987) developed ef®cient algorithms to
solve the problem with no setups optimally for a limited
number of jobs in a reasonable time. For an extensive
survey of the total weighted tardiness problem with no
setups, see Abdul-Razaq et al. (1990). It can be shown
that the problem with arbitrary setup times and all n jobs
having identical processing times is strongly NP-hard as
well. Caroll (1965) developed a priority rule referred to
as COVERT for the total tardiness problem. Vepsalainen

and Morton (1987) and Ow and Morton (1989) devel-
oped an alternative rule, the Apparent Tardiness Cost
(ATC) rule for the total weighted tardiness problem.
This rule was applied to a single machine, to parallel
machines and to various other machine environments. In
their studies ATC compared quite favorably in perfor-
mance with COVERT. COVERT and ATC schedule jobs
one at a time, i.e., every time the machine becomes
available, the job to be processed next is selected from
the set of remaining available jobs. The decision is
dynamic as the priority index of a job changes over time.
The ATC rule uses the following priority index at any

instant t when the machine is available:

Ij�t� � wj

pj
exp ÿmax�dj ÿ pj ÿ t; 0�

k p

� �
:

Here p is the average processing time of all remaining
jobs and k is a look-ahead parameter. The value of k is
determined through experiments and for a single ma-
chine, according to Vepsalainen and Morton (1987),
usually lies between 1 and 3. Observe that
max(dj ÿ pj ÿ t; 0) is the slack of job j at time t. Every
time the machine is available the indices of all remaining
jobs are calculated and the job with the highest index is
chosen to be processed next. If k approaches in®nity the
ATC rule reduces to the Weighted Shortest Processing
Time ®rst (WSPT) rule, which sequences the jobs in
non-increasing order of wj=pj. If k approaches zero, and
at most one job is overdue, it reduces to the Least Slack
Remaining rule (LSR). If k approaches zero, and there is
more than one job overdue, then the ATC rule reduces to

0740-817X # 1997 ``IIE''



the WSPT rule among the overdue jobs. For intermediate
values of k, the ATC rule constitutes a compromise
between the WSPT rule and the LSR rule, i.e., the
higher the wj=pj the more urgent the job, the larger the
slack the less urgent the job.
The case with sequence-dependent setups has received

very little attention in the literature so far. To our
knowledge, there is only one reference with regard to
this model in which problems are treated through a
dispatching rule. Raman et al. (1989) suggested a mod-
i®cation of the ATC rule to take setup times into
account. The priority index Ij�t� is modi®ed as

Ij�t; l� � wj

pj � slj
exp ÿmax�dj ÿ pj ÿ slj ÿ t; 0�

k p

� �
;

where t again denotes the current time and l the index of
the job just completed. The priority indices of all
remaining jobs are computed and the job with the high-
est index is scheduled next. This rule modi®es the ATC
rule by replacing the processing time of a job with the
sum of the processing time and the required setup time
(which of course depends on the job just completed). We
believe that this rule will work reasonably well in
general. However, there may be certain situations where
this rule will perform poorly. Consider the following
situation: at time 0 there are two jobs remaining, jobs 1
and 2 with p1 = p2 = 1, d1 = d2 = 3 and w1 = 1 and w2 =
3. The job just completed at time 0 is job l and sl1 = 0,
sl2 = 2, s12 = 0, s21 = 5. The rule would sequence the jobs
in the order (2,1), whereas it is obviously better to
sequence the jobs as (1,2). The reason that this rule
results in a poor sequence in this situation is that the
setup time appears in the numerator of the exponent. A
large setup time decreases the slack of a job and in-
creases its urgency, whereas it may be better to start a
job with a very small setup time.
In this paper we suggest an alternative priority rule,

the Apparent Tardiness Cost with Setups (ATCS) rule,
for minimizing the total weighted tardiness when the
jobs are subject to setup times. This rule is also a
generalization of the ATC rule as it takes setup times
into consideration. We show that the proposed rule
performs better on average than that suggested by Raman
et al. (1989), which will be referred to hereafter as the
Raman's rule. This rule is a part of a three-phase
heuristic procedure whose ®rst phase consists of a
statistical analysis of the problem instance at hand. The
second phase constructs a schedule by using the ATCS
rule, which has two parameters whose values depend on
the results of the ®rst phase. The third phase consists of
a post-processing procedure designed to improve the
solution obtained by the second phase. Our goal is to
develop a procedure that works fast, say, scheduling 60
jobs within a minute on a PC, and is therefore applicable
in practice.

This paper is organized as follows: in Section 2 a

description of the overall heuristic is given. In Sections
3, 4, and 5 we describe three phases of the procedure. A
summary, discussion of the results and some observa-
tions regarding future research can be found in Section
6.

2. The framework of the heuristic procedure

The priority index of the ATCS priority rule we suggest
can be expressed as follows:

Ij�t; l� � wi

pj
exp ÿmax�dj ÿ pj ÿ t; 0�

k1p

� �
exp ÿ slj

k2 �s

� �
;

where t denotes the current time and l the index of the
job just completed; �s the average setup time; k1 and k2
are look-ahead or scaling parameters.
The ATCS rule, in contrast with Raman's rule, sepa-

rates the effect of the remaining slack from the effect of
the setup time. The priority of a job given by the WSPT
ratio is exponentially discounted twice, once based on
slack and again based on setup. These two effects are
scaled separately by the parameters k1 and k2, which
jointly provide the look-ahead capabilities of the ATCS
rule. The values of the parameters k1 and k2 depend on
the problem instance as they essentially perform scaling.
In the ®rst phase, the preprocessing procedure, we
compute the values of a number of coef®cients that
characterize the instance at hand. By statistical analysis
the relationship between the coef®cients and the scaling
parameters can be determined. In the second phase the
values of the scaling parameters are determined. By
using the ATCS rule with these parameter values the
actual sequence of the jobs is generated. The third phase,
the post-processing procedure, consists of the modi®ca-
tion of the sequence to improve the quality of the
schedule with respect to the objective function. The
overall heuristic procedure is shown in Fig. 1.

3. Phase one: computation of coef®cients

In the ®rst phase three coef®cients are computed in order
to characterize the instance. The ®rst coef®cient is the
Due Date Tightness factor � , which is de®ned as

� � 1ÿ �d=Cmax ;

where d is the average of the due dates and Cmax the
makespan (the completion time of the last job to leave
the system). It has been used before by Srinivasan (1971)
and Baker and Martin (1974). It is clear that the make-
span is schedule dependent because of the sjk and there-
fore dif®cult to determine before the jobs are scheduled.
To estimate � it is necessary to have an estimate for
Cmax. We will elaborate on the estimate for Cmax later in
this section.

46 Lee et al.



The second coef®cient is the Due Date Range factor
R, which is de®ned as

R � �dmax ÿ dmin�=Cmax :

It was introduced by Baker and Martin (1974) and used
by Ow and Morton (1989). Again, we have to replace
Cmax by its estimator. Although � gives an indication of
the average tightness of the due dates, R provides a
measure of the variability of the due dates with regard to
the total workload.
The third coef®cient is the Setup Time Severity factor

�, which is de®ned as

� � �s=�p;

where s is the average setup time.
As mentioned above, the makespan depends on the

schedule owing to the fact that setup times are deter-
mined by the sequence. Therefore we have information
about the makespan, Cmax, only after we determine a
speci®c sequence. The makespan consists of two parts:
the processing time of the jobs and the setup times
between the jobs. Because every job has to be processed
once, np is the processing time component of Cmax. The
setup time portion of Cmax is, however, usually much
smaller than ns because during the generation of the
schedule a job with a smaller setup time is more likely to
be selected.
We estimate Cmax as n�p� �s), with � � 1. It is easy

to see that the number of jobs, n, affects the value of �.
From the (n + 1) � n matrix of setup time data, only n

entries are selected, most of which are likely to have
small values. Therefore one would expect the value of �
to decrease as n increases (see Fig. 2). Another factor
affecting � is the variability in the setup times. Ob-

viously, if all setup times are the same, then � should be
1. As a measure of setup time variability we de®ne the
coef®cient of variation cv as

cv � Var�s�=�s2;

where Var(s) is the variance of the setup time data.
Through some experiments we attempt to develop an

estimate of � as a function of n and cv. We consider cv
values within the range [0, 1/3], because in our main
experiments setup times are uniformly distributed (see
Section 4). To have appropriate parameter values for k1
and k2 we start out with � equal to 0.5 and search for
reasonable values for k1 and k2 (in Section 4 it is
discussed how these values are determined). With these
k1 and k2 values we do another set of experiments with
same data sets, to ®nd a good � value, and so on. It turns
out that the makespan is not very sensitive to the values
of k1 and k2 (the total weighted tardiness is, as shown in
Section 4, very sensitive to the values of k1 and k2).
Through these experiments we obtain the results shown
in Fig. 2, which shows that � decreases in cv and n. It is
clear from the ®gure that 0.3 is a good estimate for �
when n = 60 and cv = 1/3.
In what follows we replace Cmax by the estimator

n�p� �s�. The modi®ed de®nitions for the Due Date
Tightness factor and Due Date Range factor are

� � 1ÿ �d=n�p� �s�
and

R � �dmax ÿ dmin�=n�p� �s�:

In summary, the ®rst phase computes the coef®cient of
variation cv for the setup time data of the instance at
hand and estimates the makespan of the schedule. Then
it computes the values of the characterization coef®-
cients, � , R, and �.

Figure 1 Framework of the heuristic procedure.

Figure 2 Values of � as a function of cv and n.

Heuristic to minimize total weighted tardiness 47



4. Phase two: construction of the schedule

The parameters of the ATCS rule, k1 and k2, depend on
the problem instance because they essentially perform
scaling. It is advantageous to select proper values for k1
and k2 as a function of the values of � , R, and � de®ned
in the previous section. This dependency is not easy to
determine. However, it is intuitive that k2 is decreasing
in �, because when � approaches 0 the setup times
should not play a major role. We wish to ®nd functions
f1 and f2 which give appropriate values for k1 and k2
given � , R, and �, i.e.,

k1 � f1��;R; ��
and

k2 � f2��;R; ��:

An experimental study is conducted to establish these
relationships.

4.1. Experimental design

The three problem coef®cients (� ,R,�) and the two
parameters of the ATCS rule constitute the dimensions
of the experiment. The experiment covers 112 problem
types consisting of seven � values (� = 0.3, 0.4,. . ., 0.9),
four R values (R = 0.25, 0.5, 0.75, 1.0) and four � values
(� = 0.25, 0.5, 0.75, 1.0). A problem type is uniquely
determined by the three coef®cients and the number of
jobs n. In our study we set n to 60. The appropriate
values of the coef®cients are also somewhat affected by
the number of jobs, but it appears from experiments that
this in¯uence is not as critical as that of the three
coef®cients. Within each problem type three problem
instances are generated by using different random num-
ber seeds, resulting in a total of 336 instances. The
processing times are assumed to be uniformly distributed
over the interval [50, 150]. The mean processing time p
is therefore 100. The mean setup time s is then deter-
mined by � and the setup times are uniformly distributed
over the interval [0, 2s]. The due dates are generated
from a composite uniform distribution based on R and � .
With probability � the due date is uniformly distributed
over the interval [d ÿ Rd, d� and with probability (1ÿ �)
over the interval [d, d + (Cmaxÿd)R]. This composite
uniform has mean d and range R. The weight wj of job j

is generated from a uniform distribution on [0,10].
For each of the 336 instances generated, the ATCS

rule is applied repeatedly over a (k1, k2) grid consisting
of 512 points, i.e., ATCS is invoked 512 times for each
of the 336 instances. The grid is obtained by setting k1 =
(0.2, 0.4,. . ., 6.4) and k2 = (0.1, 0.2,. . ., 1.6). The values
of the total weighted tardiness are then projected onto
this grid. All k1 values with which the minimum value of
the objective function (say Z) were obtained are identi-

®ed. The average of these k1 values is then determined.
The same is done with the k2. These average values are
referred to as k1 and k2, respectively. A range of the k1 is
then determined by considering all combinations (k1, k2)
that resulted in values of the objective function less than
(1+�)Z, where � is a number between 0 and 0.065 and a
decreasing function of � . The value 0.065 was consid-
ered appropriate after a thorough visual analysis of the
experimental results. A range of k2 is determined in the
same way. Thus for each of 336 instances the best ranges
of k1 and k2 are determined from the grid of 512 (k1,k2)
combinations applied to the instance. So for each com-
bination of � , R, and �, there are three sets of best ranges
of k1 and k2. For each combination of � , R, and �, the
union of the three ranges is then taken and the center
points of the resulting intervals are determined. These
center points are chosen as the recommended values for
k1 and k2. These experiments lead to the results reported
next.

4.2. Results of the experiments

The results presented here concern the general behavior
of k1 and k2. These are then used to propose simple
functions for selecting k1 and k2.
The behavior of k1 is studied as a function of � , R, and

�. From the experiments it seems that k1 is most
sensitive to R among the three coef®cients. It is also
somewhat sensitive to � and is hardly sensitive to � at
all. In qualitative terms these dependencies can be
summarized as follows (see also Fig. 3):

� for a given � , k1 displays a concave behavior in R

with the peak at about R = 0.5;
� The value of k1 tends to increase in � up to approxi-

mately 0.6 and then decrease somewhat;
� for a given � , k1 increases slightly in �.

Figure 3 Plot of k1 against � and R.

48 Lee et al.



The following rules could be used for the selection of a
proper value of k1:

k1 = 4.5 + R for R � 0:5;
k1 = 6.0 ÿ 2R for R � 0.5.

In these rules the impacts of � and � are not taken into
account. Clearly, such rules may be modi®ed or re®ned
in the future to take the results of additional experiments
into account.
The behavior of k2 is also studied as a function of � ,

R, and �. From our experiments it seems that k2 is
sensitive to � and � and is invariant in R. Fig. 4 plots
k2 with respect to � for constant � , ignoring the effects of
R. The following observations can be made:

� for a given � , k2 displays a convex-decreasing beha-
vior with respect to �;

� for a given �, k2 tends to increase with � almost
linearly.
A simple function that takes into account the effect of

the � and � on k2 is the following:

k2 � �=2
���
�
p

:

The function for k2 results in a very good ®t. The
behavior of k1 is more complicated. It seems to be hard
to capture all the trends with a relatively simple formula.

4.3. Performance evaluation

To see how good the schedules are that the ATCS rule
generates we compare the performance of the ATCS rule
with Raman's rule. Both rules are applied to a series of
test problems. We pursued the following approach in
order to perform a fair comparison (Raman et al. (1989)
do not give any indication of how to choose their k

value): ®rst we conducted an experiment to ®nd a good
estimator for k as a function of � , R, and � in Raman's
rule. We performed similar experiments to those that we
did for the ATCS rule. It seems that k is almost equally
sensitive to the coef®cients � , R, and � (the fact that k
depends on all three coef®cients is clear because there is
only one scaling parameter in Raman's rule). In quali-
tative terms these relationships can be summarized as
follows:

� k is increasing in � with a slope of about 1;
� k is decreasing in � and R with a slope of about 1.

The following rule could be used for the selection of a proper
value of k:

k � 5:5ÿ � ÿ R� �:

Table 1. Percentage improvement obtained by ATCS with respect
to Raman's rule, for n = 60

� � R

0.25 0.50 0.75 1.00

0.25 0.3 40.8 53.7 55.5 65.3

0.5 26.4 39.1 39.7 31.7

0.7 12.5 13.4 14.7 13.5

0.9 4.0 5.9 5.9 3.8

0.50 0.3 48.7 72.5 81.0 63.3

0.5 32.5 40.2 62.6 61.7

0.7 15.3 20.2 11.7 14.8

0.9 3.6 3.4 6.8 5.6

0.75 0.3 69.8 78.5 88.7 90.4

0.5 37.4 62.5 59.7 62.0

0.7 14.4 20.9 16.6 22.5

0.9 4.8 5.2 8.9 7.1

1.00 0.3 74.7 84.6 89.1 85.1

0.5 36.1 63.9 68.1 57.3

0.7 15.4 27.2 33.6 22.0

0.9 5.9 5.9 8.1 6.5

Table 2. Average percentage improvement over Raman's rule
obtained by ATCS for � , R, �, and n

n = 20 n = 40 n = 60 n = 80

� = 0.3 33.2 62.4 73.2 77.0

0.5 18.7 39.6 47.8 50.7

0.7 10.3 16.1 18.5 18.9

0.9 4.9 5.6 5.6 5.9

R = 0.25 17.5 25.4 29.1 29.5

0.50 17.7 32.1 36.3 38.0

0.75 17.7 35.3 40.6 43.3

1.00 14.2 31.1 39.0 41.7

� = 0.25 8.0 19.9 25.7 29.3

0.50 14.7 30.3 35.8 36.6

0.75 20.1 34.0 39.9 41.5

1.00 24.3 39.5 43.7 45.0

Average 16.8 30.9 36.3 38.1

Figure 4 Plot of k2 against � and �.

Heuristic to minimize total weighted tardiness 49



With this function for the scaling parameter the performance
of Raman's rule is compared with the performance of the
ATCS rule. Instances are generated for � = (0.3, 0.5, 0.7,
0.9), R = (0.25, 0.5, 0.75, 1.0) and � = (0.25, 0.5, 0.75, 1.0).
Within each problem type ®ve instances are generated by
using different random number seeds to get the average
improvement of the ATCS rule over Raman's. Table 1
shows the average improvement obtained by the ATCS rule
over Raman's for various cases of � , R and �.
It is observed that considerable improvement can be

achieved for low values of � : the due dates are relatively
loose, and hence the total weighted tardiness is small. In
other words, the total weighted tardiness as an objective
function is less signi®cant for low � . For larger � values
it is harder to get a signi®cant improvement. The im-
provement obtained for each value of R and � is almost
the same. We also compared the performance of two
rules for various number of jobs, say, n = 20, 40, 60, and
80. Table 2 summarizes the average improvement for
each value of � , R, �, and n. Notice that the formulae
developed for n = 60 are used for n = 20, 40 and 80 in

our experiment. Table 3 shows that the ATCS rule is
better in most cases.

5. Phase three: the post-processing procedure

In phases one and two, we determine a sequence for any
given instance. In the third phase we attempt to modify
this sequence to obtain a better schedule. Modi®cations
can be made in a number of different ways. We describe
here some procedures that lead to improvement after a
few iterations. Basically, a sequence may be modi®ed in
two ways, through an insertion or through a swap.
1. Insertion procedure: Two jobs A and B are selected.

Job A is inserted immediately after job B if it improves
the objective function. As a candidate for job A, it seems
to be advantageous to select either the job with the
largest contribution to the total setup time or the job
with the largest contribution to the total weighted tardi-
ness in the ATCS sequence. We may also choose job A

randomly and compare the performance of such a selec-

Table 3. Comparison of the performances of two rules

n = 20 n = 40 n = 60 n = 80

ATCS better Number of cases 1517 1861 1912 1917

Best practice 100% 100% 100% 100%

Raman's better Number of cases 403 59 8 3

Best practice 99.52% 60.57% 3.81% 2.57%

Notes:

1. Number of cases: among 1920 cases (30 cases for each value of � , R, � and n).

2. The value of the best practice shows the relative improvement over the alternative schedule. 100% means that the better schedule is optimal with the

total weighted tardiness zero.

Table 4. Percentage performance improvement of post-ATCS procedure

Swap Insertion

LST LWT RND LST LWT RND

CPU (seconds) 0.125 0.130 0.133 0.129 0.133 0.128

� = 0.3 8.26 21.48 3.87 6.63 21.06 2.00

0.5 0.43 1.24 0.97 0.25 2.45 0.61

0.7 0.06 0.04 0.29 0.07 0.12 0.20

0.9 0.01 0.01 0.01 0.01 0.04 0.01

R = 0.25 0.86 3.51 0.45 0.65 3.88 0.28

0.50 1.80 3.44 1.05 0.33 4.35 0.66

0.75 4.29 8.86 2.03 3.23 7.70 1.29

1.00 0.82 6.96 0.60 1.75 7.72 0.59

� = 0.25 2.13 4.61 1.16 1.40 4.30 0.45

0.50 2.20 6.68 1.85 2.26 6.07 1.24

0.75 1.96 5.03 0.80 1.44 6.16 0.51

1.00 2.48 6.44 1.32 1.86 7.12 0.62

Average 2.19 5.69 1.29 1.74 5.91 0.70

50 Lee et al.



tion procedure with other methods. These three selection
methods are called LST (Longest Setup Time), LWT
(Largest Weighted Tardiness) and RND (Random), re-
spectively in what follows. A candidate for job B is
selected from among 20 jobs nearest to job A. The value
of the objective function of the sequence, which is
constructed by inserting job A immediately after the
candidate of job B, is computed and compared with each
one of 20 cases. Job B is selected such that the resulting
sequence has the minimum value of the objective func-
tion among 20 cases. The computation and comparison
can easily be done sequentially. We restrict the set of
jobs from which job B is chosen because it seldom
occurs that the best job B candidate is far away from
the job A selected.
2. Swap procedure: We can also modify the sequence

by swapping jobs. Two jobs A and B are selected and
interchanged while all other jobs keep the same se-
quence. We select job A in the same way as in the
insertion procedure, i.e., the job with the longest setup
time (LST), with the largest penalty (LWT) or randomly
(RND). From the 20 jobs nearest to the ®rst job, the
second job is selected by computing the objective func-
tions of the sequence obtained through a swap, which is
similar to the insertion procedure. A method is charac-
terized only by the way the ®rst job is selected, not by
the way the second job is selected.
We experimented with the six methods described

above for � = (0.3, 0.5, 0.7, 0.9), R = (0.25, 0.5, 0.75,
1.0) and � = (0.25, 0.5, 0.75, 1.0). For any given � , R,
and �, we generated ®ve instances, computed the average
improvement obtained with each method and made a
comparison. We also took the CPU time (on a Sun
Sparc-IPC workstation) needed to run one instance for
each method into account. We performed the improve-
ment procedure, insertion or swap, three times for each
method. The CPU times taken for every method are
shown in Table 4. The time taken to apply the post-
processing procedure is approximately 0.125 CPU sec-
onds for each of the three methods, whereas the main
ATCS procedure requires 0.291 CPU seconds. Notice
that ®nding the job with the longest setup time or the
largest penalty does not take more time than selecting a
job randomly; this can be done by storing the data of the
setup time or the penalty while generating a sequence in
Phase Two. For each of the three methods and each
combination of the three coef®cients we found the
improvement as a percentage of the value of the total
weighted tardiness of the ATCS sequence. In Table 4
each entry indicates the normalized improvement of each
method, which can be de®ned as the improvement
divided by the standard CPU time (0.125 CPU seconds).
As we can see from Table 4, in general the LWT

method performs better than the LST method in both the
swap and the insertion procedure, whereas the method
using randomly selected jobs performs poorly. There is

no signi®cant difference between the swap and the
insertion method, and considerable improvement can be
achieved for low values of � . It is hard to obtain a good
schedule in a small amount of computer time when � is
high. The improvement obtained is somewhat increasing
in R, but the value of R at which the largest improve-
ment is achieved is not always 1. From the experiments
it appears that it is useful to apply the post-processing
procedure when � is low and R relatively high.

6. Summary and discussion

In this paper we suggest a priority rule for the total
weighted tardiness problem with sequence-dependent
setup times. The priority index is de®ned with para-
meters that are functions of coef®cients characterizing
the instance. The sequence is generated in three phases.
Phase one, the preprocessing procedure, consists of the
computation of the three coef®cients, the due date tardi-
ness factor, the due date range factor and the setup time
severity factor. With these values, in Phase two the
dispatching rule is applied to generate the sequence.
The performance of the dispatching rule is compared
with Raman's rule, which is the only rule so far in the
literature for this problem. Our rule is on the average
better by more than 30% with respect to the value of the
objective function when the number of jobs is large
(more than 40). Phase three, the post-processing proce-
dure, re®nes the sequence obtained in the second phase.
We suggest six methods that lead to signi®cant improve-
ment in relatively short computation time.
One can use the heuristics presented in this paper in

various ways. First, one can consider implementations
where at time zero one computes values of � , R, and �
and determines the values of k1 and k2 once for all.
However, if the number of jobs is very large one can
imagine that after scheduling a (maybe small) number of
jobs the characteristics of the remaining jobs have
changed. It might be an idea then, taking the current
time into account, to recompute � , R, and �, redetermine
k1 and k2 and proceed with these new numbers. Such an
approach could be desirable if there is high variability in
the data. After processing a very unusual job (unusual in
the sense of its data) the average of the remaining jobs
may change signi®cantly.
In practice the heuristics presented in this paper can of

course be used in conjunction with other optimization
techniques. For example, it may be used in conjunction
with enumeration : the heuristic determines the n jobs of
the highest priority; a complete enumeration is then done
to determine in what order these n jobs should be
processed. The heuristics presented in this paper can
also be used in conjunction with techniques such as
simulated annealing (Matsuo et al., 1989; Lee et al.,
1995) or Tabu search (Barnes and Chambers, 1991). The

Heuristic to minimize total weighted tardiness 51



results of the heuristic can be used as an initial solution
for a simulated annealing or Tabu search routine. Notice
that a signi®cant improvement can be obtained in the
third phase with a simple swap/insertion procedure. If a
simulated annealing algorithm or Tabu search that re-
quires more computation time is applied, a bigger im-
provement could be achieved.
When jobs have different release dates the heuristics

developed in this paper can still be used. Every time the
machine is free one selects the job available for proces-
sing with the highest priority index. The � , R, and � are
computed taking into account all jobs, that is, including
those still to be released.
The ATCS procedure described in this paper has been

implemented in a scheduling system, the so-called BPSS
system, which is currently in operation in a number of
factories in the USA (Adler et al., 1993). This system
schedules jobs in a complicated machine environment by
using an approach consisting of multiple phases. In one
of these phases the ATCS rule is used to solve a
scheduling problem with a number of machines in
parallel.

References

Abdul-Razaq, T.S., Potts, C.N. and van Wassenhove, L.N. (1990) A
survey of algorithms for the single machine total weighted
tardiness scheduling problems. Discrete Applied Mathematics
26, 235±253.

Adler, L., Fraiman, N.M., Kobacker, E., Pinedo, M., Plotnitcoff, J.C.
and Wu, T.P. (1993) BPSS: a scheduling system for the
packaging industry. Operations Research, 41, 641±648.

Baker, K.R. and Martin, J.B. (1974) An experimental investigation
of solution algorithms for the single machine tardiness problem.
Naval Research Logistics Quarterly, 21, 187±199.

Barnes, J.W. and Chambers, J.B. (1991) Solving the jobshop
scheduling problem using tabu search. Technical Report
ORP91-06, University of Texas, Austin.

Caroll, C.D. (1965) Heuristic sequencing of jobs with single and
multiple components. Ph.D. Thesis, MIT, Cambridge, MA.

Du, J. and Leung, J.Y. (1990) Minimizing total tardiness on one
machine is NP-hard. Mathematics of Operations Research, 15,
483±494.

Lawler, E.L. (1978) A pseudo-polynomial time algorithm for
sequencing jobs to minimize total tardiness. Annals of Discrete
Mathematics, 1, 331±342.

Lawler, E.L., Lenstra, J.K. and Rinnooy Kan, A.H.G. (1982)
``Deterministic and Stochastic Scheduling''. Recent
developments in deterministic sequencing and scheduling: a
survey, deterministic and stochastic scheduling. Dempster,
M.A.H., Lenstra, J.K. and Rinnooy Kan, A.H.G. (eds.), Reidel,
Dordrecht, 35±73.

Lee, Y.H. and Pinedo, M. (1995) Scheduling jobs on parallel
machines with sequence-dependent setup times. To appear in
European Journal of Operational Research.

Matsuo, H., Suh, C.J. and Sullivan, R.S. (1989) A controlled search
simulated annealing method for the single machine weighted

tardiness problem. Annals of Operations Research, 21, 85±108.
Ow, P.S. and Morton, T.E. (1989) The single machine early/tardy

problems. Management Science, 35, 177±191.
Potts, C.N. and van Wassenhove, L.N. (1982) A decomposition

algorithm for the single machine total tardiness problem.
Operations Research Letters, 1, 177±182.

Potts, C.N. and van Wassenhove, L.N. (1985) A branch and bound
algorithm for the total weighted tardiness problem. Operations
Research, 33, 363±377.

Potts, C.N. and van Wassenhove, L.N. (1987) Dynamic
programming and decomposition approaches for the single
machine total tardiness problem. European Journal of
Operational Research, 32, 405±414.

Raman, N., Rachamadugu, R.V. and Talbot, F.B. (1989) Real time
scheduling of an automated manufacturing center. European
Journal of Operational Research, 40, 222±242.

Srinivasan, V. (1971) A hybrid algorithm for the one machine
sequencing problem to minimize total tardiness. Naval
Research Logistics Quarterly, 18, 317± 327.

Vepsalainen, A. and Morton, T.E. (1987) Priority rules for jobshops
with weighted tardiness costs. Management Science, 33, 1035-
1047.

Biographies

Young Hoon Lee received the B.S. degree in industrial engineering
from Seoul National University, Korea, and the M.Sc. and Ph.D.
degrees in industrial engineering from Columbia University, New York.
He is a senior manager in charge of the System Support Group of
Samsung Electronics Co., Semiconductor Business. His research inter-
ests are in production planning and control, production scheduling, with
emphasis on applications and system developments in the semiconduc-
tor industry. His recent articles have appeared or are going to appear in
IIE Transactions, European Journal of Operational Research, and
Production Planning and Control.

Kumar Bhaskaran has been active in research and consulting in the areas
of production scheduling, inventory management, and decision support
systems for supply chains for the past eight years. He has a Ph.D. in
Engineering Science from the Rensselaer Polytechnic Institute. He is an
active member of IEEE and INFORMS. Currently, he is a member of
the research staff in IBM T.J. Watson Research Center, Yorktown
Heights, New York.

Michael Pinedo received the Ir. degree in mechanical engineering from
the Delft University of Technology, the Netherlands in 1973, M.Sc. and
Ph.D. degrees in industrial engineering from the University of Califor-
nia at Berkeley in 1978. He is Professor in Industrial Engineering and
Operations Research at Columbia University. His research interests are
in production systems modeling, queuing theory, scheduling theory and
scheduling systems development. He has written or jointly written
numerous technical papers on these topics and is the author of the book
Scheduling: Theory, Algorithms and Systems. Over the last decade he
has been very involved in industrial systems development. He super-
vised the design, development and implementation of two scheduling
systems for the International Paper Company. He also actively partici-
pated in the development of scheduling systems at Philips Electronics,
Siemens, and at Merck. He is a departmental editor for IIE Scheduling
and Logistics (covering scheduling) and an associate editor of Naval
Research Logistics. He has been an area editor of Operations Research
(covering stochastic processes).

52 Lee et al.


	mk1
	Introduction
	The framework of the heuristic procedure
	Phase one: computation of coefficients
	Phase two: construction of the schedule
	Phase two: construction of the schedule
	Phase three: the post-processing procedure
	Summary and discussion

